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ABSTRACT 

ANISOTROPIC HARDENING OF 

AN INITIALLY ISOTROPIC POROUS LIMESTONE 

by Cesare Cafferata Celle 

The lack of a good description of the behavior of a 

compacting material that exhibits yield-strength dependence 

upon hydrostatic pressure, prompted the present study to 

determine experimentally^ a yield envelope that would predict 

the material behavior more accurately. 

True triaxial tests were performed on Cordova Lime¬ 

stone in order to find detailed information about the stress- 

strain behavior of this material. From the results of these 

tests a yield surface was obtained and the experimental data 

showed normality to be a very good approximation for the 

actual plastic strains produced by the initial yielding of 

the material studied. 

Subsequent yield surfaces were obtained experimentally 

and it was found that the yield surface displaces in the 

stress space as hardening takes place. 

Different tests were performed in order to obtain the 

shape of the low hydrostatic stress region of the yield 

envelope. Induced anisotropy due to hardening led to a 



closing of this yield envelope and a kinematic hardening 

rule completed the description of the limestone's plastic 

behavior. 

The consistency between the predicted and observed 

stress-strain behavior indicates that the proposed yield 

envelope model and a kinematic hardening rule correspond 

to a proper description of the behavior of this limestone. 
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I. INTRODUCTION 

This work is an attempt to explain the plastic behavior 

of a general type of material that compacts or shows a volume 

decrease as it undergoes permanent deformation, and exhibit 

yield strength dependence upon hydrostatic pressure. 

As it has been remarked by Shield and Ziegler (15)> in 

order to describe the mechanical behavior of a work-hardening 

material, three ingredients are needed. The first two are 

the initial yield condition and a flow rule to be associated 

with the initial and subsequent loading surfaces. The third 

ingredient is still in an uncertain state of development and 

is a subject still open to suggestion, namely the determi¬ 

nation of a hardening law, i.e. the manner of constructing 

the subsequent loading surfaces. Here it is often convenient 

to regard the problem of specification as divided into two 

parts : (a) the determination of the shape of the loading 

surface, and (b) its functional dependence on parameters 

that measure the degree of hardening taking place. 

Induced anisotropy due to hardening is to be considered 

as a particular case. 

This thesis attempts to obtain an experimental solution 

for a yield envelope for Cordova limestone and its hardening 

behavior. Several types of true-triaxial tests will be per¬ 

formed for this purpose and the material to be considered 
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is Cordova limestone. 

The second chapter is a brief review of plasticity 

theory and related work ; in the third chapter, the equip¬ 

ment and experimental procedures are described. Finally, 

in chapter four, the experimental results are analyzed. Our 

first step is to obtain an initial yield envelope for our 

compacting material. Then several exploratory tests are 

performed to analyze the behavior of this initial yield 

surface as hardening takes place. Normality of the strain- 

rate vector to the loading surface is computed and analyzed 

at corners due to intersection of two surfaces. 

A study of induced anisotropy due to hardening taking 

place is undertaken and utilized to obtain the graphical 

solution for our model. 

Subsequent yield surfaces are obtained through diffe¬ 

rent loading paths, and a model for a yield envelope is 

obtained that satisfies the hardening behavior of our ma¬ 

terial. 

Finally, it is found that this model follows a kine¬ 

matic hardening rule and this concept was tested through 

different hardening paths. 

The improved graphical solution for a yield envelope 

model and its hardening rule for a Cordova limestone should 

be of use to others studying compacting materials. 
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II. LITERATURE SURVEY 

Theoretical Background 

This section will contain a brief review of basic 

plasticity theory as well as a thorough review of workhard¬ 

ening theories and yield conditions generally associated 

with soil and rock mechanics. Time and thermal effects in 

plasticity will not be discussed in the review as they are 

neglected or assumed negligible in the analysis of the rock 

studies. 

In this discussion, as well as in the remainder of 

this work, it will be convenient to refer the state of stress 

of a point in the body to a point in stress space. The stress 

point should ideally be in a nine-dimensional space ; however, 

it is often more convenient and instructive to use sub-spaces 

when possible. 

The concept of a yield function or loading function 

is used to specify the elastic or plastic character of the 

material behavior. 

The yield function 

f = f y ‘ij' K> 

may be expressed as a function of the stresses CT^., plastic 

strains and the stress or strain histories, where here 

K is a workhardening parameter defining the stress or strain 

histories. The value of f is restricted such that f £ 0. 
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When f < 0 the material behaves elastically, and when 

f s 0 the material may or may not behave plastically. Now 

since 

bf 

a<Iid 

8f 

>‘Pid 
“U 

+ 
bt 

the following conditions may prevail when f = 0, and when 

bf 

Soid 

< 0 

the material is going from a plastic to an elastic state 

(unloading) 

5f 

^Id 
= 0 

the loading path is tangent to the surface defined by f = 0 

and no plastic strains occur (neutral loading) 

bt ; 
> o 

the material goes from one plastic state to another accompa¬ 

nied by plastic strains (loading). 

When the state of stress is such that f = 0, the sur¬ 

face described by f = 0 in stress space is termed the yield 

surface. The yield surface for a virgin material is called 

the initial yield surface, and the manner in which the sur¬ 

face changes shape or translates is called the hardening 

rule. The yield surfaces must be at least piecewise contin¬ 

uous . 
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Other restrictions are imposed upon f by the fundam¬ 

ental postulate of plasticity, referred to as Drucker’s 

postulate. 

Drucker (1) stated that when a stable, workhardening 

body, in equilibrium with a given set of loads has another 

set of self-equilibrating external loads slowly applied and 

removed, positive work must be done by the external loads 

during application of the loads and non-negative work must 

be done during the loading cycle. This statement is often 

paraphrased to say that no useful net energy above any 

elastic cycle may be extracted from a stable, workhardening 

body and a system of stresses. It may be written as : 

*e - Jtf ij " aij) eiJ dt s 0 

where We is the work done by the external loads, are the 
* 

stresses caused by the external load, are the equilib¬ 

rium stresses and are the plastic strain rates assoc¬ 

iated with the deformation. Consequently a Taylor's series 

expansion of We about t = t^ gives : 

, *\ *p 
(CTij “ aij) eij 

^ 0 

and if = cr^ , the second term of the expansion also 

implies that : 

CTij €ij * 0 

Now assuming f = 0 for plastic flow and the state of stress 
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is such that f = 0, the above implies that : 

(1) the surface f « 0 must be convex ; 

(2) is parallel to the normal of the smooth segment of 

the surface. 

If the surface is piecewise continuous and the loading 

point is at a comer of the yield surface, the direction of 
* 

lies between the normals of the adjacent regular portions 

of the surface (see figure II - la,b). J.L. Sanders (6) 

stated that at a corner developed by the intersection of two 

yield surfaces, the strain rate is the vector sum of the 

contribution from both loading surfaces (see figure II - lc). 
• __ 

The fact that is parallel to the normal of the 

yield surface formalizes the generally used concept of the 

plastic potential where the plastic strain rates are propor¬ 

tioned to the gradient of the yield function. 

Since the gradient of f defines the normal of the 

surface f = 0, 

X Sf 

where X is an arbitrary positive constant. Thus by Drucker's 

postulate the yield function dictates the plastic strains of 

the material, and a consistent theory requires the plastic 

strain rates to be derivable from the yield condition. In 

the presence of finite deformation, Naghdi and Trapp (14) 

proved normality of the strain-rate vector to the loading 

surface in stress space for a special class of elastic-plastic 
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Figure II - 1 Strain rates vectors at a corner 
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materials and for rigid-plastic materials. 

In spite of the results of Drucker's postulate, some 

workers attempt to evoke plasticity theory using yield func¬ 

tion with non associated flow rules (De Jung (2), Barden, 

and Khayatt (3)). This is indicative that either the material 

behavior cannot be described using plasticity theory or that 

the yield functions are improperly chosen. 

Often comers in yield functions are proposed in order 

to allow a consistent yield function and strain rate field 

that matches a material's observed behavior (Jenike and Shield 

(4>). 
The plastic strain rates are defined kinematically by 

. dv. ôv. 
eij = ^ ( ôxj + ôxj’ ) 

where 

x^ are the spatial or Eulerian coordinates of the body 

v^ = v^ (Xj, t) are the velocities in terms of the 

Eulerian coordinates. 

Thus the plastic strain rates are independent of the 

reference state, and normality (or the plastic potential) 

holds regardless of the magnitude of the strains. Since the 

plastic strain rates are defined in terms of spatial var¬ 

iables, 

; t t 
O 

dt 

is physically meaningless in terms of total plastic strain 
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at a material point. It might be possible to interpret the 

integral as a material time integral (analogue of material 

time derivative) that follows a particle through its motion : 

and thus the result could be interpreted as a total plastic 

strain. However, the actual mathematical process of evaluating 

that integral would be a complex or perhaps an impossible 

task. See Malvern (5). 

If we assume infinitisemal strains, the elastic and 

plastic parts of a deformation can be superimposed such that : 

where 

+ e P 
1J 

U 
du. 

_ i  i 
2
 dx. 

du 

dx 

u^ are components of a displacement, 

x^ are components of the spatial or material 

coordinates, 

eij are comP°nen^s the elastic strains, 

are components of the plastic strains. 

Assuming linear elasticity holds, then : 

e _ p -1 
eij “ °ijkl CTkl 

where 

C 
-1 

ijkl 
are components of the inverse elastic cons 
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tants for a generalized Hooke's law. 

Then the plastic strain becomes : 

ôu ÔU 

= 2 (&r + "sA “ 
3 

ÔX. 

-1 
cijkl akl 

Note that this definition holds only for infinitesimal 

strains in a linear elastic/plastic material ; but that the 

plastic strain rates derived from the yield functions are 

exact regardless of the amount of deformation. 

The most commonly used yield functions for metals are 

the von Mises or maximum dis tort ional energy and the Tresca 

or maximum shear stress yield functions. They can be expres¬ 

sed in terms of principal stresses as follows : 

von Mises 

f = i (°i <*2)
2 + (»! - <J3)S

 + (°2 - 13)
2 - k2 

Tresca 

f = 0 - CT - 2k 
max min 

where k is the yield stress in pure shear. The appropriate 

yield surface for a von Mises function is a cylinder in the 

principal stress space with the hydrostatic line (0^ = a2 = 

0^) as its axis and with radius k (see figure II - 2). The 

Tresca yield condition describes a regular hexagonal prism 

with the hydrostatic line as its axis (see figure II -3,4). 

If k is a constant, then the yield conditions above 

describe a perfectly plastic material. That is a material 
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Figure II - 2 Yield surface for von Mises yield 
condition plotted in principal stress 
space 
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Figure II - 3 The Tresca yield surface is repre¬ 
sented in the form of a regular 
hexagonal prism constituted by six 
planes perpendicular to the plane TT. 
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Figure II - 4 Yield surface for Tresca yield con¬ 
dition plotted in principal stress 
space 
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that is independent of the stress and strain histories. 

Improved description of material behavior results if 

the yield function is expressed in a more general form : 

f - t («y, ') 

where K can be a workhardening parameter. The ability to 

assign the functional dependence on and K allows the 

yield surface to change shape and/or translate in the stress 

space ; the manner in which the yield surface is transformed 

is called a hardening rule. For a virgin material there is 

no strain history and the initial yield surface is defined 

by a yield function of the form : 

f = f 

For an isotropic material this can be reduced even 

further. An isotropic material is a material such that any 

arbitrary rotation about any axis has no effect on the yield 

function. For such a material the yield function may be 

written as : 

f = f (I, II, III) 

where I, II and III are the first three invariants of the 

stress tensor, 

I = + <J2 + a3 

II = °2.
a
2 + a2°3 + °1°3 

and III = aiCT2a3 
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In practice the third invariant is neglected and the 

yield condition is written as : 

f = f (I, II) 

or more commonly, as : 

f = f (J2, I) 

where Jg is the second invariant of the deviatoric stress 

tensor. 

J2 = F ((CT1 ” 
CT
2^ 

+
 (a2 “ 

CT
3^2 + (ct3 “ 

al^2 ) 

written in this form von Mises yield condition becomes : 

f =J2 - k
2 

and the first invariant, or the hydrostatic stress, is 

neglected. This non dependence on hydrostatic stress is a 

unique property of metals. 

Several more general yield conditions are : 

the extended von Mises 

f = J2 - «I - k 

the extended Tresca 

f = <7 „ - a. - arl - k max min 

and the Mohr Coulomb 

f = cr ^ - a . - of (a„_„ + a , ) - k max min v max min7 

In these yield conditions, as in the rest of this 
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thesis, compressive stresses are considered positive. The 

extended von Mises yield condition forms a cone in principal 

stress space with the hydrostatic line as its axis (figure 

II - 5a)• The extended Tresca and Mohr Coulomb yield func¬ 

tions describe a regular hexagonal pyramid with the hydros¬ 

tatic line as its axis (figure II - 5b). All three yield 

conditions predict a linear increase in strength with in¬ 

creasing hydrostatic pressure, and with slightly different 

or's and krs they all reduce to the well known Coulomb yield 

condition for plane strain. 

CT - a 2 

(( ) + V > 

i 
2 2 CT + CT 

_x  
sin 0 - c cos 0 = 0 

where c = cohesive strength, and 

0 = angle of internal friction (figure II - 5c) 

Application of Normality to any of the three Coulomb 

type yield conditions above, by using the yield condition as 

a plastic potential function, predicts a volume increase du¬ 

ring any plastic deformation. As an example to illustrate 

this we will use the extended von Mises yield condition. 

The volumetric strain is defined as the sum of the 

three principal strains 

P « + e2 + ,P 
3 

Using the yield function 

f = J2^ - «I - k 



17 



18 

as a plastic potential gives 

t-5£r 
SJ22 

ÔCT. + 
ôf 
ÔI } 

Now 
i 

6 7? ((01 ' <J2) + (°1 ' 53}) 

J2 

and 

«1 = X *—% ((ai " °r2^ + (CT1 " a3) ) " 
J22 

Cyclic permutation of 1, 2 and 3 yield 

•l = x {-% ((02 - O].) + (CT2 - o3) ) - «} 
J22 

and 

• /T 
= X {—2^ ((cr^ - CT-L) + (CT3 - a2) ) -a} 

J22 

Thus 

6-P = - 3Xor 

which in a system of positive compressive stresses predicts 

a plastic volumetric increase. 

Jenike and Shield (4) and Drucker (7) have discussed 

the inherent instability of a material that expands while 

deforming. Such a volumetric increase has been observed by 

several experimentors (7) (see experiments on this thesis) 

but is not common in rocks and soils. It would appear then 
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that a Coulomb type yield function cannot adequately describe 

the behavior of many rocks and soils. This inconsistency has 

led many authors to terminate a generalized Coulomb type 

yield condition with an end cap. Such an end cap would allow 

Drucker1s postulate to predict a volume decrease or compac¬ 

tion during plastic deformation. 

Although the addition of an end cap allows a volume 

decrease and thus increases the accuracy of predictions, the 

yield conditions are still limited to isotropic materials. 

That is to say materials with no directional dependence. 

Work-Hardening may be considered as a particular case of 

induced anisotropy on formerly isotropic (or slightly anis¬ 

otropic) materials. Several yield conditions have been 

proposed for this kind of anisotropy (8) and for natural 

anisotropy. These will be discussed in the next section. 

As previously mentioned, the manner in which the 

yield surface is transformed is called a hardening mile. 

Figures II - 6a,f illustrate five generally used hardening 

rules applied to the Tresca Yield Condition (9) (13). 

The most widely used approach to hardening assumes 

a uniform expansion of the initial yield surface and is 

termed isotropic hardening (figure II - 6b) since it implies 

that no anisotropy is introduced during plastic flow. The 

subsequent yield surfaces may be written as : 

f = f* (J2, J3) - k = 0 

where k depends on the plastic strain history. Isotropic 
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(a) Initial yield condition (b.) isotropic hardening 
Tresca 

(e) Independently acting (f) 
plane loading surfaces 

Figure II - 

Interdependent plane 
loading surfaces (Naghdi (12)) ■ 
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hardening* though widely used in analysis, has little ex¬ 

perimental support because it does not explain the Baus- 

chinger effect. 

Prager (10) has proposed a kinematic hardening rule 

as a proper generalization of the Bauschinger effect obser¬ 

ved in uniaxial tension and compression tests. In this case 

the yield surface is specified to translate as a rigid body 

in stress space without rotation. To explain this rule, 

Prager used a mechanical model. With reference to figure 

II - 7a* a rigid frame in the shape of the yield surface is 

used to describe the loading surface in stress space. The 

state of stress before yield occurs is represented by the 

position of a pin free to move within the frame and origi¬ 

nally at the origin. As the pin contacts the side of the 

frame, yielding occurs; with further loading the pin engages 

the frame (which is assumed to be constrained against rota¬ 

tion), causing it to translate. The frame is assumed smooth 

so that only motion normal to the surface is possible. At 

comers, if the motion of the pin engages both sides (i.e. 

if the direction of falls within the fan of normals), 

the frame translates in the direction of the motion of the 

pin. If the pin disengages and moves away from the frame, 

the frame stays put, and the change represents an unloading. 

It is obvious that none of the flow rules deduced from 

Drucker*s hypothesis is violated. Depending on the materials 

to be described by the model (i.e. rigid/perfectly plastic, 

rigid/work-hardening, elastic/perfectly plastic) the state 



(a) Prager's kinematic model 

(b) Comparison of the direction of translation da . of 
the yield surface for Prager's hardening rulelj (shown 
dotted) and Ziegler's modification (shown solid) 

In the modified version, the motion is along the di¬ 
rection O'P-instead of along the normal to f « 0 at P 

Figure II - 7 
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of stress and the state of strain are represented in the model 

in different ways. For example, for a rigid work-hardening 

material the displacement of the center of the frame relative 

to 0 is proportional to the total strain and the state of 

stress is represented by the position of the pin also relative 

to 0. 

The model described above is termed kinematic, since 

both stress and strain are represented by displacements. 

For this hardening rule, after a certain amount of 

plastic flow, the yield function is given by 

p = k‘ 

where the tensor represents the total translation, and 

it can be function of either the stress or strain histories. 

Because is not necessarily the isotropic tensor 6^, 

where 6^ is the kronecker delta, the material becomes aniso¬ 

tropic as a result of the hardening process. After Shield 

and Ziegler (15) the or^ may be specified by the rule : 

“U =0 

where C is a positive constant for linear work-hardening. 

Since from normality : 

P _ df e j = 

3a 
ij 

and from the condition that during the plastic flow f = 0 
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Bf 
+ 

Bf * 

and since 

Bf Bf 

^17 “ ^ 

it follows that : 

X 
1 
C 

Bf 
Ba 
il U 

“5T r. 
' àrr _ / V a°ki' 'ôaki 

) 

thus the or^j can be found to within an arbitrary constant 

from the loading function, and the hardening rule is sped- 

fied, if the are assumed equal to zero for no plastic 

strain. 

Shield and Ziegler (15) have shown that the trans¬ 

lation of the yield surface normal to the loading point of 

the yield surface is not always the case when some sub- 

spaces are chosen to represent the yield surface. Ziegler 

(11) has proposed a modification of Prager’s rule in order 

to provide a consistent translation of the yield surface 

for any sub-space representations. Ziegler proposed that 

the translation tensor be defined by : 

“w =u ("u - »ij) 

By the same process as above, 
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U ~ CTiJ / ^
0]a " ô^ki 

m 

u is some positive quantity that forces the translation ten¬ 

sor increment or^j to be directed along the line from the 

instantaneous center of the yield surface to the loading 

point ; and the time derivative is used so that the units 

will be consistent. Thus the yield surface translates along 

the direction of the stress vector directed from the instant¬ 

aneous origin of the translating yield surface (figure II - 

7b). Ziegler has shown this to be invariant under reduction 

of space dimensions. 

There is, however, an objection to this modification : 

strict kinematic hardening can be shown to imply some measure 

of uniqueness of the solution to certain boundery value pro¬ 

blems concerning work-hardening solids, and this uniqueness 

is lost for modified kinematic hardening (16). 

Figures II - 6e and f show two other hardening rules ; 

in figure II - 6e, the plastic deformation causes a linear 

segment to move. In figure II - 6f, the plane loading surfaces 

changes with plastic loading in some interdependent manner. 

More complicated hardening rules have been proposed 

from time to time. For example, Hodge (17) has extended the 

kinematic hardening to include an expansion of the yield 

surface simultaneously with its translation. For an account 

of these theories the reader is referred to references (16) 

and (13)* 
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Review of Related Work 

This thesis will attempt to obtain a graphical solution 

for a yield envelope for Cordova limestone and its hardening 

behavior. As we know, Cordova limestone is a compacting mate¬ 

rial. Several theories have been presented involving end caps 

on a generalized Coulomb type of yield condition in order to 

describe compacting materials. Most of these theories inclu¬ 

ded a work-hardening theory that allows the end cap to grow 

as the material compacts. 

One of the first references to an end cap is given by 

Drucker, Gibson and Henkel (18). They proposed a hemispherical 

end cap to an extended von Mises yield condition in order to 

explain the compaction of wet clays. 

Cheatham (19), in an experimental study, definitely 

showed evidence of compaction in the plastic flow of a porous 

limestone. An end cap would be necessary to predict such be¬ 

havior. 

Miller (20), in a similar experimental study, recorded 

similar results. He proposed an end cap to a Coulomb type of 

yield condition. The initial yield surface predicted by Miller 

theory would be two regular hexagonal pyramids with the hydros¬ 

tatic line as their axis. These pyramids have opposite slopes 

and intersect so that they form a closed surface. He proposed 

a work-hardening theory to predict the behavior of a compac¬ 

ting material. The end cap was allowed to grow as plastic work 

was done on the material but it was always limited by the 

Coulomb yield condition. 
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M. Smith (21) proposed a yield condition to cover po¬ 

rous anisotropic materials. His experimental study is further 

limited to transversely isotropic materials due to the fact 

that transversely isotropic (layered) rocks are very common 

in nature. He also applied his yield condition to Cordova 

limestone as this rock presents bedding planes and a small 

initial anisotropy. His general yield condition reduces to 

simpler yield conditions in order to describe simpler mate¬ 

rials . 

F. Stassi D’Alia (8) proposed four different theories 

for anisotropic yield conditions which he applied to materials 

initially isotropic that became anisotropic due to work¬ 

hardening. Each theory corresponded to one kind of intro¬ 

duced anisotropy. 

In our work we will attempt to obtain a model that will 

apply to any kind of anisotropic hardening. 
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III. EXPERIMENTAL APPARATUS 

Design of Apparatus 

The basic difference between the apparatus used in 

this work and other tri-axial test machines is the fact that 

this apparatus uses mechanical pressure to provide the three 

principal stresses. 

The stresses are applied by five hydraulic rams and 

one load cell arranged to form an orthogonal system. The 

lateral stresses are applied by two sets of two hydraulic 

rams each. The vertical stress is applied by a hydraulic 

ram opposed by a load cell. Each set of rams is actuated by 

a separate hydraulic pump. Therefore, each of the three prin¬ 

cipal stresses can be varied independently of the others. 

However, valves are arranged so that all five rams can be 

operated by one pump. The apparatus is designed to accept 

two different sample sizes. For relatively weak materials, 

each ram is capped by a one inch square head and a one inch 

cubical sample is used. For stronger materials, the lateral 

rams are capped by one-half inch by one inch heads and the 

vertical ram is capped with a one quarter inch square head. 

The heads are mounted to the rams with curved surfaces. This 

is to allow the heads to adjust to the sample if the sides of 

the sample are not exactly parallel. The heads are held in 
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place with rubber sleeves. The rams used were Blackhawk 

twelve ton rams with a maximum working pressure of 8639 psi. 

The lateral rams were actuated by Enerpac pumps. The verti¬ 

cal ram was actuated by a Ruska volumetric pump. The twelve- 

ton rams give a maximum stress of 24,000 psi in all three 

directions for the one inch samples. For the half inch 

samples, lateral stresses of 48,000 psi and a vertical stress 

of 96,000 psi are possible. One advantage of this apparatus 

is the possibility of achieving very high stress states with¬ 

out the problems and dangers caused by the high hydraulic 

pressures. The outer case of the rams are threaded so that 

they screw directly into the main body of the apparatus. 

The load cell mounts to the top of the apparatus. It consists 

of two parts. There is an outer container which is threaded 

to screw directly into the top of the body of the apparatus. 

Then there is an inner cylinder with a narrow section with 

strain gages mounted to it. The gages are wired to form a 

Wheatstone bridge circuit and the circuit is calibrated to 

provide a signal that determines sample stress. The load 

cell was originally calibrated with a Rheile test machine 

and was checked periodically against hydraulic pressure by 

inserting a steel sample into the apparatus. 

A cross-sectional view of one of the hydraulic rams 

is shown in Figure III - 1. As can be seen from the figure, 

the back plate moves with the head of the ram. Therefore it 

is possible to measure the deformation of the sample by mea¬ 

suring the displacement of this plate. This is done with 
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Hydraulic 
Fluid 

"0" ring 
seals 

t 

_z3 
Fig. Ill - 1 Cross sectional view of hydraulic 

ram used in experimental apparatus. 



31 

simple displacement transducers made from aluminium canti¬ 

lever beams. The displacement transducers were calibrated 

with dial indicators. As described above, there is a stress 

measuring device on the vertical axis and strain measuring 

devices on all three axes. Therefore, if the other two 

stresses are set at values below the plastic yield limit 

and then held'constant during the test, all three principal 

stresses are known at the yield point and the strains in the 

principal directions are known throughout the test. The four 

measuring devices are connected to a Honeywell Visicorder. 

This gives four traces with respect to time which can be 

translated into stress-strain curves. The stress and strain 

measuring devices on the vertical axis are also connected to 

an X-Y Recorder in order to obtain stress-strain curves for 

the vertical axis directly. 

To avoid friction between the ram heads and the samples, 

these samples were placed in a rubber membrane of a common 

commercial variety. The membrane was then coated with silicon 

grease, and the sample was placed in the apparatus. 

In order to avoid possible interference between the rams 

as the sample is compressed, the samples were prepared 

slightly larger than the rams, so the displacement transdu¬ 

cers were calibrated assuming a sample l/l6n larger in all 

dimensions than the nominal sample size (i.e. a nominal 

1" x 1" x 1" cubical sample would be 1 1/16" x 1 l/l6n x 

1 1/16"). Figure III - 2 shows a diagram of the equipment 

which was used ; Figure IV - 2b shows a perspective view of 

experimental apparatus. 
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(a) Top view 

Figure lit-2b Perspective view of 
Experimental Apparatus 
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Experimental Procedure 

Five types of experiments can be performed with this 

equipment. The types are identified by the stress state at 

failure and by the path followed in principal stress space 

to reach the failure surface. 

The first type of test will be referred to as a con¬ 

ventional compression test. This is the type of experiment 

normally performed with an apparatus that uses a fluid çon- 

fining pressure to provide two of the principal stresses. 

The test begins by raising the three principal stresses to¬ 

gether until h preselected hydrostatic stress is reached. 

The stress on one axis is then increased to-failure while 

the other two principal stresses are held constant. The 

resulting stress state at failure is : 

al > a2 ~ a3 

The next type of experiment is a hydrostatic stress 

test. In this test all three principal, stresses are raised 

together until the sample yields. With a perfectly isotropic 

sample it would only be necessary to measure the strain on 

one axis in order to determine the yield point, however, 

with an anisotropic material it is necessary to measure the 

strain on all three principal axes since the weakest axis 

will yield first and this will be the yield stress for the 

sample. The stress state at failure will be : 

CS
1 - °2 ~ 

ct3 
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The third type of test is an intermediate stress test. 

In this test all three principal stresses are raised toge¬ 

ther to the preselected value of the minimum stress. The 

stress on one axis is then held constant at this value 

while the stress on the other two axes is increased to the 

preselected value of the intermediate stress. The stress on 

a second axis is held constant at this value and the stress 

on the third axis is increased until the plastic yield limit 

is reached. The stress state at yielding is : 

°1> a2> ct3 

The fourth type of test is a conventional extension 

test. All three principal stresses' are raised together to 

a relatively high hydrostatic stress and then two stresses 

are held constant while the third stress is lowered. The 

yield stress state is : 

al = a2 > a3 

The last type of test is an extension test. The final 

stress state at yield for this test is the same as a con¬ 

ventional extension test but the loading path is different. 

In this test all three principal stresses are raised toge¬ 

ther to a relatively low hydrostatic stress. The stress on 

one axis is then held constant at this value while the stress 

on the other two axes is increased to plastic failure. 

If the plastic yield limit is truly path independent, 

then the last two test types discussed above should yield 

identical results. 



Initial Yield Point 

In order to determine the initial yield point of the 

material being studied, it is necessary to define it. 

With some metals, such as steel, the yield point is 

very sharply defined and there is no trouble detecting it. 

However, this is not often the case when dealing with rocks 

and soils. Some metals, such as aluminium and copper, do not 

have a clear yield point and a 0.2 % strain effect is de¬ 

fined as the yield point. This method has not proved effec¬ 

tive for rocks since many rocks exhibit some non-linear 

elastic behavior before yielding. The method most used in 

this work is to approximate the stress strain curve for the 

material as an elastic-linear-hardening material as seen in 

figure III - 5a. In some cases this is not possible. For 

compacting materials when yielding very near, or at the hy¬ 

drostatic yield point, there is no linear portion of the 

curve. Since it is noticed that the yield point as selected 

above usually occurs very near the stress of 1 ^ offset, the 

stress at 1 $ offset is selected as the yield point for these 

tests. This is seen in figure III - 5b. Other materials after 

briefly yielding begin to fracture completely and lose 

strength. In these cases the maximum stress is chosen as the 

failure point. This condition cannot be classified as a 

yield point since the behavior of the material is brittle 

rather than plastic. 



yield 
point 

(a) e 

yield 
point 

Figure III-5 Definition of yield points for 
experimental results 
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Sample Orientations and Specifications 

Cordova Cream limestone is a weak porous limestone 

commonly known as Austin Chalk. 

Previous experimental work (20) done with Cordova 

limestone had confirmed the existence of bedding planes 

which cause the rock to be transversely isotropic, this 

means that two of the axes of the material are the same. 

In the rest of this thesis, the axes will be referred to 

as the x, y and z axes or 2, 3 and 1 axes respectively, 

with the x and y (2 and 3) axes being interchangeable so 

that the material is rotationally symmetric about the z 

axis, (see figure III - 3)* 

This anisotropy in the undeformed state is evidenced 

by a difference in the stresses in the two independent di¬ 

rections at yield. 

This initial difference in yield point is less than 

20 io. 



39 

Pig, III-4 Hydrostatic stress test on 
Cordova limestone 
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Initial Yield Surface 

The experiments to be performed for obtaining the 

initial and subsequent yield surfaces give results that are 

applicable to only one portion of the yield surface of the 

material tested. That part of the yield surface is the part 

cut by a plane containing the lines = a2, and the 

axis ; therefore the best stress space representation for 

the test results is two dimensional cartesian space with 

axes CT1 and 

The yield surface is experimentally determined by 

"probing tests" which consist of tests on a single sample 

at different confining pressures. The procedure for these 

"probing tests" can be described as : 

1. One sample is loaded at a high confining pressure until 

yield is reached and then it is unloaded ; 

2. The confining pressure is lowered a set amount ; 

3. The sample is loaded until yield is reached at the new 

confining pressure and then it is unloaded ; 

4. The confining pressure is lowered another set amount % 

5. The sample is loaded again until yield is reached at the 

new confining pressure and then it is unloaded... 

This procedure can be continued until the desired 

number of yield stress values are obtained. As long as the 

strain hardening is very small on each step, we can assume 

that every yield point lies oh the same yield surface. In 

order to correct a possible error on obtaining the data, the 
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same kind of test are performed on another sample hut start¬ 

ing with an initial low confining pressure which will be 

increased a set amount on each step. The points obtained 

from this second experiment will also be plotted and our 

final yield envelope will be an inner surface 

Extension tests are used to perform the "probing 

tests" in order to complete the yield envelope with the 

surface that falls below the hydrostatic axis (c^ = a2 = CT^). 

Subsequent Yield Surfaces 

A subsequent yield surface can be experimentally 

determined (assuming axial compression tests only) by : 

1. Loading the material to a set differential axial, stress 

( a^) at a particular confining pressure (pc), C where 

°z ~ (az " Pc)* then unloading the sample ; 

2. Changing the confining pressure ; 

3. Loading the sample until yield is reached at the new 

confining pressure. 

The value of the differential axial stress CTZ before 

unloading the sample at the first confining pressure gives 

one point on a subsequent yield surface caused by a loading 

path described in (1) above and shown in figure III - 6a,. 

Another point on the subsequent yield surface is given by 
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Figure III - 6 (a) Differential Axial Stress versus axial 
strain at some^particular confining pressure (loading 
and unloading). 

(b) Differential axial stress versus axial 
strain at some other confining pressure (loading). ' 

(•c) Changes in the yield surface due. strai¬ 
ning the material at pc as detected by axial com¬ 
pression test at some 1 other confining pressure. 



43 

the yield point of the stress-strain curve at the other con¬ 

fining pressure (assuming no yield during change in confining 

pressure) show in figure III - 6b. The representation in 

stress space of this procedure is seen in figure III - 6c. 

Probing tests are performed to obtain more yield 

stress values on the same subsequent yield surface. 

In order to be able to obtain a hardening rule to 

complete the description of the material behavior, two more 

types of tests will be performed to obtain subsequent yield 

surfaces : 

A - 1. Load the material to hydrostatic stress value above 

the yield stress (CTX = CT^. = az) (figure III - 6c) ; 

2. Perform probing tests to obtain more yield stress 

values on the same subsequent yield surface. 

B - 1. Load the material to a set differential radial stress 

( ax) at a particular confining pressure (PC)J and 

then unload the sample (figure III - 6c) ; 

2. Perform probing tests to obtain more yield stress 

values in the same subsequent yield surface. 

Experimental Accuracy 

There are several sources of errors in this experi¬ 

mental apparatus. These are all very small compared to the 

inhomogeneity present in most rocks. One possible source 
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of error is the strain created on the hydraulic rams, but 

since the ram is of large cross sectional area and construc¬ 

ted of steel, this strain is much smaller than the measured 

values for the sample, and it is treated as negligible. Other 

negligible errors could also be created by the springs in the 

hydraulic rams and by the loading caused by the displacement 

transducers. In figure III - 1, we can see that section A 

could create a pressure chamber when filled with hydraulic 

fluid due to leakage through the O-rings, a situation that 

did not happen during our tests. 

It was observed that there was no delay in response 

of the X-Y recorder and Visicorder upon loading with the 

pump. A friction test was made and consisted of loading a 

steel sample and making readings in a digital voltmeter from 

the load cell output every 400 psi. The pressure was con¬ 

trolled with a pressure gage on the hydraulic line. Nine 

readings were made during loading and unloading and the test 

was performed three times. In figure III - 7, we can see a 

chart of pressure vs. voltage. To compute if the friction 

was significant, the following procedure was followed : 

(least squares fit) 

z± = i S (Vu - V1)! 

where 

i = 1, 2, 3 
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Vu = voltage unloading 
1 

V - voltage loading 

Zz 

z ~ (9 - 1) 

S (z± 

z ~ & 

- .033 

2 

s.z « .0135 

comparing /u / with /s / we see that /u / < 2 /s /, then 
z z z z 

friction is not significant. 

To keep consistency between the different experiments, 

all the connections were carefully made and reviewed, and the 

voltage and current were constantly checked during the expe¬ 

riments. The load cell displayed some non-linearity during 

loading. However, the error was less than 5 $ over the en¬ 

tire range of the apparatus. The displacement transducers 

were accurate to - 3 % over a range of - 10 # strain to 

+ 10 io strain. 

Another source of error was the width of the trace of 

the visicorder used to record the measurements. The trace 

was .05” wide. In experiments involving large deflections on 

the visicorder (large strains or loads) this is a negligible 

error, but if the stresses or strains were low the width of 

the trace could be a measurable portion of the total measu¬ 

rement (5 % to 10 $). Probably the worst possible error pro¬ 

duced by this would be - 2 io. A method of getting more sharp- 
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ness of the tracing lights and consequently getting thinner 

traces, was to set the galvanometer’s mirrors parallel to 

the panel before each experiment in order to avoid some light 

diffusion. 

Another problem is the size of sample used which ac¬ 

curacy was of the order of - O.ol" and this could cause 

small errors in the strain measurements because the displa¬ 

cement transducers were calibrated for 1 1/16" x 1 1/16" x 

1 1/16" samples. The error involved is a maximum of 0.1 fo 

and was treated as negligible. In the following description 

of the test A in figure III - 8, this effect can be seen, it 

corresponds to a stress-strain curve of the vertical axes 

for hydrostatic stress test and a conventional extension 

test. Before starting at 0, the sample was cycled several 

times j OA shows a perfectly linear elastic region and a 

clear yield point on this hydrostatic test ; ABC shows a 

perfect retracing on the unloading and reloading process and 

a sharp yield point ; the same can be observed on CDE ; EF 

corresponds to a vertical unloading while keeping CT„ and a x y 

constant % FG is vertical loading ; GH is vertical unloading 

HK is vertical loading and KL is vertical unloading. 

To allow localized plastic deformation to reduce sur¬ 

face irregularities caused by sample preparation, the load 

was cycled several times in the elastic region before each 

experiment. This would also avoid certain inhomogeneity of 

the stress strain curves and get sharper yield points. 
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In the following test (B) (figure III - 9a) it can be 

seen that loops such as (H - K - L) on test (A) are due to 

friction on the lateral sides of the sample. 

In test (B) the sample was loaded hydrostatically 

until reaching point (1) where a and a were kept constant 
x y 

at that value (7 500 psi) and the vertical axis was unloaded 

in a conventional extension test until reaching yield (2 000 

psi). Then it was cycled several times loading and unloading 

the vertical axis. Assuming a friction factor of .02, the 

force that would offset the stress-strain curve from L - L 

and Lf - L* would be about 600 psi. In figure III - 9b we 

can see that at points C and G the volumetric strain is about 

the same, which leads to the conclusion that the loop is comp¬ 

letely elastic. In figure III - 9c we can see the elastic 

behavior of the other two axes. 

In general the accuracy of all measurements was very 

good compared to the inhomogeneity of rocks which can be as 

great as 100 $ (21, pp. 46). 
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TEST B 

Figure III - 9 a 

01 - hydrostatic loading 

1A - vertical unloading (yield in extension) 

AB - vertical loading 

BC - vertical unloading 

CD - vertical loading 

DE - vertical unloading 

EF - vertical loading 

FG - vertical unloading 

GH - vertical loading 
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IV. EXPERIMENTAL RESULTS 

Initial Yield Surface 

The Initial Yield Surface was obtained by performing 

four probing tests and a hydrostatic stress test. 

In figure IV - la, stress strain curves for the ver¬ 

tical axis are shown. The sample was loaded hydrostatically 

to 1000 psi and a conventional compression test was per¬ 

formed, once yield was reached, it was unloaded to the con¬ 

fining pressure (curve 1). Then the confining pressure was 

raised to 2000 psi and another conventional compression test 

was performed at this pQ \ once yield was reached, the sample 

was unloaded to the last p (curve 2). Curves 3* 4, 5a 6, 7 

in the figure correspond to conventional compression tests 

for the same sample performed at 3000, 4000, 5000, 5500, 

6000 psi respectively. All the yield stress values obtained 

from this probing test are plotted in figure IV - 4. 

Figure IV - lb also shows stress-strain curves of 

conventional compression tests for one sample at different 

confining pressures, but in this case the first test was 

performed at a high p (5000) and this p was lowered before 

each test. The yield stress values obtained from this probing 

test are plotted in figure IV - 4. 

Figure XV - 2a corresponds to stress-strain curves for 
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Sample VIII - 2 

Figure IV - 1 Probing tests for initial yield surface 
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extension tests of one sample at different confining pressures. 

The initial confining pressure for this case was 2000 psi 

and it was increased before each extension test. The yield 

stress values obtained from this probing test are plotted in 

figure IV - 4. 

Figure IV - 2b shows stress-strain curves for extension 

tests of one sample at different confining pressures. In this 

case, the initial confining pressure was 5000 psi and it was 

lowered before each test. The yield stress values obtained 

from this probing test are plotted in figure IV - 4. 

Figure IV - 3 corresponds to a hydrostatic stress test 

that gives us a hydrostatic yield stress value of 5100 psi. 

Figure IV - 4 shows all the yield stress values obtai¬ 

ned from the previous tests. We can see that the dotted 

yield surface obtained from the tests IV - la and IV - 2a 

intersects the dotted yield surface obtained from the tests 

IV - lb and IV - 2b. Our initial yield surface is the inner 

surface. 
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Figure IV - 3 
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Normality 

Three tests were performed to prove normality of the strain 

rate vector to the loading surface. The first of them is a 

conventional extension test which loading path is seen in 

figure IV - 5* In this test all three principal stresses 

are raised together above hydrostatic yield. At 7600 psi 

and are kept constant while the third stress, o^,is 

lowered falling in the elastic region of this subsequent 

yield surface until reaching it again and obtaining yielding 

in extension. The extension test was continued below yield. 

In table 1 (Appendix A) the computed values of the 

strains for this test are shown. Prom this table, the values 

of the strain rate vector below yield in extension are com¬ 

puted and shown with dark lines (A, B, C, D) in figure IV - 

5. We can see from this figure and from the initial yield 

surface previously obtained that the strain rate vectors 

obtained follow the normality principle. It can be seen that 

there is no significant change in the slope of these vectors 

through the extension tests, which means that the subsequent 

yield surfaces keep a constant slope along this shown path. 

In this figure IV - 5* the letters A, B, C, D, E refer 

to table 1. 

The second test is an extension test for which the 

loading path is seen in figure IV - 6. In this test the 

three principal stresses are raised to a low cinfining 

pressure (2300 psi). The stress on the vertical axis (CT^) 
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is then held constant at this value while the stress on the 

other two axes is increased until we reach a point close to 

the final stress state obtained in the first test (shown in 

figure XV - 5)» At this point the stresses <J2 and are 

held constant and the vertical stress is lowered. 

In table 2 (Appendix A), the computed values of strains 

for this test are shown. From this table the values of the 

strain rate vector below yield in extension are computed and 

shown with dark lines (A, B, C, D) in figure IV - 5* We can 

also see in this test that the normality principle applies. 

Also it can be observed that the strain rate vector do not 

have a significant change in slope along the loading path, 

which leads us to conclude that the subsequent yield sur¬ 

faces keep a constant slope along this shown path. 

In figure IV - 6, the letters A, B, C, D, E, F are 

referred to table 2. 

The third test is an extension test where the three 

stresses are raised together to a low confining pressure 

and then a2 and cr^ are increased while is kept constant ; 

this test is shown in figure IV - 7 5 in figure IV - 8, a 

stress-strain curve (A ov> = A 03) vs* (®2 = 63) for this 

extension test shows a yield stress of 4400 psi which corres¬ 

pond to a2 - pc< At this yield point, the slope of the strain 

rate vector is shown in figure IV - 7* and again we see that 

this vector follows normality. In table III (Appendix A), 

the computed values for strains, in this test, are tabulated. 

More strain rate vectors are shwn in figure IV - 7 and it is 
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Figure IV - 8 Extension test for sample VI-a-1 
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clearly seen that, along this loading path, they keep a 

constant slope. The letters A, B, C are referred to table 

III. In these three tests the strain rate vectors were com¬ 

puted in the following fashion : 

u^ == unit vertical component of the strain rate 

vector j 

u2 = unit horizontal component of the strain rate 

vector 

where 

U1 “ A *i - A ez 

Ae + A G Ae 
U2 = js. ( * 2 

y) = js. (-^-5 *) 
2 + Ae^, 

once the values of u^ and u2 were obtained, the strain 

rate vector was plotted in the stress plane vs. 

Failure Plane 

The presence of a failure plane was detected through 

different experiments. 

In figure IV - 9a., a stress-strain curve is shown for 

an extension test performed at 1000 psi confining pressure, 

the sample broke at A o2 = 4050 psi. This value and the 

loading path are shown in figure IV - 12. 

A second test was a conventional extension test in 

which the hydrostatic stress was raised to 4200 psi, and 

then was lowered while keeping a2 
= CT3 = ^50 psi. 
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Rupture occured at cr^ = 600 psi. A stress-strain curve for 

this test is shown in figure IV - 9b where OA is hydrostatic 

loading and AB corresponds to extension. The rupture value 

and this loading path are shown in figure IV - 12. 

Figure IV - 5 corresponds to the loading path of the 

test performed on sample IV - la, in figure IV - 10 a stress- 

strain curve is shown for this same test where OA is hydros¬ 

tatic loading, at A cr2 and are kept constant and ais 

lowered until yield is reached in extension ; after yield 

we see that plastic flow is occurring but the stresses remain 

constant ; this stress value and the loading path for this 

sample are plotted in figure 17-12. 

After removing the sample from the testing machine, 

we could observe that it was not broken but an incipient 

failure plane was clear. Incipient failure plane appears on 

a surface of a sample as a line along which (locally) Harge 

deformation is apparent. 

Figure IV - 11 shows the stress-strain curve for the 

test performed on sample V - d which loading path was des¬ 

cribed in figure IV - 6. In this curve, OA corresponds to 

hydrostatic loading, at A, cjj is kept constant and o2 = a^ 

are raised till 7650 psi, at this point CT2 = are kept 

constant and is lowered, we can see that yield occurs 

almost immediately and that during plastic flow the stress 

state remains constant. This constant value of stresses and 

the loading path are shown in figure IV - 12. 

After removing the sample from the. tes ting machine, 



(a) extension test at pc « 1000- 

sample VI11-4 

(b) 
sample IV-b 

Figure IV - 9 
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the sample was not broken and an incipient failure plane 

was observed. 

Analyzing figure IV - 12 now, we can see that the four 

failure stresses plotted lay in a straight line which leads 

us to deduce that it corresponds to a failure plane. 

Comers on Yield Surface 

Three tests are analyzed here to study the strain rate 

vectors behavior under the presence of a corner (see Chapter 

II, pp 

The first experiment to be analyzed is the one per¬ 

formed with sample IV -al which is shown in figures IV - 5 

and IV - 10. From the two previous analyses, we can conclude 

that through a loading path corresponding to conventional 

extension test the yield surface approaches the failure plane 

without change in slope until it intersects the plane. 

From table 1 the change in volumetric strain through¬ 

out the experiment is plotted in a stress volumetric strain 

curve in figure IV - 13. In this curve we can see that as 

the failure plane is approached, the volume of the sample 

decreases and once the two surfaces intersect the volume of 

the sample starts to increase. A strain-rate vector for this 

situation is plotted with dotted line in figure XV - 5 
« 

(vector E ; see values at (E) in table 1). This vector E is 

observed to be perpendicular to the failure plane obtained 

in the previous section. 
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The second test analyzed for this situation is the 

one performed with sample V - d which was presented pre¬ 

viously in figures IV - 6 and IV - 11. From table 2 the 

change in volumetric strain is obtained and plotted in a 

stress volumetric strain curve in figure IV - 14. Samples 

V - d and IV - al were loaded by different paths but in the 

final stress state they lead to close points in the stress 

space, and we can see from figures IV - 14 and IV - 13 that 

the volumetric behavior is very similar through this two 

different paths. (For this purpose, figure IV - 13 is plotted 

with dotted lines on IV - 14). 

Figure 17-14 shows that as the yield surface and the 

failure plane intersect, the volume starts to increase. In 

figure IV - 6 two strain-rate vectors for this situation are 

plotted with dotted lines (vectors E and F ; see E and F in 

table 2) and they are perpendicular to the failure plane. 

From these experiments it can be seen that at a corner due 

to the intersection of the yield surface and the failure 

plane, the strain-rate vector rotates from a position per¬ 

pendicular to the yield surface to a position perpendicular 

to the failure plane. It can also be seen that strain-rate 

vectors do not change in slope along the loading path. 

Finally, an extension test was performed to analyze 

the behavior of the strain-rate vectors. A stress-strain 

curve is shown for this test in figure 17-15 (Aa2 vs. e2), 

the confining pressure for this test is 2520 psi. Tabulated 

values of strains are in table 4 (Appendix A). In figure 
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Figure IV - 15 Stress-strain curve for sample V-b 
(extension test) 
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IY - 15 we see that the yield point is ACT2 ** 5500 psi, this 

corresponds to point in table 4 and to the computed strain 

rate vector A in figure IV - 17. Figure IV - 16 shows the 

volumetric strain performance during this test and we can 

see that at 6800 psi the volume stops decreasing and starts 

increasing ; this point is plotted in figure IV - 17 (point 

N) and we can see that it coincides with the failure plane 

we had obtained previously. Also strain-rate vectors Ag , 

A^* B, C, D, E are computed from table 4 and we can see that 

A-^, A-2* stay parallel. When the loading path hits the 

failure plane, a comer is created and it is seen that the 

strain-rate vectors B, C, D, E rotate gradually to a final 

position perpendicular to the failure plane. 

Induced Anisotropy 

Before obtaining the subsequent yield surfaces, 

several tests were performed to determine if hardening 

developed along one axis could have any effect on the 

properties of the other axes. These tests were performed 

in order to prove that hardening a material along one path 

in the stress space would induce anisotropy in the sample ; 

these tests also would give an initial idea of the type of 

hardening that takes place when loading the yield surface. 

All tests in this section are performed for a con¬ 

fining pressure = 3000 psi. Tests at p = 2000 psi (not 

presented in this section) were also performed and similar 
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results were obtained. 

All tests performed along a single axis consisted of 

conventional compression tests. 

Figure 17-18 shows a characteristic stress-strain 

curve for conventional compression test at p ~ 3000 psi of 

the y axis. 

Figure IV - 19 shows a characteristic stress-strain 

curve for conventional compression test at. pc = 3000 psi of 

the z axis. At A in this test, the sample was unloaded and 

rotated and then reloaded again till pc « 3000 ; at this 

point a conventional compression test for the y axis was 

performed and we can see that the yield stress value for the 

y axis was lower than the expected value (from the charac¬ 

teristic curve in figure 17-18) due to hardening along the 

z axis. 

In figure IV - 20. 0A shows a conventional compression 

test for the z axis which is compatible with the test in fi¬ 

gure IV - 19 5 at point A, the sample was unloaded, rotated 

and reloaded to p « 3000 ; at this point a conventional 
L 

compression test for the y axis was performed as shown by 

AB. This curve AB gives a lower yield point than the initial 

yield point obtained from the characteristic curve for the 

y axis (figure IV - 18). 

At B the sample was unloaded, rotated and reloaded to 

p — 3000 5 at this point another conventional compression 
V 

test on the z axis was made and it can be seen that the 

yield point obtained is lower than the expected one. At C 
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the sample was again unloaded, rotated and reloaded to p « 
c 

3000 ; at this point another conventional compression test 

for the y axis was made and also in this case the yield 

point is lower than the expected value, we can see that we 

have almost immediate yield for this last case. 

It was thought that this effect of lowering the yield 

point was caused by the unloading to atmospheric pressure 

and the rotation of the sample, so in the following expe¬ 

riments the samples will not be unloaded nor rotated. 

In figure IV - 21, stress-strain curves for a conven¬ 

tional compression test along the z axis at p = 3000 is 
w 

shown. At point A, the y axis was loaded up to ACT *= 4500 

psi (from figure IX - 17 we can see that this value is 

above the yield stress value for the y axis) and then un¬ 

loaded to the confining pressure. The hardening on the y 

axis affected again the z axis in a similar fashion, the 

new yield point is higher than the previously obtained but 

is also lower than the expected one. As we can see, for this 

test the sample was not taken out during the test nor the 

confining pressure was lowered to atmospheric pressure. 

In figure IV - 22, stress-strain curves are shown for 

conventional compression tests on the y axis. We tried to 

keep the values for the stresses in the y axis as well as 

in the z axis similar to the values in the previous test 

(figure IV - 21) 5 in other words, these stress-strain 

curves for the y axis would describe the performance of the 

y axis on the previous test. At point A the z axis was loaded 
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to Aa = 3000 psi and unloaded ; then the conventional 

compression test was performed in the y axis and if we com¬ 

pare the curve obtained with the one in figure IV - 18* we 

can see that the yield point obtained is a little lower 

than the expected one. At point B the z axis was loaded to 

ACT_ 
43 5500 psi and unloaded to confining pressure ; then 

a new conventional compression test was made along the y 

axis and we can observe for the stress-strain curve that 

the new yield point is lower than the expected one but higher 

than the previous one. At point C the z axis was loaded to 

ACT » 9500 psi and unloaded to the confining pressure* then 

a conventional compression test was again performed along 

the y axis and now we can see that the new yield point* 

besides being lower them the expected one* is also lower 

than the initial value. 

In figure IV - 23, stress-strain curves for the z 

axis are shown for conventional compression tests* the pro¬ 

cedure was very similar to the previous test : at A the y 

axis was loaded to Aa = 4500 psi and unloaded, at B the y 

axis was loaded to Aa 3 6000 psi and unloaded and at C the 
y 

y axis was loaded to Aa = 9500 psi and unloaded. We can 
«y 

also see that the results are very similar * we can conclude 

that upon small hardening on one axis* the other axis is not 

affected* but as the hardening increases in this axis* the 

other axis is affected. It can be seen that the hardening 

fate is also affected. 

To observe the influence of the x over the y axis and 
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vice-versa* figure IV - 24 shows conventional compression 

tests on the two axes. The sample was unloaded and turned 

around the axes of rotational symmetry after each test. 

Prom the stress-strain curves we can see that the results 

are very similar to the ones previously obtained. 

Finally* the effect of hardening along the z axis over 

the x and y axes together (crz vs. A/
2<J
X plane) was tested. 

Figure IV - 25 shows a stress-strain characteristic 

curve for extension tests at pc « 3000 psi where cz is kept 

at Pc “ 3000 while ax and a are raised together. 

In figure IV - 26* we can see stress-strain curves 

where a and a are raised together in extension and unloa- 
«y 

ded. At A the z axis was loaded to AOZ *=* 3000 and unloaded 

then the x and y axes were loaded together on extension and 

unloaded. It can be seen that the expected yield point is 

almost unaffected but the hardening rate is affected. At B 

the z axis was loaded to Aa_ = 4000 and then unloaded* then 

another extension test was performed* raising and a,. x y 

together. It can be seen that the’yield stress value obtai¬ 

ned is lower than the expected value and again the hardening 

rate is affected. 

Figure IV - 2? shows stress-strain curves for conven¬ 

tional compression tests along the z axis * at A the x and 

y axes were loaded to AOL. = 3000 psi and unloaded. Then a x*y 

new conventional compression test was performed along the 

z axis. It can be observed that the yield point.obtained is 

lower than the expected value but higher than the initial 
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one. At B, the x and y axes were loaded to Acr„ = 4000 psl 

and unloaded. Then a new conventional compression test was 

performed and the yield point obtained is lower than the 

expected one. 

In the next section subsequent yield surfaces will be 

developed and the information obtained from all these sec¬ 

tions and the next will be used to develop a model for a 

yield envelope. 

Subsequent Yield Surfaces (Figures for this section are shown 
in Appendix D) 

As described in Chapter III (figure III - 5)> three 

different loading paths were used to obtain subsequent yield 

surfaces. For each loading path, three subsequent yield sur¬ 

faces were obtained. The following procedure was performed 

to obtain the first set of subsequent yield surfaces : 

(1) the material was loaded to a set differential axial 

stress (ACT = 3000 psi) at a confining pressure = 3000 

psi and then it was ■unloaded ; 

(2) Probing tests were performed to obtain more yield stress 

values in the same subsequent yield surface. 

Changing ACT = 3000 psi to Acr_ - 4000 psi in step (1) z z 

above, a second subsequent yield surface was obtained. A 

third subsequent yield surface along this loading path was 

obtained by changing Au_ = 3000 psi in step (1) above to z 

Acrz “ 5000 psi. 

Table V in Appendix A shows the computed yield stress 
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values from the probing tests for these first three sub¬ 

sequent yield surfaces. 

Figures 17-28 and 17-29 show the probing tests 

for the first subsequent yield surface. 

Figure 17-30 shows the first subsequent yield sur¬ 

face plotted from the data obtained from the probing tests. 

It is shown in dark line. 

In figures 17 - 31 and 17 - 32, the probing tests for 

the second subsequent yield surface can be seen. Figure 17 - 

33 shows this subsequent yield surface plotted. If we com¬ 

pare the plotted probing tests from the initial yield sur¬ 

face (figure 17-4), the first subsequent yield surface 

(A<? = 3000) (figure 17-30) and this second subsequent 

yield surface (ACT *= 4000) (figure 17 - 33), we can see that z 
the distance between the intersection of the two surfaces 

that fall above the hydrostatic axis and the two surfaces 

that fall below it, is greater in the last test which is 

shown as AA* and BB* in figure IV - 33. It can be seen that 

this distance is not as large in figure IV - 30, and that 

in figure IV - 4 this distance does not exist. This means 

that the hardening path followed is inducing anisotropy 

(the difference between hydrostatic yield stress values for 

the vertical axis and the radial axis is becoming larger). 

Figures IV - 34, IV - 35 and IV - 36 show the probing 

tests and the plotting for the third subsequent yield sur¬ 

face respectively. 

Figure 37 - 37 shows the superposition of the three 
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subsequent yield surfaces obtained using this first harde¬ 

ning path. 

In figure IV - 34 the values for the confining pressu¬ 

res are : 

Figure IV - 34a 1 « 1000 

2 « 2000 

3 = 3000 

4 = 4000 

5 = 5000 

6 = 6000 

7 - 7000 

8 = 8000 

9 « 9000 

10 = 10000 

Figure IV - 34b 1 « 7000 

2 = 6000 

3 « 5000 

4 = 4ooo 

5 « 3000 

6 = 2000 

7 = 1000 

The first yield surface along the second path (as des¬ 

cribed in Chapter III, figure III - 5) was obtained by : 

(1) Loading the material to a hydrostatic stress value above 

the yield stress (CTi - a2 ~ a3 “ ^000) 
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(2) performing probing tests to obtain more yield stress 

values on the same subsequent yield surface. 

By changing CTq “ a2 “ CT3 = 6000 to 13 ^2 “ CT3 = 7000 

in step (1) above, a second subsequent yield surface was 

obtained. A third subsequent yield surface along this har¬ 

dening path was obtained by changing ^ ^ a °3 = 6000 to 

« a2 = = 8000 in step (1) above. 

Figures IV - 38, IV - 39 and IV - 40 show probing tests 

and plotting of first subsequent yield surface respectively. 

Figures IV - 44, IV - 45 and IV - 46 show probing tests 

and plotting of third subsequent yield surface respectively. 

Table 6 (Appendix A) shows computed yield stress va¬ 

lues for all probing tests performed for this second set of 

subsequent yield surfaces. Figure IV - 47 shows the super¬ 

position of this three subsequent yield surfaces and the 

hardening path is shown. 

It can be seen from figures IV - 40, IV - 43 and IV - 

46 that this hardening path does not introduce anisotropy 

to the sample as it did in the previous hardening path. 

Finally, a third set of subsequent yield surfaces was 

obtained. The first subsequent yield surface for this new 

hardening path was obtained by : 

(1) loading the material to a set differential radial stress 

(Aa2 = Ao^ = 3000 psi) at a confining pressure « 3000 psi 

and then unloading it ; 

(2) Performing probing tests to obtain more yield stress va- 
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lues in the same subsequent yield surface. 

Changing ACT2 « A» 3000 psi to ACT2 = A« 4000 psi 

in step (1) above, a second subsequent yield surface was 

obtained. 

Changing ACF2 = A« 3000 psi to Aa2 - Acr^ 
43 5000 psi 

in step (1) above, a third subsequent yield surface was 

obtained. 

Figures IV - 48, IV - 49 and IV - 50 show probing tests 

and plotting of first subsequent yield surface respectively. 

Figures IV - 51, IV - 52 and IV - 53 show probing tests 

and plotting of second subsequent yield surface respectively. 

Figures IV - 54, IV - 55 and IV - 56 show probing tests 

and plotting of third subsequent yield surface respectively. 

Computed yield stress values for all probing tests per¬ 

formed for this third set of subsequent yield surfaces are 

tabulated in Table 7. 

Figure IV - 57 shows the superposition of this three 

subsequent yield surfaces and the hardening path is shown. 

It can be seen from figures IV - 50, IV - 53 and IV - 56 that 

this hardening path introduces anisotropy in the samples. 

Figure IV - 58 shows a superposition of all thé sur¬ 

faces obtained. 

Kinematic Model (Figures for this section are shown in Appen 
dix D) 

From the normality tests we observed that along a 
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loading path there was no rotation of the yield surface 

(strain-rate vectors stayed constant in slope). From the 

experiments for obtaining subsequent yield surfaces we could 

observe that the end cap does not grow but it displaces in 

the stress space. From figure TV - 58* we can see that ani¬ 

sotropy is developed upon loading along path 1 or path 3« 

From these experiments, it can be seen that hardening in 

the vertical axis does not influence the yield stress va¬ 

lues in the z direction. All this happens when there is no 

large amount of hardening along one direction. If we analyze 

the experiments performed in section "Introduced Anisotropy", 

we see that, for small amount of hardening, the statement 

above is true, but we also see that a large amount of harde¬ 

ning in one direction produces a decrease in the yield stress 

values along the other direction. This fact leads the author 

to propose a closing of the end cap to create a yield enve¬ 

lope similar to an ellipsoid, which will behave as a kine¬ 

matic model. 

Figure IV - 59 shows the proposed yield envelope' in 

the vs. V2a2 plane. 

Different tests were performed in order to obtain the 

shape of the low hydrostatic stress region of this model. 

Figure IV - 60 shows the first of this type of tests. 

In this test and the following, capital letters will be desi¬ 

gnated for subsequent yield surfaces and numbers will be 

designated for each step along the loading paths. The sur¬ 

face A is the initial yield envelope, this surface was dis- 
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placed to the right by loading CT2 g in a conventional com¬ 

pression test at a p = 3000 and then unloading it (path 

1, 2, 3i 4). A' is the new position of the yield surface ; 

by lowering the confining pressure to 1000 psi (path 4, 5) 

a new position B is obtained for the yield envelope. 

Stress-strain curve 1 in the probing test (figure IV - 

60a) corresponds to a conventional compression test where 

yield is immediate as it is also seen in the stress space 

path (figure IV - 60b). The maximum value for is the 

distance that surface B displaces (path 5> 6). Our new sur¬ 

face new is C ; stress-strain curves 2, 3S 4 reach values 

that lay on the same surface (path 7* 8, 9 on figure IV - 

60b). In stress-strain curve 5* it can be seen a yield point 

of 400 psi which corresponds to point ID in the stress space 

path. The maximum value of test 5 displaces the yield sur¬ 

face to 11. Test 6 shows an hydrostatic yield stress value 

a little higher than 1000 psi from a confining pressure of 

5000 psi (point 12). This value corrèsponds to point 13 on 

surface D. 

A second test is shown in figuresIV - 6l, IV - 62 and 

IV - 63. In figure IV - 62 the initial yield surface is de¬ 

signated by A. 

In figures IV - 62 and IV - 6l point is at the confining 

pressure = 3000, at point 1 yield occurs in compression and 

surface A displaces to B where 2 is the maximum value of the 

stress in the conventional compression test (ACT^ at 2 <= 3000 

psi). The sample is unloaded at 3. An extension test is now 
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performed and at 4 we engage with the surface B and displace 

it until reaching the value for 5 (Aag^ “ 3000) on surface 

C. The sample is unloaded to p = 3000 psi and then loaded 

on conventional compression, at 6 we engage with the sur¬ 

face C producing yielding (Aa^ at 6 = 23000 psi) and dis¬ 

place it to surface D (point 7) (Ac^ = 5500 psi) ; the 

sample is unloaded to confining pressure =» 3000 psi again (8) 

and an extension test is performed, point 9 engages on sur¬ 

face D and displaces it to 10 (surface E) (ACT2 3 = 6000 psi). 

The sample is unloaded to pc = 3000 psi and then reloaded 

on conventional compression test ; (11) engages surface E 

almost immediately producing yielding and displacing the 

yield surface to surface F (12) (Acr^ “ 8400 psi). The sample 

is unloaded to p » 3000 (13). The loading path for this 

test is continued in figure IV - 63 where we start at point 

13 and surface F. A conventional extension test is performed 

and at 14 yield occurs where surface F is engaged and dis¬ 

placed to surface G (point 15) (-Aa-^ «= 2000). Then the sample 

is loaded back to p « 3000 and then unloaded hydrostati- 

cally to p = 1000 psi, at 16 surface G is reached and dis- c 
placed to surface H to obtain p => 1000 (17) ♦ At 17 a con- 

v 

ventional compression test is performed and at 18 we reach 

the same surface H. The sample is unloaded to pQ *=» 1000 and 

then loaded to p « 3000 (19). A conventional compression 
w 

test is performed and again we hit surface H at 20. The sam¬ 

ple is unloaded to p « 3000 and loaded to p = 4000 (21). 

Another conventional compression test is performed, at 22 
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surface H is engaged producing yielding (ACT^ *= 4200 psi) 

and it is displaced to surface I (point 23). The sample is 

unloaded to p - 4000 and loaded to p = 5000 (point 24). 

Again a conventional compression test is performed and the 

surface I is reached at 25 producing yielding (Ao^ » 6000 

psi). 

A third test is shown in figures IV - 64, IV - 65 and 

IV - 66. In figure IV - 65, the initial yield surface is 

designated by AQ. At 0 (pQ = 3000 psi) on figures IV - 64 

and IV - 65 a conventional compression test is performed, 

point 1 (Aa-^ = 2500 psi) engages the initial surface AQ 

producing yield and displaces the surface AQ to A at point 

2 (ACTJ - 3000 psi), then the sample is unloaded to pc « 3000 

(point 3). An extension test is now performed and at 4 (sur¬ 

face A) yield occurs until reaching surface B at 5* The 

sample is unloaded back to p = 3000 and a conventional com- 

pression test is performed ; surface B is engaged at 6 (ACT^ = 

2500 psi), producing yield and it is displaced till point 7 

(Acrz *= 5000) (surface C). The sample is unloaded to pc = 3000 

(8) and an extension test is again performed at point 9 the 

surface C is engaged and displaced till point 10 (Aa2 3 = 

5000 psi) on surface D. The sample is unloaded to pc « 3000 

and a conventional compression test is performed. The sur¬ 

face D is engaged at 11 (AC^ = 1000 psi) and yield occurs. 

In figure IV - 66, the representation of this test in 

stress space is continued. The surface D is displaced to 

reach point 12 (ACJ^ “ 2500 psi) (surface E). The sample is 
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unloaded to p » 3000 psi and p is daised to p = 4000 (13), 

a conventional compression test is performed and surface E 

is engaged at 14 (ACJ^ = 2500 psi) and yield occurs till 15 

(surface F) (Acr-^ - 3500). The sample is then unloaded to 

p 4000 psi and p is now lowered to p « 3000 psi to 

perform another conventional compression test ; at point 16 

we reach the same surface F ; the sample is unloaded to 

p = 3000 and this p is changed to p « 1000 (point 17); 

a conventional compression test is performed and at 18 the 

surface F is engaged producing yielding (Ao^ = 2800 psi) 

and displacing this surface till point 19 (ACJ-^ = 5000 psi) 

on surface G ; the sample was unloaded to pQ = 1000 and a 

hydrostatic test was performed giving a yield stress CT1 « 

a2 =J « 8000 which coincides with point 21 on surface G. 

Figure 17-67 shows the last experiment performed 

to verify the kinematic model proposed. The loading paths 

are shown in figures 17-68 and 17-69. Before starting 

the test, the sample was loaded to a very high hydrostatic 

pressure sliding our yield envelope to the position held 

by the surface A. At p - 1000 psi (point 11) a conventional 

compression test was performed. Surface A is displaced to 

point 2 (surface B). The sample was unloaded to pQ « 1000 

and this p wad increased to p = 2000 (point 3) 5 another 

conventional compression test was performed and the sur¬ 

face B was engaged (point 4) producing yield at Acr^ « 4000 

psi, and it was displaced till point 5 (Acr^ = 5000 psi) on 

surface C. The sample was unloaded to pQ « 2000 psi and the 
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confining pressure was increased to p » 3000 psi (point 6) ; 

another conventional compression test was performed causing 

yielding when surface C was reached (Aa^ « 6000 psi) (point 

7) and it was displaced till point 8 on surface D. 

The loading path in stress space is continued in 

figure IV - 69. From 8 the sample is unloaded to p =» 3000 
V—» 

and this p is lowered to p = 1000 psi, for which the sur- 
C v«» 

face D is engaged at 9 and is displaced to point 10 on sur¬ 

face E ; at 10 a conventional extension test was performed ; 

point 11 shows immediate yielding and a new surface at 

-Acr^ ss 1000 psi (point 12) is reached (surface F). The 

sample was loaded back to p = 1000 psi and this p was 

raised to 2000 psi (point 13) ; another conventional exten¬ 

sion test was performed hitting the surface F at point 14, 

producing yield (-Aa^ = 1500 psi) ; the surface reached 

point 15 on surface G (-Aa^ = 2000 psi). The sample was 

reloaded back to p » 2000 psi ; this p was raised to p = 
U V V 

3000 psi (point 15) } another conventional extension test 

was performed, surface G was reached at point 17 ( — Acr-^ « 

2100 psi) producing yield. This surface was displaced till 

-Aa^ = 3000 psi which corresponds to point l8 on surface H. 

The sample was again reloaded back to the hydrostatic axis 

and p was raised now to p = 4000 psi (point 19)* Another 

conventional extension test was performed reaching surface 

H at -ACT^ = 3000 psi (point 20) which was displaced till 

point 21 on surface I (-Acr^ = 3200 psi). The sample was loaded 

back to pc = 4000 psi and this confining pressure was raised 



105 

till p « 5000 psi (point 22). A conventional extension 
w 

test was performed and surface I was reached on point 23. 

From the previous four tests described,it can be seen 

that a kinematic model for the yield envelope of a Cordova 

limestone is the most appropriate description of its beha¬ 

vior. 



V. SUMMARY AND CONCLUSIONS 

In order to obtain a good description of the plastic be¬ 

havior of a general type of material that compacts or shows 

a volume decrease as it undergoes permanent deformation and 

exhibit yield strength dependence upon hydrostatic pressure, 

an experimental study was initiated on Cordova limestone. 

Three major investigations were made for this purpose. 

The first of them was to obtain an initial yield surface and 

experimentally verify the principle of normality. The expe¬ 

rimental data showed normality to be a very good approxima¬ 

tion for the actual plastic strains produced by the initial 

yielding of the material studied. 

For different loading paths as hardening took place we 

could see that the strain-rate vectors stayed constant in 

slope, which confirms the fact of a non-growing or a non¬ 

rotating yield surface. 

The second purpose was to study the induced anisotropy 

due to hardening ; we could see that a small amount of harde¬ 

ning along one axis did not influence the yield stress values 

along the other axes, but as hardening became larger these 

yield stress values decreased. This second set of experiments 

provided data sufficient to close the yield envelope. 

The third purpose was to obtain a hardening rule for our 

yield envelope model that would satisfy the conditions obtai- 



107 

ned from the first two investigations ; four different tests 

were performed in order to verify the shape of the low hydros¬ 

tatic stress region of this model and it was found that our 

model could displace in the stress space without changing its 

shape ; this shows that a kinematic hardening rule would com¬ 

plete the description of the plastic behavior of a limestone, 

This study has been an attempt to describe the behavior 

of materials that compact as they undergo permanent defor¬ 

mation and exhibit yield strength dependence upon hydrostatic 

pressure, by constructing a yield envelope and proposing a 

hardening rule that would satisfy the presence of induced ani¬ 

sotropy due to hardening. 

The proposed yield envelope and the kinematic hardening 

rule for it have accomplished this purpose, and their use 

should advance knowledge about the plastic behavior of these 

materials. 

The author suggests for future work to obtain a complete 

description of this model and its behavior in a 3 dimensional 

stress space. For this purpose some modifications of the 

equipment are suggested in Appendix B. 
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APPENDIX A 

TABLE I (sample IV - a - 1) 

Computed Strain Values for test in Figure IV - 5 

Hydrostatic yield point = 5050 psi 

Maximum hydrostatic pressure = 7600 psi = p c 
-ACT = vertical stress - p„ • 
Z G 

- A a. z* - V % - v * - ez, % Ee, io ASe, io 

0 .58 .65 1.98 3.21 0 

.55 .55 .61 2.0 3.16 - .03 

.84 .56 .61 1.98 3.15 - .01 

1.28 .58 .64 1.92 3.14 - .01 

1.7 .57 .64 1.88 3.09 - .05 

2.21 .57 .64 1.82 3.03 - .06 

2.71 .58 .65 1.74 2.97 - .06 

3.15 .58 .67 1.67 2.92 - .05 

3.62 .55 .69 1.62 2.86 - .06 

4.12 
A{ 
„ f 4.51 

.54 .7 1.53 2.77 - .09 

.61 .71 1.43 2.75 - .02 

4.82 
C{ 

5.18 

.66 .73 1.35 2.74 - .01 

.7 .81 1.22 2.73 - .01 
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TABLE I (continued) 

- A az - e * % - «y, SS - e , *fo 
z
9 ' Ee, io ASe, % 

5.31 .71 .87 1.11 2.69 - .04 

5.4 .79 1.05 .9 2.74 .05 

5.28 1.0 1.29 .51 2.8o .06 

5.32 1.1 1.49 •
 ro
 

U
l 2.84 .04 

5.28 1.29 1.68 - .05 2.92 .04 

5.28 1.35 1.82 - .2 2.97 .05 

5.31 1.43 1.9 - .38 2.95 .02 

5.31 1.5 1.99 - .5 2.99 .04 

5.31 1.7 2.21 -1.0 2.91 - .08 

5.29 2.12 2.6 -1.7 3.02 .11 

5.3 2.91 3.31 -3.1 3.12 .1 

5.3 3.92 4.07 -4.66 3.33 .21 

5.3 4.61 4.6 -5.68 3-53 .20 

5.3 5.1 5.05 -6.52 3.63 .1 

5.21 5.8 5.6 -7.8 3.6 - .03 

5.2 6.5 6.1 -8.95 3.65 .05 

5.21 7.25 6.35 -10.22 3.38 - .27 

5.21 7.91 6.45 . -11.41 2.95 - .43 

5.3 8.6 6.61 -12.82 2.39 - .56 

5.3 9.31 6.7 -14.35 1.66 - .73 

5.5 9.9 6.71 -15.88 0.73 - .93 

4.05 11.05 6.85 -19.15 1.25 -1.98 

4.1 11.26 7.05 -19.70 1.39 _ .14 



TABLE 2 (sample Y - d) 

Computed Strain Values for Test on Figure IV - 6 
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Hydrostatic pressure - 2300 psi = p 

CT2 = CT3 ~ 7600 

- 4 “ (°z - P0) 

- A CTZ - V * — C y % 
y 

- v * Ee9 % AEe, 

0 .31 .32 .53 1.16 0 

.03 .33 .36 • 53 1.22 .06 

.03 .37 .38 .52 1.27 .05 

.01 
A { 

.03 

.40 .41 .53 1.34 .07 

.42 .42 .52 1.36 .02 

.04 .42 .49 • 52 1.43 .07 

.08 .48 .55 .51 1.54 .11 

.1 .50 .55 .48 1.53 - .01 

.1 • 54 .59 .52 1.65 .12 

• O
 

V
O
 

.6 .61 .51 1.72 .07 

.1 .63 .65 .5 1.78 .06 

.11 .7 .72 .5 1.92 .14 

.16 .76 .82 .42 2.00 .08 

.17 .87 .92 .41 2.20 .20 

.15 .89 .91 .4 2.20 0 

.15 .88 .90 .41 2.19 .19 19 
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TABLE 2 (continued) 

— A <Jg — ®x5 ^ $ “ ®25 ^ Ee^ $ AEe5 $ 

.16 .92 C
o 

U
) 

.22 1.07 i.o4 

.26 1.06 1.1 

.16 1.07 1.11 

.06 1.07 1.11 

0 1.2 1.22 

.04 1.25 1.31 

.06 1.41 1.49 

0 1.56 1.58 

0 1.61 1.72 

.10 1.80 1.88 

.06 1.94 1.96 

.1 2.1 2.13 

.1 2.31 2.35 

.06 2.41 2.42 

.05 2.55 2.56 

• O
 

U
) 

2.7 2.72 

.02 3.1 3.12 

.05 3.49 3.46 

.09 4.1 4.06 

.1 4.39 4.66 

.07 4.85 5.26 

.09 5.25 5.72 

.41 2.26 .07 

.36 2.47 .21 

.32 2.48 .01 

.3 2.48 0 

.22 2.40 - .08 

.1 2.52 .12 

0 2.56 .04 

- .1 2.8 .24 

- .25 2.89 .09 

- .4 2.93 .04 

- .59 3.09 .16 

- .72 3.18 .09 

- .91 3.32 .14 

-1.21 3.45 .13 

_1.4l 3.42 - .03 

-1.6 3.51 .09 

-1.79 3.63 .12 

-2.5 3.72 .09 

-3.0 3.95 .23 

-4.07 4.69 .14 

-5.18 3.87 - .22 

-6.92 3.19 - .68 

-8.68 2.29 

O
 

G
\ • 

1 
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TABLE 2 (continued) 

‘ °z - v * - ey, io - v * Bef io A2e, ! 

09 5.25 5.72 - 8.68 2.29 0 

16 5.81 6.3 -11.0 1.11 - 1.18 

16 6.56 6.6 -13.05 .11 - 1.0 

29 7.52 6.65 -15.03 - .86 - .97 

23 8.16 6.7 -15.6 - .74 .12 

20 8.7 6.7 -16.36 - .96 .22 

16 9.35 6.71 -16.55 - .49 .47 

19 9.55 6.75 -16.57 - .27 .22 
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TABLE 3 

Computed Strain Values for Test in Figure IV - 7 

Confining pressure = 2.17 = P_ 

A CT = A = CT -P 
x y X 

A (J 
X 

- Aex> <f0 - Aey, $> - Aez, % Sc s io AS € j 

.25 .23 .66 .23 1.12 .03 

C
o 00

 

.36 .8 .22 1.38 .26 

1.79 .39 .97 .2 1.56 .18 

2.36 .43 1.08 

00 
H

 •
 1.69 .13 

2,7 .49 1.13 

00 
H

 •
 1.80 .11 

3.02 .53 1.2 .16 1.89 .09 

3.78 .63 1.37 .08 2.08 .19 

4.23 .82 1.6 .03 2.45 .37 

4.49 1.21 2.04 - .37 2.88 .43 

4.68 1.44 2.27 - .4 3.31 .43 

4.88 1.8l 2.6 - .68 3.73 .42 

4.99 2.26 3.05 -1.05 4.26 • 53 

4.99 2.82 3.6 -1.53 4.89 .63 

5.19 3.31 4.1 -2.0 5.41 • 52 

5.29 3.67 4.48 -2.4 5.75 .34 

5.46 3.98 4.81 -2.68 6.11 .36 
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TABLE 3 (continued) 

A <j X - Aex, % " A 6y* ^0 - Aez, % Ze, io AS 6 3 

5.50 4.32 5.15 - 3.07 6.4o .29 

5.68 4.8 5.64 - 3.57 6.87 .47 

5.79 5.15 6.0 - 4.0 7.15 

0
0

 
01 •

 

5.98 5.4 6.26 - 4.22 7.44 .29 

6.19 5.82 6.62 - 4.6 7.84 .40 

6.90 6.38 7.08 - 5.22 8.24 .4o 

6.50 6.82 7.43 - 5.77 8.48 .24 

6.56 7.48 8.0 - 6.6 8.88 .40 

6.65 7.98 8.37 - 7.2 9.15 .27 

6.78 8.5 8.8 - 7.82 9.48 .33 

6.98 9.1 9.25 - 8.57 9.78 • 30 

7.18 9.72 9.65 - 9.3 10.07 .29 

7.43 10.45 10.03 -10.0 10.48 .41 

7.73 11.22 10.39 -10.73 10.88 .40 

8.01 12.0 IO.63 -11.41 11.22 .34 



TABLE 4 (sample V - b) 

Computed Strain Value for Extension Test on Figure IV - 15 
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Confining pressure = 2520 psi = p 

A °y = “y - pc - ff2 - pc 5 °y = 

>
 

Q
 

<<
 - $ - v * - V * EC y ^0 AEG y 

0 .31 .46 .21 .98 0 

.3 .3 .48 .21 .99 .01 

.71 .36 .6 .2 1.16 .17 

1.4 .42 • 71 .18 1.31 .15 

1.91 .46 .8 .18 1.44 .13 

2.45 • 52 .91 .18 1.6l .17 

2.88 .53 1.0 .16 1.69 .08 

3-32 .61 1.08 .11 1.80 .11 

3.1 .65 1.19 .1 1.94 .14 

4.0 .61 1.29 .09 1.99 .05 

4.1 

0
0

 
V

O
 • 1.31 .09 2.68 .09 

4.47 .77 1.36 .09 2.22 .14 

4.85 .81 1.5 .02 2.33 .11 

5.12 1.0 1.61 - .12 2.49 .16 

5.32 1.18 1.85 - .23 2.80 .31 

5.46 
Al( 

5.5 

1.56 2.3 - .51 3.35 .55 

2.05 2.82 - .96 3.91 .56 
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TABLE 4 (continued) 

A o 
y 

- e 9 fo 
X 

- « * ! 
y 

5.6 2.55 3.31 

5.71 3.05 3.72 

5-95 3.76 4.4 

6.31 4.55 5.17 

6.75 5-35 5.91 

7.15 5.91 6.95 

7.65 6.72 8.9 

8.35 7.48 10.5 

8.4 7.9 10.85 

- e 9 % Es, % AEe, % ' 

z 

- 1.42 4.44 .53 

- 1.91 4.86 .42 

- 2.6 5.56 .70 

- 3.48 6.24 .68 

- 4.39 6.87 .63 

- 6.0 6.86 - .01 

- 8.89 6.73 - .13 

-11.81 6.17 - .56 

-12.6 6.15 - .02 
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TABLE V (samples XII) 

Computed yield stress values from probing tests 

for A a = 3000, 4-000, 5000 psi z 

Conventional 
Compression 

(°l/el) A crz = 3000 A az = 4000 A a = 5000 z 

Pc yield stress 
(psi) 

yield stress 
(psi) 

yield stress 
(psi) 

sample XII-a-1 sample XII-b-1 sample XII-c-1 

1000 3300 3900 4550 

2000 3500 4200 4600 

3000 3500 4200 5100 

4000 3000 3700 5100 

5000 2600 3700 4000 

6ooo 2300 2600 3600 

7000 2700 3100 

8000 hydr. from 
6000 psi = 1700 1200 2200 

9000 2100 

10000 1500 
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Pc sample XII-a-2 sample XII-b-2 sample XII-c-2 

7000 hydr. from hydr. from 1400 
5000 psi = 500 5000 psi = 1600 

6000 3650 

5500 3100 

5000 1300 3000 5450 

4000 2700 3900 6800 

3000 3750 5400 7700 

2000 4300 6400 7900 

1000 4200 5650 5900 
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Extension 

CT2,3/e2,3 

Pc yield stress 
(psi) 

yield stress 
(psi) 

yield stress 
(psi) 

sample XII-a-3 sample XII-b-3 sample XII-c-3 

1000 1850 1800 1700 

2000 1750 l800 1800 

3000 1450 1500 1500 

4000 1100 1100 1200 

5000 600 600 1000 

hydr. from 
5000 psi = 950 

hydr. from 
5000 psi = 800 

hydr. from 
5000 psi = 950 

Pc sample XII-a-4 sample XII-b-4 sample XII-c-4 

5000 750 600 750 

4000 1500 1400 1300 

3000 2450 2350 2250 

2000 3200 3250 2950 

1000 3900 3950 3600 

hydr. from 
5000 psi = 600 

hydr. from 
5000 psi = 400 

hydr. from 
5000 psi « 550 
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TABLE VI (samples X) 

Computed yield stress values from probing tests 

for a2. - °2 ~ 
a
3 = ^000, 7000, 8000 psi 

Conventional 
Compression 

(al/®l) 
a = 6000 b = 7000 c = 8000 

Pc yield stress 
(psi) ' 

yield stress 
(psi) 

yield stress 
(psi) 

sample X - 9 sample X - 13 sample X - 17 

1000 2800 3200 3600 

2000 3200 3650 3900 

3000 2950 3600 4100 

4ooo 2850 3150 4300 

5000 2200 2950 4200 

6000 2150 2550 4000 

7000 1900 2350 3500 

8000 1700 1700 3500 

9000 1500 1500 3000 

10000 1200 1200 3100 

11000 1600 2400 

12000 2000 2000 



Pc 

8000 

7500 

7000 

6500 

6000 

5500 

5000 

4500 

4000 

3500 

3000 

2000 

1000 
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sample X - 10 sample X - 14 sample X - 18 

650 

500 

800 

1200 

1350 1800 

4oo 2000 2300 

900 

1600 2900 3150 

2200 

2700 3850 3700 

3650 4700 44oo 

4050 48oo 4500 

4ooo 46oo 4500 
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Extension 

CT2,3/e2,3 

pc a = 6000 b * 7000 c = 8000 

yield stress 
(psi) 

yield stress 
(psi) 

yield stress 
(psi) 

sample X - 11 sample X - 15 sample X - 19 

2000 3000 3900 4600 

2500 3300 

3000 3200 4200 4700 

4000 3100 4100 4400 

5000 3000 3700 4100 

6000 25Q0 3400 3600 

7000 2350 3500 3600 

8000 2300 3500 3300 

9000 2300 3650 3200 

10000 2750 2900 

11000 3100 2600 

12000 2000 1900 



Pc 

8000 

7500 

7000 

6500 

6000 

5500 

5000 

4500 

4ooo 

3000 

2000 

1000 
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sample X - 12 sample X - 16 sample X - 20 

200 

800 

300 1500 

900 2100 

100 1300 2800 

800 2000 

1400 2700 3750 

2350 

3200 3700 4700 

4100 4700 5800 

4650 5300 6900 

5100 5400 6700 
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TABLE VII (samples XI) 

Computed yield stress values from probing tests 

for A CT = 3000, 4000, 5000 psi 

Conventional 
Compression 

(CTl/®l) A CT2,3 = 3000 A CT2 3 = 4000 A 
= 5000 

yield stress yield stress yield stress 
(psi) (psi) (psi) 

sample XI-a-1 sample XI-b-1 sample XI-c-1 

1000 2200 1900 1600 

2000 2300 2250 2200 

3000 1950 1900 2000 

4ooo 1200 1700 1600 

5000 600 1100 1100 

6000 400 700 

hydr. from hydr. from hydr. from 
6000 psi = 500 5000 psi = 1100 5000 psi = 1300 

Pc 
sample XI-a-2 sample XI-b-2 sample XI-c-2 

5000 450 500 450 

4ooo 1300 1300 1300 

3000 2100 2250 2000 

2000 2800 2950 2750 

1000 3300 3200 3100 

hydr. from hydr. from hydr. from 
5000 psi = 300 5000 psi = 300 5000 psi = 350 
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Extension 

CT
2,3/e2,3 

pc yield stress 
(psi) 

yield stress 
(psi) 

yield stress 
(psi) 

sample XI-a-3 sample XI-b-3 sample XI-c-3 

1000 4450 4800 5300 

2000 4250 4800 5900 

3000 3500 4550 5800 

4000 3200 4200 4900 

5000 2500 3800 4700 

6000 2100 3000 4300 

7000 i4oo 1700 4000 

8000 650 1100 2600 

hydr. from 
8000 psi = 900 

hydr. from 
9000 psi = 2100 

hydr. from 
8000 psi = 4000 

pc sample XI-a-4 sample XI-b-4 sample XI-c-4 

6000 2700 

5000 1300 2600 4000 

4000 2800 4050 5600 

3000 4000 5150 6900 

2000 4700 5600 7100 

1000 5350 6000 7600 

hydr. from 
5000 psi = 900 

hydr. from 
5000 psi = 800 

hydr. from 
5000 psi = 2900 
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APPENDIX B 

In order to be able to construct a tri-dimensional yield 

envelope for transversely isotropic material, stress-strain 

curves for the vertical axis and for one horizontal axis are 

needed. 

Load Cell 

For the purpose above described, the substitution of one 

horizontal hydraulic ram by a load cell is suggested. 

Figure B - 1 shows the details and dimension of the 

possible load cell to be installed. 

Figure B - 2 shows the electrical setting for the current 

load cell. 

For obtaining stress-strain curves for the horizontal 

axis the Wheatstone bridge output for the new load cell and 

displacement transducer should be connected to an X-Y recor¬ 

der. The calibration procedure used for the X-Y recorder 

connected to the vertical axis is next described. 
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Calibration of X-Y Recorder 

A steel sample was loaded up to 12500 psi ; every 1000 

psi measurements of the voltage output from the load cell 

output were made obtaining the following table : 

Stress psi' 

1500 2,18 mv 

2500 2.30 mv 

3500 2.43 mv 

4500 2.55 mv 

5500 2.67 mv 

6500 2.78 mv 

7500 2.92 mv 

8500 3.04 mv 

9500 3.17 mv 

10500 3.28 mv 

11500 3.39 mv 

12500 3.52 mv 

Prom this table a scale factor for the stress-measurement 

was obtained (2000 psi <=» 1 inch on X-Y recorder) 

scale factor « 1.34 mv 
11500 psi 

1,34  mv 
5.75 x (2000) psi 

•L34—mv—t e 0<23 J£v~ 
5.75 inch inch 

The same steel sample was loaded again and readings of 

strain measurements with a dial indicator and readings of the 
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voltage output from the displacement transducers were made 

obtaining the following scale : 

$ strain 

0.0 H
 

Co
 

o
 

mv 

0.1 1.88 mv 

0.2 i:86 mv 

0.3 1.85 mv 

0.4 1.83 mv 

0.5 1.81 mv 

0.6 1.80 mv 

0.7 1.78 mv 

0.8 1.7 mv 

Prom this table a scale factor for the strain measu¬ 

rements was obtained ( 2 $ strain «=s 1 inch on X-Y recorder) 

scale factor « 0,12 mv  
0.7 i° strain 

34 
mv 
in. 

Calibration before starting tests : 

(1) Warm up X-Y recorder and voltmeter % 

(2) Hook up voltage source to both x and y axes (it could 

be a battery with a potentiometer). Attach voltmeter 

to measure voltage. (Remember input is the same for x 

and y axes) $ 

(3) Draw some lines and adjust gain on x and y axes using 

5 and 1 milivolts ; 
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a) almost horizontal lines for gain in x axis ; 

b) 45° lines % 

c) almost vertical for gain in y axis. 

(4) Calibrate x and y axes to appropriate values. 

Example : 

In figure B - 3a, we see a starting position ; using 1.8 

mv inch for both axes we get a diagonal line from 0 to 

16.2 mv (reading on voltmeter) and we should get the final 

position shown in figure B - 3t>. 

This calibration corresponds to : 

2000 in y axis 
in. 

2 io strain in x axis 

if sweep went too far, turn knob to left slightly (this 

applies for both axes) until you get the appropriate rea¬ 

ding. 

Comments : 

Turn servo switch off before turning calibration knob. 

(5) Hook up displacement and force leads. 

In order to get smooth stress-strain curves, it is con¬ 

venient to use a Ruska pump connected with the ram where the 

load cell will be installed, this will allow to control a 

constant stress rate. 



(a) Starting position 

Figure B - 4 X-Y Recorder calibration 
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APPENDIX O' 

Strength Values for Different Cordova Limestones 

It was found that Cordova limestone had different 

strength values depending on where it proceeded from. A 

chart was developed from the values obtained by different 

tests on samples cut from 3 blocks of different strength 

properties. The purpose of these tests was to find a pro¬ 

cedure for choosing the limestone of the desired strength 

at the same quarters. The samples were tested on compression 

in a Tinius Olsen Machine until fracture occurred ; they 

also were tested on compression in the true-triaxial equip¬ 

ment. Density was computed for each block by measuring it 

on ten samples and taking the average value. 

A scleroscope was used for testing hardness on each 

set of samples, also the average hardness of ten samples 

from each block was tested. A pneumatic impact hammer 

(Schmidt hammer) was utilized for obtaining another set of 

values. 

It can be seen in the chart shown below that all these 

values obtained for each set of rocks have similar propor¬ 

tional values between each other. 

When the blocks tested with the Schmidt hammer had a 

cross sectional area of 2 x 3 inches, the readings of strength 

were very close to the real values. 
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From this chart we could see that we were enable to 

use the Schmidt hammer for choosing blocks with the same 

strength characteristics. 

The Schmidt hammer gave an approximate reading of 16 

for the obtained blocks. 



137 

0 
Pi 
O 
O CQ 

0 CD 
O P 
ÎH «H 
CD Cd 
H > 
O 

CO 

P 
o 
-p 

OJ 
vo CO 

rH 
CT\ 

CQ 

fciO 
P 

CD 
Pi 
O 
O 
CQ 

O 
U TJ 
CD Cd 
iH CD 
O U 

CO 

in H 
H 

CJ\ 

>5 
-P 
•H 
CQ 

P 
CD 
P 

-P 
O 
cd 

H 

rH in CT\ 
CD en -=t MD 
W CM (X) rH 
cd 00 
P CM O IS- 
CD CO CO CM 
i> • • • 

G\ CO CO 
CM CO CO 

P CQ ^ 

S 
CD «H O O O 
p CQ O O O 

s rH Pi O ON oo 
3 cd —' rH CO CM 

,P > 

w 
-P P p 
O 0 •H 

cd TJ in rH CM 

Pi s cd H CO • 

g 3 0 vo 

H .P P CM 

P 
rH -p O 

cd P •H 
•H CD CQ 

K S CQ •H O o O 

3 Pi 0 0 O in O 

•H •H U Pi o Cn O 

U P & H CO CO 

EH O1 
S 

CD o 
O 

p 
o 

CQ •H 

P P 0 
•H CD 0 •H O o O 

P CQ 0 0 O LD o 
•H rH P P o 00 rH 
EH O & rH CO CO 

H a 
o 
o 

O O O 

-P 0 -P 0 -p 0 
0 0 0 0 0 0 
0 rH 0 H 0 rH 

& & & 
-P g TJ g TJ g 

0 3 

H 0 CQ 
p 3 

CO 0 



138 

APPENDIX D 

Figures IV - 28 to IV - 69 
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P c * 
1000 2000 3000 4000 5000 6000 hydr. 
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2,3 

: hydr. 5000 4000 3000 2000 
from 5000 

1000 
k2,3 

Fig. IV-29 Probing tests (Aaz a 3000) 
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Figure IV-32 Probing tests Acr^, « 4000 
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Sample XII-c-3 

flft/l/i i 
2000 3000 4000 5000 hydr. 

from 5000 

*2.,3 W 

p. : hydr.from 5000 4000 3000 - 2000 1000 
C ' 5000 - *2,3 

Figure IV-35 Probing tests for third subsequent yield 
surface (Aaz « 5000) 
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Figure IV-38 Probing tests for yield envelope at 
- 6000 
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Figure IV-39 Probing tests for yield envelope at 
- 6000 
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Figure IV-41 Probing tests for yield envelope at 7000 
psi ( CTi“CT2“cr3 = 
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Figure IV-42 Probing tests for yield envelope at 7000 
psi (0^2=03 = 7000) 
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Figure IV - 44 Probing tests for third subsequent 
yield surface - 8000) 
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Fig. IV-45 Probing tests for third subsequent yield sur¬ 
face Oûj=0^=0^ = 8000 
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Figure IV - 48 Probing tests for yield envelope at 
Aa2,3 = 3000 
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\ 

Figure ÏV-49 Probing tests for yield envelope at Lo0 Q 
*■ 3000 **3 
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p ; hydr.from 5000 4000 3000 2000 1000 
c 5000 

Sample XI-b-2 el 

Figure IV - 51 Probing tests for yield envelope at 
ACT2 « 4000 
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Figure IV - 54 Probing tests for yield 
envelope at “ 5000 
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Figure IY - 67 Testing of yield envelope behavior 
for sample XX - 5 

v. 
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