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viii ANISOTROPIC HARDY SPACES AND WAVELETS

Abstract

In this paper, motivated in part by the role of discrete groups of dilations in
wavelet theory, we introduce and investigate the anisotropic Hardy spaces associ-
ated with very general discrete groups of dilations. This formulation includes the
classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy
space theory of Calderón and Torchinsky.

Given a dilation A, that is an n × n matrix all of whose eigenvalues λ satisfy
|λ| > 1, define the radial maximal function

M0
ϕf(x) := sup

k∈Z

|(f ∗ ϕk)(x)|, where ϕk(x) = | detA|−kϕ(A−kx).

Here ϕ is any test function in the Schwartz class with
∫

ϕ 6= 0. For 0 < p <∞ we
introduce the corresponding anisotropic Hardy space Hp

A as a space of tempered
distributions f such that M0

ϕf belongs to Lp(Rn).
Anisotropic Hardy spaces enjoy the basic properties of the classical Hardy

spaces. For example, it turns out that this definition does not depend on the
choice of the test function ϕ as long as

∫

ϕ 6= 0. These spaces can be equivalently
introduced in terms of grand, tangential, or nontangential maximal functions. We
prove the Calderón-Zygmund decomposition which enables us to show the atomic
decomposition of Hp

A. As a consequence of atomic decomposition we obtain the
description of the dual to Hp

A in terms of Campanato spaces. We provide a de-
scription of the natural class of operators acting on Hp

A, i.e., Calderón-Zygmund
singular integral operators. We also give a full classification of dilations generating
the same space Hp

A in terms of spectral properties of A.
In the second part of this paper we show that for every dilation A preserving

some lattice and satisfying a particular expansiveness property there is a multi-
wavelet in the Schwartz class. We also show that for a large class of dilations
(lacking this property) all multiwavelets must be combined minimally supported in
frequency, and thus far from being regular. We show that r-regular (tight frame)
multiwavelets form an unconditional basis (tight frame) for the anisotropic Hardy
space Hp

A. We also describe the sequence space characterizing wavelet coefficients
of elements of the anisotropic Hardy space.
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1. INTRODUCTION 1

CHAPTER 1

Anisotropic Hardy spaces

1. Introduction

In the first chapter of this monograph we develop the real variable theory of
Hardy spaces Hp (0 < p <∞) on Rn in what we believe is greater generality than
has ever been done.

Historical Background. The theory of Hardy spaces is very rich with many
highly developed branches. A recent inquiry in MathSciNetr (the database of
Mathematical Reviews since 1940) revealed a fast growing collection of more than
2800 papers related to some extent to various Hardy spaces. Therefore, we can
sketch only the most significant highlights of this theory.

Initially, Hardy spaces originated in the context of complex function theory and
Fourier analysis in the beginning of twentieth century. The classical Hardy space
Hp, where 0 < p <∞, consists of holomorphic functions f defined on the unit disc
such that

||f ||Hp := sup
0<r<1

[ ∫ 1

0

|f(re2πiθ)|pdθ
]1/p

<∞,

or on the upper half plane such that

||f ||Hp := sup
0<y<∞

[ ∫ ∞

−∞

|f(x+ iy)|pdx
]1/p

<∞.

If p = ∞ we replace the above integrals by the suprema. For a systematic exposition
of the subject see books by Duren [Du], Garnett [Ga], and Koosis [Ko].

The possible generalizations of these spaces to higher dimensions include Hardy
spaces on the unit ball in Cn, on the polydisc or on the tube domains over cones, see
books of Rudin [Ru1, Ru2], and Stein and Weiss [SW2]. Another possibility is to
consider spaces of conjugate harmonic functions f = (u0, . . . , un) on Rn × (0,∞),
satisfying certain natural generalizations of the Cauchy-Riemann equations and the
size condition

||f ||Hp := sup
0<y<∞

[∫

Rn

|f(x1, . . . , xn, y)|pdx1 . . . dxn

]1/p

<∞,

see Stein and Weiss [SW1, SW2]. In this development the attention is focused on
the boundary values of the harmonic functions, which are distributions on Rn. The
harmonic functions can be then recovered from the boundary values by Poisson
integral formula. The resulting spaces Hp(Rn) are equivalent to Lp(Rn) for p > 1.
However, for p ≤ 1 these spaces differ from Lp(Rn) and are better suited for the
purposes of harmonic analysis than Lp(Rn). Indeed, singular integral operators and
multiplier operators turn out to be bounded on Hp, see Stein [St1].

The beginning of the 1970’s marked the birth of real-variable theory of Hardy
spaces as we know it today. First, Burkholder, Gundy, and Silverstein in [BGS]
using Brownian motion methods showed that f belongs to the classical Hardy space
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Hp if and only if the nontangential maximal function of Re f belongs to Lp. The
real breakthrough came in the work of C. Fefferman and Stein [FS2]. They showed
that Hp in n dimensions can be defined as the space of tempered distributions f
on Rn whose radial maximal function M0

ϕ or nontangential maximal function Mϕ

belong to Lp(Rn), where

M0
ϕf(x) := sup

0<t<0
|(f ∗ ϕt)(x)|,

Mϕf(x) := sup
0<t<∞

sup
|x−y|<t

|(f ∗ ϕt)(y)|,

and ϕt(x) := t−nϕ(x/t). Here ϕ is any test function in the Schwartz class with
∫

ϕ 6= 0 or the Poisson kernel ϕ(x) = (1 + |x|2)−(n+1)/2 (in this case f is restricted
to bounded distribution) and the definition of Hp does not depend on this choice.
To prove this impressive result C. Fefferman and Stein introduced a very important
tool, the grand maximal function, which can also be used to define Hardy spacesHp.
The real analysis methods also played a decisive role in the well-known C. Fefferman
duality theorem between H1 and BMO—the space of functions of bounded mean
oscillation.

Further insight into the theory of Hardy spaces came from the works of Coifman
[Co] (n = 1) and Latter [La] (n ≥ 1) where the atomic decomposition of elements in
Hp(Rn) (p ≤ 1) was exhibited. Atoms are compactly supported functions satisfying
certain boundedness properties and some number of vanishing moments. The Hardy
space Hp(Rn) can be thought of in terms of atoms and many important theorems
can be reduced to easy verifications of statements for atoms.

Other developments followed. Coifman and Weiss in [CW2] introduced Hardy
spaces Hp for the general class of spaces of homogeneous type using as a definition
atomic decompositions. Since there is no natural substitute for polynomials, the
Hardy spaces Hp on spaces of homogeneous type can be defined only for p ≤ 1
sufficiently close to 1. Another approach started in the work of Calderón and
Torchinsky [CT1, CT2] who developed theory of Hardy spaces Hp (0 < p <∞) on
Rn for nonisotropic dilations. The theory of Hardy spaces was also established on
more general groups than Rn. For the Heisenberg group it was done by Geller [Ge]
and for general homogeneous groups by Folland and Stein [FoS]. We also mention
the development of Hardy space on subsets of Rn by Jonsson and Wallin [JW] and
weighted Hardy spaces on Rn by Strömberg and Torchinsky in [ST1, ST2].

Parabolic Hardy spaces. Calderón and Torchinsky initiated the study of
Hardy spaces on Rn with nonisotropic dilations in [CT1, CT2]. They start with a
one parameter continuous subgroup of GL(Rn, n) of the form {At : 0 < t < ∞}
satisfying AtAs = Ats and

tα|x| ≤ |Atx| ≤ tβ|x| for all x ∈ Rn, t ≥ 1,

for some 1 ≤ α ≤ β < ∞. The infinitesimal generator P of At = tP := exp(P ln t)
satisfies 〈Px, x〉 ≥ 〈x, x〉, where 〈·, ·〉 is the standard scalar product in Rn. The
induced nonisotropic norm ρ on Rn satisfies ρ(Atx) = tρ(x). The parabolic Hardy
space Hp (0 < p < ∞) is defined as a space of tempered distributions f whose
nontangential function Mϕf belongs to Lp(Rn), where

Mϕf(x) := sup
ρ(x−y)<t

|(f ∗ ϕt)(x)|, ϕt(x) = t− trPϕ(A−1
t x),
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ϕ is any test function with
∫

ϕ 6= 0. Calderón and Torchinsky also obtain equivalent
formulations of parabolic Hardy spaces using the grand maximal functions, Luzin
functions, and Littlewood-Paley functions. The atomic decomposition for theses
spaces was done by Calderón [Ca, Ga] and Latter and Uchiyama [LU].

It is worth noting that the general setup for defining Hardy spaces on homo-
geneous groups developed by Folland and Stein [FoS] presupposes that the dilation
group {At : 0 < t < ∞} is of the form At = exp(P ln t), where P is a diagonaliz-
able element of GL(Rn, n) with positive eigenvalues. In general, such a matrix P
need not satisfy 〈Px, x〉 ≥ 〈x, x〉. Conversely, generators P allowed in [CT1, CT2]
need not even be diagonalizable. Therefore, on the formal level, dilations structures
considered in [CT1, CT2, FoS] do not in general overlap. As a consequence some
Hardy spaces procured in one theory do not appear in the other, and vice versa.

The optimal solution would be to relax even further the assumptions on the
group of dilations {At : 0 < t < ∞} by merely assuming that limt→0+ ||At|| = 0.
This is the approach we adapt in our work with the exception that we allow even
more general discrete dilation structures which have originated in the theory of
wavelets.

Description of the chapter. The scope of this chapter is an introduction
and investigation of the real variable theory of Hardy spaces associated with a
general group of dilations. By a group of dilations we mean a one parameter,
discrete subgroup of GL(R, n), i.e., {Ak : k ∈ Z}, where A is a generating n × n
matrix whose all eigenvalues λ satisfy |λ| > 1. We investigate the properties of
the space of homogeneous type induced by this group of dilations in Section 2.
In the next section we define the anisotropic Hardy space Hp

A(Rn) as a space of
tempered distributions f whose grand maximal function belongs to Lp(Rn). The
most straightforward definition of these spaces is obtained using the radial maximal
function. That is, for a dilation A and 0 < p <∞ we introduce the corresponding
anisotropic Hardy space Hp

A as a space of tempered distributions f whose radial
maximal function M0

ϕf given by

M0
ϕf(x) = sup

k∈Z

|(f ∗ ϕk)(x)|, where ϕk(x) = | detA|−kϕ(A−kx),

belongs to Lp. Here ϕ is any test function in the Schwartz class with
∫

ϕ 6= 0.
By virtue of the main theorem in Section 7 this definition does not depend on
the choice of ϕ as long as

∫

ϕ 6= 0. In Section 4 we introduce anisotropic Hardy
spaces by means of atomic decompositions. In Section 5, one of the longest and
most technical sections, we carefully derive the Calderón-Zygmund decomposition.
In Sections 6 and 7 we prove that various definitions of Hardy spaces in terms
of grand, radial, tangential, and nontangential maximal functions and in terms
of atomic decompositions are all equivalent. In the next section we describe the
duals of anisotropic Hardy spaces. In Section 9 we develop the theory of Calderón-
Zygmund operators acting on anisotropic Hp

A spaces. Finally, in the last section we
classify dilations which yield equivalent anisotropic Hardy spaces.

We want to emphasize that the presentation of Sections 3–7 is greatly influenced
by the excellent exposition of Hardy spaces on homogeneous groups in the book of
Folland and Stein [FoS].
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2. The space of homogeneous type associated

with the discrete group of dilations

The concept of a dilation is a fundamental one in our work.

Definition 2.1. A dilation is n×n real matrix A, such that all eigenvalues λ
of A satisfy |λ| > 1.

It is clear that A is a dilation if and only if ||A−j || → 0 as j → ∞. We could
alternatively define a dilation as a matrix whose all eigenvalues λ satisfy 0 6= |λ| < 1.
The inverse of this matrix becomes then a dilation in the sense of Definition 2.1.

For any dilation A we consider the corresponding discrete group of linear trans-
formations {Aj : j ∈ Z} which induces a natural structure of a space of homoge-
neous type on Rn. Unless the dilation A is very special (to be made precise later)
this structure is different than the usual isotropic structure of Rn. In this section
we present the underlying ideas.

To start we suppose λ1, . . . , λn are eigenvalues of A (taken according to the
multiplicity) so that 1 < |λ1| ≤ . . . ≤ |λn|. Let λ−, λ+ be any numbers so that
1 < λ− < |λ1| ≤ |λn| < λ+. Then we can find a constant c > 0 so that for all
x ∈ Rn we have

1/cλj−|x| ≤ |Ajx| ≤ cλj+|x| for j ≥ 0,(2.1)

1/cλj+|x| ≤ |Ajx| ≤ cλj−|x| for j ≤ 0,(2.2)

where | · | is a standard norm in Rn. Note that (2.2) is a consequence of (2.1)
and vice versa. Furthermore, if for any eigenvalue λ of A with |λ| = |λ1| (or
|λ| = |λn|) the matrix A does not have Jordan blocks corresponding to λ, i.e.,
ker(A− λI) = ker(A− λI)2 then we can set λ− = |λ1| (λ+ = |λn|).

A set ∆ ⊂ Rn is said to be an ellipsoid if

(2.3) ∆ = {x ∈ Rn : |Px| < 1},

for some nondegenerate n × n matrix P , where | · | denotes the standard norm in
Rn.

In general, we can not expect that the dilation A is expansive in the standard
norm, i.e., |Ax| ≥ |x| for all x ∈ Rn. Nevertheless, by [Sz, Lemma 1.5.1], there
exists a scalar product with the induced norm | · |∗ and r > 1 so that

(2.4) |Ax|∗ ≥ r|x|∗ for x ∈ Rn.

We present the proof of this result for the sake of completeness.

Lemma 2.2. Suppose A is a dilation. Then there exists an ellipsoid ∆ and
r > 1 such that

(2.5) ∆ ⊂ r∆ ⊂ A∆.

Proof. Define the inner product 〈·, ·〉∗ by

〈x, y〉∗ = 〈x, y〉 + 〈A−1x,A−1y〉 + . . .+ 〈A−kx,A−ky〉,
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where k is an integer satisfying k > 2 ln c/ lnλ−, and c, λ− are as in (2.1). We

claim that the norm |x|∗ = 〈x, x〉1/2∗ satisfies (2.4). Indeed, by (2.1) and (2.2)

|Ax|2∗ = |Ax|2 + |x|2 + . . .+ |A−k+1x|2 = |x|2∗ + |Ax|2 − |A−kx|2

≥ |x|2∗ + 1/c2|x|2 − c2λ−2k
− |x|2 = |x|2∗(1 + (c−2 − c2λ−2k

− )|x|2/|x|2∗)

= |x|2∗
[

1 +
c−2 − c2λ−2k

−

|x|2 + . . .+ |A−kx|2 |x|
2

]

≥ |x|2∗
[

1 +
c−4 − λ−2k

−

1 + . . .+ λ−2k
−

]

= r2|x|2∗,

where r is the square root of the last bracket. By a simple application of the Riesz
Lemma there is a matrix Q so that 〈Qx, y〉 = 〈x, y〉∗. Clearly, Q is self-adjoint and
positive definite. If we take P = Q1/2 then |Px|2 = 〈Qx, x〉 = |x|∗. Define ∆ by
(2.3), i.e., ∆ = {x ∈ Rn : |x|∗ < 1}. Since |A−1x|∗ ≤ |x|∗/r then A−1∆ ⊂ r−1∆
and hence (2.5) holds. �

By a scaling we can additionally assume that ellipsoid ∆ in Lemma 2.2 satisfies
|∆| = 1. We define a family of balls around the origin as the sets

(2.6) Bk := Ak∆ for k ∈ Z.

By (2.5) we have

(2.7) Bk ⊂ rBk ⊂ Bk+1, |Bk| = bk, where b := | detA| > 1.

Even though the choice of the expansive ellipsoid ∆ is not unique, from this point
we fix one choice of ∆, and consequently the Bk’s, for a given dilation A.

Next we introduce the natural concept of a quasi-norm which generalizes the
usual norm on Rn. A quasi-norm satisfies a discrete homogeneity property with
respect to A and a triangle inequality up to a constant.

Definition 2.3. A homogeneous quasi-norm associated with a dilation A is a
measurable mapping ρ : Rn → [0,∞), so that
(i) ρ(x) = 0 ⇐⇒ x = 0,
(ii) ρ(Ax) = bρ(x) for all x ∈ Rn,
(iii) there is c > 0 so that ρ(x+ y) ≤ c(ρ(x) + ρ(y)) for all x, y ∈ Rn.

It turns out that all quasi-norms associated to a fixed dilation A are equivalent.

Lemma 2.4. Any two homogeneous quasi-norms ρ1, ρ2 associated with a dila-
tion A are equivalent, i.e., there exists a constant c > 0 so that

(2.8) 1/cρ1(x) ≤ ρ2(x) ≤ cρ1(x) for x ∈ Rn.

Proof. It suffices to show that for every quasi-norm ρ we have

(2.9) 0 < inf
x∈B1\B0

ρ(x) ≤ sup
x∈B1\B0

ρ(x) <∞.

Suppose on the contrary that supx∈B1\B0
ρ(x) = ∞. Then we can find a sequence

(xi) ⊂ Rn such that |xi| → 0, ρ(xi) → ∞ as i→ ∞. Choose M > 0 so that the set

Ω = {x ∈ B1 \B0 : ρ(x) ≤M},
has measure strictly bigger than (b − 1)/2. Choose N , so that ρ(xi) > 2cM for
i > N . Since

ρ(x) ≥ 1/cρ(xi) − ρ(xi − x),
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Figure 1. The family of dilated balls {Bk : k ∈ Z}.

we have ρ(x) > M for x ∈ xi − Ω, i.e.,

(xi − Ω) ∩ Ω = ∅.
Since −Ω ⊂ B1 \B0 and xi → 0 we have

|(xi − Ω) ∩ (B1 \B0)| → |Ω| > (b− 1)/2 as i→ ∞.

Hence,
b− 1 < |(xi − Ω) ∩ (B1 \B0)| + |Ω| ≤ |B1 \B0| = b− 1,

for sufficiently large i, which is a contradiction.
Finally, suppose on the contrary that infx∈B1\B0

ρ(x) = 0. Then we can find a
sequence (xi) ⊂ B1 \B0 such that ρ(xi) → 0 as i→ ∞. By selecting a subsequence
we can assume (xi) converges to some point x 6= 0. Since

ρ(x) ≤ c(ρ(x− xi) + ρ(xi)) → 0 as i→ ∞,

we have ρ(x) = 0 which is a contradiction. Therefore (2.9) holds. �

The natural question is whether for two distinct dilations A1 and A2, the corre-
sponding quasi-norms ρ1 and ρ2 are equivalent, i.e., (2.8) holds for some c > 0. One
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may wish to state the classification theorem in terms of eigenvalues and eigenspaces
corresponding to Jordan blocks, which we postpone until Section 10, see Theorem
10.3. Instead, we consider the simplest situation.

Example. Suppose A = d Id for some real |d| > 1. It is clear that ρ(x) = |x|n
satisfies properties of the quasi-norm. Therefore all matrices of this form induce
equivalent quasi-norms. Here it becomes clear why we impose ρ(Ax) = bρ(x) with
b = | detA|. It is not hard to see that any matrix A without Jordan blocks and
whose all of eigenvalues λ satisfy |λ| = d for some fixed d > 1 has the corresponding
quasi-norm ρ which is equivalent to | · |n. And vice versa, any other matrix whose
all of eigenvalues are not equal in absolute value or with Jordan block(s) has a
quasi-norm which is not equivalent to | · |n. Equivalently, a quasi-norm induced
by a dilation A is equivalent to | · |n if and only if A is diagonalizable over C

with all eigenvalues equal in the absolute value. This provides the classification of
dilations inducing the usual isotropic homogeneous structure on Rn announced in
the beginning of this section.

For a fixed dilation A we define the “canonical” quasi-norm used throughout
this chapter.

Definition 2.5. Define the step homogeneous quasi-norm ρ on Rn induced by
the dilation A as

(2.10) ρ(x) =

{

bj if x ∈ Bj+1 \Bj
0 if x = 0.

Here Bk = Ak∆, where ∆ is an ellipsoid from Lemma 2.2 and |∆| = 1.

Indeed, ρ clearly satisfies (i) and (ii) of Definition 2.2. Let ω be the smallest
integer so that 2B0 ⊂ AωB0 = Bω. The existence of ω is guaranteed by (2.5).
Suppose x, y ∈ Rn, ρ(x) = bi, ρ(y) = bj for some i, j ∈ Z. Thus, x+ y ∈ Bi +Bj ⊂
2Bmax(i,j) ⊂ AωBmax(i,j). Therefore

ρ(x+ y) ≤ bωbmax(i,j) ≤ bω(bi + bj) = bω(ρ(x) + ρ(y)),

and (iii) holds with the constant c = bω.
Therefore, we can summarize that for each i ∈ Z we have

(2.11)
x ∈ Bi and y ∈ Bi =⇒ x+ y ∈ Bi+ω,

x 6∈ Bi+ω and y ∈ Bi =⇒ x+ y 6∈ Bi.

We also record two useful inequalities

max(1, ρ(x+ y)) ≤ bω max(1, ρ(x))max(1, ρ(y)) for all x, y,∈ Rn,
(2.12)

max(1, ρ(Ajx)) ≤ bj max(1, ρ(x)) for j ≥ 0, x ∈ Rn.(2.13)

Remark. The notion of a quasi-norm put forth in Definition 2.3 seems to be
missing in the literature. Lemarié-Rieusset in [LR] considered a closely related
quasi-norm satisfying (i) and (ii) of Definition 2.3 which is C∞ on Rn except at
the origin. He also gives a construction of such a quasi-norm for an arbitrary
dilation A, see [LR]. Quasi-norms of Lemarié-Rieusset automatically satisfy the
triangle inequality up to a constant. In our definition, which was motivated by
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[LR], we give up the smoothness of quasi-norms to include the important class of
step homogeneous quasi-norms used throughout this chapter.

We need two covering lemmas which hold in arbitrary spaces of homogeneous
type, see [CW1, CW2]. However, we present them in a form adapted to our setting.

Lemma 2.6 (Wiener). Suppose Ω ⊂ Rn, and r : Ω → Z is an arbitrary
function. Assume that either (a) Ω is bounded, or (b) Ω is open, |Ω| < ∞, and
x+Br(x) ⊂ Ω for all x ∈ Ω. Then there exists a sequence (xj) ⊂ Ω (finite or infinite)
so that the balls xj +Br(xj) are mutually disjoint and Ω ⊂ ⋃

j(xj +Br(xj)+ω).

Proof. In case (a), if supx∈Ω r(x) = ∞ then we can find x ∈ Ω so that
Ω ⊂ x + Br(x), and we are done. Thus, we can assume supx∈Ω r(x) < ∞. In case
(b), since |Ω| < ∞ we also must have supx∈Ω r(x) < ∞. Pick x1 ∈ Ω such that
r(x1) = supx∈Ω r(x). If Ω ⊂ x1+Br(x1)+ω then we are done. Otherwise, we proceed

inductively. Assume we have picked x1, . . . , xj , set Ω′ = Ω \ ⋃j
i=1(xi + Br(xi)+ω).

If Ω = ∅ we are done. If not, pick xj+1 ∈ Ω′ such that r(xj+1) = supx∈Ω′ r(x).
Suppose i < j and (xi + Br(xi)) ∩ (xj + Br(xj)) 6= ∅ then xj − xi ∈ Br(xi) −
Br(xj) ⊂ 2Br(xi) ⊂ Br(xi)+ω, since r(xi) ≥ r(xj). Thus, xj ∈ Br(xi)+ω, which is a
contradiction. Therefore, balls xj +Br(xj) are mutually disjoint.

If the sequence (xj) is finite then clearly Ω ⊂ ⋃

j(xj + Br(xj)+ω). If not we

have r(xj) → −∞ as j → ∞ since Ω has finite measure and balls xj + Br(xj)

are mutually disjoint. Suppose on the contrary that there exists x ∈ Ω such that
x 6∈ ⋃

j(xj + Br(xj)+ω). For sufficiently large j we have r(x) ≥ r(xj), which is a
contradiction of the choice of xj ’s. �

Lemma 2.7 (Whitney). Suppose Ω ⊂ Rn is open, and |Ω| < ∞. For every
integer d ≥ 0 there exists a sequence of points (xj)j∈N ⊂ Ω, and a sequence of
integers (lj)j∈N ⊂ Z, so that
(i) Ω =

⋃

(xj +Blj ),
(ii) xj +Blj−ω are pairwise disjoint for j ∈ N,
(iii) for every j ∈ N, (xj +Blj+d) ∩ Ωc = ∅, but (xj +Blj+d+1) ∩ Ωc 6= ∅,
(iv) if (xi +Bli+d−2ω) ∩ (xj +Blj+d−2ω) 6= ∅ then |li − lj | ≤ ω,
(v) for each j ∈ N, the cardinality of {i ∈ N : (xi+Bli+d−2ω)∩(xj+Blj+d−2ω) 6= ∅}

is less than L, where L is a constant depending only on d.

Proof. For every x ∈ Ω define function

r(x) := sup{r ∈ Z : x+Br+d+ω ⊂ Ω}.

Since Ω is open and has finite measure the supremum is always finite. By the
Wiener Lemma applied to the function r(x) we can find a sequence of (xj) ⊂ Ω so
that (xj + Br(xj)) are mutually disjoint, and (xj + Br(xj)+ω) ⊂ Ω cover the set Ω.
Therefore, if we define lj := r(xj)−ω then (i) and (ii) hold. Clearly (iii) also holds
by the choice of r(x). If d ≥ 1 then we have

Ω =
⋃

j

(xj +Blj ) =
⋃

j

(xj +Blj+1) ⊃
⋃

j

(xj + rBlj ),

where r is the same as in Lemma 2.2, and therefore the sequence (xj) is necessarily
infinite.
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To show (iv), suppose y ∈ (xi+Bli+d−2ω)∩(xj +Blj+d−2ω) and lj ≥ li+ω+1.
Then

xi − xj ∈ y −Bli+d−2ω − y +Blj+d−2ω ⊂ Blj+d−ω.

Since

xi +Bli+d+1 = (xi − xj) + xj +Bli+d+1 ⊂ xj +Blj+d−ω +Bli+d+1 ⊂ xj +Blj+d,

we have by (iii)

∅ 6= (xi +Bli+d+1) ∩ Ωc ⊂ (xj + Blj+d) ∩ Ωc,

which is a contradiction of (iii). Therefore lj ≤ li + ω, and by symmetry we obtain
(iv).

Fix j ∈ N and consider

I = {i ∈ N : (xi +Bli+d−2ω) ∩ (xj + Blj+d−2ω) 6= ∅}.
If i ∈ I then by (iv)

xi +Bli−ω ⊂ (xi − xj) + xj +Bli−ω ⊂ xj +Bli+d−2ω +Blj+d−2ω +Bli−ω

⊂ xj +Blj+d−ω +Blj+d−2ω +Blj ⊂ xj +Blj+d+ω.

Since for i ∈ I, xi + Blj−2ω ⊂ xi + Bli−ω we conclude by (ii) that the cardinality
of I is less than

|Blj+d+ω|/|Blj−2ω| = bd+3ω = L. �
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3. The grand maximal definition of anisotropic Hardy spaces

Definition 3.1. We say that a C∞ complex valued function ϕ on Rn belongs
to the Schwartz class S, if for every multi-index α and integer m ≥ 0 we have

(3.1) ||ϕ||α,m := sup
x∈Rn

ρ(x)m|∂αϕ(x)| <∞.

The space S endowed with pseudonorms || · ||α,m becomes a (locally convex) topo-
logical vector space. The dual space of bounded functionals on S, i.e., the space of
tempered distributions on Rn, is denoted by S′.

If f ∈ S′ and ϕ ∈ S we denote the evaluation of f on ϕ by 〈f, ϕ〉. Sometimes
we will pretend that distributions are functions by writing 〈f, ϕ〉 =

∫

f(x)ϕ(x)dx.
Convergence in S′ will always mean weak convergence, i.e., fj → f in S′ if and
only if 〈fj , ϕ〉 → 〈f, ϕ〉 for all ϕ ∈ S. For fundamentals on distributions, see [Ru3].

The Schwartz class S given in the above definition overlaps with the usual one
by virtue of the lemma essentially due to Lemarié-Rieusset, see [LR].

Lemma 3.2. Suppose ρ is a homogeneous quasi-norm associated with dilation
A. Then

1/c′ρ(x)lnλ−/ ln b ≤ |x| ≤ c′ρ(x)ln λ+/ ln b for ρ(x) ≥ 1,(3.2)

1/c′ρ(x)lnλ+/ ln b ≤ |x| ≤ c′ρ(x)ln λ−/ ln b for ρ(x) ≤ 1,(3.3)

where c′ is some constant, and λ−, λ+ satisfy (2.1) and (2.2).

Proof. By Lemma 2.4, without loss of generality we can assume ρ is the step
homogeneous quasi-norm. For every integer j ≥ 0 we have by (2.1)

sup
x∈Bj+1\Bj

|x| = sup
x∈Bj+1\Bj

|AjA−jx| ≤ c sup
x∈B1\B0

|x|λj+ = c sup
x∈B1\B0

|x| bj lnλ+/ ln b,

and analogously

inf
x∈Bj+1\Bj

|x| ≥ 1/c inf
x∈B1\B0

|x|λj− = 1/c inf
x∈B1\B0

|x| bj lnλ−/ ln b.

Therefore, (3.2) holds for x ∈ Bj+1 \Bj , where j ≥ 0, so for all x ∈ (B0)
c.

Considering x ∈ Bj+1 \ Bj , where j ≤ 0 and using (2.2) we obtain (3.3) for
x ∈ B1. �

An important role in our investigation is played by the unit ball with respect
to a particular finite family of pseudonorms of S. It is critical that we use (3.1) to
alter the standard definition of the pseudonorms in S. Otherwise the grand maximal
function introduced below would not behave nicely with respect to dilations and
many results in Section 5 could not hold. A posteriori, we see that this is only a
technical issue by virtue of Lemma 3.2.

Definition 3.3. For an integer N ≥ 0 consider family

(3.4) SN := {ϕ ∈ S : ||ϕ||α,m ≤ 1 for |α| ≤ N,m ≤ N}.
Equivalently

(3.5) ϕ ∈ SN ⇐⇒ ||ϕ||SN := sup
x∈Rn

sup
|α|≤N

max(1, ρ(x)N )|∂αϕ(x)| ≤ 1.
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For ϕ ∈ S, k ∈ Z define the dilate of ϕ to the scale k by

(3.6) ϕk(x) = b−kϕ(A−kx).

Definition 3.4. Suppose ϕ ∈ S, and f ∈ S′. The nontangential maximal
function of f with respect to ϕ is defined as

(3.7) Mϕf(x) := sup{|f ∗ ϕk(y)| : x− y ∈ Bk, k ∈ Z}.
The radial maximal function of f with respect to ϕ is defined as

(3.8) M0
ϕf(x) := sup

k∈Z

|f ∗ ϕk(x)|.

For given N ∈ N we define the nontangential grand maximal function of f as

(3.9) MNf(x) := sup
ϕ∈SN

Mϕf(x).

The radial grand maximal function of f is

(3.10) M0
Nf(x) := sup

ϕ∈SN

M0
ϕf(x).

Finally, given Ñ > 0 we define the tangential maximal function of f with respect
to ϕ as

T Ñϕ f(x) = sup{|f ∗ ϕk(y)|/max(1, ρ(A−k(x− y)))N : y ∈ Rn, k ∈ Z}.

Remark. It is immediate that we have the following pointwise estimates be-
tween radial, nontangential, and tangential maximal functions

M0
ϕf(x) ≤Mϕf(x) ≤ TNϕ f(x) for all x ∈ Rn.

Moreover, radial and nontangential grand maximal functions are pointwise equiva-
lent by virtue of Proposition 3.10. In Section 7, we will also see that for sufficiently
largeN (depending on Ñ) and ϕ ∈ S with

∫

ϕ 6= 0, the tangential maximal function

T Ñϕ f(x) dominates pointwise the grand maximal function MNf(x), see Lemma 7.5.

Proposition 3.5. For f ∈ S′, let Mf denote any of the maximal functions
introduced in Definition 3.4. Then Mf : Rn → [0,∞] is lower semicontinuous,
function, i.e., for all λ > 0, {x ∈ Rn : Mf(x) > λ} is open.

Proof. If ϕ ∈ S and f ∈ S′ then f ∗ϕ is a continuous (even C∞) function on
Rn. Note that

Mϕf(x) = sup{|f ∗ ϕk(y)| : x− y ∈ Bk ∩ Qn, k ∈ Z}.
Furthermore, since the Schwartz class S is separable with respect to pseudonorms
|| · ||α,m, we can substitute SN by a countable, dense subset in the definition of
the grand maximal function. Therefore, in each case Mf can be computed as a
supremum of a countable family of continuous functions. Therefore, Mf is lower
semicontinuous. �

We start the investigation of maximal functions with the fundamental Maximal
Theorem 3.6. This and the following results are relatively mechanical conversions of
the well-known classical results which also hold for homogeneous groups, see [FoS].
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Figure 2. The nontangential maximal function Mϕf(x)
is computed by taking suprema of |f ∗ϕk(y)| over ellipses
x+Bk at all scales k ∈ Z.

The biggest novelty is the use of discrete (instead of continuous) dilations of fairly
general form.

Theorem 3.6 (The Maximal Theorem). For a fixed s > 1 consider family

(3.11) F := {ϕ ∈ L∞(Rn) : |ϕ(x)| ≤ (1 + ρ(x))−s}.

For 1 ≤ p ≤ ∞ and f ∈ Lp(Rn) define the maximal function

(3.12) Mf(x) = MFf(x) := sup
ϕ∈F

Mϕf(x).

Then there exists a constant C = C(s) so that

|{x : Mf(x) > λ}| ≤ C||f ||1/λ for all f ∈ L1(Rn), λ > 0,

(3.13)

||Mf ||p ≤ Cp/(p− 1)||f ||p for all f ∈ Lp(Rn), 1 < p ≤ ∞.(3.14)

Proof. For λ,R > 0 consider ΩRλ = {x : Mf(x) > λ, |x| < R}. For every
x ∈ ΩRλ take y = y(x) ∈ Rn, k = k(x) ∈ Z, and ϕ ∈ F such that x − y ∈ Bk and
|f ∗ ϕk(y)| > λ.

λ < |f ∗ ϕk(y)| ≤
∫

Rn

|f(z)||ϕk(z − y)|dz = b−k
∫

y+Bk

|f(z)||ϕ(A−k(z − y))|dz

+ b−k
∞
∑

j=1

∫

y+Bk+j\Bk+j−1

|f(z)||ϕ(A−k(z − y))|dz

≤ b−k
[

sup
z∈B0

|ϕ(z)|
∫

y+Bk

|f(z)|dz +

∞
∑

j=1

sup
z∈Bj+1\Bj

|ϕ(z)|
∫

y+Bk+j

|f(z)|dz
]
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≤
[

1 +

∞
∑

j=1

bj sup
z∈Bj+1\Bj

|ρ(z)|−s
]

sup
j≥0

b−k−j
∫

y+Bk+j

|f(z)|dz

≤
∞
∑

j=0

bj(1−s) sup
j≥0

b−k−j
∫

y+Bk+j

|f(z)|dz.

Thus, there is j0 ≥ 0 so that

1

bk+j0

∫

y+Bk+j0

|f(z)|dz > λ/C,

where C =
∑∞

j=0 b
j(1−s). Since x− y ∈ Bk,

y +Bk+j0 ⊂ x+Bk +Bk+j0 ⊂ x+ 2Bk+j0 ⊂ x+Bk+j0+ω.

So for each x ∈ ΩRλ there is r = r(x) = k + j0 + ω, such that

∫

x+Br

|f(z)|dz > λ

Cbω
|Br|.

By the Wiener Lemma there is sequence (xj) in ΩRλ so that xj+Br(xj) are mutually

disjoint and xj +Br(xj)+ω cover ΩRλ . Therefore,

|ΩRλ | ≤
∑

j

|Br(xj)+ω| ≤
∑

j

bω|Br(xj)| ≤
Cb2ω

λ
||f ||1.

By letting R → ∞ we obtain (3.13).
Since C =

∫

Rn(1 + ρ(x))−sdx < ∞, we have ||Mf ||∞ ≤ C||f ||∞ for f ∈ L∞.
By the Marcinkiewicz Interpolation Theorem we obtain (3.14). �

As a consequence of Theorem 3.6 we conclude that the Hardy-Littlewood max-
imal function M = MHL given by

(3.15) MHLf(x) := sup
k∈Z

sup
y∈x+Bk

1

|Bk|

∫

y+Bk

|f(z)|dz

satisfies (3.13) and (3.14). Naturally, this is also a consequence of general results
for spaces of homogeneous type, see [St2, Theorem 1 in Chapter 1].

Theorem 3.7. Suppose ϕ ∈ L∞(Rn) satisfies |ϕ(x)| ≤ C(1+ρ(x))−s for some
s > 1, and let c =

∫

ϕ. Then for f ∈ Lp(Rn), 1 ≤ p ≤ ∞,

(3.16) lim
k→−∞

y∈x+Bk

f ∗ ϕk(y) = cf(x) for a.e. x ∈ Rn.

Proof. Suppose p = 1 and f ∈ L1(Rn). By the Luzin (Luzin) Theorem
given ε > 0 we can find a continuous function g with compact support such that
||f − g||1 < ε. Clearly

lim
k→−∞

y∈x+Bk

g ∗ ϕk(y) = cg(x) for all x ∈ Rn.
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Since

lim sup
k→−∞

y∈x+Bk

|f ∗ ϕk(y) − cf(x)| = lim sup
k→−∞

y∈x+Bk

|f ∗ ϕk(y) − g ∗ ϕk(x) + g ∗ ϕk(x) − cf(x)|

≤ sup
k∈Z

sup
y∈x+Bk

|f ∗ ϕk(y) − g ∗ ϕk(x)| + |c||g(x) − f(x)|

≤Mϕ(f − g)(x) + |c||f(x) − g(x)|,

by Theorem 3.6 and the Chebyshev (Qebyxev) inequality we have for any λ > 0

|{x : lim sup
k→−∞

y∈x+Bk

|f ∗ ϕk(y) − cf(x)| > λ}|

≤ |{x : Mϕ(f − g)(x) > λ/2}| + |{x : |c||f(x) − g(x)| > λ/2}|
≤ C||f − g||1/λ < Cε/λ.

Since λ > 0 is arbitrary we have (3.16).
Suppose p > 1 and f ∈ Lp(Rn). Given j ∈ Z let g = f1Bj . Since g ∈ L1(Rn),

lim
k→−∞

y∈x+Bk

g ∗ ϕk(y) = cg(x) = cf(x) for a.e. x ∈ Bj .

If x ∈ Bj we can choose K ∈ Z so that x + BK+ω ⊂ Bj . If y ∈ x + Bk for some
k ≤ K and z ∈ (Bj)

c ⊂ x + (BK+ω)c then y − z ∈ (BK)c by (2.11). Hence by
Hölder’s inequality, 1/p+ 1/q = 1,

|(f − g) ∗ ϕk(y)| =

∣

∣

∣

∣

∫

(Bj)c
f(z)ϕk(y − z)dz

∣

∣

∣

∣

≤ ||f ||p
( ∫

(Bj)c
|ϕk(y − z)|qdz

)1/q

≤ ||f ||p
( ∫

(BK)c
|ϕk(z)|qdz

)1/q

≤ ||f ||pb−k+k/q
( ∫

(BK−k)c
|ϕ(z)|qdz

)1/q

≤ b−k+k/q||f ||p
( ∫

(BK−k)c
|ρ(z)|−qsdz

)1/q

≤ Cb−k+k/qb(K−k)(−s+1/q)

= CbK(−s+1/q)bk(s−1) → 0 as k → −∞.

Therefore, (3.16) holds for a.e. x ∈ Bj and since j is arbitrary it holds for a.e. x ∈
Rn. �

The next lemma is a basic approximation of identity result for the space of
tempered distributions S′. Since it is a more general variant of the result common
in the literature we include its proof.

Lemma 3.8. Suppose ϕ ∈ S and
∫

ϕ = 1. Then for any ψ ∈ S and f ∈ S′ we
have

ψ ∗ ϕk → ψ in S as k → −∞,(3.17)

f ∗ ϕk → f in S′ as k → −∞.(3.18)

In Lemma 3.8 we can relax the condition that ϕk’s are given by (3.6). Instead,
we only need to assume that ϕk(x) = | detAk|ϕ(Akx) for some nondegenerate
matrices Ak such that ||A−1

k || → 0 as k → −∞.
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Proof. It is clear that ψ ∗ ϕk(x) → ψ(x) pointwise as k → −∞. Since
∂α(ψ ∗ ϕk)(x) = (∂αψ) ∗ ϕk(x) → ∂αψ(x) pointwise as k → −∞ for every multi-
index α, it suffices to show

(3.19) sup
x∈Rn

|x|N |ψ ∗ ϕk(x) − ψ(x)| → 0 as k → −∞,

for every integer N ≥ 0.
Given ε > 0 find δ > 0 so that |x|N |ψ(y − x)− ψ(x)| < ε for all |y| ≤ δ. Let K

be such that
∫

|y|>δ

(1 + |y|)N |ϕk(y)|dy < ε for k ≤ K.

If k ≤ K

|x|N |ψ ∗ ϕk(x) − ψ(x)| =

∣

∣

∣

∣

∫

Rn

|x|N (ψ(y − x) − ψ(x))ϕk(y)dy

∣

∣

∣

∣

≤
∫

|y|≤δ

|x|N |ψ(y − x) − ψ(x)||ϕk(y)|dy +

∫

|y|>δ

|x|N |ψ(y − x) − ψ(x)||ϕk(y)|dy

≤ ε

∫

Rn

|ϕk(y)|dy + sup
x∈Rn

|x|N |ψ(x)|N
∫

|y|>δ

|ϕk(y)|dy

+

∫

|y|>δ

C|x|N (1 + |x− y|)−N (1 + |y|)−N (1 + |y|)N |ϕk(y)|dy

≤ C′ε+ C′

∫

|y|>δ

(1 + |y|)N |ϕk(y)|dy ≤ 2C′ε.

This shows (3.19) and thus (3.17). (3.18) follows from (3.17) since 〈f ∗ ϕk, ψ〉 =
〈f, ψ ∗ ϕ̃k〉, where ϕ̃k(x) = ϕk(−x). �

The next theorem can be thought as a converse to the Maximal Theorem 3.6
for p > 1.

Theorem 3.9. Suppose f ∈ S′, ϕ ∈ S,
∫

ϕ 6= 0, and 1 ≤ p ≤ ∞. If M0
ϕf ∈

Lp(Rn) then f ∈ Lp(Rn).

Proof. Without loss of generality we can assume that
∫

ϕ = 1. Suppose
p > 1. Since the set {f ∗ ϕk : k ∈ Z} is bounded in Lp, by the Alaoglu Theorem
there is a sequence kj → −∞ such that f ∗ ϕkj converges weak-∗ in Lp, and hence
in S′. By Lemma 3.8 this limit is f and thus f ∈ Lp.

Suppose now p = 1. By [Wo1, Theorem III.C.12] the set {f ∗ ϕk : k ∈ Z} is

relatively weakly compact in L1 and by the Eberlein-S̆mulian (Xmul�n) Theorem
there is a sequence kj → −∞ such that f ∗ ϕkj converges weakly in L1, and hence

in S′. By Lemma 3.8 this limit is f and thus f ∈ L1. Alternatively, we could think
of the set {f ∗ ϕk : k ∈ Z} as a bounded set in the space of finite complex Borel
measures on Rn and use Alaoglu Theorem to find a sequence kj → −∞ such that
f ∗ ϕkj converges weak-∗ to an absolutely continuous measure. This measure is
f(x)dx by Lemma 3.8. �

Remark. Theorems 3.6 and 3.9 together assert that for p > 1 the subclass
of regular Lp integrable distributions in S′ is invariant with respect to maximal
functions introduced in Definition 3.4. Indeed, it follows from Theorems 3.6 and
3.9 that for 1 < p ≤ ∞ the following are equivalent for a distribution f ∈ S′,
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• f is regular and belongs to Lp,
• M0

ϕf ∈ Lp (or Mϕf ∈ Lp) for every ϕ ∈ S,

• M0
ϕf ∈ Lp (or Mϕf ∈ Lp) for some ϕ with

∫

ϕ 6= 0,

• M0
Nf ∈ Lp for some (or every) N ≥ 2.

The next result asserts that radial and nontangential grand maximal functions
are pointwise equivalent.

Proposition 3.10. For every N ≥ 0 there is a constant C = C(N) so that
for all f ∈ S′,

(3.20) M0
Nf(x) ≤MNf(x) ≤ CM0

Nf(x) for x ∈ Rn.

Proof. The first inequality is obvious. To see the second inequality, note that

(3.21)

MNf(x) = sup{|(f ∗ ϕk)(x +Aky)| : k ∈ Z, y ∈ B0, ϕ ∈ SN}
= sup{|(f ∗ φk)(x)| : k ∈ Z, φ(z) = ϕ(z + y) for some y ∈ B0, ϕ ∈ SN}
= sup{M0

φ(x) : φ(z) = ϕ(z + y) for some y ∈ B0, ϕ ∈ SN}.
By (2.12) if φ(x) = ϕ(x + y) for some y ∈ B0 then

(3.22)

||φ||SN = sup
x∈Rn

sup
|α|≤N

max(1, ρ(x)N )|∂αϕ(x+ y)|

= sup
x∈Rn

sup
|α|≤N

max(1, ρ(x− y)N )|∂αϕ(x)|

≤ bωN sup
x∈Rn

sup
|α|≤N

max(1, ρ(x)N )|∂αϕ(x)| = bωN ||ϕ||SN .

Combining (3.21) and (3.22) we have

MNf(x) ≤ sup{M0
φf(x) : φ ∈ S, ||φ||SN ≤ bωN} ≤ bωNM0

Nf(x),

which shows (3.20). �

We are now ready to state the definition of anisotropic Hardy spaces.

Definition 3.11. For a given dilation A and 0 < p <∞ we denote

Np :=

{ ⌊(1/p− 1) ln b/ lnλ−⌋ + 2 0 < p ≤ 1,

2 p > 1.

For every N ≥ Np we define the anisotropic Hardy space associated with the
dilation A as

(3.23) Hp(Rn) = Hp
A(Rn) = {f ∈ S′ : MNf ∈ Lp},

with the quasi-norm ||f ||Hp = ||MNf ||p.
Since the dimension n and the dilation A remain constant throughout this

chapter (except Section 10) we are going to denote the anisotropic Hardy space by
Hp or Hp

(N). Even though quasi-norms on Hp depend on the choice of N , it follows

from Theorems 4.2 and 6.4 that the above definition of Hp does not depend on
the choice of N as long as N ≥ Np. To escape possible ambiguity and to fix the
attention the reader can think that N = Np in (3.23).

By the above Remark we have Hp = Lp for p > 1 irrespective of the dilation
A. Moreover, by Theorem 3.9 we have H1 ⊂ L1. Therefore, only for 0 < p ≤ 1 do
anisotropic Hardy spaces Hp merit further investigation.
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Proposition 3.12. The space Hp is complete.

Proof. Since Hp = Lp for p > 1 we only need to consider p ≤ 1.
For every ϕ ∈ S and every sequence (fi)i∈N in S′ such that

∑

i fi converges in
S′ to the tempered distribution f , the series

∑

i fi ∗ ϕ(x) converges pointwise to
f ∗ ϕ(x) for each x ∈ Rn. Thus,

MNf(x)p ≤
(

∑

i

MNfi(x)

)p

≤
∑

i

(MNfi(x))
p for all x ∈ Rn,

and we have ||f ||pHp ≤ ∑

i ||fi||
p
Hp .

To prove that Hp is complete, it suffices to show that for every sequence (fi)
such that ||fi||Hp < 2−i for i ∈ N, the series

∑

i fi converges in Hp. Since partial
sums

∑

i fi are Cauchy in Hp, hence they are Cauchy in S′, and
∑

i fi converges
in S′ to some f , because S′ is complete. Therefore,

||f −
j

∑

i=1

fi||pHp = ||
∞
∑

i=j+1

fi||pHp ≤
∞
∑

i=j+1

||fi||pHp ≤
∞
∑

i=j+1

2−ip → 0 as j → ∞.

This finishes the proof. �
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4. The atomic definition of anisotropic Hardy spaces

Definition 4.1. We say a triplet (p, q, s) is admissible (with respect to the
dilation A) if 0 < p ≤ 1, 1 ≤ q ≤ ∞, p < q, s ∈ N, and s ≥ ⌊(1/p− 1) ln b/ lnλ−⌋.
A (p, q, s)-atom (associated with the dilation A) is a function a such that

supp a ⊂ Bj + x0 for some j ∈ Z, x0 ∈ Rn,(4.1)

||a||q ≤ |Bj |1/q−1/p,(4.2)
∫

Rn

a(x)xαdx = 0 for |α| ≤ s.(4.3)

The rationale behind the conditions imposed on atoms is revealed in the next
theorem.

Theorem 4.2. Suppose (p, q, s) is admissible and N ≥ Np. Then there is a

constant C̃ depending only on p and q such that for all (p, q, s)-atoms a we have

||MNa||p ≤ C̃.

Proof. Since SN ⊂ SNp , we have MNa(x) ≤ MNpa(x), and we can assume

that N = Np. By Proposition 3.10 it suffices to show ||Ma||p ≤ C̃, where M = M0
N

is the radial grand maximal function. It also suffices to consider only (p, q, s)-atoms
a with minimal value of s = ⌊(1/p− 1) ln b/ lnλ−⌋.

Suppose an atom a is associated with the ball x0 +Bj for some x0 ∈ Rn, j ∈ Z.
We estimate separately on x0 +Bj+ω and (x0 +Bj+ω)c.
Case I. OnBj+ω we use the Maximal Theorem 3.6 for q > 1 and Hölder’s inequality

∫

x+Bj+ω

Ma(x)pdx ≤
( ∫

x+Bj+ω

Ma(x)qdx

)p/q

|Bj+ω |1−p/q

≤ C||a||pq |Bj |1−p/q ≤ C.

If q = 1, take λ > 0, and consider Ωλ = {x : Ma(x) > λ}. Then

|Ωλ ∩Bj+ω | ≤ min(|Ωλ|, |Bj+ω |) ≤ min(C||a||1/λ, |Bj+ω |)
= min(C|Bj |1−1/p/λ, bω|Bj |) ≤ Cmin(|Bj |1−1/p/λ, |Bj |).

We have equality between the two terms in the last minimum if λ = |Bj |−1/p.
Therefore,

∫

Bj+ω

Ma(x)pdx =

∫ ∞

0

pλp−1|Ωλ ∩Bj+ω |dλ

≤ C

∫ |Bj |
−1/p

0

|Bj |pλp−1dλ+

∫ ∞

|Bj |−1/p

|Bj |1−1/ppλp−2dλ = C.

Case II. Take x ∈ (x0 + Bj+ω)c, ϕ ∈ SN , and k ∈ Z. Suppose P is a polynomial
of degree ≤ s to be specified later. Then we have

|(a ∗ ϕk)(x)| = b−k
∣

∣

∣

∣

∫

Rn

a(y)ϕ(A−k(x − y))dy

∣

∣

∣

∣

= b−k
∣

∣

∣

∣

∫

x0+Bj

a(y)(ϕ(A−k(x− y)) − P (A−k(x− y)))dy

∣

∣

∣

∣
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(4.4)

≤ b−k||a||q
( ∫

x0+Bj

|ϕ(A−k(x− y)) − P (A−k(x− y))|q′dy
)1/q′

≤ b−kbj(1/q−1/p)bk/q
′

( ∫

A−k(x−x0)+Bj−k

|ϕ(y) − P (y)|q′dy
)1/q′

≤ b−kbj(1/q−1/p)bk/q
′

b(j−k)/q
′

sup
y∈A−k(x−x0)+Bj−k

|ϕ(y) − P (y)|

= b−j/pbj−k sup
y∈A−k(x−x0)+Bj−k

|ϕ(y) − P (y)|,

where q′ denotes the conjugate power to q, 1/q+ 1/q′ = 1. Even though the above
calculation holds for q > 1 it can be easily adjusted for the case q = 1 to yield the
same estimate.

Suppose x ∈ x0 +Bj+ω+m+1 \Bj+ω+m for some integer m ≥ 0. Then A−k(x−
x0)+Bj−k ⊂ A−k(Bj+ω+m+1\Bj+ω+m)+Bj−k = Aj−k((Bω+m+1\Bω+m)+B0) ⊂
Aj−k(Bm)c by virtue of (2.11). We consider two cases. If j ≥ k then we choose
polynomial P = 0, and

(4.5) sup
y∈A−k(x−x0)+Bj−k

|ϕ(y)| ≤ sup
y∈A−k(x−x0)+Bj−k

min(1, ρ(y)−N) ≤ b−N(j−k+m).

If j < k then we choose polynomial P to be the Taylor expansion of ϕ at the point
A−k(x− x0) of order s. By the Taylor Remainder Theorem and (2.2) we have

(4.6)

sup
y∈A−k(x−x0)+Bj−k

|ϕ(y) − P (y)|

≤ C sup
z∈Bj−k

sup
|α|=s+1

|∂αϕ(A−k(x− x0) + z)||z|s+1

≤ Cλ
(s+1)(j−k)
− sup

y∈A−k(x−x0)+Bj−k

min(1, ρ(y)−N )

≤ Cλ
(s+1)(j−k)
− min(1, b−N(j−k+m)).

Combining (4.4), (4.5) and (4.6) we have for x ∈ x0 +Bj+ω+m+1 \Bj+ω+m, m ≥ 0,

Ma(x)p = sup
ϕ∈SN

sup
k∈Z

|(a ∗ ϕk)(x)|p ≤ b−j max

(

sup
k∈Z,k≤j

bp(j−k)b−Np(j−k+m)

+C sup
k∈Z,k>j

bp(j−k)λ
p(s+1)(j−k)
− min(1, b−Np(j−k+m))

)

.

Note that the supremum over k ≤ j has the largest value for k = j. Since N ≥ s+2
we have bλs+1

− ≤ bN , and the supremum over k > j is attained when j−k+m = 0.
Indeed, it suffices to check for the maximum value in the range j < k ≤ j +m and
k ≥ j +m. Therefore,

Ma(x)p ≤ b−j max(b−Npm, C(bλs+1
− )−pm) ≤ Cb−j(bλs+1

− )−pm,
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again by bλs+1
− b−N ≤ 1. Since s = ⌊(1/p − 1) ln b/ lnλ−⌋, we have s > (1/p −

1) ln b/ lnλ− − 1, and thus λs+1
− b1−1/p > 1. Therefore,

∫

(x0+Bj)c
Ma(x)pdx =

∞
∑

m=0

|Bj+ω+m+1 \Bj+ω+m| sup
x∈x0+Bj+ω+m+1\Bj+ω+m

Ma(x)p

≤ C

∞
∑

m=0

bj+ω+m+1b−j(bλs+1
− )−pm = Cbω+1

∞
∑

m=0

(bp−1λ
(s+1)p
− )−m = C′ <∞.

Combining case I and II and we see that ||Ma||p ≤ C̃ for some constant C̃
independent of the choice of a (p, q, s)-atom a. �

The proof of this result could be simplified by virtue of Theorem 7.1, since it is
easier to estimate M0

ϕf than MNf . We are now ready to introduce the anisotropic
Hardy spaces in terms of atomic decompositions.

Definition 4.3. For a given dilation A and an admissible triplet (p, q, s) we
define the atomic anisotropic Hardy space Hp

q,s associated with dilation A as the

set of all tempered distributions f ∈ S′ of the form
∑∞
i=1 κiai with convergence in

S′, where
∑∞

i=1 |κi|p <∞, and ai is a (p, q, s)-atom for each i ∈ N. The quasi-norm
of f ∈ Hp

q,s is defined as

||f ||Hp
q,s

= inf

{( ∞
∑

i=1

|κi|p
)1/p

: f =
∞
∑

i=1

κiai, ai is a (p, q, s)-atom for i ∈ N

}

.

It follows from Theorem 4.5 that the series
∑∞

i=1 κiai converges in S′ for every
choice of κi and (p, q, s)-atoms ai with

∑∞
i=1 |κi|p <∞. The representation of f ∈

S′ in this form
∑∞
i=1 κiai is referred as an atomic decomposition of f . Furthermore,

if ||f ||Hp
q,s

= 0 then necessarily f = 0.

Proposition 4.4. Suppose the triplet (p, q, s) is admissible. Then the space
Hp
q,s is complete.

The proof of Proposition 4.4 is a routine, see Proposition 3.12.

Theorem 4.5. If the triplet (p, q, s) is admissible and N ≥ Np then Hp
q,s ⊂

Hp ⊂ S′, where Hp is defined using maximal function MN . Moreover, the inclusion
maps are continuous.

Proof. Suppose f ∈ Hp
q,s has an atomic decomposition f =

∑∞
i=1 κiai. Then

||f ||pHp =

∫

Rn

(MN (

∞
∑

i=1

κiai)(x))
pdx ≤

∞
∑

i=1

|κi|p
∫

Rn

MNai(x)
pdx ≤ C̃

∞
∑

i=1

|κi|p,

where C̃ is the constant in Theorem 4.2. Since we can choose (
∑∞

i=1 |κi|p)1/p
to be arbitrarily close to ||f ||Hp

q,s
thus ||f ||Hp ≤ C̃1/p||f ||Hp

q,s
, and the inclusion

Hp
q,s →֒ Hp is continuous.

Suppose next f ∈ Hp, and ϕ ∈ S.

|〈f, ϕ〉| = |f ∗ ϕ̃(0)| ≤Mϕ̃f(x) for x ∈ B0,
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where ϕ̃(x) = ϕ(−x). Therefore,

|〈f, ϕ〉|p = |B0||〈f, ϕ〉|p ≤
∫

B0

Mϕ̃f(x)pdx ≤
∫

Rn

Mϕ̃f(x)pdx

≤ ||ϕ̃||pSN

∫

Rn

MNf(x)pdx = ||ϕ̃||pSN
||f ||pHp .

If a sequence (fi) converges to f in Hp, then 〈fi, ϕ〉 → 〈f, ϕ〉 as i → ∞, and the
inclusion Hp →֒ S′ is continuous. �
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5. The Calderón-Zygmund decomposition

for the grand maximal function

In this section we define and investigate extensively the Calderón-Zygmund
decomposition. The excellent exposition of this decomposition in the setting of
homogeneous groups is in [FoS]. Even though we work only in Rn we allow much
more general dilation structures than in [FoS] and therefore we need to build the
machinery from scratch. We try to follow as closely as possible the skeleton of the
construction in [FoS] to give the reader familiar with this book a comfortable path
through numerous technical nuances.

Throughout this section we consider a tempered distribution f so that

|{x : Mf(x) > λ}| <∞ for all λ > 0,

where M = MN for some fixed integer N ≥ 2. Later with regard to the Hardy
space Hp (0 < p ≤ 1) we restrict attention to N ≥ Np := ⌊(1/p−1) ln b/ lnλ−⌋+2.
For a fixed λ > 0 we set Ω = {x : Mf(x) > λ}. The Whitney Lemma applied to Ω
with d = 4ω yields a sequence (xj)j∈N ⊂ Ω, and a sequence of integers (lj)j∈N, so
that

(5.1) Ω =
⋃

j∈N

(xj +Blj ),

(5.2) (xi +Bli−ω) ∩ (xj +Blj−ω) = ∅ for i 6= j,

(5.3) (xj +Blj+γ−1) ∩ Ωc = ∅, (xj +Blj+γ) ∩ Ωc 6= ∅ for j ∈ N,

(5.4) (xi +Bli+2ω) ∩ (xj +Blj+2ω) 6= ∅ =⇒ |li − lj | ≤ ω,

(5.5) #{j ∈ N : (xi +Bli+2ω) ∩ (xj +Blj+2ω) 6= ∅} ≤ L for i ∈ N,

where γ := d+ 1 = 4ω + 1, and L is some constant independent of Ω.
Fix θ ∈ C∞(Rn) such that supp θ ⊂ Bω, 0 ≤ θ ≤ 1, and θ ≡ 1 on B0. For

every j ∈ N define

(5.6) θj(x) = θ(A−lj (x− xj)).

One should think of θj as the localized version of θ to the scale lj centered at xj ,
and corresponding to the ball xj + Blj in the Whitney decomposition. Clearly
supp θj ⊂ xj + Blj+ω , θj ≡ 1 on xj +Blj , and by (5.1) and (5.5)

(5.7) 1 ≤
∑

j∈N

θj(x) ≤ L for x ∈ Ω.

For every i ∈ N define

(5.8) ζi(x) =

{

θi(x)/
∑

j θj(x) x ∈ Ω,

0 x 6∈ Ω.

We have ζi ∈ C∞(Rn), supp ζi ⊂ xi + Bli+ω, 0 ≤ ζi ≤ 1, ζi ≡ 1 on xi + Bli−ω by
(5.2), and

∑

i∈N
ζi = 1Ω. Therefore, the family {ζi} forms a smooth partition of

unity which is subordinate to the covering of Ω by the balls {xi +Bli+ω}.
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Let Ps denote the linear space of polynomials in n variables of degree ≤ s,
where s ≥ 0 is a fixed integer. For each i ∈ N we introduce the norm in the space
Ps by setting

(5.9) ||P || =

(

1
∫

ζi

∫

Rn

|P (x)|2ζi(x)dx
)1/2

for P ∈ Ps,

which makes Ps a finite dimensional Hilbert space. The distribution f ∈ S′ induces
a linear functional on Ps by

Q 7→ 1
∫

ζi
〈f,Qζi〉 for Q ∈ Ps,

which is represented by the Riesz Lemma by the unique polynomial Pi ∈ Ps such
that

1
∫

ζi
〈f,Qζi〉 =

1
∫

ζi
〈Pi, Qζi〉 =

1
∫

ζi

∫

Rn

Pi(x)Q(x)ζi(x)dx for all Q ∈ Ps.

For every i ∈ N define distributions bi := (f − Pi)ζi.
We will show that for a suitable choice of s and N the series

∑

i bi converges
in S′. Then we can define g := f − ∑

i bi.

Definition 5.1. The representation f = g +
∑

bi, where g and bi are as
above is a Calderón-Zygmund decomposition of degree s and height λ associated
with MNf .

Intuitively, one should think of g as the good part of f and of bi’s as the bad
parts of f . For a suitable choice of s and N , the good part g behaves very nicely.
In particular, g is in L1 and, in addition, it is in L∞ whenever f is in L1, see
Lemma 5.10. On the other hand, the bad parts bi’s are well-localized on the balls
coming from the Whitney decomposition; they have a certain number of vanishing
moments, and thus they can be nicely controlled in terms of the grand maximal
function of f , see Lemma 5.7.

The rest of this section consists of a series of lemmas. In Lemmas 5.2 and 5.3
we show properties of the smooth partition of unity {ζi}. In Lemmas 5.4, 5.6, 5.7,
and 5.8 we derive the estimates for the bad parts bi’s using Lemma 5.5, which is a
result about Taylor polynomials of independent interest. Lemmas 5.9 and 5.10 give
controls for the good part g. Finally, the culmination of this section is Corollary
5.11 showing the density of L1 ∩Hp functions in Hp spaces.

Lemma 5.2. There exists a constant A1 > 0 depending only on N , so that for
all i ∈ N and l ≤ li

(5.10) sup
|α|≤N

sup
x∈Rn

|∂αζ̃(x)| ≤ A1, where ζ̃(x) := ζi(A
lx).

Proof. For a given i ∈ N consider J = {j ∈ N : (xi +Bli+ω)∩ (xj +Blj+ω) 6=
∅}. Since supp ζi ⊂ xi+Bli+ω, thus supp ζ̃ ⊂ A−lxi+Bli−l+ω . Therefore, we need
to consider only x ∈ A−lxi+Bli−l+ω in the supremum in (5.10). If Alx ∈ xi+Bli+ω
then θj(A

lx) = 0 for j ∈ N \ J and we have

ζ̃(x) = ζi(A
lx) =

θi(A
lx)

∑

j∈N
θj(Alx)

=
θi(A

lx)
∑

j∈J θj(A
lx)

=
θ(Al−lix− A−lixi)

∑

j∈J θ(A
l−ljx−A−ljxj)

.
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By (5.7) the denominator is ≥ 1 and has at most L terms by (5.5). Furthermore,
for j ∈ J we have l − lj ≤ li − lj ≤ ω by (5.4). The estimate (5.10) follows now
from the iterative application of the quotient rule combined with

(5.11) sup
x∈Rn

sup
j≤ω

sup
|α|≤N

|∂α(θ(Aj ·))(x)| = C <∞.

To finish the proof we must show (5.11).
For a given C∞ function Θ on Rn and an integer k ≥ 0, D

kΘ(x) denotes the
derivative of Θ of order k at the point x thought of as a symmetric, multilinear
functional, i.e., D

kΘ(x) : (Rn)k = Rn × . . .× Rn → R. The norm is given by

||DkΘ(x)|| = sup
vi∈Rn,|vi|=1,

i=1,... ,k

|DkΘ(x)(v1, . . . , vk)|.

Suppose {e1, . . . , en} is the standard basis of Rn, and σ is any mapping from
{1, . . . , k} to {1, . . . , n}. Then

Θ(x)(eσ(1), . . . , eσ(k)) =
∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n

Θ(x) = ∂(α1,... ,αn)Θ(x),

where αj = #{i : σ(i) = j}. If Θ(x) = θ(Ajx) then by the chain rule for any
integer k ≥ 1

D
kΘ(x)(v1, . . . , vk) = D

kθ(Ajx)(Ajv1, . . . , A
jvk),

for any vectors v1, . . . , vk ∈ Rn.
For an integer j ≤ ω denote Θ(x) = θ(Ajx). Then

sup
x∈Rn

sup
|α|≤N

|∂αΘ(x)| ≤ sup
x∈Rn

sup
|α|≤N

||D|α|Θ(x)|| ≤ sup
x∈Rn

sup
|α|≤N

||D|α|θ(Ajx)||||Aj |||α|

≤ (sup
j≤ω

||Aj ||)N sup
x∈Rn

sup
k=0,... ,N

||Dkθ(x)|| = C <∞.

Indeed, the above suprema are finite since for j ≤ ω we have ||Aj || ≤ c(λ+)ω by
(2.1) and (2.2), and θ is C∞ with compact support. Thus, (5.11) holds and hence
(5.10). �

Lemma 5.3. There exists a constant A2 > 0 independent of f ∈ S′, i ∈ N, and
λ > 0 so that

(5.12) sup
y∈Rn

|Pi(y)ζi(y)| ≤ A2λ.

Proof. Let π1, . . . , πm (m = dimPs) be an orthonormal basis of Ps with
respect to the norm (5.9). We have

(5.13) Pi =
m

∑

k=1

(

1
∫

ζi

∫

f(x)πk(x)ζi(x)dx

)

πk,

where the integral is understood as 〈f, πkζi〉. Hence

(5.14)

1 =
1

∫

ζi

∫

|πk(x)|2ζi(x)dx ≥ 1

|Bli+ω|

∫

xi+Bli
−ω

|πk(x)|2ζi(x)dx

= b−ω
∫

B−ω

|π̃k(x)|2dx,
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where π̃k(x) = πk(xi + Alix). Since Ps is finite dimensional all norms on Ps are
equivalent, there exists C1 > 0 such that

sup
|α|≤s

sup
z∈Bω

|∂αP (z)| ≤ C1

(
∫

B−ω

|P (z)|2dz
)1/2

for all P ∈ Ps.

Therefore by (5.14),

(5.15) sup
|α|≤s

sup
z∈Bω

|∂απ̃k(z)| ≤ C1b
ω/2 for k = 1, . . . ,m.

For k = 1, . . . ,m define

Φk(y) =
bli
∫

ζi
πk(z −Aliy)ζi(z −Aliy),

where z is some point in (xi +Bli+γ) ∩ Ωc by (5.3).
We claim there exists a constant C2 > 0 such that 1/C2Φk ∈ SN for all k =

1, . . . ,m. Indeed, if y ∈ supp Φj , then z − Aliy ∈ xi + Bli+ω, −Aliy ∈ xi − z +
Bli+ω ⊂ −Bli+γ +Bli+ω, so y ∈ Bγ −Bω. Hence supp Φk is bounded.

We can write

Φk(y) =
bli
∫

ζi
πk(xi + z̃ −Aliy)ζi(xi + z̃ −Al

i

y) =
bli
∫

ζi
π̃k(A

−li z̃ − y)ζ̃i(A
−li z̃ − y),

where π̃k(x) = πk(xi +Alix), ζ̃i(x) = ζi(xi +Alix) and z = xi + z̃. Consider

ζ̃i(x) = ζi(xi +Alix) =
θi(xi +Alix)

∑

j θj(xi +Alix)
=

θ(x)
∑

j θ(A
−lj (xi − xj) +Ali−ljx)

.

Clearly supp ζ̃i ⊂ Bω and by Lemma 5.2

sup
|α|≤N

sup
z∈Rn

|∂αζ̃i(z)| ≤ A1.

By the product rule, (5.15) and supp ζ̃i ⊂ Bω we can find a constant C3 so that

sup
|α|≤N

sup
z∈Rn

|∂α(π̃k(z)ζ̃i(z))| ≤ C3.

Since bli/
∫

ζi ≤ bli/bli−ω = bω, supp Φk ⊂ Bγ +Bω, by the above estimate and the
definition of Φk we can find a constant C2 so that ||Φk||SN ≤ C2.

Since

(f ∗ (Φk)li)(z) =

∫

f(y)b−liΦk(A
−li(z − y))dy

=
1

∫

ζi

∫

f(y)πk(z −Ali(A−li(z − y)))ζi(z −Ali(A−li(z − y)))dy

=
1

∫

ζi

∫

f(y)πk(y)ζi(y)dy,

we have
∣

∣

∣

∣

1
∫

ζi

∫

f(y)πk(y)ζi(y)dy

∣

∣

∣

∣

≤Mf(z)||Φk||SN ≤ C2λ.
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By (5.13), (5.15) and the above estimate

(5.16) sup
z∈xi+Bli+ω

|Pi(z)| ≤ mC2λC1b
ω/2,

and therefore we have (5.12) with A2 = mbω/2C1C2. �

Lemma 5.4. There exists a constant A3 > 0 such that

(5.17) Mbi(x) ≤ A3Mf(x) for x ∈ xi +Bli+2ω.

Proof. Take ϕ ∈ SN , and x ∈ xi +Bli+2ω.
Case I. For l ≤ li we write

(5.18) (bi ∗ ϕl)(x) = (f ∗ Φl)(x) − ((Piζi) ∗ ϕl)(x),

where Φ(z) := ϕ(z)ζi(x−Alz). Define ζ̃i(z) := ζi(x−Alz). By Lemma 5.2 we have

sup
|α|≤N

sup
z∈Rn

|∂αζ̃i(z)| ≤ A1.

By the product rule there is a constant C depending only on N so that

||Φ||SN = sup
z∈Rn

max(1, ρ(z)N ) sup
|α|≤N

|∂αΦ(z)|

= sup
z∈Rn

max(1, ρ(z)N ) sup
|α|≤N

|∂α(ϕζ̃i)(z)|

≤ C sup
z∈Rn

max(1, ρ(z)N) sup
|α|≤N

|∂αϕ(z)| sup
|α|≤N

|∂αζ̃i(z)| ≤ A1C.

Note that for N ≥ 2 there is a constant C′ > 0 so that ||ϕ||1 ≤ C′ for all ϕ ∈ SN .
Therefore, by Lemma 5.3 and (5.18), we have

|bi ∗ ϕl(x)| ≤ ||Φ||SNMf(x) +A2λ||ϕ||1 ≤ A1CMf(x) +A2C
′λ

≤ (A1C +A2C
′)Mf(x),

since Mf(x) > λ for x ∈ Ω.
Case II. For l > li by a simple calculation we can write

(bi ∗ ϕl)(x) = bli−l(f ∗ Φli)(x) − ((Piζi) ∗ ϕl)(x),

where Φ(z) := ϕ(Ali−lz)ζi(x−Aliz). Define ϕ̃(z) := ϕ(Ali−lz) and ζ̃i(z) := ζi(x−
Aliz). If z ∈ supp Φ then x−Aliz ∈ xi+Bli+ω, so Aliz ∈ x−xi+Bli+ω ⊂ Bli+2ω+
Bli+ω ⊂ Bli+3ω. Hence, supp Φ ⊂ B3ω. By Lemma 5.2 and since ||Ali−l|| ≤ c by
(2.2) we can find a constant C > 0 independent of l > li so that

sup
|α|≤N

sup
z∈Rn

|∂αϕ̃(z)| ≤ C, sup
|α|≤N

sup
z∈Rn

|∂αζ̃i(z)| ≤ A1.

By the product rule and the boundedness of the support of Φ we can find a constant
C′′ so that ||Φ||SN ≤ C′′. Let C′ be the constant such that ||ϕ||1 ≤ C′ for ϕ ∈ SN
for N ≥ 2. As in the case I

|(bi ∗ ϕl)(x)| ≤ bli−l||Φ||SN Mf(x) +A2λ||ϕ||1 ≤ (C′′ +A2C
′)Mf(x).

By combining both cases we arrive at (5.17). �



5. THE CALDERÓN-ZYGMUND DECOMPOSITION 27

Lemma 5.5. Suppose Q ⊂ Rn is bounded, convex, and 0 ∈ Q, and N is a
positive integer. Then there is a constant C depending only on Q and N such that
for every φ ∈ S and every integer s, 0 ≤ s < N we have

(5.19) sup
z∈Q

sup
|α|≤N

|∂αRy(z)| ≤ C sup
z∈y+Q

sup
s+1≤|α|≤N

|∂αφ(z)|,

where Ry is the remainder of the Taylor expansion of φ of order s at the point
y ∈ Rn.

Proof. We write the Taylor expansion of φ of order s at the point y

φ(y + z) =
∑

|β|≤s

∂βφ(y)

β!
zβ +Ry(z).

For any multi-index |α| ≤ s we have

∂αRy(z) = ∂αφ(y + z)−
∑

|β|≤s,
β≥α

∂βφ(y)

(β − α)!
zβ−α = ∂αφ(y+ z)−

∑

|β|≤s−|α|

∂α+βφ(y)

β!
zβ,

where (α1, . . . , αn) = α ≤ β = (β1, . . . , βn) means αi ≤ βi for all i = 1, . . . , n. We
used here

1

β!
∂βzα =

{

zβ−α/(β − α)! α ≤ β,

0 otherwise.

Therefore, ∂αRy is the Taylor remainder of ∂αφ of order s− |α| expanded at y and
by the Taylor Remainder Theorem

|∂αRy(z)| ≤ C sup
w∈[y,y+z]

sup
|β|=s−|α|+1

|∂α+βφ(w)||z|s−|α|+1,

where [y, y + z] is the line segment connecting y and y + z. Thus,

sup
z∈Q

|∂αRy(z)| ≤ C′ sup
w∈y+Q

sup
|α|=s+1

|∂αφ(w)|.

If s < |α| ≤ N then ∂αRy(z) = ∂αφ(y + z), and the estimate (5.19) follows
immediately. �

Lemma 5.6. Suppose 0 ≤ s < N . Then there exists a constant A4 > 0 so that
for i ∈ N and all integers t ≥ 0

(5.20) Mbi(x) ≤ A4λλ
−t(s+1)
− for x ∈ xi +Bt+li+2ω+1 \Bt+li+2ω.

Proof. Suppose ϕ ∈ SN , and l ∈ Z. Pick some w ∈ (xi +Bli+γ) ∩ Ωc.
Case I. For l ≤ li we have

(5.21) bi ∗ ϕl(x) = f ∗ Φl(w) − (Piζi) ∗ ϕl(x),

where Φ(z) := ϕ(z+A−l(x−w))ζi(w−Alz). If z ∈ supp Φ then z ∈ supp ζi(w−Al·),
i.e., w − Alz ∈ xi + AliBω, so z ∈ Ali−l(Bω + A−li(w − xi)) ⊂ Ali−l(Bω − Bγ) ⊂
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Ali−lBγ+ω. Suppose x ∈ xi + Bt+li+2ω+1 \ Bt+li+2ω for some integer t ≥ 0. If
z ∈ supp Φ then z ∈ Ali−lBω +A−l(w − xi) and by (2.11)

(5.22)

z +A−l(x− w) ∈ Ali−lBω +A−l(w − xi) +A−l(x− w)

= Ali−lBω +A−l(x− xi) ⊂ Ali−l(Bω +Bt+2ω+1 \Bt+2ω)

⊂ Ali−l((Bt+2ω)c +Bω) ⊂ Ali−l((Bt+ω)c) = (Bt+li−l+ω)c.

By Lemma 5.2 the partial derivatives of ζi(w −Al·) of order up to N are bounded
by A1. Using supp Φ ⊂ Bli−l+γ+ω, ||ϕ||SN ≤ 1, (5.22) and the product rule we
have

(5.23)

||Φ||SN = sup
z∈supp Φ

sup
|α|≤N

max(1, ρ(z)N)|∂αΦ(z)|

≤ (bli−l+γ+ω)NA1C sup
|α|≤N

sup
z∈suppΦ

|∂αϕ(z +A−l(x − w))|

≤ A1Cb
N(li−l+γ+ω) sup

z∈Ali−lBω+A−l(w−xi)

max(1, ρ(z +A−l(x− w)))−N

≤ A1Cb
N(li−l+γ+ω)b−N(t+li−l+ω) = A1Cb

Nγb−Nt.

This enables us to estimate the first term in (5.21). For the second term, note
that if x ∈ xi + (Bt+li+2ω)c for some integer t ≥ 0, and y ∈ xi + Bli+ω then
A−l(x− y) ∈ Ali−l((Bt+2ω)c −Bω) ⊂ (Bt+li−l+ω)c by (2.11). Since ||ϕ||SN ≤ 1

|(Piζi) ∗ ϕl(x)| =

∣

∣

∣

∣

∫

(Piζi)(y)b
−lϕ(A−l(x− y))dy

∣

∣

∣

∣

≤ b−l
∫

xi+Bli+ω

|(Piζi)(y)||ϕ(A−l(x− y))|dy

≤ b−lbli+ωA2λ(b
t+li−l+ω)−N ≤ A2λb

−Nt.

Combining the above, (5.21) and (5.23) we obtain

|bi ∗ ϕl(x)| ≤ ||Φ||SNMf(w) +A2λb
−Nt ≤ (A1Cb

Nγ +A2)λb
−Nt.

Case II. For fixed l > li and ϕ ∈ SN define φ(z) = ϕ(Ali−lz). Suppose x ∈
xi + Bt+li+2ω+1 \ Bt+li+2ω for some integer t ≥ 0. Consider the Taylor expansion
of φ ∈ S of order s at the point y := A−li(x − w),

φ(y + z) =
∑

|α|≤s

∂αφ(y)

α!
zα +Ry(z),

where Ry denotes the reminder. Since the distribution bi annihilates polynomials
of degree ≤ s we have

(5.24)

(bi ∗ ϕl)(x) = b−l
∫

bi(z)ϕ(A−l(x − z))dz = b−l
∫

bi(z)φ(A−li(x− z))dz

= b−l
∫

bi(z)RA−li (x−w)(A
−li(w − z))dz

= bli−l(f ∗ Φli)(w) + b−l
∫

Pi(z)ζi(z)RA−li (x−w)(A
−li(w − z))dz,

where

(5.25) Φ(z) := RA−li (x−w)(z)ζi(w −Aliz).
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If z ∈ supp Φ then w −Aliz ∈ xi +Bli+ω, so z ∈ Bγ +Bω and supp Φ ⊂ Bγ+ω.
Apply Lemma 5.5 to φ(z) = ϕ(Ali−lz), y = A−li(x− w) and Q = Bγ+ω. First

assume t ≥ γ + ω and x ∈ xi +Bt+li+2ω+1 \Bt+li+2ω. Since

y +Bγ+ω ⊂ A−li((Bt+li+2ω+1 \Bt+li+2ω) +Bli+γ) +Bγ+ω

= (Bt+2ω+1 \Bt+2ω) +Bγ+2ω ⊂ (Bt+2ω)c +Bt+ω ⊂ (Bt+ω)c,

we have

sup
z∈Bγ+ω

sup
|α|≤N

|∂αRy(z)| ≤ C sup
z∈y+Bγ+ω

sup
s+1≤|α|≤N

|∂αφ(z)|

≤ C sup
z∈y+Bγ+ω

sup
s+1≤|α|≤N

λ
(li−l)(|α|+1)
− |∂αϕ(Ali−lz)|

≤ Cλ
(li−l)(s+1)
− sup

z∈y+Bγ+ω

sup
s+1≤|α|≤N

|∂αϕ(Ali−lz)|

≤ Cλ
(li−l)(s+1)
− sup

z∈(Bt+ω)c
max(1, ρ(Ali−lz))−N

= Cλ
(li−l)(s+1)
− min(1, b−N(li−l+t+ω)).

Since λs+1
− b−N ≤ 1 the last expression is maximized over l > li if li − l+ t+ω = 0,

i.e., l = li + t+ ω. Therefore, we have for t ≥ γ + ω

sup
z∈Bγ+ω

sup
|α|≤N

|∂αRy(z)| ≤ Cλ
−t(s+1)
− .

If 0 ≤ t < γ + ω and x ∈ Bt+li+2ω+1 \Bt+li+2ω we can estimate as before

sup
z∈Bγ+ω

sup
|α|≤N

|∂αRy(z)| ≤ Cλ
(li−l)(s+1)
− sup

z∈y+Bγ+ω

sup
s+1≤|α|≤N

|∂αϕ(Ali−lz)| ≤ C.

Therefore, we have for all t ≥ 0

(5.26) sup
z∈Bγ+ω

sup
|α|≤N

|∂αRy(z)| ≤ Cλ
(γ+ω)(s+1)
− λ

−t(s+1)
− .

By (5.25), (5.26), Lemma 5.2 and the product rule we can find a constant C′

so that

||Φ||SN ≤ C′λ
−t(s+1)
− for t ≥ 0.

Therefore by (5.24),

|(bi ∗ ϕl)(x)| ≤ bli−l|f ∗ Φli(w)| + b−l
∫

|Pi(z)ζi(z)RA−li (x−w)(A
−li(w − z))|dz

≤ bli−lMf(w)||Φ||SN + b−lbli+ωA2λ sup
z∈Bγ+ω

|RA−li (x−w)(z)|.

Thus

|(bi ∗ ϕl)(x)| ≤ Cλλ
−t(s+1)
− for x ∈ Bt+li+2ω+1 \Bt+li+ω, t ≥ 0.

This ends the proof of case II. Combining the two cases we arrive at the estimate

|(bi ∗ ϕl)(x)| ≤ A4λλ
−t(s+1)
− for all l ∈ Z.

Hence we have (5.20). �
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The above proof also works in the case s ≥ N and yields the estimate

Mbi(x) ≤ A4λλ
−tN
− for x ∈ xi +Bt+li+2ω+1 \Bt+li+2ω,

for all i ∈ N and all integers t ≥ 0.

Lemma 5.7. Suppose 0 < p ≤ 1, s ≥ ⌊ln b/(p lnλ−)⌋, N > s and f ∈ Hp,
where Hp is given by (3.23). Then there exists a constant A5 independent of f ∈
Hp, i ∈ N, and λ > 0 such that

(5.27)

∫

Rn

Mbi(x)
pdx ≤ A5

∫

xi+Bli+2ω

Mf(x)pdx.

Moreover, the series
∑

i bi converges in Hp, and

(5.28)

∫

Rn

M

(

∑

i

bi

)

(x)pdx ≤ LA5

∫

Ω

Mf(x)pdx,

where L is as in (5.5).

Proof. By Lemma 5.4
∫

Rn

Mbi(x)
pdx ≤ (A3)

p

∫

xi+Bli+2ω

Mf(x)pdx +

∫

(xi+Bli+2ω)c
Mbi(x)

pdx.

By Lemma 5.6

∫

(xi+Bli+2ω)c
Mbi(x)

pdx =

∞
∑

t=0

∫

xi+Bt+li+2ω+1\Bt+li+2ω

Mbi(x)
pdx

≤
∞
∑

t=0

bt+li+2ω+1(A4)
pλpλ

−t(s+1)p
− ≤ (A4)

pb
∞
∑

t=0

btλ
−t(s+1)p
−

∫

xi+Bli+2ω

Mf(x)pdx

≤ C′

∫

xi+Bli+2ω

Mf(x)pdx,

because Mf(x) > λ for x ∈ xi + Bli+2ω and λ
(s+1)p
− > b. Combining the last two

estimates we obtain (5.27).
Since Hp is complete and

∑

i

∫

Rn

Mbi(x)
pdx ≤ A5

∑

i

∫

xi+Bli+2ω

Mf(x)pdx ≤ LA5

∫

Ω

Mf(x)pdx,

∑

i bi converges in Hp. Therefore,
∑

i bi converges in S′ and as in the proof of
Proposition 3.12 we obtain M(

∑

i bi)(x) ≤
∑

iMbi(x) and thus (5.28) holds. �

Lemma 5.8. Suppose s ≥ 0, N ≥ 2, and f ∈ L1(Rn). Then the series
∑

i∈N
bi

converges in L1(Rn). Moreover, there is a constant A6, independent of f , i, λ, such
that

(5.29)

∫

Rn

∑

i∈N

|bi(x)|dx ≤ A6

∫

Rn

|f(x)|dx.
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Proof. By Lemma 5.3
∫

Rn

|bi(x)|dx =

∫

Rn

|(f(x) − Pi(x))ζi(x)|dx

≤
∫

xi+Bli+ω

|f(x)|dx +

∫

xi+Bli+ω

|Pi(x)ζi(x)|dx ≤
∫

xi+Bli+ω

|f(x)|dx +A2λb
li+ω.

Therefore, by (5.2) and (5.5)

∑

i∈N

∫

Rn

|bi(x)|dx ≤ L

∫

Ω

|f(x)|dx +A2b
2ωλ|Ω| ≤ A6

∫

Rn

|f(x)|dx,

by the Maximal Theorem 3.6. �

Lemma 5.9. Suppose 0 ≤ s < N and
∑

i∈N
bi converges in S′. There is a

constant A7, independent of f ∈ S′, λ > 0, such that

(5.30) Mg(x) ≤ A7λ
∑

i

λ
−ti(s+1)
− +Mf(x)1Ωc(x),

where

(5.31) ti = ti(x) :=

{

t if x ∈ Bt+li+2ω+1 \Bt+li+2ω for some t ≥ 0,

0 otherwise.

Proof. If x 6∈ Ω then as in the proof of Proposition 3.12 we have

Mg(x) ≤Mf(x) +
∑

i∈N

Mbi(x) ≤Mf(x) +
∑

i∈N

A4λλ
−ti(s+1)
− ,

by Lemma 5.6—which is exactly what we need.
If x ∈ Ω choose k ∈ N such that x ∈ xk+Blk . Let J := {i ∈ N : (xi+Bli+2ω)∩

(xk +Blk+2ω) 6= ∅}. By (5.5) the cardinality of J is bounded by L. By Lemma 5.6
we have

(5.32)
∑

i6∈J

Mbi(x) ≤ A4λ
∑

i6∈J

λ
−ti(s+1)
− .

It suffices to estimate the grand maximal function of g +
∑

i6∈J bi = f − ∑

i∈J bi.
Take ϕ ∈ SN and l ∈ Z.

Case I. For l ≤ lk we write

(5.33)

(f −
∑

i∈J

bi) ∗ ϕl(x) = (fη) ∗ ϕl(x) + (
∑

i∈J

Piζi) ∗ ϕl(x)

= f ∗ Φl(w) + (
∑

j∈J

Piζi) ∗ ϕl(x),

where w ∈ (xk +Blk+γ) ∩ Ωc, η = 1 − ∑

i∈J ζi, and

(5.34) Φ(z) := ϕ(z +A−l(x − w))η(w − Alz).

By the definition of J , η ≡ 0 on xk + Blk+2ω. Thus, if z ∈ supp Φ then
w −Alz ∈ (xk +Blk+2ω)c, and z + A−l(x− w) = A−l(Alz − w + x) ⊂ A−l(−xk +



32 1. ANISOTROPIC HARDY SPACES

(Blk+2ω)c + xk +Blk) ⊂ A−l(Blk+ω)c = (Blk−l+ω)c by (2.11). Since A−l(x−w) ⊂
A−l(Blk −Blk+γ) = Blk−l −Blk−l+γ ⊂ Blk−l+γ+ω we have

(5.35) ρ(z) ≤ bω(ρ(z +A−l(x − w)) + ρ(−A−l(x− w))) ≤ c′ρ(z +A−l(x− w)),

for z ∈ supp Φ, where c′ = 2bγ+ω. By (5.4) li ≥ lk−ω hence l ≤ li+ω. By Lemma
5.2 applied for every i ∈ J , the chain rule, and (5.5) the derivatives of η(w − Al·)
of order ≤ s are bounded by some universal constant C. For z ∈ supp Φ by the
product rule, (5.34), and (5.35)

max(1, ρ(z)N ) sup
|α|≤N

|∂αΦ(z)| ≤ Cmax(1, ρ(z)N ) sup
|α|≤N

|∂αϕ(z +A−l(x− w))|

≤ Cmax(1, ρ(z)N )/max(1, ρ(z + A−l(x− w))N ) ≤ C(c′)N ,

and therefore ||Φ||SN ≤ C(c′)N . Hence

|(f ∗ Φl)(w)| ≤Mf(w)||Φ||SN ≤ C(c′)Nλ.

Since for N ≥ 2 there is a constant C′ > 0 so that ||ϕ||1 ≤ C′ for all ϕ ∈ SN and
Lemma 5.2

∣

∣

∣

∣

(

∑

i∈J

Piζi

)

∗ ϕl(x)
∣

∣

∣

∣

≤ LA2C
′λ.

By the two estimates above and (5.33) we have |(f −∑

i∈J bi) ∗ϕl(x)| ≤ (C(c′)N +
LA2C

′)λ.
Case II. For l > lk we let Φ(z) := ϕ(z+A−l(x−w)), where w ∈ (xk+Blk+γ)∩Ωc.
Since A−l(x− w) ∈ Blk−l −Blk−l+γ ⊂ B0 −Bγ ⊂ Bγ+ω we have ||Φ||SN ≤ bγ+2ω.
Therefore,

|(f ∗ ϕl)(x)| = |(f ∗ Φl)(w)| ≤Mf(w)||Φ||SN ≤ bγ+2ωλ.

By Lemma 5.6

∑

i∈J

|(bi ∗ ϕl)(x)| =
∑

i∈J

|(bi ∗ Φl)(w)| ≤ ||Φ||SN

∑

i∈J

Mbi(w) ≤ bγ+2ωLA4λ,

because w 6∈ xi + Bli+2ω for all i ∈ N. By the two estimates above we have
|(f − ∑

i∈J bi) ∗ ϕl(x)| ≤ bγ+2ω(LA4 + 1)λ.
Combining cases I and II we have M(f − ∑

i∈J bi)(x) ≤ Cλ, where C is the
maximum of the two constants in these cases. Since tk = 0 the kth term in the
sum (5.30) takes care of the estimate of the maximal function of f − ∑

i∈J bi and
by (5.32) we obtain (5.30). �

Lemma 5.10. (i) Suppose 0 < p ≤ 1, s ≥ ⌊ln b/(p lnλ−)⌋, N > s, and Mf ∈
Lp. Then Mg ∈ L1, and there exists a constant A8 (independent of f and λ) such
that

(5.36)

∫

Rn

Mg(x)dx ≤ A8λ
1−p

∫

Rn

Mf(x)pdx.

(ii) Without an assumption on N (N ≥ 2), if f ∈ L1 then g ∈ L∞ and there exists
a constant A9 (independent of f and λ) such that ||g||∞ ≤ A9λ.
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Proof. (i) By Lemmas 5.7 and 5.9
∫

Rn

Mg(x)dx ≤ A7λ
∑

i∈N

∫

Rn

λ
−ti(x)(s+1)
− dx+

∫

Ωc

Mf(x)dx,

where ti(x) is defined as in Lemma 5.9. For fixed i ∈ N

∫

Rn

λ
−ti(x)(s+1)
− dx =

∫

xi+Bli+2ω

dx+

∞
∑

t=0

∫

xi+Bt+li+2ω+1\Bt+li+2ω

λ
−t(s+1)
− dx

≤ bli+2ω +

∞
∑

t=0

bt+li+2ω+1λ
−t(s+1)
− = bli+2ω

[

1 + b

∞
∑

t=0

(bλ−s−1
− )t

]

= C|Bli+2ω|,

where C represents the value of the expression in the bracket. Taking the sum over
all i ∈ N we obtain

∫

Rn

Mg(x)dx ≤ A7λCb
3ω

∑

i∈N

|Bli−ω| +
∫

Ωc

Mf(x)dx

≤ A7λCb
3ω |Ω| +

∫

Ωc

Mf(x)dx

≤ A7λCb
3ωλ−p

∫

Ω

Mf(x)pdx + λ1−p

∫

Ωc

Mf(x)pdx

≤ A8λ
1−p

∫

Rn

Mf(x)pdx.

(ii) If f ∈ L1 then g and bi’s are functions and
∑

i bi converges in L1 by Lemma
5.8 (and thus in S′). Since

g = f −
∑

i∈N

bi = f(1 −
∑

i∈N

ζi) +
∑

i∈N

Piζi = f1Ωc +
∑

i∈N

Piζi,

by Lemma 5.3 and (5.5) for x ∈ Ω we have |g(x)| ≤ LA2λ. Since |g(x)| = |f(x)| ≤
Mf(x) ≤ λ for a.e. x ∈ Ωc, therefore ||g||∞ ≤ LA2λ = A9λ. �

Corollary 5.11. If 0 < p < 1, Hp ∩ L1 is dense in Hp, where Hp is given
by (3.23) for N > ⌊ln b/(p lnλ−)⌋.

Proof. If f ∈ Hp and λ > 0, let f = gλ +
∑

i b
λ
i be the Calderón-Zygmund

decomposition of f of degree s, ⌊ln b/(p lnλ−)⌋ ≤ s < N , and height λ associated
to Mf = MNf . By Lemma 5.7,

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈N

bλi

∣

∣

∣

∣

∣

∣

∣

∣

Hp

≤ LA5

∫

{x:Mf(x)>λ}

Mf(x)pdx.

Therefore, gλ → f in Hp as λ → ∞. But by Lemma 5.10, Mgλ ∈ L1, so by
Theorem 3.9, gλ ∈ L1. �
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6. The atomic decomposition of Hp

We will continue to closely follow the proof of atomic decomposition as pre-
sented by Folland and Stein in [FoS]. The proofs of Lemmas 6.1 and 6.2 still require
some technical arguments, whereas the proofs of Lemma 6.3 and Theorems 6.4 and
6.5 are copied almost verbatim from [FoS], see also [LU], since all the necessary
preparatory work is already done.

Suppose f is a tempered distribution such that Mf = MNf ∈ Lp for some
0 < p ≤ 1 and N > s := ⌊ln b/(p lnλ−)⌋. Thus N ≥ Np. For each k ∈ Z consider
the Calderón-Zygmund decomposition of f of degree s and height λ = 2k associated
to Mf ,

f = gk +
∑

i∈N

bki , where

(6.1) Ωk := {x : Mf(x) > 2k}, bki := (f − P ki )ζki , Bki := xki +Blki .

Recall that for fixed k ∈ Z, (xi = xki )i∈N is a sequence in Ωk and (li = lki )i∈N a
sequence of integers such that (5.1)–(5.5) hold for Ω = Ωk, ζi = ζki is given by (5.8)
and Pi = P ki is the projection of f onto Ps with respect to the norm given by (5.9).

Define a polynomial P k+1
ij as an orthogonal projection of (f − P k+1

j )ζki on Ps
with respect to the norm

(6.2) ||P ||2 =
1

∫

ζk+1
j

∫

|P (x)|2ζk+1
j (x)dx,

that is P k+1
ij is the unique element of Ps such that

∫

Rn

(f(x) − P k+1
j (x))ζki (x)Q(x)ζk+1

j (x) =

∫

Rn

P k+1
ij (x)Q(x)ζk+1

j (x)dx.

Here the first integral is understood as 〈(f −P k+1
j )ζki , Qζ

k+1
j 〉 in the case that f is

not a regular distribution. For convenience we denote B̂ki := xki +Blki +ω.

Lemma 6.1. (i) If B̂k+1
j ∩B̂ki 6= ∅ then lk+1

j ≤ lki +ω, and B̂k+1
j ⊂ xki +Blki +4ω.

(ii) For each j ∈ N the cardinality of {i ∈ N : B̂k+1
j ∩ B̂ki 6= ∅} is bounded by 2L,

where L is the constant in (5.5).

Proof. The proof of (i) follows along the lines of the proof of (iv) in Lemma

2.7. Suppose y ∈ B̂k+1
j ∩B̂ki = (xk+1

j +Blk+1
j +ω)∩(xki +Blki +ω) and lk+1

j ≥ lki +ω+1.

Then

xki − xk+1
j ∈ y −Blki +ω − y +Blk+1

j +ω ⊂ Blk+1
j +2ω.

Since γ = 4ω + 1 and lki + γ ≤ lk+1
j + γ − ω,

xki +Blki +γ = (xki − xk+1
j ) + xk+1

j +Blki +γ ⊂ xk+1
j +Blk+1

j +2ω +Blki +γ

⊂ xk+1
j +Blj+γ−1,

by (2.11). Therefore, by (5.3) and Ωk+1 ⊂ Ωk,

∅ 6= (xki +Blki +γ) ∩ (Ωk)c ⊂ (xk+1
j +Blk+1

j +γ−1) ∩ (Ωk+1)c,
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which is a contradiction of (5.3). Hence lk+1
j ≤ lki + ω. Clearly, by (2.11)

B̂k+1
j = xk+1

j +Blk+1
j +ω = (xk+1

j − xki ) + xki +Blk+1
j +ω

⊂ xki + (y −Blk+1
j +ω − y +Blki +ω) +Blk+1

j +ω

⊂ xki +Blk+1
j +2ω +Blki +ω ⊂ xki +Blki +4ω.

Moreover, if lk+1
j ≤ lik − ω then clearly B̂k+1

j ⊂ xki +Blki +2ω.

To show (ii) fix j ∈ N and consider

I1 = {i ∈ N : B̂k+1
j ∩ B̂ki 6= ∅ and lki ≥ lk+1

j + ω}.

By the above I1 ⊂ {i ∈ N : B̂k+1
j ⊂ xki + Blki +2ω} ⊂ {i ∈ N : xk+1

j ∈ xki + Blki +2ω}
and by (5.1) and (5.5) the cardinality of I1 is at most L. Finally, consider

I2 = {i ∈ N : B̂k+1
j ∩ B̂ki 6= ∅ and lki ≤ lk+1

j + ω}.

As in the proof of (v) in Lemma 2.7, if i ∈ I2 then

xki +Blki −ω ⊂ (xki − xk+1
j ) + xk+1

j +Blki −ω ⊂ xk+1
j +Blki +ω +Blk+1

j +ω +Blki −ω

⊂ xk+1
j +Blk+1

j +2ω +Blk+1
j +ω +Blk+1

j
⊂ xk+1

j +Blk+1
j +3ω.

Since for i ∈ I2, x
k
i +Blk+1

j −2ω ⊂ xki +Blki −ω we conclude by (5.2) that the cardinality

of I2 is less than

|Blk+1
j +3ω|/|Blk+1

j −2ω| = b5ω ≤ L.

�

The proof of (ii) in Lemma 6.1 could be slightly shortened and simplified if we
use the Whitney Lemma with d = 6ω + 1 throughout Sections 5 and 6 instead of
d = 4ω + 1.

Lemma 6.2. There exists a constant A10 independent of i, j ∈ N, and k ∈ Z,
such that

(6.3) sup
y∈Rn

|P k+1
ij (y)ζk+1

j (y)| ≤ A102
k+1.

Proof. Let π1, . . . , πm (m = dimPs) be an orthonormal basis of Ps with
respect to the norm

||P ||2 =
1

∫

ζk+1
j

∫

|P (x)|2ζk+1
j (x)dx.

We have

(6.4) P k+1
ij =

m
∑

l=1

(

1
∫

ζk+1
j

∫

(f(x) − P k+1
j (x))ζki (x)πl(x)ζ

k+1
j (x)dx

)

πl.

By Lemma 5.3 applied for λ = 2k+1, (5.15) and (5.16)

(6.5) |P k+1
j (y)| ≤ C2k+1, |πl(y)| ≤ C, for y ∈ B̂k+1

j .
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Hence

(6.6)

∣

∣

∣

∣

1
∫

ζk+1
j

∫

P k+1
j (y)πl(y)ζ

k
i (y)ζk+1

j (y)dy

∣

∣

∣

∣

≤ C2k+1.

Therefore, by (6.4), (6.5), and (6.6) we need to show

(6.7)

∣

∣

∣

∣

1
∫

ζk+1
j

∫

f(y)πl(y)ζ
k
i (y)ζk+1

j (y)dy

∣

∣

∣

∣

= |f ∗ Φlk+1
j

(w)| ≤ C2k+1,

for some constant C, where w ∈ (xk+1
j +Blk+1

j +γ) ∩ (Ωk+1)c, and

(6.8) Φ(z) :=
bl

k+1
j

∫

ζk+1
j

(πlζ
k
i ζ

k+1
j )(w −Al

k+1
j z).

To see (6.7) it suffices to show that ||Φ||SN ≤ C. However, we need only consider

those values of i and j such that B̂k+1
j ∩ B̂ki 6= ∅, since otherwise ζki ζ

k+1
j vanishes

everywhere. Define

π̃l(z) = πl(x
k+1
j +Al

k+1
j z), ζ̃k+1

j (z) = ζk+1
j (xk+1

j +Al
k+1
j z), ζ̃ki (z) = ζki (w−Alk+1

j z).

Since supp ζ̃k+1
j ⊂ Bω, by (5.15), Lemma 5.2, and the product rule, the partial

derivatives of π̃lζ̃
k+1
j of order ≤ N are bounded by some universal constant. Since

lk+1
j ≤ lki + ω by the chain rule and Lemma 5.2, the partial derivatives of ζ̃ki of
order ≤ N are also bounded by some universal constant. Hence, the function Φ
can be written as

Φ(z) =
bl

k+1
j

∫

ζk+1
j

(π̃lζ̃
k+1
j )(A−lk+1

j (w − xk+1
j ) − z)ζ̃ki (z).

Since the above fraction is ≤ bω and supp Φ ⊂ Bγ+Bω we can find another universal
constant independent of i, j, k, l so that ||Φ||SN ≤ C. This shows (6.7). �

Lemma 6.3. For every k ∈ Z,
∑

i∈N
(
∑

j∈N
P k+1
ij ζk+1

j ) = 0, where the series

converges pointwise and in S′.

Proof. By (5.5) the cardinality of {j ∈ N : ζk+1
j (x) 6= 0} ≤ L. Moreover,

P k+1
ij = 0 if B̂k+1

j ∩ B̂ki = ∅. By Lemma 6.1(ii) for fixed x ∈ N the series
∑

i∈N

∑

j∈N
P k+1
ij (x)ζk+1

j (x) contains at most 2L2 nonzero terms. By Lemma 6.2

(6.9)
∑

i∈N

∑

j∈N

|P k+1
ij (x)ζk+1

j (x)| ≤ 2L2A102
k+1.

Hence, by the Lebesgue Dominated Convergence Theorem
∑

i∈N

∑

j∈N
P k+1
ij ζk+1

j

converges unconditionally in S′. To conclude the proof it suffices to show that
∑

i∈N

P k+1
ij =

∑

i∈I

P k+1
ij = 0 for every j ∈ N,

where I = {i ∈ N : B̂k+1
j ∩ B̂ki 6= ∅}. Indeed, for fixed j ∈ N,

∑

i∈N
P k+1
ij is

an orthogonal projection of (f − P k+1
j )

∑

i∈I ζ
k
i onto Ps with respect to the norm

(6.2). Since
∑

i∈I ζ
k
i (x) = 1 for x ∈ B̂k+1

j ,
∑

i∈N
P k+1
ij is an orthogonal projection
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of (f − P k+1
j ) with respect to the norm (6.2) which is zero by the definition of

P k+1
j . �

Theorem 6.4 (The atomic decomposition). If 0 < p ≤ 1, s ≥ ⌊ln b/(p lnλ−)⌋,
and N > s. Then Hp ⊂ Hp

∞,s, where Hp is given by (3.23). The inclusion map is
continuous.

Proof. Suppose first f ∈ Hp ∩ L1. Consider the Calderón-Zygmund decom-
position of f of degree s ≥ ⌊ln b/(p lnλ−)⌋ and height 2k associated to MNf ,
f = gk +

∑

i∈N
bki . By Lemma 5.7 (5.28), gk → f in Hp as k → ∞. By Lemma

5.10(ii), ||gk||∞ → 0 as k → −∞. Therefore,

(6.10) f =
∞
∑

k=−∞

gk+1 − gk in S′.

By Lemma 6.3 and
∑

i∈N
ζki b

k+1
j = 1Ωkbk+1

j = bk+1
j ,

gk+1 − gk = (f −
∑

j∈N

bk+1
j ) − (f −

∑

j∈N

bkj )

=
∑

j∈N

bkj −
∑

j∈N

bk+1
j +

∑

i∈N

(
∑

j∈N

P k+1
ij ζk+1

j )

=
∑

i∈N

(

bki −
∑

j∈N

(ζki b
k+1
j − P k+1

ij ζk+1
j )

)

=
∑

i∈N

hki ,

where all the series converge in S′ and

hki = (f − P ki )ζki −
∑

j∈N

((f − P k+1
j )ζki − P k+1

ij )ζk+1
j .

By the choice of P ki and P k+1
ij

(6.11)

∫

Rn

hki (x)P (x)dx = 0 for all P ∈ Ps.

Moreover, since
∑

j∈N
ζk+1
j = 1Ωk+1 we can write hki as

hki = f1(Ωk+1)cζ
k
i − P ki ζ

k
i +

∑

j∈N

P k+1
j ζki ζ

k+1
j +

∑

j∈N

P k+1
ij ζk+1

j .

By Theorem 3.7, |f(x)| ≤ C1MNf(x) ≤ c2k+1 for a.e. x ∈ (Ωk+1)c and by Lemmas
5.3, 6.1, and 6.2

(6.12) ||hki ||∞ ≤ c2k+1 +A22
k + 2LA22

k+1 + 2LA102
k+1 = C22

k.

Recall that P k+1
ij 6= 0 implies B̂k+1

j ∩ B̂ki 6= 0 and hence supp ζk+1
j ⊂ B̂k+1

j ⊂
xki +Blki +4ω. Therefore

(6.13) supphki ⊂ xki +Blki +4ω.
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By (6.11), (6.12) and (6.13), hki is a multiple of a (p,∞, s) atom aki , i.e., hki = κk,ia
k
i ,

where κk,i = C22
k|Blki +4ω|1/p = C22

kb(l
k
i +4ω)/p = C32

kbl
k
i /p. By (5.2)

(6.14)

∞
∑

k=−∞

∑

i∈N

(κk,i)
p = (C3)

p
∞
∑

k=−∞

∑

i∈N

2kpbω|Bki−ω| ≤ (C3)
pbω

∞
∑

k=−∞

2kp|Ωk|

≤ (C3)
pbω2/p

∞
∑

k=−∞

p2k(p−1)|Ωk|2k−1

≤ C4

∫ ∞

0

pλp−1|{x : MNpf(x) > λ}|dλ

= C4||MNpf ||pp = C4||f ||pHp .

Therefore, f =
∑∞
k=−∞

∑

i∈N
hki =

∑∞
k=−∞

∑

i∈N
κk,ia

k
i defines an atomic decom-

position of f ∈ Hp ∩ L1.
If f is a general element of Hp then by Corollary 5.11 we can find a sequence

{fm}m∈N ⊂ Hp ∩L1 so that ||fm||pHp ≤ 22−m||f ||pHp and f =
∑

m∈N
fm. For every

m ∈ N let fm =
∑

i∈N
κi,ma

i
m be an atomic decomposition constructed above with

the summation enumerated over one index i. By (6.14)
∑

m∈N

∑

i∈N

(κi,m)p ≤ C4

∑

m∈N

||fm||pHp ≤ C4||f ||pHp

∑

m∈N

22−m = 4C4||f ||pHp ,

and f =
∑

m∈N

∑

i∈N
κi,ma

i
m defines an atomic decomposition of f ∈ Hp. �

The next theorem shows that different choices of N ≥ Np in Definition 3.11
and admissible triplets (p, q, s) in Definition 4.3 yield the same Hardy space Hp.

Theorem 6.5 (The equivalence of norms). Suppose 0 < p ≤ 1. If the triplet
(p, q, s) is admissible then Hp = Hp

q,s and the quasi-norms || · ||Hp and || · ||Hp
q,s

are
equivalent. That is, for any N ≥ Np, there are constants C1, C2 > 0 so that

(6.15) ||MNpf ||p ≤ C1||f ||Hp
q,s

≤ C1||f ||Hp
∞,s

≤ C2||MNf || for f ∈ Hp.

Proof. Note that if N ≥ M ≥ Np then Hp
(M) ⊂ Hp

(N), where the subscript

corresponds to the choice of the grand maximal function in Definition 3.11. By
Definition 4.1 every (p,∞, s) atom is also a (p, q, s) atom, and hence Hp

∞,s ⊂ Hp
q,s.

Therefore, if we take N > s then by Theorems 6.4 and 4.5 we have

(6.16) Hp
(N) ⊂ Hp

∞,s ⊂ Hp
q,s ⊂ Hp

(Np) ⊂ Hp
(N).

Thus, Hp
(N) = Hp

(Np) = Hp
q,s for all N ≥ Np and all admissible triplets (p, q, s).

Furthermore, since the inclusion maps in (6.16) are continuous we have (6.15). �

Theorem 6.5 encompasses fundamental properties of anisotropic Hardy spaces.
As a first application of this theorem, we prove that smooth functions with certain
number of vanishing moments are dense in Hp.

Lemma 6.6. Suppose ψ ∈ S. For any N ∈ N, there exists C > 0 such that for
all f ∈ S′ we have

(6.17) sup
l∈Z

MN+2(f ∗ ψl)(x) ≤ CMNf(x) for all x ∈ Rn.
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Proof. We claim that for any N ∈ N there exists a constant C > 0 so that

(6.18) sup
l∈Z,l≤0

||ϕl ∗ ψ||SN ≤ C||ϕ||SN+2 ||ψ||SN for any ϕ, ψ ∈ S.

Indeed, take any multi-index α, |α| ≤ N , l ∈ Z, l ≤ 0, and x ∈ Rn. By (2.12)

max(1, ρ(x))N |∂α(ϕl ∗ ψ)(x)| = max(1, ρ(x))N |(ϕl ∗ ∂αψ)(x)|

≤ bωN
∫

Rn

max(1, ρ(x− y))N |∂αψ(x − y)|max(1, ρ(y))N |ϕl(y)|dy

≤ bωN ||ψ||SN

∫

Rn

max(1, ρ(y))N max(1, ρ(A−ly))−N−2b−l||ϕ||SN+2dy

≤ bωN ||ψ||SN ||ϕ||SN+2b
−l

∫

Rn

max(1, ρ(A−ly))−2dy = C||ϕ||SN+2 ||ψ||SN .

For any f ∈ S′, ψ ∈ S, ϕ ∈ SN+2, and x ∈ Rn. By (6.18)

sup
k,l∈Z

|(f ∗ ψl) ∗ ϕk(x)| ≤ sup
k,l∈Z

k≤l

|f ∗ (ψl ∗ ϕk)(x)| + sup
k,l∈Z

k>l

|f ∗ (ψl ∗ ϕk)(x)|

≤ sup
k,l∈Z

k−l≤0

|f ∗ (ψ ∗ ϕk−l)l(x)| + sup
k,l∈Z

l−k<0

|f ∗ (ψl−k ∗ ϕ)k(x)|

≤ C||ψ||SN ||ϕ||SN+2MNf(x) + C||ψ||SN+2 ||ϕ||SNMNf(x)

≤ 2C||ψ||SN+2MNf(x),

which shows (6.17). �

As an immediate consequence of Lemma 6.6 we obtain

Corollary 6.7. If f ∈ Hp and ϕ ∈ S then f ∗ ϕ ∈ Hp.

A less immediate consequence of Lemma 6.6 is

Theorem 6.8. Suppose ψ ∈ S and
∫

ψ = 1. For any 0 < p <∞ and f ∈ Hp

we have

(6.19) f ∗ ψl → f in Hp as l → −∞.

Proof. Suppose first that f ∈ L1 ∩ Hp. By Lemma 6.6 and the Lebesgue
Dominated Convergence Theorem it suffices to show

(6.20) MN (f ∗ ψl − f)(x) → 0 for a.e. x ∈ Rn as l → −∞,

where N = Np + 2. Note that if g is continuous with compact support then

||MN(g ∗ ψl − g)||∞ ≤ C||g ∗ ψl − g||∞ → 0 as l → −∞.

For any ε > 0 we can find a continuous function g with compact support such that
||f − g||1 < ε. By Lemma 6.6

lim sup
l→−∞

MN(f ∗ ψl − f)(x)

≤ sup
l∈Z

MN ((f − g) ∗ ψl)(x) + lim sup
l→−∞

MN(g ∗ ψl − g)(x) +MN (f − g)(x)

≤ CMNp(f − g)(x)
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By Theorem 3.6 for any λ > 0

|{x : lim sup
l→−∞

MN (f ∗ ψl − f)(x) > λ}|

≤ |{x : MNp(f − g)(x) > λ/C}| ≤ C′||f − g||1/λ < C′ε/λ.

Since ε > 0 is arbitrary we have (6.20) for every f ∈ L1 ∩Hp.
Recall that L1∩Hp is dense in Hp. This follows from Corollary 5.11 (0 < p ≤ 1)

and the fact that L1 ∩ Lp is dense in Lp (1 < p < ∞). Alternatively, we could use
the fact that finite linear combinations of atoms are dense in Hp by Theorem 6.4.
Moreover, by Lemma 6.6 the convolution operators Rl(f) = f ∗ ψl are uniformly
bounded on Hp for all l ∈ Z.

Hence, if f is an arbitrary element of Hp then for every ε > 0 we can find
g ∈ L1 ∩Hp such that ||f − g||pHp < ε. Therefore,

lim sup
l→−∞

||f ∗ ψl − f ||pHp

≤ sup
l∈Z

||(f − g) ∗ ψl||pHp + ||f − g||pHp + lim sup
l→−∞

||g ∗ ψl − g||pHp

≤ C||f − g||pHp ≤ Cε.

Since ε > 0 was arbitrary we obtain (6.19). �

Finally, we prove that smooth functions with compact support are dense in Hp.

Theorem 6.9. Hp ∩ C∞
0 is dense in Hp, where C∞

0 denotes C∞
0 functions

with compact support.

Proof. Suppose f is a finite linear combination of atoms. Take ψ ∈ C∞
0 .

Clearly, f ∗ψl ∈ C∞
0 for every l ∈ Z and f ∗ψl → f in Hp as l → −∞ by Theorem

6.8. This finishes the proof since finite linear combinations of atoms are dense in
Hp. �

Remark. C∞
0 is not a subset of Hp for p ≤ 1. It is not hard to see that

ψ ∈ C∞
0 with

∫

ψ 6= 0 does not belong to any Hp for p ≤ 1. However, if ψ ∈ C∞
0

has vanishing moments of order s, i.e.,
∫

ψP = 0 for all P ∈ Ps, where s ≥
⌊(1/p− 1) ln b/ lnλ−⌋, then ψ is a constant multiple of a (p,∞, s) atom and hence
ψ ∈ Hp.
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7. Other maximal definitions

The goal of this section is to prove the characterization of Hardy spaces using
the radial and nontangential maximal functions of a single test function ϕ ∈ S,
∫

ϕ 6= 0.

Theorem 7.1. Suppose ϕ ∈ S,
∫

ϕ 6= 0, and 0 < p <∞. Then for any f ∈ S′

the following are equivalent:

f ∈ Hp,(7.1)

Mϕf ∈ Lp,(7.2)

M0
ϕf ∈ Lp.(7.3)

In this case
||f ||Hp = ||MNf ||p ≤ C1||Mϕf ||p ≤ C2||M0

ϕf ||p,
for sufficiently large N , C1, C2 independent of f ∈ Hp.

We start with a very useful result about maximal functions with different aper-
tures. Suppose F : Rn × Z → [0,∞) is an arbitrary (possibly nonmeasurable)
function. In our cases F is going to be (at least) Borel measurable. For fixed l ∈ Z

and K ∈ Z ∪ {∞} define the maximal function of F with aperture l as

(7.4) F ∗
l (x) = F ∗K

l (x) := sup
k∈Z

k≤K

sup
y∈x+Bk+l

F (y, k).

Note that F ∗
l : Rn → [0,∞] is lower semicontinuous, i.e., {x : F ∗

l (x) > λ} is open
for all λ > 0. Indeed, if F ∗

l (x) > λ for some x ∈ Rn, i.e., there is k ≤ K and
y ∈ x + Bk+l so that F (y, k) > λ, then y ∈ x′ + Bk+l for x′ in a sufficiently small
neighborhood of x. Thus F ∗

l (x′) > λ. Here we need that the balls Bj are open for
all j ∈ Z.

Lemma 7.2. There exists a constant C > 0 so that for all functions F : Rn ×
Z → [0,∞), λ > 0, l ≥ l′ ∈ Z, and K ∈ Z ∪ {∞} we have

(7.5) |{x : F ∗K
l (x) > λ}| ≤ Cbl−l

′ |{x : F ∗K
l′ (x) > λ}|.

In particular,

(7.6)

∫

Rn

F ∗K
l (x)dx ≤ Cbl−l

′

∫

Rn

F ∗K
l′ (x)dx.

Proof. Let Ω = {x : F ∗
l′ (x) > λ}. Suppose F ∗

l (x) > λ for some x ∈ Rn. Then
there exist k ≤ K, y ∈ x+Bk+l such that F (y, k) > λ. Clearly, y+Bk+l′ ⊂ Ω. Also
y +Bk+l′ ⊂ x+Bk+l +Bk+l′ ⊂ x+Bk+l+ω . Hence y+Bk+l′ ⊂ Ω ∩ (x+Bk+l+ω)
and

|Ω ∩ (x+Bk+l+ω)| ≥ bk+l
′

= bk+l+ωbl
′−l−ω.

Therefore, MHL(1Ω)(x) ≥ bl
′−l−ω, where MHL is the centered Hardy-Littlewood

maximal function MHLf(y) := supm∈Z b
−m

∫

y+Bm
|f(z)|dz. By Theorem 3.6

|{x : F ∗
l (x) > λ}| ≤ |{x : MHL(1Ω)(x) ≥ bl

′−l−ω}| ≤ Cbl−l
′+ω||1Ω||1 = C′bl−l

′ |Ω|,
hence (7.5) holds. Integrating (7.5) on (0,∞) with respect to λ yields (7.6). �

The following result enables us to pass from one function in S to the sum of
negative dilates of another function in S with nonzero mean.
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Lemma 7.3. Suppose ϕ ∈ S with
∫

ϕ 6= 0. For every ψ ∈ S there is a sequence
of test functions (ηj)∞j=0, η

j ∈ S such that

(7.7) ψ =

∞
∑

j=0

ηj ∗ ϕ−j ,

where the convergence is in S.
Furthermore, for any integers L,N > 0 there exist a constant C and an integer

M > 0 (depending on L and N , but independent of the choice of ψ) such that

(7.8) ||ηj ||SN ≤ Cb−jL||ψ||SM for all j ≥ 0.

Proof. For the purpose of the proof we will work with the standard definition
of SN , that is

||η||SN = sup
x∈Rn

sup
|α|≤N

(1 + |x|)N |∂αη(x)|.

By Lemma 3.2 this implies the corresponding result for the usual homogeneous SN .
We claim that for every integer N > 0 there is a constant C so that

(7.9) ||η̂||SN ≤ C||η||SN+n+1.

Indeed, for any multi-indices |α|, |β| ≤ N we have

(2πi)|β|ξβ∂αη̂(ξ) = (−2πi)|α|
∫

Rn

e−2πi〈x,ξ〉∂β(xαη(x))dx.

Hence, by multiplying and dividing the right hand side by (1 + |x|)n+1 we have

|ξβ∂αη̂(ξ)| ≤ (2π)|α|−|β| sup
x∈Rn

(1 + |x|)n+1|∂β(xαη(x))|
∫

Rn

(1 + |x|)−n−1dx,

which implies (7.9).

Let ∆̂ be an expansive ellipsoid for the dilation B = AT , i.e., ∆̂ ⊂ r∆̂ ⊂ B∆̂,
guaranteed by Lemma 2.2. By scaling of ϕ and ∆̂ we can assume that

∫

ϕ = 1 and

|ϕ̂(ξ)| ≥ 1/2 for ξ ∈ B∆̂. Consider a C∞ function ζ such that ζ ≡ 1 on ∆̂ and

supp ζ ⊂ B∆̂. Define a sequence of functions (ζj)
∞
j=0 by ζ0 = ζ,

ζj(ξ) = ζ(B−jξ) − ζ(B−j+1ξ) for j ≥ 1.

Clearly,
∞
∑

j=0

ζj(ξ) = 1 for all ξ ∈ Rn.

Thus

ψ̂(ξ) =

∞
∑

j=0

ζj(ξ)ψ̂(ξ) =

∞
∑

j=0

ζj(ξ)

ϕ̂(B−jξ)
ψ̂(ξ)ϕ̂(B−jξ).

For j ≥ 0 define ηj by

(7.10) η̂j(ξ) =
ζj(ξ)

ϕ̂(B−jξ)
ψ̂(ξ).

Then, by the choice of ηj ’s, (7.7) holds. Moreover, the convergence in S of the
series (7.7) is a direct consequence of (6.18) and (7.8). Therefore, it remains to
show (7.8).
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To show (7.8), take M = N+2(n+1)+L⌈ln b/ lnλ−⌉, where λ− is the same as
in (2.1). Our goal is to show that there exists a constant C (independent of ψ ∈ S)
such that

||η̂j ||SN+n+1 ≤ Cb−jL||ψ||SM for j ≥ 0.

Let ζ̃(ξ) = (ζ(ξ) − ζ(Bξ))/ϕ̂(ξ). Since supp ζ̃ ⊂ B∆̂ and |ϕ̂(ξ)| ≥ 1/2 for

ξ ∈ B∆̂ we have supξ sup|α|≤N+n+1 |∂αζ̃(ξ)| ≤ C for some constant C. Since

ζ̃(B−jξ) = ζj(ξ)/ϕ̂(B−jξ) by the chain rule we have

sup
ξ

sup
|α|≤N+n+1

|∂α(ζj(·)/ϕ̂(B−j ·))(ξ)| ≤ C.

By (7.10), the product rule and since ζj(ξ) = 0 for ξ ∈ Bj−1∆̂

||η̂j ||SN+n+1 ≤ C sup
ξ 6∈Bj−1∆̂

sup
|α|≤N+n+1

(1 + |ξ|)N+n+1|∂αψ̂(ξ)|

≤ C sup
ξ 6∈Bj−1∆̂

(1 + |ξ|)−L⌈ln b/ lnλ−⌉ sup
|α|≤N+n+1

(1 + |ξ|)N+n+1+L⌈ln b/ lnλ−⌉|∂αψ̂(ξ)|

≤ Cb−jL||ψ̂||SM−n−1 ≤ Cb−jL||ψ||SM ,

because for ξ 6∈ ∆̂, (1 + |Bj−1ξ|) ≥ 1/cλj−1
− infξ 6∈∆̂ |ξ|. This finishes the proof of

(7.8). Since our choice of N is arbitrary in (7.8) the series in (7.7) converges in S.�

We now introduce maximal functions obtained from truncation with an addi-
tional extra decay term. Namely, for an integer K representing the truncation level
and real number L ≥ 0 representing the decay level, we define radial, nontangential,
tangential, radial grand, and nontangential grand maximal functions, respectively
as

M0(K,L)
ϕ f(x) = sup

k∈Z

k≤K

|(f ∗ ϕk)(x)|max(1, ρ(A−Kx))−L(1 + b−k−K)−L,

M (K,L)
ϕ f(x) = sup

k∈Z

k≤K

sup
y∈x+Bk

|(f ∗ ϕk)(y)|max(1, ρ(A−Ky))−L(1 + b−k−K)−L,

TN(K,L)
ϕ f(x) = sup

k∈Z

k≤K

sup
y∈Rn

|(f ∗ ϕk)(y)|
max(1, ρ(A−k(x− y)))N

(1 + b−k−K)−L

max(1, ρ(A−Ky))L
,

M
0(K,L)
N f(x) = sup

ϕ∈SN

M0(K,L)
ϕ f(x).

M
(K,L)
N f(x) = sup

ϕ∈SN

M (K,L)
ϕ f(x).

The next lemma guarantees the control of the tangential by the nontangential
maximal function independent of K and L.

Lemma 7.4. Suppose p > 0, N > 1/p, and ϕ ∈ S. Then there exists a constant
C so that for all K ∈ Z, L ≥ 0, and f ∈ S′,

(7.11) ||TN(K,L)
ϕ f ||p ≤ C||M (K,L)

ϕ f ||p.
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Proof. Consider function F : Rn × Z → [0,∞) given by

F (y, k) = |(f ∗ ϕk)(y)|p max(1, ρ(A−Ky))−pL(1 + b−k−K)−pL.

Fix x ∈ Rn. If k ≤ K and x− y ∈ Bk+1 then

F (y, k)max(1, ρ(A−k(x− y)))−pN ≤ F ∗K
0 (x).

If x− y ∈ Bk+j+1 \Bk+j for some j ≥ 1 then

F (y, k)max(1, ρ(A−k(x − y)))−pN ≤ F ∗K
j (x)b−jNp.

By taking supremum over all y ∈ Rn, k ≤ K we have

(TN(K,L)
ϕ f(x))p ≤

∞
∑

j=0

F ∗K
j (x)b−jNp.

Therefore by Lemma 7.2,

||TN(K,L)
ϕ f ||pp ≤

∞
∑

j=0

b−jNp
∫

Rn

F ∗K
j (x)dx

≤ C

∞
∑

j=0

b−jNpbj
∫

Rn

F ∗K
0 (x)dx ≤ C′||M (K,L)

ϕ f ||pp,

where C′ = C
∑∞

j=0 b
j(1−Np) <∞. �

Lemma 7.5 gives the pointwise majorization of the grand maximal function by
the tangential one.

Lemma 7.5. Suppose ϕ ∈ S and
∫

ϕ 6= 0. For given N,L ≥ 0 there exists an
integer M > 0 and a constant C > 0 so that for all f ∈ S′ and integers K ≥ 0 we
have

(7.12) M
0(K,L)
M f(x) ≤ C TN(K,L)

ϕ f(x) for all x ∈ Rn.

Proof. Take any ψ ∈ S. By Lemma 7.3 there exists a sequence of test func-
tions (ηj)∞j=0 so that (7.7) holds. For a fixed integer k ≤ K and x ∈ Rn,

|(f ∗ ψk)(x)| =

∣

∣

∣

∣

(

f ∗
∞
∑

j=0

(ηj ∗ ϕ−j)k

)

(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

f ∗
∞
∑

j=0

(ηj)k ∗ ϕ−j+k

)

(x)

∣

∣

∣

∣

≤
∞
∑

j=0

|(f ∗ (ηj)k ∗ ϕ−j+k)(x)| ≤
∞
∑

j=0

∫

Rn

|(f ∗ ϕ−j+k)(x− y)||(ηj)k(y)|dy

≤ TN(K,L)
ϕ f(x)

·
∞
∑

j=0

∫

Rn

max(1, ρ(Aj−ky))N max(1, ρ(A−K(x− y)))L(1 + bj−k−K)L|(ηj)k(y)|dy.
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Therefore

M
0(K,L)
ψ f(x) ≤ TN(K,L)

ϕ f(x) sup
k∈Z

k≤K

∞
∑

j=0

∫

Rn

max(1, ρ(Aj−ky))N

max(1, ρ(A−K(x− y)))L(1 + bj−k−K)L

max(1, ρ(A−Kx))L(1 + b−k−K)L
|(ηj)k(y)|dy.

Using the inequalities (2.12), (2.13) and the change of variables we can estimate
the last sum by

∞
∑

j=0

∫

Rn

max(1, ρ(Aj−ky))NbωLmax(1, ρ(A−Ky))L2LbjLb−k|ηj(A−ky)|dy

≤ 2LbωL
∞
∑

j=0

bj(N+L)

∫

Rn

max(1, ρ(y))N+L|ηj(y)|dy ≤ 2LbωL
∞
∑

j=0

bj(N+L)||ηj ||SN+L .

By Lemma 7.3 there exists an integer M ≥ 0 so that

||ηj ||SN+L ≤ Cb−j(N+L+1)||ψ||SM ,

and hence

M
0(K,L)
M f(x) = sup

ψ∈SM

M
0(K,L)
ψ f(x) ≤ 2LbωL

∞
∑

j=0

Cb−j TN(K,L)
ϕ f(x)

= C′ TN(K,L)
ϕ f(x).

This shows (7.12). �

Lemma 7.6. Suppose p > 0, ϕ ∈ S, and f ∈ S′. Then for every M > 0 there
exists L > 0 so that

(7.13) M (K,L)
ϕ f(x) ≤ C max(1, ρ(x))−M for all x ∈ Rn,

for some constant C = C(K) dependent on K ≥ 0.

Proof. There exists an integer N > 0 and a constant C > 0 so that

|f ∗ ϕ(x)| ≤ C||ϕ||SN max(1, ρ(x))N for all x ∈ Rn, ϕ ∈ S.

If k ≤ 0 then by the chain rule

||ϕk||SN = sup
z∈Rn

sup
|α|≤N

max(1, ρ(z))Nb−k|∂αϕ(A−k·)(z)|

≤ b−k sup
z∈Rn

sup
|α|≤N

max(1, ρ(z))N |∂αϕ(A−kz)|C||A−k||N ≤ Cb−kλ−kN+ ||ϕ||SN .

If 0 < k ≤ K then by the chain rule

||ϕk||SN ≤ C sup
z∈Rn

sup
|α|≤N

max(1, ρ(z))N |∂αϕ(A−kz)| ≤ CbKN ||ϕ||SN .
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Therefore, if we take L = N +M , then for any k ≤ K and y ∈ x+Bk,

|f ∗ ϕk(y)|max(1, ρ(A−Ky))−L(1 + b−k−K)−L

≤ C max(1, ρ(y))N ||ϕk||SN b
KLmax(1, ρ(y))−Lb(k+K)L

≤ C max(1, ρ(y))N−Lb3KL+KN ||ϕ||SN

≤ Cb(K+ω)M b3KL+KN max(1, ρ(x))−M ||ϕ||SN .

This shows (7.13) and finishes the proof of Lemma 7.6. �

Note that the above argument gives the same estimate for the truncated grand

maximal function M
0(K,L)
N f . As a consequence of Lemma 7.6 we have that for

any choice of K ≥ 0 and any f ∈ S′ we can find an appropriate L > 0 so that

the maximal function, say M
(K,L)
ϕ f , is bounded and belongs to Lp(Rn). This

becomes crucial in the proof of Theorem 7.1, where we work with truncated maximal
functions. The complexity of the preceding argument stems from the fact that a
priori we do not know whether M0

ϕf ∈ Lp implies Mϕf ∈ Lp. Instead we must
work with variants of maximal functions for which this is satisfied.

Proof of Theorem 7.1. Clearly, (7.1) =⇒ (7.2) =⇒ (7.3). By Lemma

7.5 applied for N > 1/p and L = 0 we have pointwise estimate M
0(K,0)
M f(x) ≤

CTN(K,0)f(x) for all f ∈ S′ and integers K ≥ 0. By Lemma 7.4 we have another
constant C so that

||M0(K,0)
M f ||p ≤ C||M (K,0)

ϕ f ||p for f ∈ S′,K ≥ 0.

As K → ∞ we obtain ||M0
Mf ||p ≤ C||Mϕf ||p by the Monotone Convergence The-

orem. It remains to show (7.3) =⇒ (7.2).
Suppose now M0

ϕf ∈ Lp. By Lemma 7.6 we can find L > 0 so that (7.13)

holds, i.e., M
(K,L)
ϕ f ∈ Lp for all K ≥ 0. By Lemmas 7.4 and 7.5 we can find M > 0

so that ||M0(K,L)
M f ||p ≤ C1||M (K,L)

ϕ f ||p with a constant C1 independent of K ≥ 0.
For given K ≥ 0 let

(7.14) ΩK = {x ∈ Rn : M
0(K,L)
M f(x) ≤ C2M

(K,L)
ϕ f(x)},

where C2 = 21/pC1. We claim that

(7.15)

∫

Rn

M (K,L)
ϕ f(x)pdx ≤ 2

∫

ΩK

M (K,L)
ϕ f(x)pdx.

Indeed, this follows from
∫

Ωc

K

M (K,L)
ϕ f(x)pdx ≤ C−p

2

∫

Ωc

K

M
(K,L)
M f(x)pdx ≤ (C1/C2)

p

∫

Rn

M (K,L)
ϕ f(x)pdx,

and (C1/C2)
p = 1/2.

We also claim that for 0 < q < p there exists C3 > 0 so that for all integers
K ≥ 0

(7.16) M (K,L)
ϕ f(x) ≤ C3(MHL(M0(K,L)

ϕ f(·)q)(x))1/q for x ∈ ΩK .

Indeed, let

F (y, k) = |(f ∗ ϕk)(y)|max(1, ρ(A−Ky))−L(1 + b−k−K)−L.
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Suppose x ∈ ΩK . There is k ≤ K and y ∈ x+Bk such that

F (y, k) ≥ F ∗
0 (x)/2 = M (K,L)

ϕ f(x)/2.

Consider x′ ∈ y +Bk−l for some integer l ≥ 0 to be specified later. We have

f ∗ ϕk(x′) − f ∗ ϕk(y) = f ∗ Φk(y), where Φ(z) = ϕ(z +A−k(x′ − y)) − ϕ(z).

By the Mean Value Theorem

||Φ||SM ≤ sup
h∈B−l

||ϕ(· + h) − ϕ(·)||SM

= sup
h∈B−l

sup
z∈Rn

sup
|α|≤M

max(1, ρ(z)M )|∂αϕ(z + h) − ∂αϕ(z)|

≤C sup
h∈B−l

sup
z∈Rn

sup
|α|≤M+1

max(1, ρ(z + h)M )|∂αϕ(z + h)| · sup
h∈B−l

|h| ≤ C4λ
−l
− ,

where C4 does not depend on L. Since max(1, ρ(A−Kx′)) ≤ bω max(1, ρ(A−Ky))
we have

bωLF (x′, k) ≥ (|f ∗ ϕk(y)| − |f ∗ Φk(y)|)max(1, ρ(A−Ky))−L(1 + b−k−K)−L

≥ F (y, k) −M
(K,L)
M f(x)||Φ||SM ≥M (K,L)

ϕ f(x)/2 − bωMM
0(K,L)
M f(x)C4λ

−l
−

≥M (K,L)
ϕ f(x)/2 − bωMC4λ

−l
− C2M

(K,L)
ϕ f(x) ≥M (K,L)

ϕ f(x)/4,

if we choose for l the smallest integer l ≥ 0 so that bωMC4λ
−l
− C2 ≤ 1/4. Here

we used the fact that x ∈ ΩK and the pointwise majorization of nontangential by
radial grand maximal function,

M
(K,L)
M f(x) ≤ bωMM

0(K,L)
M f(x),

see Proposition 3.10. Therefore for x ∈ ΩK ,

M (K,L)
ϕ f(x)q ≤ 4qbωLq

|Bk−l|

∫

y+Bk−l

F (z, k)qdz

≤ 4qbωLq
bω+l

|Bk+ω |

∫

x+Bk+ω

M0(K,L)
ϕ f(z)qdz ≤ C3MHL(M0(K,L)

ϕ f(·)q)(x),

which shows (7.16). Finally, by (7.15), (7.16), and the Maximal Theorem 3.6

(7.17)

∫

Rn

M (K,L)
ϕ f(x)pdx ≤ 2

∫

ΩK

M (K,L)
ϕ f(x)pdx

≤ 2C
p/q
3

∫

ΩK

MHL(M0(K,L)
ϕ f(·)q)(x)p/qdx ≤ C5

∫

Rn

M0(K,L)
ϕ f(x)pdx,

where the constant C5 depends on p/q > 1 and L ≥ 0, but is independent of K ≥ 0.
This inequality is crucial as it gives a bound of nontangential by radial maximal
function in Lp. The rest of the proof is immediate.

Since M
(K,L)
ϕ f(x) converges pointwise and monotonically to Mϕf(x) for all

x ∈ Rn as K → ∞, Mϕf ∈ Lp(Rn) by (7.17) and the Monotone Convergence The-
orem. Therefore, we can now choose L = 0 and again by (7.17) and the Monotone
Convergence Theorem we have ||Mϕf ||pp ≤ C5||M0

ϕf ||pp, where now C5 corresponds
to L = 0 and is independent of f ∈ S′. This concludes the proof of Theorem 7.1.�
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8. Duals of Hp

In this section we provide the description of the duals of anisotropic Hp spaces,
0 < p ≤ 1, in terms of Campanato spaces. This description is a consequence of
the atomic decomposition of Hp and some functional analysis and approximation
arguments.

The dual of Hp space of holomorphic functions on the unit disc for 0 < p < 1
was first identified with a Lipshitz space by Duren, Romberg, and Shields [DRS].
For the classical Stein-Weiss Hp space on Rn this result is due to Walsh [Wa].
The identification of the dual of H1 as the space of BMO is a famous result of
C. Fefferman [Fe, FS2]. Characterizations of (Hp)∗ in terms of BMO, Campanato,
and Lipschitz spaces in various setting, other than isotropic Hp(Rn), were obtained
by many other authors; for example, the dual of parabolicHp spaces was determined
by Calderón and Torchinsky [CT2].

We start with the definition of Campanato spaces [Cm] which are defined in
terms of approximations by polynomials on dilated balls, generalizing the BMO
(bounded mean oscillation) space introduced by John and Nirenberg [JN].

Definition 8.1. Let B denote the collection of dilated balls associated to the
dilation A, i.e., B = {x+Bk : x ∈ Rn, k ∈ Z}. If l ≥ 0, 1 ≤ q ≤ ∞, and s = 0, 1, . . . ,
we define the Campanato space Clq,s to be the space of all locally Lq functions g on
Rn so that

(8.1) ||g||Cl
q,s

:= sup
B∈B

inf
P∈Ps

|B|−l
(

1

|B|

∫

B

|g(x) − P (x)|qdx
)1/q

<∞, (q <∞)

(8.2) ||g||Cl
∞,s

:= sup
B∈B

inf
P∈Ps

|B|−l ess supx∈B |g(x) − P (x)| <∞. (q = ∞)

Here Ps denotes the space of all polynomials (in n variables) of degree at most s.
We identify two elements of Clq,s if they are equal almost everywhere.

One may easily verify that: || · ||Cl
q,s

is a seminorm, Ps ⊂ Clq,s, and ||g||Cl
q,s

=

0 ⇐⇒ g ∈ Ps. Therefore, Clq,s/Ps is a normed linear space. Moreover, the

standard arguments show that this space is also complete; hence Clq,s/Ps is a Banach
space.

The conditions (8.1) and (8.2) can be also written in terms of a quasi-norm ρ
associated to a dilation A. For example we can equivalently define Clq,s as the space
of all locally Lq functions g on Rn so that

(8.3) ||g||Cl
q,s

:= sup
x0∈Rn

r>0

inf
P∈Ps

r−l
(

r−1

∫

ρ(x−x0)≤r

|g(x) − P (x)|qdx
)1/q

<∞.

Indeed, this exactly the case when ρ is the step homogeneous quasi-norm; the
general case follows from Lemma 2.4.

The main goal of this section is to prove that the dual of anisotropic Hardy

space Hp
A is isomorphic to the Campanato space C

1/p−1
q,s /Ps, where (p, q, s) is an

admissible triplet in the sense of Definition 4.1, see Theorem 8.3. As a consequence,
this shows that Campanato spaces Clq,s depend effectively only the choice of l and
not on q or s, see Corollary 8.6. Analogous results for Hardy spaces on homogeneous
groups were obtained by Folland and Stein [FoS, Chapter 5]. However, careful



8. DUALS OF Hp 49

examination of the arguments in [FoS] reveals a gap in the first part of the proof
of [FoS, Theorem 5.3]. The problem is with [FoS, Lemma 5.1] which does not hold
unless we assume that a functional L is bounded. Hence, an additional argument
is needed. This gap can be filled in the setting of anisotropic Hardy spaces by
applying a rather subtle approximation argument inspired by [GR, Chapter III.5].

We start with a basic lemma.

Lemma 8.2. Suppose L is a continuous linear functional on Hp = Hp
q,s, and

(p, q, s) is admissible. Then

(8.4) ||L||(Hp
q,s)∗ := sup{|Lf | : ||f ||Hp

q,s
≤ 1} = sup{|La| : a is (p, q, s)-atom}.

Proof. Since every (p, q, s)-atom a satisfies ||a||Hp
q,s

≤ 1 it suffices to show

(8.5) sup{|Lf | : ||f ||Hp
q,s

≤ 1} ≤ sup{|La| : a is (p, q, s)-atom}.
Take any f ∈ Hp with ||f ||Hp

q,s
≤ 1. For every ε > 0 there is an atomic decomposi-

tion f =
∑

i κiai with
∑

i |κi|p ≤ 1 + ε. Therefore

|Lf | ≤
∑

i

|κi||Lai| ≤ sup{|La| : a is (p, q, s)-atom}
(

∑

i

|κi|p
)1/p

≤(1 + ε)1/p sup{|La| : a is (p, q, s)-atom}.
Since ε > 0 is arbitrary we have (8.5). �

Clearly, || · ||(Hp
q,s)∗ is a norm on (Hp)∗ (= space of continuous functionals on

Hp) which makes (Hp)∗ into a Banach space.

Theorem 8.3. Suppose (p, q, s) is admissible. Then

(8.6) (Hp)∗ = (Hp
q,s)

∗ ≡ Clq′,s/Ps, where 1/q + 1/q′ = 1, l = 1/p− 1.

If g ∈ Clq′,s and f is a finite linear combination of (p, q, s)-atoms, let Lgf =
∫

gf .

Then Lg extends continuously to Hp, and every L ∈ (Hp)∗ is of this form. More-
over,

(8.7) ||g||Cl
q′,s

= ||Lg||(Hp
q,s)∗ for all g ∈ Clq′,s.

Proof. For any B ∈ B define πB : L1(B) → Ps the natural projection defined
using the Riesz Lemma

(8.8)

∫

B

(πBf(x))Q(x)dx =

∫

B

f(x)Q(x)dx for all f ∈ L1(B), Q ∈ Ps.

We claim that there is a universal constant (depending only on s) such that

(8.9) sup
x∈B

|πBf(x)| ≤ C
1

|B|

∫

B

|f(x)|dx.

Indeed, if B = B0 then we find an orthonormal basis {Qα : |α| ≤ s} of Ps with
respect to the L2(B0) norm. Since

πB0f =
∑

|α|≤s

( ∫

B0

f(x)Qα(x)dx

)

Qα.
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the claim follows for B = B0. Since πBk
f = (DA−k ◦ πB0 ◦DAk)f and πy+Bk

f =
(τy ◦ πBk

◦ τ−y)f the claim (8.9) follows for arbitrary B = y +Bk.
For 1 ≤ q ≤ ∞ and B ∈ B we define the closed subspace Lq0(B) ⊂ Lq(B)

by Lq0(B) = {f ∈ Lq(B) : πBf = 0}. We will identify Lq(B) with the subspace
of Lq(Rn) consisting of functions vanishing outside B. With this identification, if
f ∈ Lq0(B) then |B|1/q−1/p||f ||−1

q f is a (p, q, s)-atom.
Suppose L ∈ (Hp)∗ = (Hp

q,s)
∗. By Lemma 8.2

(8.10) |Lf | ≤ ||L||(Hp
q,s)∗ |B|1/p−1/q||f ||q, for f ∈ Lq0(B).

Therefore, L provides a bounded linear functional on Lq0(B) which can be extended
by the Hahn-Banach Theorem to the whole space Lq(B) without increasing its

norm. Suppose, momentarily, that q <∞. By the duality Lq(B)∗ = Lq
′

(B), where

1/q + 1/q′ = 1, there exists h ∈ Lq
′

(B) such that Lf =
∫

fh for all f ∈ Lq0(B).

In particular, L∞(B) ⊂ Lq(B) implies there is h ∈ Lq
′

(B) ⊂ L1(B) such that

Lf =
∫

fh for all f ∈ L∞
0 (B). Therefore, also for q = ∞, there exists h ∈ Lq

′

(B)

such that Lf =
∫

fh for all f ∈ Lq0(B). If h′ is another element of Lq
′

(B) such that
Lf =

∫

fh′ for all f ∈ Lq0(B) then h − h′ ∈ Ps. We can say even more. Suppose
that for some h, h′ ∈ L1(B) we have Lf =

∫

B fh =
∫

B fh
′ for all f ∈ L∞

0 (B) then
h− h′ ∈ Ps. Indeed, for all f ∈ L∞(B)

0 =

∫

B

(f − πBf)(h− h′) =

∫

B

f(h− h′) −
∫

B

(πBf)(πB(h− h′))

=

∫

B

f(h− h′) −
∫

B

f(πB(h− h′)) =

∫

B

f((h− h′) − πB(h− h′)),

hence (h− h′)(x) = πB(h− h′)(x) for a.e. x ∈ B. Therefore, after changing values
of h (or h′) on a set of measure zero we have h − h′ ∈ Ps. Hence, the function
h is unique up to a polynomial of degree at most s regardless of the exponent
1 ≤ q ≤ ∞. Therefore, h ∈ ⋂

q<∞ Lq(B) for p = 1, and h ∈ L∞(B) for 0 < p < 1.

For k = 1, 2, . . . let gk be the unique element of Lq
′

(Bk) such that Lf =
∫

fgk
for all f ∈ Lq0(Bk) and πB0gk = 0. The preceding arguments show that gk|Bj = gj
for j < k. Therefore, we can define a locally Lq

′

function g on Rn by setting
g(x) = gk(x) for x ∈ Bk. If f is a finite linear combination of (p, q, s)-atoms then
Lf =

∫

fg.
By (8.10), for any B ∈ B the norm of g as a linear functional on Lq0(B) satisfies

(8.11) ||g||Lq
0(B)∗ ≤ ||L||(Hp

q,s)∗ |B|1/p−1/q .

We claim that

(8.12) ||g||Lq
0(B)∗ = inf

P∈Ps

||g − P ||Lq′ (B).

This is, at least for q < ∞, an immediate consequence of an elementary fact from
functional analysis

Lq0(B)∗ = Lq(B)∗/Lq0(B)⊥ = Lq
′

(B)/Ps,

where Lq0(B)⊥ = {h ∈ Lq(B)∗ : h|Lq
0(B) = 0} denotes the annihilator of the sub-

space Lq0(B) ⊂ Lq(B). The special case of (8.12) for q = ∞ requires similar
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arguments and the fact that g ∈ L1(B) and ||g−P ||L∞(B)∗ = ||g−P ||L1(B) for any
P ∈ Ps. Combining (8.11) and (8.12) we have for l = 1/p− 1

(8.13) ||g||Cl
q′,s

= sup
B∈B

|B|−l−1/q′ ||g||Lq
0(B)∗ ≤ ||L||(Hp

q,s)∗ ,

which completes the first part of the proof of Theorem 8.3.
Conversely, suppose g ∈ Clq′,s. Our goal is to show that functional Lgf =

∫

gf
defined initially for f ∈ Θq

s, where

(8.14) Θq
s = {f ∈ Lq(Rn) : supp f is compact and

∫

Rnf(x)xαdx = 0 for |α| ≤ s},

extends to a bounded functional on Hp
q,s and ||Lg||(Hp

q,s)∗ ≤ ||g||Cl
q′,s

.

Suppose a is (p, q, s)-atom associated to the dilated ball B = x0 + Bk. Since
∫

ga =
∫

(g − P )a for all P ∈ Ps we have

(8.15)

|Lga| =

∣

∣

∣

∣

∫

ga

∣

∣

∣

∣

= inf
P∈Ps

∣

∣

∣

∣

∫

(g − P )a

∣

∣

∣

∣

≤
( ∫

B

|a|q
)1/q(

inf
P∈Ps

∫

|g − P |q′
)1/q′

≤ |B|1/q−1/p|B|l+1/q′
(

inf
P∈Ps

∫

|g − P |q′
)1/q′

= ||g||Cl
q′,s
.

At this moment the reader might be tempted to use Lemma 8.2. That is we can
try to define Lgf for arbitrary f ∈ Hp by using the atomic decomposition of f ,

(8.16) Lgf =

∞
∑

i=1

κiLgai, where f =

∞
∑

i=1

κiai.

Since for every ε > 0 we can choose a decomposition so that
∑∞
i=1 |κi|p ≤ (1 +

ε)||f ||p
Hp

q,s
we have

(8.17) |Lgf | ≤
∞
∑

i=1

|κi||Lgai| ≤ ||g||Cl
q′,s

( ∞
∑

i=1

|κi|p
)1/p

≤ (1 + ε)||g||Cl
q′,s

||f ||Hp
q,s
.

This may seem to show that Lg is bounded with the appropriate constant.
The problem with this argument is the issue of well-definedness of Lg. Namely,

given g ∈ Clq′,s, we ought to make sure that if f ∈ Θq
s has an atomic decomposition

f =
∑∞

i=1 κiai then necessarily

∫

fg =

∞
∑

i=1

κi

∫

aig.

As we will see this fact is very non-trivial and it requires a rather subtle approxi-
mation argument. For the classical isotropic case, the interested reader is directed
to [GR, Section III.5], where detailed exposition of this fact can be found. Note
that there is no problem if g belongs to the Schwartz class, since the atomic de-
composition of f converges in the sense of distributions.

The following lemma comes to the rescue.
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Lemma 8.4. Suppose that (p, q, s) is admissible and f ∈ Θq
s, where Θq

s is given
by (8.14). Suppose g ∈ Clq′,s, 1/q + 1/q′ = 1, l = 1/p − 1. There exists s̃ ≥ s so

that if f is decomposed into f =
∑∞

i=1 κiai, where
∑∞

i=1 |κi|p < ∞ and ai’s are
(p, q, s̃)-atoms, then

(8.18) Lgf =

∫

fg =

∞
∑

i=1

κi

∫

aig =

∞
∑

i=1

κiLgai.

Given Lemma 8.4 the rest of the proof is immediate. Suppose f ∈ Θq
s. By

Theorem 6.5 we can find an atomic decomposition of f =
∑∞

i=1 κiai, where

(

∞
∑

i=1

|κi|p)1/p ≤ 2||f ||Hp
q,s̃

≤ C||f ||Hp
q,s
,

and ai’s are (p, q, s̃)-atoms. By (8.15) and (8.18)

(8.19) |Lgf | ≤
∞
∑

i=1

|κi||Lgai| ≤ ||g||Cl
q′,s

( ∞
∑

i=1

|κi|p
)1/p

≤ C||g||Cl
q′,s

||f ||Hp
q,s
.

Therefore, Lg extends uniquely to a bounded functional on Hp
q,s. Furthermore, by

Lemma 8.2 and (8.15) ||Lg||(Hp
q,s)∗ ≤ ||g||Cl

q′,s
. This finishes the proof of Theorem

8.3. �

Remark. As a consequence of Theorem 8.3 we conclude that if we write f =
∑∞

i=1 κiai ∈ Θq
s, where

∑∞
i=1 |κi|p < ∞ and ai’s are (p, q, s)-atoms then (8.18)

still holds. As an indication why this result is non-trivial we recall the following
observation due to Meyer, see [GR, MTW].

In Definition 4.3 of the atomic norm ||f ||Hp
q,s

, it is not legitimate to take the
infimum only over finite linear combinations of atoms even in the case when f admits
such a finite decomposition, e.g., when f is itself an atom. Indeed, such infimum
may be much larger than ||f ||Hp

q,s
, which is evidenced by an example due to Meyer,

see [GR, Chapter III.8.3]. Therefore, even though finite linear combinations of
atoms are dense in Hp, in order to compute their Hp norm, it is not enough to look
only at finite decompositions.

To show Lemma 8.4 we need the following approximation lemma.

Lemma 8.5. Suppose g ∈ Clq′,s, where l ≥ 0, 1 ≤ q′ ≤ ∞, s = 0, 1, . . . There
exists s̃ ≥ s, a constant C > 0 independent of g, and a sequence of test functions
(gk)k∈N ⊂ S so that

(8.20) ||gk||Cl
q′,s̃

≤ C||g||Cl
q′,s

for all k ∈ N,

and (1/q + 1/q′ = 1),

(8.21) lim
k→∞

∫

Rn

f(x)gk(x)dx =

∫

Rn

f(x)g(x)dx for all f ∈ Θq
s, .
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We are going to use two simple observations about Campanato spaces. Firstly,
note that if DAg(x) = g(Ax) then

(8.22)

||DAg||Cl
q′,s

= sup
x0∈Rn

k∈Z

inf
P∈Ps

|Bk|−l
(

1

|Bk|

∫

x0+Bk

|g(Ax) − P (x)|q′dx
)1/q′

= sup
x0∈Rn

k∈Z

inf
P∈Ps

bl|Bk+1|−l
(

1

|Bk+1|

∫

Ax0+Bk+1

|g(x) − P (x)|q′dx
)1/q′

= bl||g||Cl
q′,s
.

Secondly, we can define an equivalent norm on Clq′,s by setting

(8.23) |||g|||Cl
q′,s

= sup
B∈B

|B|−l
(

1

|B|

∫

B

|g(x) − πBg(x)|q
′

dx

)1/q′

(1 ≤ q′ <∞),

(8.24) |||g|||Cl
∞,s

= sup
B∈B

|B|−l ess supx∈B |g(x) − πBg(x)| (q′ = ∞).

where πBg is the natural projection on Ps given by (8.8). Indeed, for any B ∈ B
and P ∈ Ps by the Minkowski inequality we have

(

1

|B|

∫

B

|g(x) − πBg(x)|q
′

dx

)1/q′

≤
(

1

|B|

∫

B

|g(x) − P (x)|q′dx
)1/q′

+

(

1

|B|

∫

B

|P (x) − πBg(x)|q
′

dx

)1/q′

≤
(

1

|B|

∫

B

|g(x) − P (x)|q′dx
)1/q′

+ C
1

|B|

∫

B

|g(x) − P (x)|dx

≤ (C + 1)

(

1

|B|

∫

B

|g(x) − P (x)|q′dx
)1/q′

.

using P (x) − πBg(x) = πB(P − g)(x) and (8.9). Therefore we have

(8.25) ||g||Cl
q′,s

≤ |||g|||Cl
q′,s

≤ (C + 1)||g||Cl
q′,s

for all g ∈ Clq′,s.

Proof of Lemma 8.5. Suppose g ∈ Clq′,s. Take a nonnegative function ϕ ∈
C∞ with compact support and

∫

ϕ = 1. Let ϕk(x) = b−kϕ(A−kx). If q′ <∞ then

g ∗ ϕk → g in Lq
′

loc(R
n) as k → −∞.

Indeed, it suffices to apply Theorem 6.8 in Lq
′

for truncations g1B(0,r) for sufficiently
large r > 0. Therefore

(8.26)

∫

Rn

f(x)(g ∗ ϕk)(x)dx →
∫

Rn

f(x)g(x)dx as k → ∞ for all f ∈ Θq
s.

If q′ = ∞ we use Theorem 3.7 applied for truncations g1B(0,r) for sufficiently large
r > 0 to obtain

(g ∗ ϕk)(x) → g(x) as k → −∞ for a.e. x ∈ Rn.
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By the Lebesgue Dominated Convergence Theorem (8.26) holds also for q′ = ∞.
Clearly, g ∗ ϕk ∈ C∞ and moreover

(8.27) ||g ∗ ϕk||Cl
q′,s

≤ |||g|||Cl
q′,s

for all k ∈ N.

Indeed, for every B ∈ B and k ∈ N define a function Pk by

Pk(x) =

∫

Rn

π−y+Bg(x− y)ϕk(y)dy.

Since we can write π−y+Bg(x−y) =
∑

|α|≤s cα(y)(x−y)α and the coefficients cα(y)

are continuous functions of y, Pk is a polynomial of degree ≤ s. By the Minkowski
inequality

(

1

|B|

∫

B

|(g ∗ ϕk)(x) − Pk(x)|q
′

dx

)1/q′

=

(

1

|B|

∫

B

∣

∣

∣

∣

∫

Rn

(g(x− y) − π−y+Bg(x− y))ϕk(y)dy

∣

∣

∣

∣

q′

dx

)1/q′

≤
∫

Rn

(

1

|B|

∫

B

|g(x− y) − π−y+Bg(x− y)|q′dx
)1/q′

|ϕk(y)|dy

=

∫

Rn

(

1

| − y +B|

∫

−y+B

|g(z) − π−y+Bg(z)|q
′

dz

)1/q′

ϕk(y)dy ≤ |||g|||Cl
q′,s

|B|l.

This shows (8.27).
Formulae (8.26) and (8.27) suggest that it is enough to show the lemma for

g ∈ Clq′,s ∩ C∞. That is indeed the case. Let φ ∈ C∞ be such that suppφ ⊂ B0,

0 ≤ φ(x) ≤ 1, and φ(x) = 1 for x ∈ B−1. We claim that there is a constant C and
s̃ ≥ s such that

(8.28) ||(g − πB0g)φ||Cl
q′,s̃

≤ C||g||Cl
q′,s

for all g ∈ Clq′,s ∩ C∞.

Indeed, take any g ∈ Clq′,s ∩ C∞ with |||g|||Cl
q′,s

≤ 1. For brevity, we only consider

the case q′ < ∞; the case q′ = ∞ uses a similar argument. Let G = g − πB0g.

Since suppφ ⊂ B0,
∫

Rn |Gφ|q′ ≤
∫

B0
|G|q′ ≤ |B0|lq

′+1 = 1. Therefore, if we take

ball B ∈ B, B = x0 +Bk and k ≥ 0 then

|B|−l
(

1

|B|

∫

B

|G(x)φ(x)|q′dx
)1/q′

≤ 1.

Hence, to show (8.28) we can restrict to balls B = x0 + Bk with k < 0. Let
P1 = πBg = πBG. By (8.9)

(8.29)

(

1

|B|

∫

B

|P1(x)|q
′

dx

)1/q′

≤ C

(

1

|B|

∫

B

|G(x)|q′dx
)1/q′

≤ Cb−k/q
′

.

Let P2(x) be the Taylor polynomial of φ at x0 of degree r (to be specified later),
i.e., P2(x) =

∑

|α|≤r ∂
αφ(x0)(x − x0)

α/α!. By the Taylor Theorem the remainder

satisfies |φ(x) − P2(x)| ≤ C′|x − x0|r+1 with the constant C′ independent of x0.
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Finally, let P (x) = P1(x)P2(x) be a polynomial of degree at most s̃ = s + r. By
the Minkowski inequality and (8.29)

( ∫

B

|G(x)φ(x) − P (x)|q′dx
)1/q′

≤
( ∫

B

|G(x)φ(x) − P1(x)φ(x)|q′dx
)1/q′

+

( ∫

B

|P1(x)φ(x) − P1(x)P2(x)|q
′

dx

)1/q′

≤ ||φ||∞
(∫

B

|G(x) − P1(x)|q
′

dx

)1/q′

+ sup
x∈B

|φ(x) − P2(x)|
( ∫

B

|P1(x)|q
′

dx

)1/q′

≤ |B|l+1/q′ + b−k/q
′

C′ sup
x∈x0+Bk

|x− x0|r+1 ≤ |B|l+1/q′ + b−k/q
′

C′(cλk−)r+1

≤ |B|l+1/q′ + Cb−k/q
′

bk(l+2/q′) = (C + 1)|B|l+1/q′ .

Here we need to choose r large enough such that λr+1
− ≥ bl+2/q′ , i.e., take r =

⌊(l + 2/q′) ln b/ lnλ−⌋. Since B ∈ B is arbitrary this shows (8.28) with s̃ = s+ r.
We are now ready to define a sequence (gk)k∈N ⊂ S for g ∈ Clq′,s ∩ C∞. Let

g̃k = DAkg and gk = DA−k((g̃k − πB0 g̃k)φ). By (8.22) and (8.28)

||(g̃k − πB0 g̃k)φ||Cl
q′,s̃

≤ C||g̃k||Cl
q′,s

= Cbkl||g||Cl
q′,s

Therefore (8.20) holds, since

(8.30) ||gk||Cl
q′,s̃

= b−kl||(g̃k − πB0 g̃k)φ||Cl
q′,s̃

≤ C||g||Cl
q′,s
.

Moreover,

(8.31) gk(x) = g(x)− (DA−k ◦πB0 ◦DAk)g(x) = g(x)−πBk
g(x) for x ∈ Bk−1.

Thus (8.21) also holds.
To end the proof we must relax the assumption that g ∈ C∞. Suppose g ∈ Clq′,s

is arbitrary. Define the sequence (gk)k∈N ⊂ S by gk = DA−k((g̃k−πB0 g̃k)φ), where
g̃k = DAk(g ∗ ϕk). Combining (8.27) and (8.30) yields (8.20), whereas (8.26) and
(8.31) yield (8.21), completing the proof of Lemma 8.5. �

To completely finish the proof of the duality of Hp spaces we must establish
Lemma 8.4.

Proof of Lemma 8.4. Suppose f ∈ Θq
s is decomposed into f =

∑∞
i=1 κiai,

where
∑∞

i=1 |κi|p < ∞ and ai’s are (p, q, s̃)-atoms, where s̃ ≥ s is the same as

in Lemma 8.5. Suppose also that g ∈ Clq′,s, 1/q + 1/q′ = 1, l = 1/p − 1. Let

(gk)k∈N ⊂ S be a sequence guaranteed by Lemma 8.5. For every k ∈ N we have

(8.32) Lgk
f =

∫

fgk =

∞
∑

i=1

κi

∫

aigk =

∞
∑

i=1

κiLgk
ai,

since convergence in Hp implies convergence in S′ by Theorem 4.5. By (8.21)

lim
k→∞

∫

Rn

ai(x)gk(x)dx =

∫

Rn

ai(x)g(x)dx for all i ∈ N.
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By (8.15) and (8.20) we have |Lgk
ai| ≤ ||gk||Cl

q′,s̃
≤ C||g||Cl

q′,s
. Since

∑∞
i=1 |κi| ≤

(
∑∞

i=1 |κi|p)1/p < ∞ we can take limit as k → ∞ in (8.32) by the Lebesgue Dom-
inated Convergence Theorem applied to the counting measure on N. This shows
(8.18). �

As an immediate consequence of Theorems 6.5 and 8.3 we have

Corollary 8.6. Suppose that l ≥ 0, 1 ≤ q, q′ ≤ ∞ (q, q′ < ∞ if l = 0), and
s, s′ ≥ ⌊l ln b/ lnλ−⌋. Then Clq,s = Clq′,s′ and the seminorms || · ||Cl

q,s
, || · ||Cl

q′,s′

are equivalent. If l = 0 then C0
q,s = C0

1,0 is the space of BMO (bounded mean
oscillation).

The following simple proposition is very useful.

Proposition 8.7. Suppose g ∈ CN (Rn) is bounded and all partial derivatives
∂αg of order N , |α| = N , are bounded. Then for every 0 ≤ l ≤ N lnλ−/ ln b and
s ≥ ⌊l ln b/ lnλ−⌋, g ∈ Cl∞,s.

Proof. The case N = 0 is trivial. If N ≥ 1 then by Corollary 8.6 it suffices
to show that g ∈ Cl∞,N−1. We need to show that there exists a constant C such
that for every dilated ball B ∈ B,

(8.33) inf
P∈PN−1

sup
x∈B

|g(x) − P (x)| ≤ C|B|l.

Since g is bounded, (8.33) trivially holds for large balls with |B| ≥ 1. Take any
B = x0 + Bk ∈ B, where x0 ∈ Rn and k < 0. Let P (x) ∈ PN−1 be the Taylor
polynomial of g at the point x0 of order N − 1. By the Taylor Remainder Theorem

|g(x) − P (x)| ≤ C sup
|α|=N

||∂αg||∞ sup
z∈Bk

|z|N ≤ C(λ−)Nk for all x ∈ B.

Since (λ−)N ≥ bl, we obtain (8.33). �

There are redundant alternative ways of defining Campanato spaces. Let ∆h

denote the difference operator by a vector h ∈ Rn, i.e., ∆hg(x) = g(x+ h) − g(x).
Suppose that l > 0 and s ≥ 1. Define by Cls the space of all continuous functions
g on Rn such that

|∆h1 . . .∆hsg(x)| ≤ c(ρ(h1) + . . .+ ρ(hs))
l for all x ∈ Rn, (h1, . . . , hs) ∈ (Rn)s

for some constant c. The infimum over all constants c satisfying the above de-
fines the seminorm of g in Cls. Some effort is needed to show that Clq,s = Cls for
sufficiently large s and 1 ≤ q ≤ ∞, see [Gr, Ja, JTW, Kr] for the isotropic case.

Example. The best known example of Campanato spaces occurs when the
dilation A defines the usual isotropic structure on Rn, for example if A = 2Id. In
this case the Campanato spaces Clq,s(R

n) coincide with the homogeneous Hölder

spaces Ċγ(Rn) (sometimes also called Lipshitz spaces Λγ(R
n)) with γ = nl, for the

proof see [GR, Section III.5].

The space Ċγ(Rn) for γ > 0 is defined as follows. Let γ = ⌈γ⌉ + γ′ − 1,

0 < γ′ ≤ 1. The space Ċγ(Rn) consists of all functions g in C⌈γ⌉−1(Rn) (⌈γ⌉ − 1
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times continuously differentiable) with the norm

||g||Ċγ(Rn) = sup
|α|=⌈γ⌉−1

sup
h∈Rn\{0}

|h|−γ′||∆h∂
αg||∞ if γ′ < 1,

||g||Ċγ(Rn) = sup
|α|=⌈γ⌉−1

sup
h∈Rn\{0}

|h|−1||∆2
h∂

αg||∞ if γ′ = 1.

For example, if 0 < γ < 1 then Ċγ(Rn) is the usual Hölder space consisting of all
functions g satisfying

|g(x+ h) − g(x)| ≤ c|h|γ for all x, h ∈ Rn,

and if γ = 1 then Ċ1(Rn) is the Zygmund class [Zy] consisting of all functions g
satisfying

|g(x+ 2h) − 2g(x+ h) + g(x)| ≤ c|h| for all x, h ∈ Rn.
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9. Calderón-Zygmund singular integrals on Hp

In this section we present the theory of Calderón-Zygmund singular integrals
on the anisotropic Hp spaces for 0 < p ≤ 1. For p > 1 this theory reduces
to studying Lp spaces and therefore follows from the general theory of Calderón-
Zygmund singular integrals on the spaces of homogeneous type, see [St2, Chapter
1.5].

We start with some preliminaries. Let T : S(Rn) → S′(Rn) be a continuous
linear operator. By the Schwartz Kernel Theorem there exists S ∈ S′(Rn × Rn)
such that

(9.1) 〈T (f), g〉 = 〈S, g ⊗ f〉 for all f, g ∈ S(Rn).

Let Ω = {(x, y) ∈ Rn × Rn : x 6= y}. We say that a distribution S is regular on Ω
if there exists a locally integrable function K(x, y) on Ω such that

(9.2) S(G) =

∫

Ω

K(x, y)G(x, y)dxdy for all G ∈ S(Rn × Rn), suppG ⊂ Ω.

Definition 9.1. Let T : S(Rn) → S′(Rn) be a continuous linear operator.
We say that T is a Calderón-Zygmund operator (with respect to a dilation A with
a quasi-norm ρ) if there are constants C > 0, γ > 0 such that
(i) a distribution S given by (9.1) is regular on Ω with kernel K satisfying

(9.3) |K(x, y)| ≤ C/ρ(x− y),

(ii) If (x, y) ∈ Ω and ρ(x′ − x) ≤ ρ(x − y)/b2ω then

(9.4) |K(x′, y) −K(x, y)| ≤ C
ρ(x′ − x)γ

ρ(x− y)1+γ
,

(iii) If (x, y) ∈ Ω and ρ(y′ − y) ≤ ρ(x− y)/b2ω then

(9.5) |K(x, y′) −K(x, y)| ≤ C
ρ(y′ − y)γ

ρ(x− y)1+γ
,

(iv) T extends to a continuous linear operator on L2(Rn) with ||T || ≤ C.

A few remarks are needed. It can be shown that operators in the above class are
bounded from L1 to weak-L1. This follows from the general theory of Calderón-
Zygmund operators defined on arbitrary spaces of homogeneous type, see [St2,
Chapter 1]. By the Marcinkiewicz Interpolation Theorem they are bounded from
Lp into Lp for 1 < p ≤ 2. By taking duals they are also bounded for 2 ≤ p < ∞,
hence in the range 1 < p <∞. To obtain these conclusions, conditions (ii) and (iii)
in Definition 9.1 can be relaxed to the weaker Hörmander integral conditions [Hö].

The condition (iv) immediately implies that T : S → S′ is bounded. We adopt
this seemingly redundant definition because in many situations the boundedness of
T on L2 is not automatic. The operators satisfying all the conditions in Definition
9.1 except (iv) are sometimes called generalized Calderón-Zygmund operators. The
famous T (1) Theorem of David and Journé [DJ] gives a necessary and sufficient
condition for such T to be bounded on L2. This result was further generalized by
David, Journé and Semmes [DJS] to the setting of spaces of homogeneous type and
to the more general T (b) Theorem, where b belongs to the special class of admissible
functions, see also [Dv].
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Since we are interested in boundedness results onHp spaces, 0 < p ≤ 1, we must
require much stricter conditions on the kernel K(x, y) than those given by (ii) and
(iii). These conditions are known in the case when the dilation A is diagonalizable
over R and they involve the appropriate decay of the directional derivatives taken
with respect to the eigenvectors of A, see [St2, Chapter 13.5] and [FoS, Chapter
6]. For general dilations we must be more careful, requiring smoothness estimates
which hold uniformly after rescaling to the scale zero.

Defintion 9.2. We say that T is a Calderón-Zygmund operator of order m if
T satisfies Definition 9.1 with K(x, y) in the class Cm as a function of y. We also
require that there exists a constant C such that for every (x, y) ∈ Ω

(9.6) |∂αy [K(·, Ak·)](x,A−ky)| ≤ C/ρ(x− y) = Cb−k for |α| ≤ m,

where k ∈ Z is the unique integer such that x − y ∈ Bk+1 \ Bk. More formally,

∂αy [K(·, Ak·)](x,A−ky) means ∂αy K̃(x,A−ky), where K̃(x, y) = K(x,Aky).
In short, we say that T is (CZ-m) and the smallest C fulfilling conditions

(i)–(iv) of Definition 9.1 and (9.6) is denoted by ||T ||(m).

Example. In the case when A is an isotropic dilation, in particular, if A is a
multiple of the identity, then (9.6) takes the familiar form

|∂αyK(x, y)| ≤ C|x− y|−n−|α| for |α| ≤ m.

More generally, suppose A is a diagonal matrix with diagonal terms ea1 , . . . , ean ,
where a1, . . . , an > 0 and a = a1 + . . . + an. Then ρ given by ρ(x1, . . . , xn) =
max1≤i≤n |xi|a/ai is a quasi-norm associated with A. Pick any x, y ∈ Ω with
| detA|k ≤ ρ(x− y) < | detA|k+1 for some k ∈ Z. Since

|∂αy [K(·, Ak·)](x,A−ky) = ek(α1a1+...+αnan)|∂αyK(x, y)| ≤ Cρ(x − y)−1,

where α = (α1, . . . , αn), the condition (9.6) takes a more familiar form

|∂αyK(x, y)| ≤ Cρ(x− y)−1−(α1a1+...+αnan)/a for |α| ≤ m,

see [St2, Chapter 13.5]. However, if A has some non-trivial blocks in its Jordan
decomposition then (9.6) does not have a more explicit form due to the complexity
of the action of A on Rn.

The following basic fact provides a sufficient condition for a function to belong
to Hp.

Lemma 9.3. Let (p, q, s) be admissible and δ > max(1/p, s lnλ+/ ln b + 1).
Suppose that f is a measurable function on Rn such that for some constant C > 0
we have

(9.7)

(

1

|Bk|

∫

Bk

|f(x)|qdx
)1/q

≤ C|Bk|−1/p for some k ∈ Z,

(9.8) |f(x)| ≤ C|Bk|−1/pρ(A−kx)−δ for x ∈ Bc

k,

(9.9)

∫

Rn

f(x)xαdx = 0 for |α| ≤ s.

Then f ∈ Hp with ||f ||Hp
q,s

≤ C′, where C′ depends only on C.
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We remark that (9.9) is meaningful since |f(x)|(1 + |x|s) is integrable by (9.7)
and (9.8). Indeed, by Lemma 3.2

|f(x)||x|s ≤ Cρ(A−kx)−δc′ρ(x)s lnλ+/ ln b = Cc′bkδρ(x)s lnλ+/ ln b−δ for ρ(x) ≥ 1.

Proof. Given a ball B ∈ B consider the natural projection πB : L1(B) → Ps
given by (8.8). Define the complementary projection π̃B = Id − πB , i.e., π̃Bf =
f − πBf . By (8.9) π̃B is bounded on Lq(B), i.e.,

(9.10) ||π̃Bf ||Lq(B) ≤ C0||f ||Lq(B),

with the constant C0 independent of B ∈ B. Moreover,
∫

B

π̃Bf(x)xα = 0 for |α| ≤ s.

We want to represent f as a combination of atoms. To do this define the
sequence of functions (gj)

∞
j=k by gj = π̃Bj (f)1Bj . Clearly, supp gj ⊂ Bj for j ≥ k.

Since ||gk||q ≤ C0||f1Bk
||q ≤ C0C|Bk|1/q−1/p and gk has vanishing moments up to

order s, gk is at most C0C multiplicity of some (p, q, s)-atom (namely (C0C)−1gk).
We claim that gj → f in L1 (and hence in S′) as j → ∞. It suffices to show

that ||πBjf ||L1(Bj) → 0 as j → ∞. Indeed, let {Qα : |α| ≤ s} be an orthonormal

basis of Ps with respect to the L2(B0) norm. By the argument used to show (8.9)
we have

(9.11)

πBjf =(DA−j ◦ πB0 ◦DAj)f =
∑

|α|≤s

( ∫

B0

DAjf(x)Qα(x)dx

)

DA−jQα

=
∑

|α|≤s

( ∫

Bj

f(x)Qα(A−jx)dx

)

b−jDA−jQα,

where DAf(x) = f(Ax). We also have ||DA−jQα||L1(Bj) = bj||Qα||L1(B0) ≤ bj and

∫

Bj

f(x)Qα(A−jx)dx = −
∫

Bc

j

f(x)Qα(A−jx)dx→ 0 as j → ∞,

by (9.9) and the uniform boundedness of coefficients of the polynomials Qα(A−jx)
for j ≥ 0. This shows

(9.12) f = gk +

∞
∑

j=k

(gj+1 − gj) with convergence in L1(Rn).

In fact, we will prove that we also have convergence in Hp by showing that gj+1−gj
are appropriate multiples of (p,∞, s)-atoms supported on Bj+1. Indeed,

(9.13)

||gj+1 − gj||∞ =||π̃Bj+1 (f)1Bj+1 − π̃Bj (f)1Bj ||∞
=||f1Bj+1\Bj

− 1Bj+1πBj+1f + 1BjπBjf ||∞
≤||f1Bj+1\Bj

||∞ + ||1Bj+1πBj+1f ||∞ + ||1BjπBjf ||∞.

By (9.8)

||f1Bj+1\Bj
||∞ ≤ Cb−k/pbδ(k−j) = Cb−j/pb(δ−1/p)(k−j).
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Since ||1BjDA−jQα||∞ = ||Qα1B0 ||∞ ≤ C1 for all |α| ≤ s, by (9.9) and (9.11) we
have

||1BjπBjf ||∞ ≤ C1b
−j

∑

|α|≤s

∣

∣

∣

∣

∫

Bc

j

f(x)Qα(A−jx)dx

∣

∣

∣

∣

.

Since |Qα(x)| ≤ C2|x|s for x ∈ Bc

0 for some constant C2 > 0

∣

∣

∣

∣

∫

Bc

j

f(x)Qα(A−jx)dx

∣

∣

∣

∣

≤ C2

∫

Bc

j

|f(x)||A−jx|sdx

≤ C2

∫

Bc

j

C|Bk|−1/pρ(A−kx)−δρ(A−jx)s lnλ+/ ln bdx

= C2Cb
−k/pbδ(k−j)

∫

Bc

j

ρ(A−jx)−δ+s lnλ+/ ln bdx

≤ C2Cb
−k/pbδ(k−j)bj

∫

Bc

0

ρ(x)−δ+s lnλ+/ ln bdx = C3b
j(1−1/p)b(δ−1/p)(k−j).

Inserting the last three inequalities into (9.13) we conclude that

||gj+1 − gj ||∞ ≤ C4b
−(j+1)/pb(δ−1/p)(k−j) for j ≥ k,

for some constant C4. Since gj’s have vanishing moments up to order s, gj+1 − gj
is a κj multiple of a (p,∞, s)-atom aj supported on Bj+1, where gj+1 − gj = κjaj ,

κj = C4b
(δ−1/p)(k−j). By (9.12)

||f ||Hp
q,s

≤
(

(C0C)p +

∞
∑

j=k

|κj |p
)1/p

=

(

(C0C)p + Cp4

∞
∑

j=k

b(pδ−1)(k−j)

)1/p

= C′,

which ends the proof of the lemma. �

Remark. Since translations are isometries in Hp we can immediately gener-
alize Lemma 9.3 to functions centered at arbitrary x0 ∈ Rn. Conditions (9.7) and
(9.8) can be substituted then by

(

1

|Bk|

∫

x0+Bk

|f(x)|qdx
)1/q

≤ C|Bk|−1/p,(9.14)

|f(x)| ≤ C|Bk|−1/pρ(A−k(x− x0))
−δ for x ∈ x0 +Bc

k.(9.15)

A function f satisfying (9.9), (9.14), and (9.15) with C = 1 is refferred to as
a molecule localized around the dilated ball x0 + Bk ∈ B. Hence, a molecule
satisfies all the properites of an atom as in Definition 4.1 with the exception of
compact support condition, which is replaced by a suitable decay condition (9.15).
Therefore, Lemma 9.3 says that, for fixed (p, q, s) and decay exponent δ, every
molecule f belongs to Hp with the Hp norm bounded by some constant depending
only on (p, q, s) and δ. Moreover, by examining the arguments of Lemma 9.3, one
can easily see that, for fixed 0 < p ≤ 1, this constant depends only on δ.

We also remark that our definition of molecule is more restrictive than what
normally is understood as a molecule. For properties of molecules we refer the
interested reader to [BS, CW2, GR, TW].
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Our next goal is to show that Calderón-Zygmund operators map atoms into
molecules. Generally, we can not expect this unless we also assume that our opera-
tor preserves vanishing moments. The precise meaning of this is given in Definition
9.4.

Definition 9.4. We say that a Calderón-Zygmund operator T of order m sat-
isfies T ∗(xα) = 0 for all |α| ≤ s, where s < m lnλ−/ lnλ+, if for every f ∈ L2 with
compact support and

∫

xαf(x)dx = 0 for |α| < m, we also have
∫

xαTf(x)dx = 0
for all |α| ≤ s.

Note that we require that s < m lnλ−/ lnλ+ in Definition 9.4 to guarantee that
the integrals

∫

xαTf(x)dx are well defined for all |α| ≤ s. Indeed, it follows from the

proof of Lemma 9.5 that |Tf(x)| = O(ρ(x)−1−m lnλ−/ ln b) as |x| → ∞, and hence
|Tf(x)| = O(ρ(x)−1|x|−m lnλ−/ lnλ+) as |x| → ∞. We also remark that Definition
9.4 overlaps with analogous property in the isotropic setting investigated by Meyer
in [MC, Chapter 7.4]. Furthermore, the condition T ∗(xα) = 0 is automatically
satisfied when T is a convolution singular integral operator, which explains why
this condition does not appear in this simpler situation, see [GR, Chapter III.7].

Lemma 9.5. Suppose that (p, 2, s) is admissible and an integer m satisfies m >
max((1/p− 1) ln b/ lnλ−, s lnλ+/ lnλ−). Assume T is (CZ-m) and T ∗(xα) = 0 for
|α| ≤ s. Then there exists a constant C, depending only on the Calderón-Zygmund
norm ||T ||(m) of T , such that ||Ta||Hp

2,s
≤ C for every (p, 2,m− 1)-atom a.

Proof. Suppose a (p, 2,m− 1)-atom a is supported in the ball x0 + Bk. We
estimate Ta separately around and away from the support of an atom a.

(9.16)

∫

x0+Bk+ω

|Ta(x)|2dx ≤
∫

Rn

|Ta(x)|2dx ≤ C||a||22 ≤ |B|1−2/p.

Suppose x ∈ x0 + Bk+l+ω+1 \ Bk+l+ω for some l ≥ 0 and y ∈ x0 + Bk. Then
x− y ∈ Bk+l+2ω+1 but x− y 6∈ Bk+l. Hence, by (9.6) and the chain rule

(9.17) |∂αy [K(·, Ak+l·)](x,A−k−ly)| ≤ C′/ρ(x− y) = C′b−k−l for |α| ≤ m,

where C′ depends only on the constant C in (9.6). Away from the support of the
atom a, we estimate Ta by

(9.18) |Ta(x)| =

∣

∣

∣

∣

∫

x0+Bk

K(x, y)a(y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

x0+Bk

K̃(x,A−k−ly)a(y)dy

∣

∣

∣

∣

,

where K̃(x, y) = K(x,Ak+ly). Now we expand K̃(x, y) into the Taylor polynomial
of degree m− 1 (only in y variable) at the point (x,A−k−lx0). That is,

(9.19) K̃(x, y′) =
∑

|α|≤m−1

∂αy K̃(x,A−k−lx0)

α!
(y′ −A−k−lx0)

α +Rm(y′).

Here we think that y′ = A−k−ly and that y ranges over x0 +Bk as in (9.18). Since
we are going to apply (9.19) for y′ ∈ A−k−lx0 +B−l, the remainder Rm satisfies

(9.20)

|Rm(y′)| ≤ C̃ sup
z∈A−k−lx0+B−l

sup
|α|=m

|∂αy K̃(x, z)||y′ −A−k−lx0|m

≤ C′b−k−l sup
z∈B−l

|z|m,
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because the partial derivatives of K̃(x, y) in the variable y of order m satisfy (9.17).
Combining (9.18), (9.19), and (9.20) and using the moment condition of atoms we
have

|Ta(x)| =

∣

∣

∣

∣

∫

x0+Bk

Rm(A−k−ly)a(y)dy

∣

∣

∣

∣

≤
∫

x0+Bk

|Rm(A−k−ly)a(y)|dy

≤ C′b−k−l sup
z∈B−l

|z|m
∫

x0+Bk

|a(y)|dy ≤ C′b−k−l(cλ−l− )mbk−k/p

= C′′b−k/pb−lλ−lm− = C′′b−k/pb−lδ,

where δ = m lnλ−/ ln b+1. Therefore, Ta satisfies (9.14) and (9.15). Furthermore,
we have T ∗(xα) = 0 for |α| ≤ s meaning Tf has vanishing moments up to order
s whenever f ∈ L2 with compact support has vanishing moments up order m− 1,
i.e., f is a multiple of a (p, 2,m− 1)-atom. By Lemma 9.3 this implies that there
is a constant C independent of a so that ||Ta||Hp

2,s
≤ C. �

Lemma 9.5 strongly suggests that any Calderón-Zygmund operator T of order
m extends to a bounded operator on the Hardy space Hp, where m is sufficiently
large and depends on 0 < p ≤ 1. This requires a careful proof since potentially there
could be a problem with the well-definedness of T on Hp, due to the non-uniqueness
of atomic decompositions. This problem is similar to the one we encountered when
dealing with the duals of Hp. To overcome this difficulty we need to use an ap-
proximation of a given Calderón-Zygmund operator T of order m by a sequence of
(CZ-m) operators with nonsingular kernels.

In the following theorem we impose the same constraints on integers m and s
as in Lemma 9.5.

Theorem 9.6. Suppose T is a (CZ-m) with kernel K(x, y). Then there is a

sequence (Ti)i∈Z of uniformly bounded (CZ-m), i.e., for any i ∈ Z, ||Ti||(m) ≤ C̃,
with nonsingular C∞ kernels Ki(x, y) such that

(9.21) Tif(x) =

∫

Ki(x, y)f(y)dy for x ∈ Rn,

where f ∈ L2 has compact support, and

(9.22) Tif → Tf in L2 as i→ −∞ for all f ∈ L2.

Furthermore, if T ∗(xα) = 0 for |α| ≤ s then also (Ti)
∗(xα) = 0 for all |α| ≤ s and

i ∈ N.

One possible approximation technique for Calderón-Zygmund operators in-
volves the truncation of the kernel. Given a C∞ function ϕ such that ϕ(x) = 0
for x ∈ B−1, ϕ(x) = 1 for x ∈ (B0)

c we can define kernels Ki by Ki(x, y) =
K(x, y)ϕ(A−i(x − y)). By adapting arguments of Meyer in [MC] it is possible to
show, though it is not automatic, that the family of the corresponding operators
(Ti) is (CZ-m) with uniform constants. Furthermore, Tij ’s (after taking a subse-
quence) converge weakly to Mh + T as ij → −∞, where Mh denotes the operator
of multiplication by a function h ∈ L∞, see [MC, Chapter 7, Proposition 3]. How-
ever, if K(x, y) is not a convolution kernel then in general the Ti’s might not pre-
serve vanishing moments. Therefore, this approximation is not suitable for showing
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boundedness of T : Hp → Hp. It can be used, though, to show boundedness of
T : Hp → Lp.

Instead we are going to use an approximation based on smoothing by a convo-
lution with a compactly supported smooth function ϕ. Indeed, suppose ϕ is C∞,
suppϕ ⊂ B0 and

∫

ϕ = 1. For any i ∈ Z define a convolution operator Ri : S′ → S′,
by

(9.23) Rif = f ∗ ϕi.
By Lemma 6.6 for every 0 < p <∞ we have

(9.24) ||Rif ||Hp ≤ C||f ||Hp ,

and by Theorem 6.8,

(9.25) lim
i→−∞

||Rif − f ||Hp = 0 for every f ∈ Hp.

We are now ready to present the proof of Theorem 9.6.

Proof of Theorem 9.6. We define operators Ti by Ti = RiTRi, where Ri is
given by (9.23). Since Ti : S → S′ it has a kernel Ki ∈ S′(Rn×Rn) by the Schwartz
Kernel Theorem. We claim that Ki is a regular distribution which is identified with
the function Ki given by

(9.26) Ki(x, y) = 〈T (τyϕi), τxϕ̃i〉,
where ϕ̃i(z) = ϕi(−z). Indeed, recall that for any f ∈ S′, Rif = f ∗ ϕi is a regular
distribution identified with Rif(x) = f(τxϕ̃i). For any ψ ∈ S, RiTRi(ψ) is also
regular distribution and

(Ri ◦ T ◦Ri)ψ(x) = 〈TRi(ψ), τxϕ̃i〉 = 〈T (ϕi ∗ ψ), τxϕ̃i〉

=

〈

T

(∫

ψ(y)ϕi(· − y)dy

)

, τxϕ̃i

〉

=

〈 ∫

ψ(y)T (τyϕi)(·)dy, τxϕ̃i
〉

=

∫

ψ(y)〈T (τyϕi), τxϕ̃i〉dy.

The next to last equality is justified by approximating the integral in L2 by finite
linear combinations of functions ϕ(· − y) for y ∈ Rn. This shows (9.26). Moreover,
if x− y 6∈ 2Bi ⊂ Bi+ω then supports of τyϕi and τxϕ̃i are disjoint and

(9.27)

Ki(x, y) = 〈T (τyϕi), τxϕ̃i〉 =

∫

Rn

∫

Rn

K(u, v)ϕi(v − y)dvϕi(x− u)du

=

∫

Rn

∫

Rn

K(x− u, y + v)ϕi(u)ϕi(v)dudv.

Fix (x0, y0) ∈ Ω and suppose that x0 − y0 ∈ Bl+2ω+1 \ Bl+2ω for some l ≥ i.
Since u and v range over Bi in (9.27) x0 − u − (y0 + v) = x0 − y0 − u − v ∈
Bc

l+2ω +Bi+ω ⊂ Bc

l+ω. Also x0 − y0 − u− v ∈ Bl+3ω+1. Note that for |α| ≤ m

(9.28) ∂αy [Ki(·, Al+2ω ·)](x, y) =

∫ ∫

∂αy [K(·−u,Al+2ω ·+v)](x, y)ϕi(u)ϕi(v)dudv,

by moving the differentiation inside the integral. By the chain rule and (9.6) there
is a constant C′ so that

(9.29) |∂αy [K(·, Al+2ω ·)](x0 − u,A−l−2ω(y0 + v))| ≤ C′b−l−2ω
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for all |α| ≤ m and u, v ∈ Bi. Combining (9.28) and (9.29) we obtain

(9.30) |∂αy [Ki(·, Al+2ω ·)](x0, A
−l−2ωy0)| ≤ C′b−l−2ω = C′ρ(x0 − y0)

−1.

Suppose next that x0 − y0 ∈ Bl+1 \Bl for some l < i+2ω. We claim that there
is a constant C′ such that

(9.31) |∂αy [Ki(·, Al·)](x, y)| ≤ C′b−i ≤ C′b2ωρ(x0 − y0)
−1

for all (x, y) ∈ Rn×Rn and |α| ≤ m. In particular, by choosing (x, y) = (x0, A
−ly0)

we obtain the estimate (9.6) for the kernel Ki. To see (9.31) for α = 0 we use (9.26)
and the Cauchy-Schwarz inequality

|Ki(x, y)| ≤ ||T ||||ϕi||22 = ||T ||||ϕ||22b−i = C′b−i.

For α 6= 0 we need an additional argument. Define the mapping H : Rn → L2(Rn)
by H(y) = τAlyϕi. Clearly, H is a C∞ function on Rn with values in the Hilbert

space L2(Rn). Moreover, T ◦H is also C∞ and ∂α(T ◦H) = T ◦∂αH for any multi-
index α, since bounded linear maps commute with the differentiation. Consider
also the function h(x, y) = τAlyϕi(x). For fixed y ∈ Rn, supph(·, y) ⊂ Aly + Bi.
Also for |α| ≤ m

|∂αy h(x, y)| = b−i|∂αy ϕ(A−i(x−Al·))(y)| = |b−i∂αy ϕ(A−ix−Al−i·)(y)| ≤ C′′b−i,

by the chain rule since ϕ is C∞ with compact support and l − i < 2ω. Therefore,
for any y ∈ Rn,

(9.32) ||∂αH(y)||22 =

∫

Rn

|∂αy h(x, y)|2dx =

∫

Aly+Bi

|∂αy h(x, y)|2dx ≤ C′′b−i.

Therefore, by (9.32) and the Cauchy-Schwarz inequality

|∂αy [Ki(·, Al·)](x, y)| = |〈∂α[T ◦H ](y), τxϕ̃i〉| ≤ ||T |||〈∂αH(y), τxϕ̃i〉|
≤ ||T ||||∂αyH(y)||2||ϕi||2 ≤ C′′||T ||||ϕ||2b−i,

which shows (9.31). The estimates (9.30) and (9.31) cover the whole range of
(x0, y0) ∈ Ω and they imply that the Ti’s are (CZ-m) with norms ||T ||(m) inde-

pendent of i ∈ Z. Clearly, Ti’s are uniformly bounded on L2 since the Ri’s are
uniformly bounded on L2 by (9.24). Moreover, (9.22) holds by (9.25). Moreover,
Ki(x, y) is a smooth kernel function on Rn×Rn by (9.26). Hence, Ti has a nonsin-
gular kernel Ki(x, y) satisfying (9.21) initially for f ∈ S. By a density argument,
(9.21) holds for all f ∈ L2 with compact support.

Finally, we ought to show that given a function f ∈ L2 with compact support
and

∫

f(x)xα = 0 for |α| ≤ m − 1 we have
∫

Tif(x)xα = 0 for |α| ≤ s. This is a
consequence of Lemma 9.7. Indeed, Rif is also in L2 with vanishing moments up
to order m−1, hence it is a multiplicity of some (p, 2,m−1)-atom. By Lemma 9.5,
TRif satisfies the decay estimate (9.15) and has vanishing moments up to order s.
Therefore, by Lemma 9.7, RiTRif has also vanishing moments up to order s. This
ends the proof of Theorem 9.6. �

Lemma 9.7. Suppose f satisfies f(x)(1 + |x|m̃) ∈ L1 and
∫

f(x)xαdx = 0 for
|α| ≤ m̃. Then we also have

∫

Rif(x)xαdx = 0 for |α| ≤ m̃.



66 1. ANISOTROPIC HARDY SPACES

Proof. For any |α| ≤ m̃ by the Fubini Theorem
∫

Rn

xαRif(x)dx =

∫

Rn

∫

Rn

xαf(x− y)ϕi(y)dydx

=

∫

Rn

∫

Rn

(x+ y)αf(x)ϕi(y)dxdy = 0,

because the integrand belongs to L1(Rn×Rn) since the support of ϕ is bounded.�

We are now ready to prove the main result of this section.

Theorem 9.8. Suppose T is a Calderón-Zygmund operator of order m. If p
satisfies

(9.33) 0 ≤ 1/p− 1 <
(lnλ−)2

ln b lnλ+
m,

then T extends to the continuous linear operator T : Hp(Rn) → Hp(Rn) provided
T ∗(xα) = 0 for |α| ≤ s = ⌊(1/p− 1) ln b/ lnλ−⌋.

Proof. Note that (9.33) guarantees that p and m satisfy the assumptions of
Lemma 9.5 and Theorem 9.6, i.e., m > max((1/p − 1) ln b/ lnλ−, s lnλ+/ lnλ−).
Let (Ti)i∈Z be the sequence of operators with kernels Ki(x, y) given by Theorem
9.6. We claim that for any (p, 2,m− 1)-atom a we have

(9.34) Tia→ Ta in Hp as i→ −∞.

Indeed, if a is supported in the ball x0 + Bk then Ria is supported in x0 + Bk+ω
for i ≤ k. Since ||a− Ria||2 → 0 as i → −∞, therefore a− Ria is a κi multiple of
some (p, 2,m− 1) atom for i ≤ k by Lemma 9.7. Furthermore, κi → 0 as i→ −∞.
By Lemma 9.5, ||T (a−Ria)||Hp

2,s
→ 0 as i→ ∞. By (9.24) and (9.25),

||Ta−RiTRia||pHp ≤ ||Ta−RiTa||pHp + ||Ri(Ta− TRia)||pHp → 0 as i→ −∞,

which shows (9.34).
The kernel function Ki(x, y) of Ti, given by (9.26), is C∞. Furthermore, by

the Cauchy-Schwarz inequality all partial derivatives of Ki(x, y) of order ≤ N are
uniformly bounded for any natural number N . By taking N ≥ (1/p− 1) ln b/ lnλ−
we conclude by Proposition 8.7 that Ki(x, ·) belongs to the Campanato space Cl∞,s

with l = 1/p− 1 for any fixed x ∈ Rn. Furthermore,

(9.35) ||Ki(x, ·)||C1/p−1
∞,s

≤ C(i) for all x ∈ Rn,

and for some constant C = C(i) depending only on i ∈ Z.
Take any f ∈ L2 with compact support and vanishing moments up to order

m−1, that is f ∈ Θ2
m−1. Let f =

∑

j∈N
κjaj be an atomic decomposition of f into

(p, 2,m − 1) atoms with
∑

j∈N
|κj |p ≤ 2||f ||p

Hp
2,m−1

. By the duality Theorem 8.3,

Ki(x, ·) defines a bounded functional on Hp and by (8.18) and (9.35),

(9.36) Tif(x) =
∑

j∈N

κjTiaj(x) for every x ∈ Rn.

Furthermore, the convergence in (9.36) is uniform on Rn by (8.15) and (9.35), and
hence the series in (9.36) converges in S′. By Theorem 9.6, Ti’s are uniformly
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bounded (CZ-m) and hence by Lemma 9.5, ||Tiaj ||Hp ≤ C for some constant C
independent of i and j. Therefore,

(9.37) Tif =
∑

j∈N

κjTiaj convergence in Hp,

Moreover,

||Tif ||pHp ≤
∑

j∈N

|κj |p||Tiaj ||pHp ≤ 2Cp||f ||p
Hp

2,m−1
.

Combining this with (9.34), (9.37), and letting i→ −∞, we obtain

(9.38) ||Tf ||Hp ≤ C′||f ||Hp for f ∈ Θ2
m−1

for some constant C′ independent of f . Moreover,

(9.39) Tf =
∑

j∈N

κjTaj convergence in Hp.

Since Θ2
m−1 is a dense subspace of Hp, T extends uniquely to a bounded operator

in Hp by (9.38). �

As a consequence we conclude that for any f ∈ Hp with f =
∑

j∈N
κjaj , where

∑

j∈N
|κj |p < ∞ and aj ’s are (p, 2, s)-atoms, we can compute Tf by applying the

formula (9.39).
In the case when T does not necessarily satisfy T ∗(xα) = 0 for |α| ≤ s, we still

have a boundedness result which is analogous to Theorem 9.8.

Theorem 9.9. Suppose T is a Calderón-Zygmund operator of order m. If p
satisfies (9.33) then T extends to the continuous linear operator T : Hp(Rn) →
Lp(Rn).

Proof. The proof follows along the lines of the proof of Theorem 9.8 with
the exception that (9.34) may not hold, since Ta may not even belong to Hp for a
(p, 2,m−1) atom a. Nevertheless, Ta(x) satisfies the same size estimates (9.14) and
(9.15) as in Lemma 9.5. Therefore, ||Ta||Lp ≤ C for some constant C depending on
||T ||(m), but independent of an atom a. Moreover, (9.36) still holds for f ∈ Θ2

m−1

and consequently ||Tif ||Lp ≤ C||f ||Hp for all i ∈ Z and f ∈ Θ2
m−1. By (9.22)

we have Tif(x) → Tf(x) for a.e. x ∈ Rn as i → −∞ (possibly after taking a
subsequence). Therefore, by Fatou’s Lemma ||Tf ||Lp ≤ C||f ||Hp for all f ∈ Θ2

m−1.
Therefore, T has a unique extension from Hp into Lp, which concludes the proof
of Theorem 9.9. �
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10. Classification of dilations

In this section we investigate the question when two different dilations generate
the same anisotropic Hardy space Hp for some 0 < p ≤ 1. We give a necessary and
sufficient condition for this to happen in terms of the spectral properties of these
dilations. We start with two basic lemmas.

Lemma 10.1. Suppose D is an n × n matrix. If ||D|| ≤ c1 and | detD| ≥ c2
for some c1, c2 > 0 then there is a constant c3 = c3(c1, c2) > 0 independent of D
such that |Dz| ≥ c3|z| for all z ∈ Rn. Similarily, if |Dz| ≥ c1|z| for all z ∈ Rn

and | detD| ≤ c2 for some c1, c2 > 0 then there is a constant c3 = c3(c1, c2) > 0
independent of D such that ||D|| ≤ c3.

Lemma 10.2. Suppose we have two dilations A1 and A2 on Rn. Let ρ1 and
ρ2 be the quasi-norms associated to A1 and A2, respectively. Then ρ1 and ρ2 are
equivalent if and only if

(10.1) inf
z∈Rn\{0}

inf
k∈Z

|Ak1z|/|A⌊ǫk⌋
2 z| > 0,

or

(10.2) sup
z∈Rn\{0}

sup
k∈Z

|Ak1z|/|A⌊ǫk⌋
2 z| <∞,

where

(10.3) ε = ε(A1, A2) = ln | detA1|/ ln | detA2|.

Proof. Note that for every k ∈ Z

(10.4)
1 = | detA1|k| detA2|−ǫk ≤ | detA1|k| detA2|−⌊ǫk⌋

= | det(Ak1A
−⌊ǫk⌋
2 )| ≤ | detA1|k| detA2|−ǫk+1 = | detA2|.

By Lemma 10.1 applied to Ak1A
−⌊ǫk⌋
2 we obtain (10.1) is equivalent to (10.2).

Assume that (10.1) and hence (10.2) holds. Let c and d denote the values of
(10.1) and (10.2), respectively. Fix r > 0 so that for every z ∈ Rn\{0}, and i = 1, 2,
there exists k ∈ Z such that 1 ≤ |Aki z| ≤ r. Clearly, r = max(||A1||, ||A2||) works.
Denote

c1 = inf{ρ1(z) : 1 ≤ |z| ≤ r}, d1 = sup{ρ1(z) : 1 ≤ |z| ≤ r},
c2 = inf{ρ2(z) : 1/d ≤ |z| ≤ r/c}, d2 = sup{ρ2(z) : 1/d ≤ |z| ≤ r/c}.

Fix x ∈ Rn \ {0} and choose k ∈ Z such that 1 ≤ |Ak1x| ≤ r. Clearly

(10.5) | detA1|−kc1 ≤ ρ1(x) ≤ | detA1|−kd1.

By (10.1) and (10.2)

1/d ≤ |A⌊ǫk⌋
2 x| ≤ r/c,

thus by (10.4) and (10.5)

ρ2(x) = | detA2|−⌊ǫk⌋ρ2(A
⌊ǫk⌋
2 x) ≤ | detA2|−⌊ǫk⌋ sup{ρ2(z) : 1/d ≤ |z| ≤ r/c}

≤ | detA1|−k| detA2|d2 ≤ ρ1(x)c
−1
1 d2| detA2|.

Similarily

ρ2(x) ≥ ρ1(x)d
−1
1 inf{ρ2(z) : 1/d ≤ |z| ≤ r/c} ≥ ρ1(x)d

−1
1 c2.
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Since x ∈ Rn \ {0} was arbitrary the quasi-norms ρ1 and ρ2 are equivalent.
Conversely, assume ρ1 and ρ2 are equivalent, i.e., there is a constant C > 0 so

that 1/Cρ2(x) ≤ ρ1(x) ≤ Cρ2(x). For any z ∈ Rn with |z| = 1 we have by (10.4)

(10.6)
ρ1(A

k
1A

−⌊ǫk⌋
2 z) = | detA1|kρ1(A

−⌊ǫk⌋
2 z) ≤ C| detA1|kρ2(A

−⌊ǫk⌋
2 z)

≤ C| detA1|k| detA2|−⌊ǫk⌋ρ2(z) ≤ C| detA2| sup{ρ2(x) : |x| = 1} = D.

Clearly, for any r > 0, {x : ρ1(x) ≤ r} is a bounded set in Rn if ρ1 is a step
homogeneous quasi-norm. By Lemma 2.4 the same is true for any quasi-norm.
Hence there is a constant d > 0 so that {x : ρ1(x) ≤ D} ⊂ {x : |x| ≤ d}. Therefore

by (10.6), |Ak1A−⌊ǫk⌋
2 z| ≤ d. Since z was arbitrary we obtain (10.2). This finishes

the proof of the lemma. �

Our next goal is to show the following theorem.

Theorem 10.3. Let ρ1 and ρ2 be the quasi-norms associated to dilations A1

and A2, respectively. Then ρ1 and ρ2 are equivalent if and only if for all r > 1 and
all m = 1, 2, . . .

(10.7) span
⋃

|λ|=rǫ

ker(A1 − λId)m = span
⋃

|λ|=r

ker(A2 − λId)m,

where ǫ is given in (10.3). In (10.7) we think of A1 and A2 as linear maps on Cn.

Since Ai (i = 1, 2) is a real matrix then the complex subspace

span(ker(Ai − λId)m ∪ ker(Ai − λId)m) ⊂ Cn,

is in fact a complexification of the real subspace

span(ker(Ai − λId)m ∪ ker(Ai − λId)m) ∩ Rn,

for any λ ∈ C, and m = 1, 2, . . . Moreover, the conditions (10.1) and (10.2) are
equivalent to respectively

inf
z∈Cn\{0}

inf
k∈Z

|Ak1z|/|A⌊ǫk⌋
2 z| > 0,(10.8)

sup
z∈Cn\{0}

sup
k∈Z

|Ak1z|/|A⌊ǫk⌋
2 z| <∞.(10.9)

Lemma 10.4. Suppose A is n×n complex matrix. For any z ∈ Cn, r > 0, and
m = 0, 1, . . .

z ∈E(r,m+ 1) \ E(r,m), where(10.10)

E(r,m) = E(A; r,m) = span

(

⋃

|λ|=r

ker(A− λId)m ∪
⋃

|λ|<r

ker(A− λId)n
)

,

(10.11)

if and only if |Akz| ∼ kmrk as k → ∞, i.e., there is a constant c > 0 and k0 ∈ N

so that

(10.12) 1/ckmrk ≤ |Akz| ≤ ckmrk for all k ≥ k0.
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Proof. Suppose J is a j by j Jordan block associated with an eigenvalue λ,
i.e.,

(10.13) J =













λ 1 0 . . . . . .
λ 1 0 . . .

. . .
. . .

. . .

λ 1
λ













.

The kth iterate of J is equal to

(10.14) Jk =



























p0(k)λ
k p1(k)λ

k−1 p2(k)λ
k−2 . . . pj−1(k)λ

k−j+1

p0(k)λ
k p1(k)λ

k−1 p2(k)λ
k−2

...
. . .

. . .
. . .

...
. . .

. . .
...

. . .
. . .

p0(k)λ
k p1(k)λ

k−1

p0(k)λ
k



























,

where pi(k) is given by the recursive formula

pi(k) =











1 i = 0, k = 0, 1, . . . ,

0 i = 1, . . . , j − 1, k = 0, . . . , i− 1,

pi−1(k − 1) + pi(k − 1) i = 1, . . . , j − 1, k = i, i+ 1, . . .

In particular, p1(k) = k, p2(k) = k(k − 1)/2, and by induction

(10.15) pi(k) =
k(k − 1) . . . (k − i+ 1)

i!
.

Take any 0 6= z = (z1, . . . , zj) ∈ Cj . Let m = 0, . . . , j − 1 be such that

z ∈ ker(J − λId)m+1 and z 6∈ ker(J − λId)m.

Equivalently, m is the unique index which satisfies zm+1 6= 0 and zi+1 = 0 for all
i > m. If λ 6= 0 then by (10.14) and (10.15)

|Jkz|
km|λ|k → |zm+1|

|λ|mm!
as k → ∞.

This shows Lemma 10.4 in the case when the matrix A is a single Jordan block.
In the general case we can use the Jordan Theorem to write A as A = UBU−1,

where U is a nonsingular n×n matrix and B =
⊕p

i=1 Ji, where Ji is a Jordan block
of size ji associated with the eigenvalue λi. We can assume that |λ1| ≤ . . . ≤ |λp|
and j1 + . . .+ jp = n. For the convenience we define l1 = 0, li = j1 + . . .+ ji−1 for
i = 2, . . . , p. We define the basis {vl : l = 1, . . . , n} of Jordan decomposition by
vl = Uel, where {el : l = 1, . . . , n} denotes the standard basis in Cn.

Note that E(r,m) ⊂ E(r′,m′) if r < r′ or if r = r′ and m ≤ m′, where
E(r,m) is given by (10.11). Also if r 6= |λi| for all i = 1, . . . , p, or m = 0, then
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E(r,m) = {0} if r < |λ1| and otherwise E(r,m) = E(|λi|, n), where i is the largest
index so that |λi| < r. Since E(|λp|, n) = Cn therefore we can express Cn as

(10.16) Cn = E(0, n) ∪
p

⋃

i=1
|λi|6=0

n−1
⋃

m=0

E(|λi|,m+ 1) \ E(|λi|,m).

If z ∈ E(0, n) then (10.10) can not be fulfilled for any r > 0 and |Akz| = 0 for
all k ≥ n. Suppose that z ∈ E(|λi0 |,m0 + 1) \ E(|λi0 |,m0) for some i0 = 1, . . . , p,
|λi0 | 6= 0, and m0 = 0, . . . , n − 1. Let i1 = min{i : |λi| = |λi0 |}, and i2 = max{i :
|λi| = |λi0 |}. Observe that E(|λi0 |,m) consists precisely of vectors

∑n
l=1 alvl, where

al ∈ C, and al = 0 if either li2 < l or li + 1 +m ≤ l ≤ li + ji for some i, i1 ≤ i ≤ i2.

Hence, we can write z as
∑li2
l=1 alvl. By (10.14) we have for k ∈ N,

(10.17)

Akz =

i2
∑

i=1

Ak
( li+ji

∑

l=li+1

alvl

)

=

i2
∑

i=1

U

( li+ji
∑

l=li+1

alB
kel

)

=

i2
∑

i=1

U

( li+ji
∑

l=li+1

li+ji
∑

l′=l

al′pl′−l(k)λ
k−(l′−l)
i el

)

=

i2
∑

i=1

li+ji
∑

l=li+1

[ li+ji
∑

l′=l

al′pl′−l(k)λ
k−(l′−l)
i

]

vl.

Since z ∈ E(|λi0 |,m0+1)\E(|λi0|,m0), we have al = 0 if li+1+m0+1 ≤ l ≤ li+ji
for some i, i1 ≤ i ≤ i2. Also there exists i′, i1 ≤ i′ ≤ i2, m0 + 1 ≤ ji′ such that
al′ 6= 0, where l′ = li′ + 1 + m0. Therefore, all the coefficients of the vl’s in
the brackets (10.17) are dominated asymptotically by km0 |λ0|k as k → ∞ and at
least one coefficient (the coefficient of vli′+1) behaves asymptotically as km0 |λ0|k
as k → ∞ by (10.15). Since the norm |U · | is equivalent to the standard norm | · |,
this shows that there exists a constant c > 0, and k0 ∈ N so that

1/ckm0 |λ0|k ≤ |Akz| ≤ ckm0 |λ0|k for all k ≥ k0,

i.e., (10.12) holds.
This combined with (10.16) also shows the converse implication. �

Proof of Theorem 10.3. Lemma 10.2 says that the quasi-norms ρ1 and ρ2

are equivalent if and only if (10.8) and/or (10.9) hold. Assume that this hap-
pens. For r ≥ 0 and m = 0, 1, . . . , let E(Ai; r,m) be the linear space given
by (10.11) corresponding to the dilation Ai, i = 1, 2. By Lemma 10.4, if z ∈
E(A1; r,m+1)\E(A1; r,m) then |Ak1z| ∼ kmrk as k → ∞ and by (10.8) and (10.9),

|A⌊ǫk⌋
2 z| ∼ kmrk, so |Ak2z| ∼ kmrk/ǫ as k → ∞. Therefore, z ∈ E(A2; r

1/ǫ,m +

1) \E(A2; r
1/ǫ,m). Since the sets E(Ai; r,m+ 1) \E(Ai; r,m), r > 1, m = 0, 1, . . .

partition Cn \ {0} for i = 1, 2, we have E(A1; r
ǫ,m) = E(A2; r,m) for all r >

0, m = 0, 1, . . . . Analogously, by considering matrices A−1
1 and A−1

2 we have
E(A−1

1 ; rǫ,m) = E(A−1
2 ; r,m) for all r > 0, m = 0, 1, . . . Since E(Ai; r,m) ∩

E(A−1
i ; r−1,m) = span

⋃

|λ|=r ker(Ai − λId)m for all r > 0, m = 0, 1, . . . , we have

(10.7). By reversing this argument we obtain the converse implication. �

We are ready to state the classification theorem for dilations generating the
same anisotropic Hardy space Hp, 0 < p ≤ 1.
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Theorem 10.5. Suppose we have two dilations A1 and A2 on Rn. The follow-
ing are equivalent:
(i) the quasi-norms ρ1 and ρ2 associated to A1 and A2, respectively, are equivalent,
(ii) (10.7) holds for all r > 1, m = 1, 2, . . . ,
(iii) the anisotropic Hardy spaces Hp associated to A1 and A2 are the same for some

0 < p ≤ 1,
(iv) the anisotropic Hardy spaces Hp associated to A1 and A2 are the same for all

0 < p ≤ 1.

Remark. We claim that the atoms introduced in Definition 4.1 can be alter-
natively defined as follows. Suppose A is a dilation and ρ its associated quasi-norm.
We say a triplet (p, q, s) is admissible (with respect to dilation A) if 0 < p ≤ 1,
1 ≤ q ≤ ∞, p < q, s ∈ N, and s ≥ ⌊(1/p−1) ln b/ lnλ−⌋, where b = | detA|, and λ−
is such that (2.1) holds. A (p, q, s)-atom (associated with dilation A) is a function
a such that

supp a ⊂ {x : ρ(x0 − x) ≤ r} for some r > 0, x0 ∈ Rn,
(10.18)

||a||q ≤ r1/q−1/p,

(10.19)

∫

Rn

a(x)xαdx = 0 for |α| ≤ s.

(10.20)

Indeed, if ρ is the step homogeneous quasi-norm then the above conditions for
r = bj, j ∈ Z coincide with Definition 4.1. If ρ is a general quasi-norm then by
Lemma 2.4 there is a constant c > 0 so that for every atom a satisfying (10.18),
(10.19), and (10.20), ca is an atom in the sense of Definition 4.1. And vice versa.
Therefore, the definition of atoms is independent of the choice of a quasi-norm up
to the equivalence of a multiplicative constant.

We can also replace conditions (10.18) and (10.19) by

supp a ⊂ x0 +AjB(0, 1) for some j ∈ Z, x0 ∈ Rn,(10.21)

||a||q ≤ |AjB(0, 1)|1/q−1/p,(10.22)

where B(0, 1) = {x : |x| < 1}.
Proof. Theorem 10.3 states that (i) ⇐⇒ (ii). (i) =⇒ (iv) is a consequence

of the above Remark. (iv) =⇒ (iii) is automatic. It suffices to show (iii) =⇒ (ii).
Assume that (iii) holds for some 0 < p ≤ 1. Our goal is to show (ii). Denote

the Hardy space associated to the n × n dilation matrix A by Hp
A(Rn) or simply

Hp
A. We claim that Hp

A1
= Hp

A2
implies that there is a constant C > 0 so that

(10.23) 1/C||f ||Hp
A1

≤ ||f ||Hp
A2

≤ C||f ||Hp
A1

for all f ∈ Hp
A1

= Hp
A2
.

By Theorem 6.9 and the following Remark, (10.23) is equivalent to the same condi-
tion being satisfied for all bounded, compactly supported functions f with vanishing
moments up to order s, where s is large enough so that triplet (p,∞, s) is admissible
for both A1 and A2. The family of such functions consists precisely of scalar mul-
tiples of (p,∞, s)-atoms (associated with A1 or A2). It is not hard to see that the
equivalence of norms for atoms implies the corresponding statement for all elements
of Hp

A1
= Hp

A2
, i.e., (10.23).
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If (10.23) fails then we could find a sequence of elements (fi)i∈N in Hp
A1

so

that ||fi||Hp
A1

≤ 2−i and ||fi||Hp
A2

= 1 for all i ∈ N (or the similar statement with

the norms || · ||Hp
A1

, || · ||Hp
A2

interchanged). For any choice of vectors ki ∈ Rn the

series
∑

i∈N
τkifi converges in Hp

A1
(and hence in S′), since

∑

i∈N
||fi||pHp

A1

< ∞,

see Proposition 4.5. Here τkf(x) = f(x − k) denotes the translation of f by the
vector k ∈ Rn. We claim that for some choice of ki’s,

∑

i∈N
τkifi does not belong

to Hp
A2

. Indeed, if M denotes the (grand) maximal function associated to A2 then
find the sequence of numbers (ri)i∈N so that

(10.24)

∫

B(0,ri)

Mfi(x)
pdx > 1 − 2−i−1 for all i ∈ N.

Choose ki’s so that the balls B(ki, ri) are mutually disjoint. Let f =
∑

i∈N
τkifi ∈

S′. For each j ∈ N, τkjfj = f − ∑

i6=j τkifi with convergence in S′, hence

M(τkjfj)(x) ≤Mf(x) +
∑

i6=j

M(τkifi)(x) ≤
(

Mf(x)p +
∑

i6=j

M(τkifi)(x)
p

)1/p

,

for all x ∈ Rn. In particular

Mf(x)p ≥M(τkjfj)(x)
p −

∑

i6=j

M(τkifi)(x)
p for x ∈ B(kj , rj).

Integrating the above and using τkM = Mτk we have
∫

B(kj ,rj)

Mf(x)pdx ≥
∫

B(kj ,rj)

(

M(τkjfj)(x)
p −

∑

i6=j

M(τkifi)(x)
p

)

dx

=

∫

B(0,rj)

Mfj(x)
pdx−

∑

i6=j

∫

B(kj−ki,rj)

Mfi(x)
pdx

≥ 1 − 2−j−1 −
∑

i6=j

∫

B(0,ri)c
Mfi(x)

pdx ≥ 3/4 −
∑

i∈N

2−i−1 = 1/4,

by (10.24) and
∫

Rn Mfi(x)
pdx = 1. Summing the above over j ∈ N we have

∫

Rn

Mf(x)pdx ≥
∑

j∈N

∫

B(kj ,rj)

Mf(x)pdx = ∞.

Hence, f 6∈ Hp
A2

which is a contradiction of (iii). Therefore (10.23) holds.

We remark that if A is a dilation thenDAf(x) = | detA|1/pf(Ax) is an isometry
on Hp

A. More precisely, if f ∈ S′ and ϕ ∈ S then we define DAf by

〈DAf, ϕ〉 = | detA|1/p−1〈f, ϕ(A−1·)〉.

Indeed, by a simple calculation we have

M0
ϕf(Ax) = | detA|−1/pM0

ϕ(DAf)(x) for x ∈ Rn,

and by the definition of the grand maximal function and a change of variables

(10.25) ||f ||Hp
A

= ||DAf ||Hp
A

for all f ∈ Hp
A.
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Consider the family of functions f on Rn so that

(10.26) supp f ⊂ x0 +Aj11 A
j2
2 B(0, 1) for some j1, j2 ∈ Z, x0 ∈ Rn,

(10.27) ||f ||∞ ≤ | detA1|−j1/p| detA2|−j2/p,

(10.28)

∫

Rn

f(x)xαdx = 0 for all |α| ≤ s.

We claim that there is a constant C′ > 0 so that ||f ||Hp
A1

≤ C′ for every f satisfying

(10.26)–(10.28). Indeed, for any such f , D
A

j2
2
D
A

j1
1
f has support contained in

A−j2
2 A−j1

1 x0 + B(0, 1), has L∞ norm less than 1, and has vanishing moments up
to order s, hence is a constant multiple of an atom (satisfying (10.20)–(10.22) with
j = 0 and q = ∞). The claim now follows from (10.23) and the iterative form of
(10.25). Finally, let f0 be a fixed function satisfying (10.26)–(10.28) with x0 = 0,
j1 = j2 = 0,

(10.29) f0(x) =

{

δ0 for all x ∈ B(3/4e1, 1/4),

0 for all x 6∈ B(0, 1/2) ∪ B(3/4e1, 1/4).

It is clear that if δ0 > 0 is sufficiently small a function f0 satisfying the above
constraints exists.

To finish the proof, assume on the contrary that (ii) fails. By (10.2) this means
that either

lim sup
k→∞

||Ak1A−⌊ǫk⌋
2 || = ∞ or lim sup

k→−∞
||Ak1A−⌊ǫk⌋

2 || = ∞.

It is not hard to see the lim sup can be replaced by lim using the idea in the proof
of Theorem 10.3. For any k ∈ Z define d(k) as the smallest integer so that

||Ak1A−⌊ǫk⌋−d(k)
2 || ≤ 1.

Clearly, we have

||Ak1A−⌊ǫk⌋−d(k)
2 || = ||Ak1A−⌊ǫk⌋−d(k)

2 ||||A2||||A2||−1 ≥ ||A2||−1.

We either have d(k) → ∞ as k → ∞ or d(k) → ∞ as k → −∞. We will fix our
attention on the case when d(k) → ∞ as k → ∞; the other case is identical.

For simplicity denote Qk = Ak1A
−⌊ǫk⌋−d(k)
2 . Let zk ∈ Rn, |zk| = 1, be such that

|Qkzk| = ||Qk|| =: c(k). We know that ||A2||−1 ≤ c(k) ≤ 1. Let Uk be a unitary
matrix such that Uke1 = zk. Consider function

(10.30) fk = DU−1
k Q−1

k
f0 = DQ−1

k
DU−1

k
f0,

The function fk clearly satisfies (10.26)–(10.28) with x0 = 0, j1 = k, j2 = −⌊ǫk⌋ −
d(k). Since QkUkB(0, 1/2) ⊂ B(0, c(k)/2) and QkUkB(3/4e1, 1/4) = QkB(3/4zk,
1/4) then by (10.29) and (10.30)

(10.31)
x ∈ B(0, c(k)/2)c and fk(x) 6= 0 =⇒
x ∈ QkB(3/4zk, 1/4) and fk(x) = δk,
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0

c(k
)/2

c(k
)/4

3/4Qkzk

Figure 3. The support of fk is contained in the shaded
regions. The function fk is equal to δk in the darker
ellipse.

where δk = δ0| detA1|−k/p| detA2|⌊ǫk⌋/p+d(k)/p. Let ϕ ∈ S be a nonnegative func-
tion such that

(10.32) ϕ(x) =

{

1 for x ∈ B(0, 1/8||A2||−1),

0 for x 6∈ B(0, 3/16||A2||−1).

We claim that ||M0
ϕfk||p → ∞ as k → ∞. Indeed, if z ∈ B(3/4Qkzk, 1/16||A2||−1)

then

(10.33)

M0
ϕfk(z) ≥ |fk ∗ ϕ(z)| =

∣

∣

∣

∣

∫

Rn

fk(x)ϕ(z − x)dx

∣

∣

∣

∣

= δk

∫

Rn

1QkB(3/4zk,1/4)(x)ϕ(z − x)dx

≥ δk|B(z, 1/8||A2||−1) ∩QkB(3/4zk, 1/4)|,

by (10.31) and (10.32) since ϕ(z − x) 6= 0 implies

x ∈ B(0, 3/16||A2||−1) + B(3/4Qkzk, 1/16||A2||−1) = B(3/4Qkzk, 1/4||A2||−1),

and hence x ∈ B(0, c(k)/2)c. By (10.33) and Lemma 10.6 applied to P = 1/4Qk
and r = (2c(k)||A2||)−1

M0
ϕfk(z) ≥ δk|B(z − 3/4Qkzk, 1/8||A2||−1) ∩ PB(0, 1)| ≥ δk(r/2)n|PB(0, 1)|

≥ | detQk||B(0, 1/4)|δk(4||A2||)−n

≥ δ0| detA2|(d(k)−1)(1/p−1)|B(0, 1/4)|(4||A2||)−n = c| detA2|d(k)(1/p−1),
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by (10.4). Therefore, if p < 1 then
∫

Rn

M0
ϕfk(z)

pdz ≥
∫

B(3/4Qkzk,1/16||A2||−1)

M0
ϕfk(z)

pdz

≥ cp|B(0, 1/16||A2||−1)|| detA2|d(k)(1−p) → ∞ as k → ∞.

By Theorem 7.1, ||fk||Hp
A1

→ ∞ as k → ∞ which contradicts ||fk||Hp
A1

≤ C′.

Therefore, (ii) must necessarily hold if p < 1.
The case p = 1 requires a special argument. We have ||fk||1 = ||f0||1 and

supp fk ⊂ QkB(0, 1) for all k ∈ N. Since S is a separable space there is a subse-
quence (fki)i∈N converging to some f ∈ S′, and r = limi→∞ c(ki) exists. Clearly f
is a regular Borel measure with compact support which is singular with respect to
the Lebesgue measure since | supp fk| → 0 as k → ∞. Furthermore, f 6= 0 which
can be verified by testing f with an appropriate (nonnegative, radial) test func-
tion ϕ ∈ S vanishing on B(0, r/2). Let M denotes the (grand) maximal function
associated to A1. By Fatou’s Lemma

∫

Rn

Mf(x)dx ≤
∫

Rn

lim inf
i→∞

Mfki(x)dx ≤ lim inf
i→∞

∫

Rn

Mfki(x)dx

≤ lim inf
i→∞

||fki ||H1
A1

≤ C′.

Hence f ∈ H1
A1

. But f 6∈ L1 which is a contradiction of H1
A1

(Rn) ⊂ L1(Rn). This
finishes the proof of Theorem 10.5. �

Lemma 10.6. Suppose Γ = PB(0, 1) = {x ∈ Rn : |P−1x| < 1} is an ellipsoid,
where P is some nondegenerate n× n matrix. For any 0 < r ≤ 1/2 we have

|B(z, ||P ||r) ∩ Γ|
|Γ| ≥ (r/2)n for all z ∈ B(0, ||P ||r/2).

Proof. Let c = ||P ||. For any z ∈ B(0, cr/2), B(0, cr/2) ⊂ B(z, cr) hence

|B(z, cr) ∩ Γ|
|Γ| ≥ |B(0, cr/2) ∩ PB(0, 1)|

|PB(0, 1)| =
|P−1B(0, cr/2) ∩ B(0, 1)|

|B(0, 1)|

≥ |B(0, r/2) ∩B(0, 1)|
|B(0, 1)| = (r/2)n. �

We close this section with a simple example of a distribution that differentiates
most anisotropicHp spaces. Although this example gives only a necessary condition
for Hp

A1
= Hp

A2
, 0 < p < 1, it motivated the author toward Theorem 10.5.

Lemma 10.7. Suppose 0 < p < 1 and A is a dilation. For fixed z ∈ Rn \ {0},
let f = δ0 − δz ∈ S′, where δz denotes the point mass at z. Then

(10.34)

∫

Rn

M0
ϕf(x)pdx <∞ ⇐⇒

∞
∑

l=1

|A−lz|p| detA|(1−p)l <∞,

where ϕ ∈ S,
∫

ϕ 6= 0.
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Proof. Since M0
ϕδ0(x) ≈ 1/ρ(x), where ρ is a quasi-norm associated to A,

M0
ϕδ0 is locally in Lp (0 < p < 1). Therefore, only the behavior of M0

ϕ at infinity is
of importance. For simplicity we choose a nonnegative ϕ ∈ S so that ϕ(x) = 1 for
all x ∈ B0 and suppϕ ⊂ B1, where Bi’s come from Definition 2.5. By the Mean
Value Theorem

∫

B1\B0

|〈∇ϕ(x), w〉|pdx > 0 for any w ∈ Rn \ {0},

where ∇ϕ is the gradient of ϕ. By continuity

inf
|w|=1

∫

B1\B0

|〈∇ϕ(x), w〉|pdx > 0.

Since |ϕ(x)−ϕ(x−w)−〈∇ϕ(x), w〉|/|w| → 0 as |w| → 0 uniformly over x ∈ B1\B0,
there is a constant c > 0 so that

(10.35)

∫

B1\B0

|ϕ(x) − ϕ(x − w)|pdx ≥ c|w|p for all |w| ≤ 1.

We have

(10.36)
M0
ϕf(x) = sup

k∈Z

b−k
∣

∣

∣

∣

∫

f(y)ϕ(A−k(x− y))dy

∣

∣

∣

∣

= sup
k∈Z

b−k|ϕ(A−kx) − ϕ(A−k(x− z))|,

where b = | detA|. Without loss of generality we can assume that |z| ≤ 1. Suppose
x ∈ Bl+1 \Bl for some l ≥ l0, where l0 is sufficiently large so that (Bl)

c +B(0, 1) ⊂
(Bl−1)

c for all l ≥ l0. Since x−z ∈ (Bl−1)
c the supremum in (10.36) runs effectively

only for k ≥ l − 1, and

M0
ϕf(x) ≤ b1−l sup

y∈Rn

|∇ϕ(y)| sup
k≥l−1

|A−kz| ≤ Cb−l|A−lz|.

Therefore
∫

Bl+1\Bl

M0
ϕf(x)pdx ≤ Cpbl+1b−lp|A−lz|p = Cpb(1−p)l+1|A−lz|p.

On the other hand by (10.35)
∫

Bl+1\Bl

M0
ϕf(x)pdx ≥ b−lp

∫

Bl+1\Bl

|ϕ(A−lx) − ϕ(A−l(x− z))|pdx

= b−lpbl
∫

B1\B0

|ϕ(x) − ϕ(x −A−lz)|pdx ≥ cb(1−p)l|A−lz|p.

Summing the last two estimates over l ≥ l0 yields (10.34). �

Corollary 10.8. Suppose 0 < p < 1, A is a dilation, and z ∈ Rn \ {0}. The
following are equivalent:

δ0 − δz ∈ Hp
A,

|A−lz|| detA|(1/p−1)l → 0 as l → ∞,

z ∈ span

(

⋃

|λ|>| detA|1/p−1

ker(A− λId)n
)

.
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Proof. Corollary follows easily from Lemmas 10.4 and 10.7. �

Example. Suppose A1 and A2 are dilations. Let λi1, . . . , λ
i
n be eigenvalues of

Ai (taken according to multiplicity) so that |λi1| ≤ . . . ≤ |λin|, i = 1, 2. Suppose that
Hp
A1

= Hp
A2

for all 0 < p < 1. By Corollary 10.8 this implies (r = | detA1|1/p−1)

span
⋃

|λ|>r

ker(A1 − λId)n = span
⋃

|λ|>r1/ε

ker(A2 − λId)n for all r > 1,

where ǫ is given by (10.3). In particular, by counting dimensions we have

(10.37) |λ1
j |1/ ln | detA1| = |λ2

j |1/ ln | detA2| for all j = 1, . . . , n.

Naturally this condition falls short of sufficiency (in comparison with (10.7), for
example). Nevertheless, it does give a quick way of checking whether two dilations
might generate the same anisotropic Hp spaces. In fact, (10.37) comes very close
to characterizing those Hardy spaces which are equivalent up to a linear transfor-
mation, as we will see in Theorem 10.10.

Definition 10.9. We say that Hp
A1

and Hp
A2

are equivalent up to a linear

transformation, and write Hp
A1

∼= Hp
A2

if there is a nonsingular n×n matrix P such

that DP is an isomorphism between Hp
A1

and Hp
A2

. We say that two quasi-norms
are equivalent up to a linear transformation if there is a constant c > 0 and a
nonsingular n× n matrix P such that

1/cρ1(x) ≤ ρ2(Px) ≤ cρ1(x) for all x ∈ Rn.

Theorem 10.10. Suppose we have two dilations A1 and A2 on Rn. The fol-
lowing are equivalent:
(i) the quasi-norms ρ1 and ρ2 associated to A1 and A2, respectively, are equivalent

up to a linear transformation,
(ii) for all r > 1 and m = 1, 2, . . . we have

(10.38)
∑

|λ|=rǫ

dim ker(A1 − λId)m =
∑

|λ|=r

dimker(A2 − λId)m,

where ǫ is given by (10.3),
(iii) Hp

A1

∼= Hp
A2

for all 0 < p ≤ 1,

(iv) Hp
A1

∼= Hp
A2

for some 0 < p ≤ 1.

Proof. Without loss of generality we can assume that the dilations A1 and
A2 have only positive eigenvalues and detA1 = detA2 = b by Theorem 10.5.

Assume (i) holds. Note that ρ2(P ·) is a quasi-norm associated with the dilation
P−1A2P . Indeed,

ρ2(P (P−1A2Px)) = | detA2|ρ2(Px) = | det(P−1A2P )|ρ2(x).

Since the quasi-norms ρ1 and ρ2(P ·) are equivalent

ker(A1 − rId)m = ker(P−1A2P − rId)m = ker(P−1(A2 − rId)mP )

=P−1(ker(A2 − rId)m),

for any r > 1, m = 1, 2, . . . by Theorem 10.5. Hence (ii) holds.
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Assume (ii) holds, i.e.,

(10.39) dimker(A1 − rId)m = dimker(A2 − rId)m, for all r > 1,m = 1, 2, . . .

If r is an eigenvalue of A1 then the number of Jordan blocks of size ≥ m corre-
sponding to r is equal to dim ker(A1 − rId)m − dimker(A1 − rId)m−1. If r is not
an eigenvalue of A1 this number equals 0 regardless of m. By (10.39) the number
of Jordan blocks of size m corresponding to the eigenvalue r is the same for both
A1 and A2 and therefore the matrices A1 and A2 have equivalent Jordan decompo-
sitions. So there is a nonsingular n×n matrix P such that A1 = P−1A2P . Choose
any ϕ ∈ S with

∫

ϕ 6= 0. Let ϕk(x) = b−kϕ(A−k
1 x) and ψk(x) = b−kψ(A−k

2 x),
where ψ(x) = | detP−1|ϕ(P−1x). Given any f ∈ S′ we have

(f ∗ ϕk)(x) = b−k
∫

f(y)ϕ(P−1A−k
2 P (x− y))dy

= b−k| detP−1|
∫

f(P−1y)ϕ(P−1A−k
2 (Px− y))dy

=

∫

f(P−1y)ψk(Px− y)dy = | detP |1/p(DP−1f ∗ ψk)(Px).

Therefore, ||M0
ϕf ||p = ||M0

ψDP−1f ||p, where the maximal functions are associated

to A1 and A2, respectively. Thus, ||f ||Hp
A1

∼ ||DP−1f ||Hp
A2

for any f , and Hp
A1

∼=
Hp
A2

for any 0 < p ≤ 1, thus (iii) holds. Since (iii) trivially implies (iv), it suffices
to show (iv) =⇒ (i).

Assume (iv) holds, i.e., for some 0 < p ≤ 1, ||f ||Hp
A1

∼ ||DP−1f ||Hp
A2

for any

f ∈ Hp
A1

. Consider the family of functions f on Rn such that

(10.40) supp f ⊂ x0 +Aj11 P
−1Aj22 PB(0, 1) for some j1, j2 ∈ Z, x0 ∈ Rn,

(10.41) ||f ||∞ ≤ b−j1/p−j2/p,

(10.42)

∫

Rn

f(x)xαdx = 0 for all |α| ≤ s.

We claim that there is a constant C′ > 0 so that ||f ||Hp
A1

≤ C′ for every f satisfying

(10.40)–(10.42). Indeed, for any such f , D
A

j2
2
DP−1D

A
j1
1
f has support contained in

A−j2
2 PA−j1

1 x0 + PB(0, 1), has L∞ norm less than | detP |−1/p, and has vanishing
moments up to order s, hence is a constant multiple of an atom. The claim now
follows from the hypothesis and the iterative form of (10.25). By the proof of
Theorem 10.5 we conclude that the dilations A1 and P−1A2P have equivalent
quasi-norms ρ1 and ρ̃2, respectively. Define ρ2(x) = ρ̃2(P

−1x). Clearly ρ2 is a
quasi-norm associated with the dilation A2 and ρ1 and ρ2(P ·) are equivalent. This
shows (i) and ends the proof. �
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CHAPTER 2

Wavelets

1. Introduction

In this chapter we present constructions of orthogonal and tight frame wavelets
in the Schwartz class. We investigate the limitations on regularity of orthogonal
wavelets imposed by the form of a dilation. We show that sufficiently regular
wavelets form an unconditional basis for the anisotropic Hardy space associated
this dilation.

Historical background. The theory of wavelets is a relatively new area of
mathematics. The first example of an object now called a wavelet is the Haar func-
tion introduced by Haar [Ha] in 1910. Haar showed that the appropriate translates
and dilates of Haar function form an orthonormal basis of L2([0, 1]). The second
example of wavelets has been introduced by Strömberg [Sö] in 1981. Strömberg
wavelets can be constructed to be Cr smooth with exponential decay at infinity for
any integer r ≥ 1. Strömberg has also shown that they form an unconditional basis
for the Hardy space Hp(Rn), 0 < p ≤ 1.

The theory of wavelets has taken off with the construction of wavelets in the
Schwartz class by Meyer [Me] in 1985. Soon after Daubechies [Da1, Da2] has
constructed compactly supported wavelets in Cr class for any integer r ≥ 1. In the
first few years of its existence the theory of wavelets has grown exponentially and
it is still a very active area of research both in pure and applied mathematics. For
example, wavelets turn out to have many advantages in studying various function
spaces. They form an unconditional bases for a variety of function spaces, e.g. Lp,
Hardy, Hölder, Sobolov, and Besov spaces. In the applied sciences wavelets are
successfully used in many areas of signal analysis, e.g. image compression, noise
reduction, feature extraction, etc., see [JMR]. Here we are going to discuss only the
part of the theory concerned with wavelets in Euclidean spaces.

Description of the chapter. Dai, Larson and Speegle [DL, DLS] have shown
the existence of orthogonal wavelets (minimally supported in frequency) for all
dilations. However, the construction of more regular wavelets is a complex process
which is apparently impossible for “most” of dilations, see Theorem 3.1.

Our initial goal is the construction of regular orthogonal wavelets for a general
dilation matrix A preserving some lattice Γ. Strichartz [Sr] has constructed r-
regular wavelets with an associated r-regular multiresolution analysis for every r
and for a wide class of dilations having a Haar type wavelet basis, or equivalently
a self-affine tiling, see [GM]. This result was extended to all dilations preserving
some lattice in [Bo4].

However, the problem of finding ∞-regular multiwavelets, i.e., in the Schwartz
class, for a general dilation A preserving some lattice is still open. Nevertheless,
we are able to show the existence of orthogonal wavelets in the Schwartz class
associated with some positive power of A. This is the content of Section 2.
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In Section 3 we show that if move beyond the class of dilations preserving some
lattice, regular wavelets may not exists. In fact, we show that for a large class
of dilations all multiwavelets must be combined minimally supported in frequency.
Nevertheless, in Section 4 we show that ∞-regular tight frame wavelets exist for
any dilation matrix.

In Section 5 we show that r-regular wavelets associated with a dilation A form
an unconditional basis for the anisotropic Hardy space Hp

A associated with A. This
generalizes the result of Meyer [Me] who showed this in the isotropic case. We
remark that unconditionality of multiwavelets with arbitrary dilations in Lp space
(1 < p <∞) was shown by Pompe [Po].

In the following section we study the sequence space of coefficients of elements
ofHp in the wavelet expansion. In the isotropic case this sequence space was studied
by Meyer [Me] and Frazier and Jawerth [FJ1, FJ2] in the scale of Triebel-Lizorkin
spaces.

Wavelet preliminaries. Throughout Section 2, we are going to assume that
we have a lattice Γ (Γ = PZn for some nondegenerate n × n matrix P ) and a
dilation matrix A preserving Γ, i.e., all eigenvalues λ of A satisfy |λ| > 1, and
AΓ ⊂ Γ. Without loss of generality, we will assume that Γ = Zn.

Definition 1.1. Let Ψ be a finite family of functions Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn). We say that Ψ is a wavelet family (or a multiwavelet) if {ψlj,k : j ∈ Z, k ∈
Zn, l = 1, . . . , L} is an orthonormal basis for L2(Rn). Here, for ψ ∈ L2(Rn) we use
the convention

ψj,k(x) = DAjτkψ(x) = | detA|j/2ψ(Ajx− k) j ∈ Z, k ∈ Zn,

where τyf(x) = f(x − y) is a translation operator by the vector y ∈ Rn, and

DAf(x) =
√

| detA|f(Ax) is a dilation operator by the matrix A.

Definition 1.2. By a multiresolution analysis we mean a sequence of closed
subspaces (Vi)i∈Z ⊂ L2(Rn) satisfying:
(i) Vi ⊂ Vi+1 for i ∈ Z,
(ii) Vi = DAiV0 for i ∈ Z,

(iii)
⋃

i∈Z
Vi = L2(Rn),

(iv)
⋂

i∈Z
Vi = {0},

(v) there exists ϕ called a scaling function such that {τkϕ}k∈Zn is an orthonormal
basis of V0.

We say that a wavelet family Ψ = {ψ1, . . . , ψL} is associated with a multires-
olution analysis (MRA), if the spaces

(1.1) Vi =
⊕

j<i

Wj , where Wj = span{ψlj,k : k ∈ Zn, l = 1, . . . , L},

form an MRA. This happens precisely when V0 as a shift invariant subspace of
L2(Rn) has dimension function DΨ(ξ) = 1 for a.e. ξ ∈ Rn. For the definition of
the dimension function for general shift invariant spaces, see [BDR, Bo3]. However,
the dimension function of V0 is given by the explicit formula,

(1.2) DΨ(ξ) =

L
∑

l=1

∞
∑

j=1

∑

k∈Zn

|ψ̂l(Bj(ξ + k))|2,
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where B = AT , see [Ba, BRS]. Since

(1.3)

∫

(0,1)n

DΨ(ξ)dξ = 1/(b− 1)
L

∑

l=1

||ψl||2,

a wavelet family Ψ = {ψ1, . . . , ψL} can be associated with an MRA only if L = b−1,
where b = | detA|.

Definition 1.3. We say that a function f on Rn is r-regular, if f is of class
Cr, r = 0, 1, . . . ,∞ and

(1.4) |∂αf(x)| ≤ cα,k(1 + |x|)−k,
for each k ∈ N, and each multi-index α, with |α| ≤ r. A wavelet family Ψ =
{ψ1, . . . , ψL} is r-regular, if ψ1, . . . , ψL are r-regular functions. An MRA is r-
regular if the subspace V0 given by (1.1) has an orthonormal basis of the form
{τkϕ : k ∈ Zn} for some r-regular scaling function ϕ.

If a wavelet family Ψ is r-regular for r sufficiently large, or more precisely

|ψ̂l(ξ)| are continuous and |ψ̂l(ξ)| ≤ C(1 + |ξ|)−n/2−ε for some ε > 0, then the sum
(1.2) converges uniformly on compact subsets of Rn \Zn to the continuous function
DΨ(ξ) having integer values. Therefore, by Zn-periodicity DΨ is constantly equal
d for some d ∈ N. If d = 1 then r-regular wavelet family Ψ comes from some
MRA (more generally, Ψ comes from an MRA with multiplicity d). This result was
essentially shown by Auscher [Au2, Au3, Theorem 10.1] (under slightly stronger

assumptions on ψ̂l’s). In general, we can not expect that this MRA is also r-regular;
for a counterexample see [MC, Chapter 8, Proposition 2]. Conversely, having an
r-regular MRA we can not, in general, deduce the existence of r-regular wavelet
family associated with it, see [Wo2, Theorem 5.10, Remark 5.6]. Nevertheless, we
can deduce the existence of r-regular wavelet family by using the following result,
see [Wo2, Corollary 5.17] which also holds for r = ∞.

Proposition 1.4 (Wojtaszczyk). Assume that we have a multiresolution ana-
lysis on Rn associated with an integral dilation A with | detA| = b. Assume that
this MRA has an r-regular scaling function ϕ(x) such that ϕ̂(ξ) is real for some
r = 0, 1, . . . ,∞. Then there exists a wavelet family associated with this MRA
consisting of a (b− 1) r-regular function.

Starting in Section 3 we relax the assumption that a dilation A has integer
entries and we only assume that A is expansive in the sense of Definition 2.1 in
Chapter 1. In Section 3 we show that in this setting r-regular orthogonal wavelet
bases may not exist in general. Consequently, starting in Section 4 we consider also
tight frame wavelets.
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2. Wavelets in the Schwartz class

In this section we are going to construct an MRA which has a scaling function
ϕ in the Schwartz class and ϕ̂(ξ) is real for some special class of dilations satisfying
a kind of expansiveness property. By Proposition 1.4, we can then find a wavelet
family in the Schwartz class associated with this MRA.

Definition 2.1. We say that the integral dilation B is strictly expansive if
there exists a compact set K ⊂ Rn such that
• 0 ∈ K◦, where K◦ is the interior of K,
• |K ∩ (l +K)| = δl,0 for l ∈ Zn,
• K ⊂ BK◦.

Definition 2.2. Given a set Y ⊂ Rn and ε > 0 we define its ε-interior Y −ε

and ε-neighborhood Y +ε by

Y −ε = {ξ ∈ Rn : B(ξ, ε) ⊂ Y },
Y +ε = {ξ ∈ Rn : B(ξ, ε) ∩ Y 6= ∅}.

Note that Y −ε is closed, Y +ε is open, and the interior of Y satisfies Y ◦ =
⋃

ε>0 Y
−ε. If the dilation B is strictly expansive and the compact set K satisfies

Definition 2.1, then there exists ε > 0 such that

(2.1) K+ε ⊂ B(K−ε).

We shall prove the following existence theorem.

Theorem 2.3. Suppose A is a dilation matrix with AZn ⊂ Zn with b = | detA|.
If the dilation B = AT is strictly expansive then there exists a multiresolution
analysis with a scaling function and an associated wavelet family of (b−1) functions
in the Schwartz class.

For the sake of completeness, we recall the proof of Theorem 2.3 from [BS1,
Theorem 3.2].

Proof. Let K and ε > 0 satisfy Definition 2.1 and (2.1). Choose a C∞

function g : Rn → [0,∞) such that
∫

Rn g = 1 and

(2.2) supp g := {ξ ∈ Rn : g(ξ) 6= 0} = B(0, ε).

Define the function f by

(2.3) f(ξ) = (1K ∗ g)(ξ).

Clearly f is in the class C∞, 0 ≤ f(ξ) ≤ 1, and

supp f = {ξ ∈ Rn : f(ξ) 6= 0} ⊂ K+ε,(2.4)

{ξ ∈ Rn : f(ξ) = 1} = K−ε.(2.5)

Moreover,

(2.6)
∑

k∈Zn

f(ξ + k) =
∑

k∈Zn

∫

Rn

1K(ξ + k − η)g(η)dη = 1 for all ξ ∈ Rn,

since
∑

k∈Zn 1K(ξ + k) = 1 for a.e. ξ ∈ Rn by Definition 2.1.
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Finally, define the function m : Rn → [0, 1] by

(2.7) m(ξ) =

√

∑

k∈Zn

f(B(ξ + k)).

Claim 2.4. The function m given by (2.7) is C∞, Zn-periodic, and

∑

d∈D

|m(ξ +B−1d)|2 = 1 for all ξ ∈ Rn,

(2.8)

m(ξ) > 0 =⇒ ξ ∈ Zn +B−1(K+ε),(2.9)

m(ξ) = 0 for ξ ∈ (B−1Zn \ Zn) +B−1(K−ε),(2.10)

where B = AT , and D = {d1, . . . , db} is the set of representatives of different cosets
of Zn/BZn, where b = | detA|.

Proof of Claim 2.4. To guarantee that m is C∞, the function f must “van-
ishes strongly”, i.e., if f(ξ0) = 0 for some ξ0 then δαf(ξ0) = 0 for any multi-index
α. It is clear that if nonnegative function f in C∞ “vanishes strongly” then

√
f is

also C∞.
The condition (2.8) is a consequence of

∑

d∈D

|m(ξ +B−1d)|2 =
∑

k∈Zn

∑

d∈D

f(B(ξ +B−1d+ k)) =
∑

k∈Zn

∑

d∈D

f(ξ + d+Bk) = 1,

by (2.6).
To see (2.9), take ξ such that m(ξ) > 0. By (2.4) and (2.7), B(ξ + k) ∈ K+ε

for some k ∈ Zn, and hence (2.9) holds.
We claim that (2.10) follows from (2.8) and

(2.11) m(ξ) = 1 for ξ ∈ Zn +B−1(K−ε).

Indeed, if ξ ∈ B−1d + k + B−1(K−ε) for some d ∈ D \ BZn and k ∈ Zn, then
by (2.11) we have m(ξ − B−1d) = 1. Hence by (2.8) m(ξ) = 0 and (2.10) holds.
Finally, (2.11) is the immediate consequence of (iii) and (2.7). This ends the proof
of the claim. �

We can write m in the Fourier expansion as

(2.12) m(ξ) =
1

√

| detA|
∑

k∈Zn

hke
−2πi〈k,ξ〉,

where we include the factor | detA|−1/2 outside the summation as in [Bo1]. Since
m is C∞, the coefficients hk decay polynomially at infinity, that is for all N > 0
there is CN > 0 so that

|hk| ≤ CN |k|−N for k ∈ Zn \ {0}.
Since m satisfies (2.8) and m(0) = 1, m is a low-pass filter which is regular in the
sense of the definition following [Bo1, Theorem 1]. By [Bo1, Theorem 5] ϕ ∈ L2(Rn)
defined by

(2.13) ϕ̂(ξ) =

∞
∏

j=1

m(B−jξ),
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has orthogonal translates, i.e.,

〈ϕ, τlϕ〉 = δl,0 for l ∈ Zn,

if and only if m satisfies the Cohen condition, that is there exists compact set
K̃ ⊂ Rn such that
• K̃ contains a neighborhood of zero,
• |K̃ ∩ (l + K̃)| = δl,0 for l ∈ Zn,

• m(B−jξ) 6= 0 for ξ ∈ K̃, j ≥ 1.

The first guess for K̃ to be K is in general incorrect, e.g. if K has isolated
points. Instead we claim that there is 0 < δ < 1 so that

(2.14) K̃ = {ξ ∈ K : |B(ξ, ε) ∩K| ≥ δ|B(ξ, ε)|}
does the job. Clearly, if ξ ∈ K̃ then h(ξ) 6= 0, hence f(ξ) 6= 0 and thus m(B−1ξ) 6=
0. By (2.1) B−1K̃ ⊂ B−1K+ε ⊂ K−ε ⊂ K̃ and thus m(B−jξ) 6= 0 for all j ≥ 1.
Finally, it suffices to check that

(2.15)
∑

k∈Zn

1K̃(ξ + k) ≥ 1 for all ξ ∈ Rn.

By the compactness of K there is a finite index set I ⊂ Zn such that

(2.16)
∑

k∈I

1K(ξ + k) ≥ 1 for all ξ ∈ [−1, 1]n.

Take any ξ ∈ [−1/2, 1/2]n and integrate (2.16) over B(ξ, ε) to obtain
∑

k∈I

|B(ξ + k, ε) ∩K| ≥ |B(ξ, ε)|.

Therefore, if we take δ = 1/#I then there is k ∈ I such that |B(ξ + k, ε) ∩K| ≥
δ|B(ξ, ε)| and hence ξ + k ∈ K̃. Thus, (2.15) holds and K̃ given by (2.14) satisfies
the Cohen condition. Therefore, ϕ is a scaling function for the multiresolution
analysis (Vj)j∈Z defined by

Vj = span{DAjτlϕ : l ∈ Zn} for j ∈ Z.

It remains to show that ϕ ∈ S. We are going to prove that ϕ is band-limited,
i.e., ϕ̂ is compactly supported. By (2.9) and (2.13)

(2.17) ϕ̂(ξ) 6= 0 =⇒ ξ ∈ BZn +K+ε.

On the other hand, by (2.10) m(B−jξ) = 0 for ξ ∈ Bj−1Zn \ BjZn +Bj−1(K−ε).
Since

∞
⋃

j=2

(Bj−1Zn \BjZn) = BZn \ {0},

and
K+ε ⊂ B(K−ε) ⊂ Bj−1(K−ε) for j ≥ 2,

we have

(2.18) ϕ̂(ξ) = 0 for ξ ∈ BZn \ {0} +K+ε.

Combining (2.17) and (2.18) we have ϕ̂(ξ) = 0 for ξ ∈ (K+ε)c. Therefore,
supp ϕ̂ ⊂ K+ε and ϕ is in the Schwartz class. To conclude the proof it suffices
to use Proposition 1.4 for r = ∞. �
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As a corollary of Theorem 2.3 we have the following.

Corollary 2.5. Suppose A is a dilation with integer entries with b = | detA|.
Then there exists m ∈ N and a multiresolution analysis with a scaling function
and a wavelet family of (bm − 1) functions in the Schwartz class associated to the
dilation Am.

Proof. It suffices to notice that Bm = (AT )m is strictly expansive for suffi-
ciently large m ∈ N and K = [−1/2, 1/2]n. �

Even though the number of functions in the multiwavelet in the above corollary
could be much bigger than b−1, Corollary 2.5 still has great significance. By results
of Section 5, a multiwavelet Ψ in the Schwartz class generates an unconditional basis
of Hp

A = Hp
Am for the whole range of 0 < p < ∞. This can not be achieved if we

use an r-regular multiwavelet instead. Finally, note that Corollary 2.5 also holds
for a larger class of dilations, e.g., dilations A such that some positive power of A
has integer entries.

It is not known whether there exist orthonormal wavelets in the Schwartz class
for dilations with integer entries that do not necessarily satisfy the strict expan-
siveness property. Speegle and the author [BS1] showed that one can construct an
∞-regular MRA associated with ∞-regular wavelet family for all 2 × 2 dilations
with integer entries. Since the case n = 1 is trivial, this problem remains open in
dimensions n ≥ 3.

Nevertheless, one can always show that there exist r-regular multiwavelets for
r <∞ and general dilations with integer entries.

Theorem 2.6. Suppose A is a dilation with integer entries. For every r ∈ N

there exists an r-regular multiresolution analysis and an associated r-regular wavelet
family of (| detA| − 1) functions.

Theorem 2.6 was shown by Strichartz [Sr] under an additional hypothesis that
A admits a self-affine tiling, see [GM, LW1–LW3]. This assumption was removed
by the author; the proof of Theorem 2.6 can be found in [Bo4].

Finally, we mention that Daubechies’ construction of arbitrarly smooth com-
pactly supported wavelets was extended to certain non-dyadic dilations in higher
dimensions, see [Ay1, Ay2, BW].
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3. Limitations on orthogonal wavelets

The construction of Section 2 applies only when the dilation A has integer
entries, or more generally, A preserves some lattice Γ = PZn, where P is an n× n
nonsingular matrix. If the dilation A does not preserve any lattice then there
could be no well localized wavelets, even 0-regular. Chui and Shi [CS] have shown
that all orthogonal wavelets associated with “almost any” irrational dilation in the
dimension n = 1 must be MSF (minimally supported in frequency). We are going
to show that the analogous statement holds for general multiwavelets.

We say that a multiwavelet Ψ = {ψ1, . . . , ψL} associated with A is MSF, if

|ψ̂l| = 1Wl
for some measurable sets Wl. By [BRS, Theorem 2.4] these sets are

characterized by

(3.1)

∑

k∈Zn

1Wl
(ξ + k)1Wl′

(ξ + k) = δl,l′ a.e. ξ ∈ Rn, l, l′ = 1, . . . , L,

∑

j∈Z

L
∑

l=1

1Wl
(Bjξ) = 1 a.e. ξ ∈ Rn,

where B = AT . We say that a multiwavelet Ψ = {ψ1, . . . , ψL} associated with A
is combined MSF if

(3.2)

L
∑

l=1

|ψ̂l(ξ)|2 = 1W (ξ) for a.e. ξ ∈ Rn,

for some multiwavelet set W of order L, i.e., W =
⋃L
l=1Wl for some W1, . . . ,WL

satisfying (3.1). By [BRS, Theorem 2.6] a multiwavelet set W of order L is char-
acterized by

∑

k∈Zn

1W (ξ + k) = L a.e. ξ ∈ Rn,(3.3)

∑

j∈Z

1W (Bjξ) = 1 a.e. ξ ∈ Rn,(3.4)

where B = AT .

Theorem 3.1. Suppose that a dilation A is such that for every integer j ≥ 1
the rows of A−j (treated as vectors in Rn) together with the standard basis vectors
e1, . . . , en are linearly independent over Q. Then any orthogonal multiwavelet Ψ =
{ψ1, . . . , ψL} associated with A is combined MSF, i.e., (3.2) holds for some set W
satisfying (3.3) and (3.4).

Proof. By the orthogonality

δl,l′δj,0δk,k′ = 〈ψlj,k, ψl
′

0,k′〉 = bj/2
∫

Rn

ψl(Ajx− k)ψl′ (x− k′)dx

= bj/2
∫

Rn

ψl(Ajx+Ajk′ − k)ψl′(x)dx
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for all j ∈ Z, k, k′ ∈ Zn, l, l′ = 1, . . . , L. By Plancherel’s formula

(3.5)

0 =

∫

Rn

ψ̂l′(ξ)ψ̂l(B−jξ)e2πi〈B
−jξ,Ajk′−k〉dξ

=

∫

Rn

ψ̂l′(ξ)ψ̂l(B−jξ)e2πi〈ξ,k
′−A−jk〉dξ.

By Lemma 3.2 we conclude that Zn+A−jZn is dense in Rn for all j ≥ 1. Therefore,

by the Fourier Inversion Formula and (3.5), ψ̂l
′

(ξ)ψ̂l(B−jξ) = 0 for a.e. ξ ∈ Rn and

all j ≥ 1, l, l′ = 1, . . . , L. Let W =
⋃L
l=1 supp ψ̂l. We have |W ∩ BjW | = 0 for

j ≥ 1, and hence for all j ∈ Z \ {0}. Now (3.4) holds because the multiwavelet

Ψ satisfies the discrete Calderón formula
∑l

l=1 |ψ̂l(Bjξ)|2 = 1 for a.e. ξ, see [Bo2,
CMW]. For j ∈ Z let

Wj = span{ψlj,k : k ∈ Zn, l = 1, . . . , L}.

Naturally we have W0 ⊂ {f ∈ L2 : supp f̂ ⊂ W}. But by (3.4) and
⊕

j∈Z
Wj =

L2(Rn) we must have

(3.6) W0 = {f ∈ L2 : supp f̂ ⊂W}.

The range function of a shift invariant space W0 is given by

J(ξ) = span{(ψ̂l(ξ + k))k∈Zn : l = 1, . . . , L} ⊂ ℓ2(Zn),

see [BDR, Bo3, Proposition 1.5]. Also by [Bo3, Proposition 1.5] and (3.6),

J(ξ) = {(sk)k∈Zn ∈ ℓ2(Zn) : sk = 0 for ξ + k 6∈W}.

Since the vectors (ψ̂l(ξ + k))k∈Zn , l = 1, . . . , L form an orthonormal basis of J(ξ)
we have

L
∑

l=1

〈s, (ψ̂l(ξ +m))m∈Zn〉(ψl(ξ + k))k∈Zn = s for all s ∈ J(ξ).

By taking s = ek ∈ J(ξ), where ξ + k ∈ W and ek’s are the standard basis vectors

of ℓ2(Zn), we conclude that
∑L

l=1 |ψ̂l(ξ+ k)|2 = 1 for ξ+ k ∈ W . This shows (3.2).

(3.3) is a consequence of (3.2) since
∑

k∈Zn |ψ̂l(ξ + k)|2 = 1 for a.e. ξ. �

It is worth noting that the above argument may be simplified if one applies the
spectral function introduced by Rzeszotnik [BR, Rz].

Lemma 3.2. Suppose D is n× n real matrix such that the rows of D (treated
as vectors in Rn) together with vectors e1, . . . , en are linearly independent over Q.
Then the set Zn +DZn is dense in Rn.

Since the author does not know an elementary proof of this result we are going
to show something more, namely that that a sequence obtained by a certain ordering
of DZn is uniformly distributed mod 1. We are going to follow the excellent book
of Kuipers and Niederreiter [KN].
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Definition 3.3. Suppose a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. We say
that a < b (a ≤ b) if aj < bj (aj ≤ bj) for all j = 1, . . . , n. The cube [a, b) is defined
as {x ∈ Rn : a ≤ x < b}. The fractional part of x ∈ Rn is {x} = ({x1}, . . . , {xn}),
where {x} = x − ⌊x⌋. Given a sequence (xk)k∈N ⊂ Rn, E ⊂ In = [0, 1)n, and
N ∈ N, let #(E;N) denote the number of points xk ∈ E, 1 ≤ k ≤ N . We say that
a sequence (xk)k∈N ⊂ Rn is uniformly distributed mod 1 if

(3.7) lim
N→∞

#([a, b);N)

N
=

n
∏

j=1

(bj − aj)

for all intervals [a, b) ⊂ In = [0, 1)n.

The Weyl Criterion, see [KN, Theorem 6.2, Chapter 1], says that a sequence
(xk)k∈N ⊂ Rn is u. d. mod 1 if and only if for every h ∈ Zn \ {0},

(3.8) lim
N→∞

1

N

N
∑

k=1

e2πi〈h,xk〉 = 0.

Therefore, a sequence (xk)k∈N ⊂ Rn is u. d. mod 1 if and only if for every
h ∈ Zn \ {0}, the sequence of real numbers (〈h,xk〉)k∈N is u. d. mod 1. By the
Weyl Criterion, see [KN, Example 6.1, Chapter 1], given θ = (θ1, . . . , θm) with the
property that the real numbers 1, θ1, . . . , θm are linearly independent over Q, the
sequence (kθ)k∈N is u. d. mod 1.

We are now ready to present the proof of Lemma 3.2.

Proof of Lemma 3.2. Given k = (k1, . . . , kn) ∈ Rn let ||k||∞ = max(|k1|,
. . . , |kn|). Let k1,k2, . . . be the ordering of all elements of Zn such that ||ki||∞ <
||kj ||∞ implies i < j. It suffices to show that the sequence (xi)i∈N = (Dki)i∈N is
u. d. mod 1. By (3.7) it suffices to show that

lim
N→∞

#([a, b); (2N + 1)n)

(2N + 1)n
=

n
∏

j=1

(bj − aj)

for all intervals [a, b) ⊂ In = [0, 1)n. Therefore, by the Weyl Criterion (3.8) we
must show that for every h ∈ Zn \ {0},

(3.9) lim
N→∞

1

(2N + 1)n

∑

k∈Zn

||k||∞≤N

e2πi〈h,Dk〉 = 0.

Fix any h ∈ Zn \ {0}. By our hypothesis there exists m0 = 1, . . . , n such that

θ =
∑n
j=1 hjdj,m0 6∈ Q, where D = (dj,m)m=1,... ,n

j=1,... ,n . Otherwise we would have
∑n

j=1 hj(dj,1, . . . , dj,n) ∈ Qn, which contradicts the linear independence of the rows
of D together with the standard basis vectors of Rn over Q. Since the sequence
(kθ)k∈N is u. d. mod 1, for every ε > 0 there is M such that for all N ≥M

(3.10)

∣

∣

∣

∣

N
∑

k=−N

1

2N + 1
e2πiθk

∣

∣

∣

∣

< ε.
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We also have

1

(2N + 1)n

∑

k∈Zn

||k||∞≤N

e2πi〈h,Dk〉

=

N
∑

k1=−N

. . .

N
∑

kn=−N

1

(2N + 1)n
e2πi

Pn
j=1

Pn
m=1 hjdj,mkm

=

N
∑

k1,...ǩm0 ... ,kn=−N

1

(2N + 1)n−1
e2πi

Pn
j=1

P

m 6=m0
hjdj,mkm

N
∑

km0=−N

1

2N + 1
e2πiθkm0

where ǩm0 means we omit the index km0 . Therefore, by (3.10) we have
∣

∣

∣

∣

1

(2N + 1)n

∑

k∈Zn

||k||∞≤N

e2πi〈h,Dk〉

∣

∣

∣

∣

< ε for all N ≥M.

Since ε > 0 is arbitrary this shows (3.9) and ends the proof of the lemma. �

Remarks. It is not hard to see that linear independence over Q of the rows
of A−j together with basis vectors e1, . . . , en is equivalent to B−jQn ∩ Qn = {0},
where B = AT . This, in turn, is equivalent to B−jZn ∩ Zn = {0}. Therefore, the
hypothesis of Theorem 3.1 can be written in a short form as

(3.11) (AT )jZn ∩ Zn = {0} for all j ∈ Z \ {0}.

Combined MSF multiwavelets are not well localized in the direct domain. In-
deed, if ψl ∈ L1 for all l = 1, . . . , L then ψ̂l is continuous and (3.2) can never hold.
Hence, combined MSF multiwavelets are of little use in other spaces than L2. A

notable exception is the Shannon wavelet ψ̂(ξ) = 1[−1,−1/2]∪[1/2,1], which generates
an unconditional basis for Lp spaces with 1 < p < ∞, see [Wo4]. Therefore, The-
orem 3.1 says then that orthogonal multiwavelets associated with “most” dilations
have some limitations in applications to other function spaces than L2.

It also turns out that biorthogonal wavelets are not a good surrogate. Indeed,
a slight modification of the proof of Theorem 3.1 shows that all biorthogonal multi-
wavelets Ψ = {ψ1, . . . , ψL} associated with a large class of dilations, satisfying the
hypothesis of Theorem 3.1, must necessarily be combined MSF. As a consequence,

a1W (ξ) ≤
L

∑

l=1

|ψ̂l(ξ)|2 ≤ c1W (ξ) for a.e. ξ ∈ Rn,

for some multiwavelet set W of order L and 0 < a ≤ c <∞. This can be shown by
adapting the proof of Theorem 3.1; for an alternative approach, see [Bo5]. There-
fore, biorthogonal wavelets associated with dilations satisfying (3.11) can not be
well localized in the direct domain.

Moreover, Speegle and the author showed that Theorem 3.1 is sharp in the
sense that it has a converse. For the proof of Theorem 3.3, see [BS2, Theorem 5.4].

Theorem 3.3. Suppose A is a dilation such that every orthogonal multiwavelet
Ψ associated with A is combined MSF. Then A must satisfy the hypothesis of The-
orem 3.1, i.e., (3.11) holds.
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Another interesting issue is to determine the class of dilation matrices that
allow regular orthogonal wavelets. As we have seen in Theorems 2.6 and 3.1, this
class certainly includes all dilations with integer entries and excludes all dilations
satisfying (3.11) and thus far from preserving the lattice Zn. This still leaves a large
class of dilations for which it is not known whether there exist regular wavelets.

In one dimension, the above problem goes back to Daubechies [Da2] who asked
whether there exist orthonormal wavelet bases with good time-frequency local-
ization for irrational dilation factors a. This question was partially answered by
Chui and Shi [CS]. The complete answer was given by the author who showed
that all orthonormal wavelets associated with irrational dilation factors have poor
time-frequency localization, see [Bo6]. Combining this with the construction of
∞-regular orthogonal wavelets for rational dilations due to Auscher [Au1, KL], we
obtain the complete picture in one dimension.

The higher dimensional version of this problem remains open. It is not even
known whether there are regular wavelets for diagonal 2×2 dilations such that one
entry is rational while the other is irrational. Therefore, it is perfectly conceivable
that there are dilations A such that all other dilations with the same quasi-norm

do not allow regular wavelet bases. A good candidate is the dilation A =

(

a 0
0 2

)

,

where a > 0 satisfies the condition that ∀r > 0, 2r ∈ Q =⇒ ar 6∈ Q. By
Theorem 10.5 in Chapter 1, all dilations A′ with Hp

A = Hp
A′ , 0 < p ≤ 1, must be

of the form A′ =

(

±ar 0
0 ±2r

)

, for some real r > 0. Hence, either arj or 2rj is

irrational for all integers j ≥ 1. Thus, it is very likely that there are no regular
wavelets associated with such dilations A′. This shows the importance of having a
substitute for orthonormal multiwavelets.
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4. Non-orthogonal wavelets in the Schwartz class

The results of Section 3 show the demand for an alternative to orthogonal
wavelets. In the theory of wavelets a natural substitute for an orthogonal basis is a
frame. In this section we show the existence of tight frame wavelets for all dilations.
This fact is probably a part of the folklore.

Frames were originally introduced by Duffin and Schaeffer [DS] to study non-
harmonic Fourier series. More recently, frames have found applications in many
other areas such as wavelets, Weyl-Heisenberg (Gabor) systems, sampling theory,
signal processing, etc. For a good introduction to frames, see [Da2, HeW, Yo]. For
a more extensive treatment of frame theory, see [Cz, HL]. We start by recalling the
notion of a Bessel family and a frame.

Definition 4.1. A subset X of a Hilbert space H is a Bessel family if there
exists c > 0 so that

(4.1)
∑

η∈X

|〈f, η〉|2 ≤ c||f ||2 for f ∈ H.

If in addition there exists 0 < a ≤ c such that

(4.2) a||f ||2 ≤
∑

η∈X

|〈f, η〉|2 ≤ c||f ||2 for f ∈ L2(Rn),

then X is a frame. A frame is tight if a, c can be chosen so that a = c.

Given a Bessel family X ⊂ H we define an analysis operator as a mapping H ∋
f 7→ (〈f, η〉)η∈X ∈ ℓ2(X). The dual of this map is the synthesis operator mapping
(cη)η∈X ∈ ℓ2(X) 7→ ∑

η∈X cηη ∈ H, where the series converges unconditionally in
H.

Definition 4.2. Let Ψ be a finite family of functions Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn). We say that Ψ is a tight frame multiwavelet (or a Bessel multiwavelet) if
{ψlj,k : j ∈ Z, k ∈ Zn, l = 1, . . . , L} is a tight frame with constant 1 for L2(Rn) (or

a Bessel family).

It is relatively easy to construct a tight frame multiwavelet for an arbitrary
dilation. Here we present a simple construction of multiwavelet consisting of a

single function ψ which is in the Schwartz class and ψ̂ is C∞ with compact support
based on the example in [Bo2].

Theorem 4.2. Given an arbitrary dilation A there is a tight frame wavelet ψ
in the Schwartz class.

Proof. For 0 < a < (4||B||)−1 consider η : Rn → [0,∞) of class C∞ such that

supp η = {ξ ∈ Rn : a < |ξ| < 2a||B||}.
It is not hard to give an explicit example of such function. Since the set {j ∈ Z :
a < ||Bjξ|| < 2||B||a} has at least one element for all ξ ∈ Rn \{0} we conclude that
η̃(ξ) =

∑

j∈Z
η(Bjξ) > 0 for all ξ 6= 0 and η̃ is C∞ on Rn \ {0}. Define ψ ∈ L2(Rn)

by ψ̂(ξ) =
√

η(ξ)/η̃(ξ). Clearly,

(4.3)
∑

j∈Z

|ψ̂(Bjξ)|2 =
∑

j∈Z

η(Bjξ)/η̃(Bjξ) =
∑

j∈Z

η(Bjξ)/η̃(ξ) = 1.
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By [Bo2, Lemma 3.1] we have

(4.4)

∑

j∈Z

∑

k∈Zn

|〈f, ψj,k〉|2 =
∑

j∈Z

bj
∫

Rn

|f̂(Bjξ)|2|ψ̂(ξ)|2dξ

+
∑

j∈Z

bj
∫

Rn

f̂(Bjξ)ψ̂(ξ)

[

∑

m∈Zn\{0}

f̂(Bj(ξ +m))ψ̂(ξ +m)

]

dξ,

for any f ∈ D, where

D = {f ∈ L2(Rn) : f̂ ∈ L∞(Rn), supp f̂ ⊂ K for some compact K ⊂ Rn \ {0}},
is a dense subspace of L2(Rn). Since supp ψ̂ ⊂ B(0, 1/2) ⊂ (−1/2, 1/2)n we have

∑

j∈Z

∑

k∈Zn

|〈f, ψj,k〉|2 = ||f ||22 for all f ∈ D,

and hence for all f ∈ L2(Rn) by (4.3) and (4.4). Therefore, {ψj,k}j∈Z,k∈Zn forms a
tight frame with constant 1 in L2(Rn). Note that this frame is not an orthogonal
basis since ||ψ||2 < 1. �
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5. Regular wavelets as an unconditional basis for Hp

Preliminaries in functional analysis. In this subsection we recall some
basic facts about quasi-Banach spaces.

Definition 5.1. Suppose X is a vector space over K (K is either R or C). We
say that the map || · || : X → [0,∞) is a quasi-norm on X if
(i) ||x|| = 0 ⇐⇒ x = 0,
(ii) ||αx|| = |α| · ||x|| for all α ∈ K, x ∈ X ,
(iii) there is c > 0 so that ||x+ y|| ≤ cmax(||x||, ||y||) for all x, y ∈ X .

We say that (X, || · ||) is a quasi-Banach space if || · || is a quasi-norm and X
equipped with || · || is complete as a metric linear space.

It is well-known, see [KPR], that the (Hausdorff) topological linear space which
is locally bounded, i.e., it has a bounded neighborhood of the origin, has a quasi-
norm. Conversely, the topology associated with any quasi-norm is locally bounded.

Obviously the condition (iii) is equivalent to the more common
(iii) there is c′ > 0 so that ||x+ y|| ≤ c′(||x|| + ||y||) for all x, y ∈ X .

Definition 5.2. For 0 < p ≤ 1 we say that the quasi-norm || · || on the vector
space X is p-subadditive if

(5.1) ||x+ y||p ≤ ||x||p + ||y||p for x, y ∈ X.

We say that a (X, || · ||) is p-convex space if || · || is p-subadditive. If, in addition, X
equipped with || · || is complete we say X is a p-Banach space. A 1-Banach space
is simply called a Banach space.

Naturally, every p-subadditive norm on X is a quasi-norm. Surprisingly, this
has a converse statement. By the Aoki-Rolewicz Theorem (see [KPR]) every vector
space X with a quasi-norm || · || has an equivalent quasi-norm ||| · ||| which is p-
subadditive for some 0 < p ≤ 1. Here p satisfies 21/p = c, where c is the same as in
(iii). Therefore, every quasi-Banach space is p-Banach for some 0 < p ≤ 1.

One could define a notion of a basis (sometimes called a Schauder basis) on
any F -space (a complete metric linear space), see [KPR]. Nevertheless, we are only
interested in unconditional bases in quasi-Banach spaces. Here we are following
[KLW, Wo3].

Definition 5.3. Let (em, e
∗
m)m∈M be a biorthogonal system in a quasi-Banach

space X , i.e., we have em ∈ X , e∗m ∈ X∗, and

e∗m(es) = δm,s for m, s ∈M.

The system (em, e
∗
m)m∈M is an unconditional basis in X if for every x ∈ X the series

∑

m∈M e∗m(x)em converges unconditionally to x, that is regardless of the ordering
of index set M . This implies that there exists a constant K such that

(5.2)

∣

∣

∣

∣

∣

∣

∣

∣

∑

m∈M

βme
∗
m(x)em

∣

∣

∣

∣

∣

∣

∣

∣

≤ K sup
m∈M

|βm| · ||x|| for all x ∈ X.

The smallest such constantK is called an unconditional basis constant of the system
(em, e

∗
m)m∈M .

Since actually the elements (em)m∈M determine the functionals (e∗m)m∈M it is
customary to speak about (em)m∈M as being an unconditional basis.

The following fact is going to be very useful.
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Lemma 5.4. For a series
∑

m∈N
xm in a quasi-Banach space X, the following

are equivalent:
(i) the series is unconditionally convergent, i.e.,

∑

m∈N
βmxm converges for any

choice of βm ∈ {0, 1},
(ii) for each permutation σ of N the series

∑

m∈N
xσ(m) is convergent,

(iii) for each bounded sequence (βm)m∈N of scalars the series
∑

m∈M βmxm is con-
vergent. Furthermore, there is a constant C > 0 such that

(5.3)

∣

∣

∣

∣

∣

∣

∣

∣

∑

m∈N

βmxm

∣

∣

∣

∣

∣

∣

∣

∣

≤ C sup
m∈N

|βm|.

Proof. The equivalence of (i) and (ii) is a well known fact due to Orlicz, see
[Ro, Theorem 3.8.2]. (iii) =⇒ (i) is trivial, whereas (iii) =⇒ (ii) follows from an
argument involving binary expansions.

Indeed, let || · || be a p-subadditive quasi-norm defining the topology on X ,
0 < p ≤ 1. For a finite subset F ⊂ N denote x(F ) =

∑

m∈F xm. Without loss

of generality we may assume 0 ≤ βm ≤ 1. For each m let βm =
∑∞
k=1 βm(k)2−k,

βm(k) ∈ {0, 1} be a dyadic expansion of βm. Since the series
∑

m∈N
xm is uncondi-

tionally Cauchy, given ε > 0 there exists N such that ||x(F )|| ≤ ε whenever F ⊂ N

is finite and minF ≥ N . For any such F we have

∑

m∈F

βmxm =
∞
∑

k=1

∑

m∈F

βm(k)2−kxm =
∞
∑

k=1

2−kx(Fk),

where Fk = {m ∈ F : βm(k) = 1}. Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

∑

m∈F

βmxm

∣

∣

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=1

2−kp||x(Fk)|| ≤ ε

∞
∑

k=1

2−kp.

Hence, the series
∑

m∈N
βmxm is unconditionally Cauchy. Since the last estimate

is independent of the choice 0 ≤ βm ≤ 1 we have (5.3). �

Calderón-Zygmund operators associated with wavelet expansions. In
this subsection we are going to show that a wide class of operators associated with
wavelet expansions are Calderón-Zygmund, and hence they are bounded on Hp.
The first result of this type was shown by Strömberg [Sö] for a particular class
of wavelets with exponential decay at infinity. Meyer extended this result to the
class of (isotropic) dyadic r-regular wavelets by Meyer [Me, Chapter 6]. Our goal
is to show that Meyer’s approach works also for non-isotropic wavelet expansions
for general dilations. The results of this subsection are valid if we replace the
orthogonality condition of wavelets by a Bessel condition.

Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) and Φ = {φ1, . . . , φL} are two
Bessel multiwavelets, see Section 4. We assume that Ψ and Φ which are r-regular
for some r ∈ N. We will also require that all ψl’s and φl’s have vanishing moments
up to a certain, see Theorem 5.6. Define the index set

Λ = {(l, j, k) : l = 1, . . . , L, j ∈ Z, k ∈ Zn}.

We consider the operators being a composition of three simple operations of analy-
sis, multiplication of the sequence space, and synthesis. Namely an analysis operator
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is a mapping

(5.4) L2(Rn) ∋ f 7→ (〈f, ψlj,k〉)(l,j,k)∈Λ ∈ ℓ2(Λ).

A multiplication operator by a sequence of bounded scalars ǫ = (ǫlj,k)(l,j,k)∈Λ ∈
ℓ∞(Λ) is a mapping

(5.5) ℓ2(Λ) ∋ (slj,k)(l,j,k)∈Λ 7→ (ǫlj,ks
l
j,k)(l,j,k)∈Λ ∈ ℓ2(Λ).

Finally, a synthesis operator is a mapping

(5.6) ℓ2(Λ) ∋ (slj,k)(l,j,k)∈Λ 7→
∑

(l,j,k)∈Λ

slj,kφ
l
j,k ∈ L2(Rn).

Given two Bessel multiwavelets Ψ and Φ, and a sequence of bounded scalars

ǫ = (ǫlj,k)
l=1,... ,L
(j,k)∈Z×Zn we define the operator Tǫ : L2(Rn) → L2(Rn) by

(5.7) Tǫ(f) =
∑

(l,j,k)∈Λ

ǫlj,k〈f, ψlj,k〉φlj,k.

The operator Tǫ is bounded as a composition of bounded operators.

Lemma 5.5. Suppose Ψ and Φ are r-regular Bessel multiwavelets. Then for any
sequence of scalars ǫ = (ǫlj,k)(l,j,k)∈Λ with |ǫlj,k| ≤ 1 the operators Tǫ given by (5.7)
are Calderòn-Zygmund of order r with uniformly bounded constants independent of
ǫ. Moreover, the kernels Kǫ(x, y) of Tǫ satisfy the symmetric (CZ-r) condition, i.e.,
there exists a constant C such that for every x 6= y

(5.8) |∂αy ∂βx [Kǫ(A
l·, Al·)](A−lx,A−ly)| ≤ C/ρ(x− y) = Cb−l for |α|, |β| ≤ r,

where l ∈ Z is the unique integer such that x− y ∈ Bl+1 \Bl.
Furthermore, if Φ consists of functions with vanishing moments up to order

s < r lnλ−/ lnλ+ then T ∗
ǫ (xα) = 0 for all |α| ≤ s.

Proof. For the sake of simplicity we are going to present the calculations only
when Ψ and Φ consist of a single function. The kernel Kǫ of the operator Tǫ given
by (5.7) is given by

(5.9)

Kǫ(x, y) =
∑

(j,k)∈Z×Zn

ǫj,kφj,k(x)ψj,k(y)

=
∑

(j,k)∈Z×Zn

ǫj,kb
jφ(Ajx− k)ψ(Ajy − k).

The formula (5.9) makes perfect sense if all but finitely many of ǫj,k’s are zeroes. In
general, the above series converges absolutely for all x 6= y and for any boundedly
supported f ∈ L2(Rn)

(5.10) Tǫf(x) =

∫

Rn

Kǫ(x, y)f(y)dy for x 6∈ supp f.

Furthermore, we claim that the convergence in (5.9) is uniform on compact subsets
of Ω = {(x, y) ∈ Rn × Rn : x 6= y}. Suppose that ρ(x − y) ≥ bl, i.e., x − y ∈ (Bl)

c
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for some l ∈ Z. By the Cauchy-Schwarz inequality

(5.11)

∑

j≤−l

∑

k∈Zn

|ǫj,kφj,k(x)ψj,k(y)| =
∑

j≤−l

bj
∑

k∈Zn

|φ(Ajx− k)ψ(Ajy − k)|

≤
∑

j≤−l

bj
(

∑

k∈Zn

|φ(Ajx− k)|2
)1/2(

∑

k∈Zn

|ψ(Ajy − k)|2
)1/2

≤ C
∑

j≤−l

bj = C
b

b− 1
b−l.

Here the constant C is such that
∑

k∈Zn

|ψ(z − k)|2 ≤ C and
∑

k∈Zn

|φ(z − k)|2 ≤ C for all z ∈ Rn.

To estimate the sum over j > −l we use the inequality

(5.12) |φ(Ajx− k)ψ(Ajy − k)| ≤ C(1 + |Ajx− k|)−n−1(1 + |Aj(x− y)|)−N ,

for someN satisfying bλ−N− < 1. (5.12) holds since both φ and ψ decay polynomially
fast and

(1 + |z|)(1 + |z′|) ≥ 1 + |z − z′| for any z, z′ ∈ Rn.

By (5.12)

(5.13)

∑

j>−l

∑

k∈Zn

|ǫj,kφj,k(x)ψj,k(y)|

≤ C
∑

j>−l

bj
∑

k∈Zn

(1 + |Ajx− k|)−n−1(1 + |Aj(x− y)|)−N

≤ C
∑

j>−l

bj |Aj(x− y)|−N ≤ C
∑

j>−l

bj(1/cλj+l− )−N

≤ Cb−l
∑

j>0

(bλ−N− )j ≤ Cb−l,

since Aj(x − y) ∈ (Bj+l)
c. Combining (5.11) and (5.13) we see that the series in

(5.9) converges absolutely and uniformly in the region ρ(x − y) ≥ bl. Since l ∈ Z

is arbitrary, we have uniform convergence on compact subsets of Ω. Furthermore,
the estimate (5.8) holds for α = β = 0. Since (5.10) holds for ǫ’s with all but
finitely many nonzero coefficients it holds for any ǫ by the Lebesgue Dominated
Convergence Theorem.

Suppose now that x − y ∈ Bl+1 \ Bl for some l ∈ Z. Formally, for any multi-
indices |α|, |β| ≤ r we have

(5.14)

∂αy ∂
β
x [K(Al·, Al·)](A−lx,A−ly)

=
∑

(j,k)∈Z×Zn

ǫj,kb
j∂β[φ(Aj+l · −k)](A−lx)∂α[ψ(Aj+l · −k)](A−ly).

To justify (5.14) we will show that the above series converges absolutely to some
value smaller than Cb−l. As before we estimate separately the sum over j ≤ −l
and j > −l. By the chain rule

|∂α[ψ(Aj+l · −k)](A−ly)| ≤ ||Aj+l|||α|||D|α|ψ(Ajy − k)|| ≤ C||D|α|ψ(Ajy − k)||,
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for j ≤ −l. Since φ and ψ are r-regular, by the Cauchy-Schwarz inequality

(5.15)

∑

j≤−l

bj
∑

k∈Zn

|∂β [φ(Aj+l · −k)](A−lx)||∂α[ψ(Aj+l · −k)](A−ly)|

≤ C
∑

j≤−l

bj
(

∑

k∈Zn

||D|β|φ(Ajx− k)||2
)1/2(

∑

k∈Zn

||D|α|ψ(Ajy − k)||2
)1/2

≤ Cb−l.

To estimate the sum over j > −l we use the inequality

|∂β[φ(Aj+l · −k)](A−lx)||∂α[ψ(Aj+l · −k)](A−ly)|
≤ C2||Aj+l||2r||D|β|φ(Ajx− k)|| · ||D|α|ψ(Ajy − k)||
≤ Cλ

2r(j+l)
+ (1 + |Ajx− k|)−n−1(1 + |Aj(x − y)|)−N ,

for some N satisfying bλ2r
+ λ

−N
− < 1. The above holds since both φ and ψ are

r-regular. Therefore

(5.16)

∑

j≤−l

bj
∑

k∈Zn

|∂β [φ(Aj+l · −k)](A−lx)||∂α[ψ(Aj+l · −k)](A−ly)|

≤
∑

j≤−l

Cλ
2r(j+l)
+ bj

∑

k∈Zn

(1 + |Ajx− k|)−n−1|Aj(x− y)|−N

≤ Cb−l
∑

j>0

(bλ2r
+ λ

−N
− )j ≤ Cb−l,

since Aj(x − y) ∈ Bj+l+1 \ Bj+l. Thus, the series in (5.14) converges absolutely
and we have equality there. By (5.15) and (5.16) the estimate (5.8) holds.

Finally, suppose φ has vanishing moments up to order s < r lnλ−/ lnλ+, i.e.,
∫

φ(x)xαdx = 0 for |α| ≤ s. Take any f ∈ L2 with compact support and vanishing
moments up to order r− 1. Assume that supp f ⊂ Bl for some l ∈ Z. Since Tε are
(CZ-r) with uniform constants

(5.17)

∫

Bl+ω

|Tǫf(x)|2dx ≤ C

|Tǫf(x)| ≤ Cρ(A−l−ωx)−δ for x ∈ (Bl+ω)c

by the proof of Lemma 9.5 in Chapter 1, where the constant C is independent
of the choice of ǫ. Here δ = r lnλ−/ ln b + 1. To guarantee the integrability of
Tǫf(x)(1 + |x|)s we must have δ > s lnλ+/ ln b+ 1 and thus s < r lnλ−/ lnλ+. By
(5.7) we have

(5.18)

∫

Tǫf(x)xαdx = 0 for |α| ≤ s,

if ǫj,k = 0 for all but finitely many (j, k)’s. Given a general ǫ = (ǫj,k) with |ǫj,k| ≤ 1
we define the sequence (ǫi)i∈N by

ǫij,k =

{

ǫj,k if |j|, |k| ≤ i,

0 otherwise.
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Since Kǫi(x, y) converges to Kǫ(x, y) as i→ ∞ uniformly on {(x, y) : ρ(x−y) ≥ bl}
we have

Tǫif(x) → Tǫf(x) as i→ ∞ for x ∈ (Bl+ω)c.

Since
∫

Tǫif(x)xαdx = 0 for all |α| ≤ s, i ∈ N we have (5.18) by the Lebesgue
Dominated Convergence Theorem and (5.17). This ends the proof of Lemma 5.5.�

Theorem 5.6. Suppose Ψ and Φ are r-regular Bessel multiwavelets for some
r. Suppose also that p satisfies

(5.19) 0 ≤ 1/p− 1 <
(lnλ−)2

ln b lnλ+
r.

If Φ consists of functions with vanishing moments up to order s = ⌊(1/p −
1) ln b/ lnλ−⌋ then for any sequence of scalars ǫ = (ǫlj,k)(l,j,k)∈Λ with |ǫlj,k| ≤ 1

then the operator Tǫ given by (5.7) extends to a bounded operator from Hp
A(Rn)

into Hp
A(Rn) with the norm independent of ǫ.

Proof. The proof is an immediate consequence of Lemma 5.5 and Theorem
9.8 in Chapter 1 since s < r lnλ−/ lnλ+. �

We shall need one more result.

Lemma 5.7. With all the assumptions of Theorem 5.6 we also assume that

we have a sequence (ǫi)i∈N in the unit ball of ℓ∞(Λ), i.e., |ǫi,lj,k| ≤ 1 for i ∈ N,

(l, j, k) ∈ Λ such that ǫi → ǫ weak-∗ in ℓ∞ as i→ ∞. In other words,

(5.20) ǫi,lj,k → ǫlj,k as i→ ∞ for all (l, j, k) ∈ Λ.

Then for any f ∈ Hp
A(Rn)

(5.21) Tǫif → Tǫf in Hp
A as i→ ∞.

Proof. Suppose first that f ∈ L2 is compactly supported with vanishing
moments up to order s, say supp f ⊂ Bl for some l ∈ Z. By (5.7), (5.17), and
(5.20)

(5.22)

∫

Bl+ω

|(Tǫi − Tǫ)f(x)|2dx→ 0 as i→ ∞,

|Tǫif(x)|, |Tǫf(x)| ≤ Cρ(A−l−ωx)−δ for x ∈ (Bl+ω)c,

|(Tǫi − Tǫ)f(x)| → 0 as i→ ∞ for x ∈ (Bl+ω)c.

Furthermore
∫

(Tǫi − Tǫ)f(x)xαdx = 0 for |α| ≤ s. To show that

(5.23) ||(Tǫi − Tǫ)f ||Hp
2,s

→ 0 as i→ ∞,

a slight modification of the proof of Lemma 9.3 in Chapter 1 is required. The proof
proceeds in the same manner, except that we are going to show that gj+1 − gj are
appropriate multiples of (p, 2, s)-atoms. We not only have

||gj+1 − gj||2 ≤ C4b
(j+1)(1/2−1/p)b(δ−1/p)(l+ω−j) for j ≥ l+ ω,



100 2. WAVELETS

where gj = π̃Bj ((Tǫi − Tǫ)f)1Bj , but also ||gj+1 − gj ||2 → 0 as i → ∞ by (5.22)
and the Lebesgue Dominated Convergence Theorem. This shows (5.23) for all
(p, 2, s)-atoms f . In particular, for any (p, 2, s)-atom a we have

(5.24) Tǫ(a) =
∑

(l,j,k)∈Λ

ǫlj,k〈a, ψlj,k〉φlj,k,

with the unconditional convergence in Hp
A. Given a general element f ∈ Hp

A we
find its atomic decomposition f =

∑

j∈N
κjaj with

∑

j∈N
|κj |p < ∞ and aj ’s are

(p, 2, s)-atoms. By (5.23) and the uniform boundedness of Tǫi’s

Tǫif =
∑

j∈N

κjTǫiaj →
∑

j∈N

κjTǫaj = Tǫf as i→ ∞.

Therefore (5.21) holds. This ends the proof of Lemma 5.7. �

As a corollary of the above considerations we have for all f ∈ Hp
A

(5.25)

Tǫ(f) =
∑

i∈N

κiTǫai =
∑

i∈N

κi
∑

(l,j,k)∈Λ

ǫlj,k〈ai, ψlj,k〉φlj,k

=
∑

(l,j,k)∈Λ

ǫlj,k

(

∑

i∈N

κi〈ai, ψlj,k〉
)

φlj,k =
∑

(l,j,k)∈Λ

ǫlj,k〈f, ψlj,k〉φlj,k,

since the above series converges unconditionally and the ψlj,k’s belong to the Cam-

panato space C
1/p−1
∞,s . The formula (5.25) is of practical importance because it says

that (5.7) holds also if f ∈ Hp
A for an appropriate range of p’s.

Wavelets as an unconditional basis. We are now ready to harvest the fruit
of our labor.

Theorem 5.8. Suppose Ψ is an r-regular multiwavelet consisting of functions
with vanishing moments up to the order ⌊r lnλ−/ lnλ+⌋. Then (ψlj,k)(l,j,k)∈Λ forms

an unconditional basis for Hp
A for all p satisfying (5.19).

Proof. We can apply Theorem 5.6 and Lemma 5.7, since

s = ⌊(1/p− 1) ln b/ lnλ−⌋ ≤ ⌊r lnλ−/ lnλ+⌋.

By Lemma 5.7 and (5.25)

f =
∑

(l,j,k)∈Λ

〈f, ψlj,k〉ψlj,k,

and the convergence is unconditional in Hp
A. Therefore, the system (ψlj,k)(l,j,k)∈Λ

is a basis for Hp
A, since Ψ is an orthonormal multiwavelet. �

We remark that the assumption in Theorem 5.8 that Ψ consists of functions
with vanishing moments is, in fact, a consequence of Ψ being an r-regular multi-
wavelet. This is a well-known fact for dyadic wavelets which can be found in [Bt,
Da2, Me]. This result was extended to general dilations with integer entries by the
author [Bo4, Theorem 4].
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Theorem 5.9. Suppose A is a dilation with integer entries and Ψ is an r-
regular orthonormal multiwavelet for some r ∈ N. Then

∫

Rn

xαψl(x)dx = 0 for all l = 1, . . . , L, |α| < r lnλ−/ lnλ+.

Therefore, the assumption in Theorem 5.8 that Ψ has vanishing moments is an
automatic consequence of r-regularity of Ψ. Even though the proof of Theorem 5.9
in [Bo4] works only for integer dilations, it is very likely that Theorem 5.9 holds
for all dilations. For example, Theorem 5.9 holds trivially for dilations A satisfying
(3.11), since such dilations do not allow r-regular wavelets. Hence, we conjecture
that Theorem 5.9 is valid for all dilations.

By Theorem 5.8 and standard interpolation theory we can also conclude that a
1-regular multiwavelet generates an unconditional basis in Lp for 1 < p <∞. This
can be shown to hold under fairly minimal decay conditions on Ψ, see [Po, Wo4].

What can we say if for some dilation A we cannot find an orthonormal r-regular
multiwavelets, e.g. when A does not preserve any lattice? Even though Theorem 5.8
still holds, it may become a vacuous statement due to the lack of r-regular wavelets,
see Theorem 3.1. Nevertheless, by Section 4 we can always find a non-orthonormal
wavelet ψ ∈ S such that (ψj,k)j∈Z,k∈Zn forms a tight frame in L2(Rn) and ψ has
all vanishing moments. We can now show that this wavelet forms a “tight frame”
for Hp

A.

Theorem 5.10. Suppose Ψ is an r-regular tight frame multiwavelet and p
satisfies (5.19). If Ψ consists of functions with vanishing moments up to the order
s = ⌊(1/p− 1) ln b/ lnλ−⌋, then (ψlj,k)(l,j,k)∈Λ forms a tight frame for Hp

A, i.e.,

(5.26) f =
∑

(l,j,k)∈Λ

〈f, ψlj,k〉ψlj,k for all f ∈ Hp
A,

and the convergence is unconditional in Hp
A.

The proof follows verbatim the proof of Theorem 5.8.
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6. Characterization of Hp in terms of wavelet coefficients

In this section we will characterize the sequence space of wavelet expansion
coefficients (〈f, ψlj,k〉) for f ∈ Hp

A, where Λ = {(l, j, k) : l = 1, . . . , L, j ∈ Z, k ∈ Zn}.
Let (ǫlj,k)(l,j,k)∈Λ be the sequence of independent identically distributed (i.i.d.)

random Bernoulli variables with P (ǫlj,k = 1) = P (ǫlj,k = −1) = 1/2. In other

words, if we consider the probability space ([0, 1], dt) then we can think of ǫlj,k(t) =

rσ(l,j,k)(t), where σ : Λ → N is a bijection and (ri(t))i∈N are the Rademacher

functions defined by ri(t) = sign(sin(2iπt)) for t ∈ [0, 1].
The fundamental result concerning the means of i.i.d. random Bernoulli vari-

ables is Khinchin’s (Hinqin) inequality.

Theorem 6.1. For any 0 < p < ∞ there are positive constants Ap, Bp such
that

(6.1) Ap

(

∑

i∈N

|ci|2
)1/2

≤
( ∫ 1

0

∣

∣

∣

∣

∑

i∈N

ciri(t)

∣

∣

∣

∣

p

dt

)1/p

≤ Bp

(

∑

i∈N

|ci|2
)1/2

,

for any sequence of scalars (ci).

The inequality (6.1) means that
∑

i ciri converges unconditionally in Lp if and
only if

∑

i ciri converges in L2, i.e.,
∑

i |ci|2 < ∞. It diverges in the Lp norm to
infinity if

∑

i |ci|2 = ∞.
We shall also need the Fefferman-Stein vector-valued maximal inequality, for a

proof see [FS1, St2]. Here M is the Hardy-Littlewood maximal operator on a space
of homogeneous type.

Theorem 6.2. Suppose 1 < p < ∞ and 1 < q ≤ ∞. Then there is a constant
Cp,q depending on p and q such that

(6.2)

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

i∈N

|Mfi|q
)1/q∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ Cp,q

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

i∈N

|fi|q
)1/q∣

∣

∣

∣

∣

∣

∣

∣

Lp

.

Our goal is to show the following lemma.

Lemma 6.3. Suppose 0 < p ≤ 1 and Ψ is an 0-regular Bessel multiwavelet con-
sisting of nonzero functions with vanishing moments up to the order s = ⌊(1/p −
1) ln b/ lnλ−⌋. Given a sequence of scalars (clj,k)(l,j,k)∈Λ, the following are equiva-
lent:

∑

(l,j,k)∈Λ

clj,kψ
l
j,k converges unconditionally in Hp

A,(6.3)

(

∑

(l,j,k)∈Λ

|clj,k|2|ψlj,k(x)|2
)1/2

∈ Lp(Rn),(6.4)

(

∑

(l,j,k)∈Λ

|clj,k|2|(1El
)j,k(x)|2

)1/2

∈ Lp(Rn),(6.5)

for any (or some) bounded measurable sets El ⊂ Rn with |El| > 0, l = 1, . . . , L.
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Before proceeding with the proof of Lemma 6.3 we need to introduce some
terminology. Let I be the family of dilated cubes, i.e.,

I = {Aj([0, 1]n + k) : j ∈ Z, k ∈ Zn}.
Given I = Aj([0, 1]n + k) ∈ I we define the scale of I by scale(I) = j. Let g be the
square function given by (6.5) for El = [0, 1]n,

(6.6) g(x) =

(

∑

(l,j,k)∈Λ

|clj,k|2|(1El
)j,k(x)|2

)1/2

=

( L
∑

l=1

∑

I∈I

|clI |2|I|−11I(x)

)1/2

,

where we use the convention clI = cl−j,k for a cube I = Aj([0, 1]n + k), j ∈ Z,
k ∈ Zn.

Definition 6.4. Suppose I ′ ⊂ I. We say that the cube I is stacked below
the cube J within the family I ′, and write I 4I′ J , if there is a chain of cubes
I = I0, I1, . . . , Is = J ∈ I′ such that

scale(Ii) < scale(Ii+1) and |Ii ∩ Ii+1| 6= 0 for all i = 0, . . . , s− 1.

The relation 4I′ induces a partial order in I ′. Let max(I ′) be the set of maximal
elements in I ′ with respect to 4I′.

If a subfamily I ′ does not contain arbitrary large cubes, i.e., supI∈I′ scale(I) <
∞, then for any cube I ∈ I′ there is always a cube J ∈ max(I ′) with I 4I′ J . In
general, a maximal cube is not unique unless, for example, the dilation A = 2Id
and we work with nicely nested dyadic cubes. We shall need a simple lemma.

Lemma 6.5. There is a universal constant η ∈ N such that whenever we have
two cubes I, J ∈ I′ with I 4I′ J = Aj([0, 1]n + k) then I ⊂ Aj(Bη + k).

In the above lemma a family I ′ does not play any role and can be substituted
by the whole family I.

Proof. Suppose first that J = [0, 1]n + k for some k ∈ Z. For any integer the
diameter of a cube with scale(I) = j is at most

diam(I) = diam(Aj [0, 1]n) ≤ ||Aj || diam([0, 1]n) = 2n||Aj ||.
Whenever we have a chain of cubes I0, I1, . . . , Is = J ∈ I satisfying Definition 6.4
then

diam

( s
⋃

i=0

Ii

)

≤
s

∑

i=0

diam(Ii) ≤ 2n
0

∑

j=−∞

||Aj || <∞.

Therefore, there exists η ∈ N such that I ⊂ Bη + k whenever I 4I J . If J =
Aj([0, 1]n+k) is arbitrary then I 4I J ⇐⇒ A−jI 4I A

−jJ . Thus, A−jI ⊂ Bη+k
and hence I ⊂ Aj(Bη + k). �

We also need the following elementary lemma.

Lemma 6.6. Suppose r1, r2 > 0 and P is an n×n real matrix with |Px| ≥ r1|x|
for all x ∈ Rn. Then there is a constant c = c(r1, r2) depending only on r1 and r2
such that

#(Zn ∩ PB(z, r2)) ≤ c| detP | for any z ∈ Rn.
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Proof. Note that

#(Zn ∩ PB(z, r2)) = #(P−1Zn ∩ B(z, r2))

≤ #{k ∈ Zn : P−1(k + (0, 1)n) ∩B(0, r2) 6= ∅}
≤ #{k ∈ Zn : P−1(k + (0, 1)n) ⊂ B(0, r2 + 2n/r1)}

≤ |B(0, r2 + 2n/r1)|
|P−1((0, 1)n)| = |B(0, r2 + 2n/r1)| · | detP |,

since diamP−1((0, 1)n) ≤ 2n/r1 and the family {P−1(k+(0, 1)n) : k ∈ Zn} consists
of pairwise disjoint sets. �

Proof of Lemma 6.3. Assume that (6.3) holds. Let (ǫlj,k) be a sequence
i.i.d. random Bernoulli variables. By Lemma 5.4 there exists a constant C such
that for any subset F ⊂ Λ

(6.7)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(l,j,k)∈F

ǫlj,k(t)c
l
j,kψ

l
j,k

∣

∣

∣

∣

∣

∣

∣

∣

Hp

≤ C for any t ∈ [0, 1].

The identity on L2(Rn) is a Calderón-Zygmund operator (of any order) hence it
extends to a bounded operator from Hp to Lp with norm 1 by Theorem 9.9 in
Chapter 1. If F ⊂ Λ is finite then by Khinchin’s inequality, the Fubini Theorem
and (6.7)

Ap

∫

Rn

(

∑

(l,j,k)∈F

|clj,k|2|ψlj,k(x)|2
)p/2

dx ≤
∫

Rn

∫ 1

0

∣

∣

∣

∣

∑

(l,j,k)∈F

ǫlj,k(t)c
l
j,kψ

l
j,k(x)

∣

∣

∣

∣

p

dtdx

≤
∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

∑

(l,j,k)∈F

ǫlj,k(t)c
l
j,kψ

l
j,k

∣

∣

∣

∣

∣

∣

∣

∣

p

Lp

dt ≤ Cp.

Since F ⊂ Λ is arbitrary, by Fatou’s Lemma we have

∫

Rn

(

∑

(l,j,k)∈Λ

|clj,k|2|ψlj,k(x)|2
)p/2

dx ≤ Cp/Ap,

which shows (6.4).

Assume now that (6.4) holds. Let δ > 0 be sufficiently small so that Ẽl = {x ∈
Rn : |ψl(x)| > δ} has nonzero measure for every l = 1, . . . , L. Since

∑

(l,j,k)∈Λ

|clj,k|2|ψlj,k(x)|2 ≥ δ2
∑

(l,j,k)∈Λ

|clj,k|2|(1Ẽl
)j,k(x)|2 for all x ∈ Rn,

(6.5) holds for some Ẽl’s. Choose any other bounded El’s with nonzero measure.
We can then find δ′ > 0 so that M(1Ẽl

)(x) ≥ δ′1El
(x) for all x ∈ Rn, where M

is the Hardy-Littlewood maximal operator associated to the dilation A given by
(3.15) in Chapter 1. Since M commutes with translations and dilations by the
power of A we have (M(1Ẽl

))j,k(x) = M((1Ẽl
)rj,k)

1/r(x) for any r > 0. Hence, for
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0 < r < p by Lemma 6.2

(δ′)p
∫

Rn

(

∑

(l,j,k)∈Λ

|clj,k|2|(1El
)j,k(x)|2

)p/2

dx

≤
∫

Rn

(

∑

(l,j,k)∈Λ

|clj,k|2M((1Ẽl
)rj,k)

2/r(x)

)p/2

dx

=

∫

Rn

(

∑

(l,j,k)∈Λ

|M(|clj,k|r(1Ẽl
)rj,k)(x)|2/r

)(r/2)(p/r)

dx

≤ (Cp/r,2/r)
p/r

∫

Rn

(

∑

(l,j,k)∈Λ

|clj,k|2|(1Ẽl
)j,k(x)|2

)p/2

dx,

which shows (6.5).
Finally, assume (6.5) holds with El = [0, 1]n for l = 1, . . . , L. We shall show

that after some rearrangement the series in (6.3) is an appropriate combination of
molecules.

For each r ∈ Z define Ωr = {x ∈ Rn : g(x) > 2r}, where g(x) is given by (6.6).
Clearly, Ωr+1 ⊂ Ωr and

(6.8)

∑

r∈Z

2pr|Ωr| =
∑

r∈Z

2pr
∞
∑

s=r

|Ωs+1 \ Ωs| =
∑

s∈Z

s
∑

r=−∞

2pr|Ωs+1 \ Ωs|

=
1

1 − 2−p

∑

s∈Z

2ps|Ωs+1 \ Ωs| ≤
1

1 − 2−p

∫

Rn

|g(x)|pdx.

We also define a subfamily of dilated cubes

Ir = {I ∈ I : |I ∩ Ωr| ≥ |I|/2 and |I ∩ Ωr+1| < |I|/2}.

Note that for any I ∈ I with clI 6= 0 for some l = 1, . . . , L, there is a unique r ∈ Z

such that I ∈ Ir.
For each r ∈ Z, we have

Ir =
⋃

J∈max(Ir)

{I ∈ Ir : I 4Ir J},

since the subfamily Ir does not contain arbitrary large cubes by |Ωr| < ∞. By
induction on J ∈ max(Ir) we can find pairwise disjoint subfamilies Ir,J satisfying

(6.9)
Ir,J ⊂ {I ∈ Ir : I 4Ir J}, Ir =

⋃

J∈max(Ir)

Ir,J ,

Ir,J ∩ Ir,J′ = ∅ for J 6= J ′ ∈ max(Ir).

We are now ready to rearrange the formal series in (6.3) as a combination of
molecules. Using the convention clI = cl−j,k, ψI = ψ−j,k for a cube I = Aj([0, 1]n+k)
we can write

∑

(l,j,k)∈Λ

clj,kψ
l
j,k =

L
∑

l=1

∑

I∈I

clIψ
l
I =

∑

r∈Z

∑

J∈max(Ir)

( L
∑

l=1

∑

I∈Ir,J

clIψ
l
I

)

,
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where Ir and Ir,j are given by (6.9). To show that this series converges in Hp
A it

suffices to show that
∑

I∈Ir,J
clIψ

l
I is an element of Hp

A and

(6.10)
∑

r∈Z

∑

J∈max(Ir)

∣

∣

∣

∣

∣

∣

∣

∣

L
∑

l=1

∑

I∈Ir,J

clIψ
l
I

∣

∣

∣

∣

∣

∣

∣

∣

p

Hp

<∞,

by the completeness of Hp
A and p-subadditivity of || · ||Hp .

Fix r ∈ Z and J = Aj0 ([0, 1]n + k0) ∈ max(Ir). We claim that there is a
constant C (independent of r and J) such that

(6.11)

∣

∣

∣

∣

∣

∣

∣

∣

L
∑

l=1

∑

I∈Ir,J

clIψ
l
I

∣

∣

∣

∣

∣

∣

∣

∣

Hp

≤ C2r|J |1/p.

By Lemma 6.5 we have

(6.12)

L
∑

l=1

∑

I∈Ir,J

|clI |2 ≤2

L
∑

l=1

∑

I∈Ir,J

|clI |2|I|−1|I \ Ωr+1|

≤2

L
∑

l=1

∑

I∈Ir,J

∫

(Aj0 (Bη+k0))\Ωr+1

|clI |2|I|−11I(x)dx

≤2

∫

(Aj0 (Bη+k0))\Ωr+1

|g(x)|2dx ≤ 2bj0+η22(r+1)

=8bj0+η22r,

since outside of Ωr+1 we have g(x) ≤ 2r+1.
Since {ψlI} is a Bessel family by (6.12) we have

1

|Bj0+η+ω|

∫

Bj0+η+ω+Aj0k0

∣

∣

∣

∣

L
∑

l=1

∑

I∈Ir,J

clIψ
l
I(x)

∣

∣

∣

∣

2

dx

≤ 1

bj0+η+ω

∣

∣

∣

∣

∣

∣

∣

∣

L
∑

l=1

∑

I∈Ir,J

clIψ
l
I

∣

∣

∣

∣

∣

∣

∣

∣

2

L2

≤ C

bj0+η+ω

L
∑

l=1

∑

I∈Ir,J

|clI |2 ≤ C22r.

For any I ∈ Ir,J by Lemma 6.5 we have I = Aj([0, 1]n + k) ⊂ Aj0(Bη + k0)
and thus Ajk ∈ Aj0k0 +Bj0+η. Therefore, for fixed j < j0 the number of such k’s
is bounded by Lemma 6.6

(6.13) #(Zn ∩ (Aj0−jk0 +Bj0−j+η)) ≤ cbj0−j+η .

Also for x ∈ Aj0k0 + (Bj0+η+ω)c we have

ρ(x−Aj0k0) ≤ bωρ(x−Ajk),

since Aj0k0−Ajk ∈ Bj0+η. Since Ψ is 0-regular, for any δ > 0 there is C = C(δ) > 0
such that |ψl(x)| ≤ Cρ(x)−δ for all x ∈ Rn. In particular, we can take δ satisfying
the hypothesis of Lemma 9.3 in Chapter 1. Therefore, for x ∈ Aj0k0 +(Bj0+η+ω)c,

|ψlI(x)|2 =|ψl−j,k(x)|2 = b−j|ψl(A−jx− k)|2 ≤ Cb−jρ(A−jx− k)−2δ

≤Cb2δωb−jρ(A−j(x−Aj0k0))
−2δ

=Cb−jb−2δ(j0−j+η)ρ(A−j0−η−ω(x−Aj0k0))
−2δ.
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Combining the above with (6.12) and (6.13), by the Cauchy-Schwarz inequality we
have

∣

∣

∣

∣

L
∑

l=1

∑

I∈Ir,J

clIψ
l
I(x)

∣

∣

∣

∣

≤
( L

∑

l=1

∑

I∈Ir,J

|clI |2
)1/2( L

∑

l=1

∑

I∈Ir,J

|ψlI(x)|2
)1/2

≤ b(j0+η)/22r
(

∑

j<j0

cbj0−j+ηCb−jb−2δ(j0−j+η)ρ(A−j0−η−ω(x −Aj0k0))
−2δ

)1/2

≤ C2r
(

∑

j<j0

b(2−2δ)(j0−j)

)1/2

ρ(A−j0−η−ω(x−Aj0k0))
−δ,

for x ∈ Aj0k0 + (Bj0+η+ω)c. By the Lebesgue Dominated Convergence Theorem
we also have

∫

Rn

( L
∑

l=1

∑

I∈Ir,J

clIψ
l
I(x)

)

xαdx = 0 for |α| ≤ s.

Therefore, all the hypotheses of Lemma 9.3 in Chapter 1 are satisfied and thus,

∣

∣

∣

∣

∣

∣

∣

∣

L
∑

l=1

∑

I∈Ir,J

clIψ
l
I

∣

∣

∣

∣

∣

∣

∣

∣

Hp

≤ C2r|Bj0+η+ω|1/p ≤ C2r|J |1/p.

This proves (6.11). To show (6.10) we use |J | ≤ 2|J∩Ωr| for J ∈ max(Ir) to obtain

∑

r∈Z

∑

J∈max(Ir)

∣

∣

∣

∣

∣

∣

∣

∣

L
∑

l=1

∑

I∈Ir,J

clIψ
l
I

∣

∣

∣

∣

∣

∣

∣

∣

p

Hp

≤ 2Cp
∑

r∈Z

∑

J∈max(Ir)

2pr|J ∩ Ωr|

≤ 2Cp
∑

r∈Z

2pr|Ωr| ≤
2Cp

1 − 2−p
||g||pLp .

Since the above estimate depends only on a magnitude of coefficients clI ’s, we obtain
the unconditional convergence in (6.3). This ends the proof of Lemma 6.3. �

Note that the assumption that Ψ is 0-regular in Lemma 6.3 can be slightly
relaxed. It follows from the proof that it suffices to assume |ψl(x)| ≤ Cρ(x)−δ for
l = 1, . . . , L with δ > max(1/p, s lnλ+/ ln b + 1) in order to apply Lemma 9.3 in
Chapter 1.

We are now ready to prove the characterization of the sequence space of wavelet
expansion coefficients of elements in Hp

A.

Theorem 6.7. Suppose p satisfies (5.19), and Ψ is an r-regular tight frame
multiwavelet with vanishing moments up to order s = ⌊(1/p− 1) ln b/ lnλ−⌋. Then
for any f ∈ Hp

A the series
∑

(l,j,k)∈Λ〈f, ψlj,k〉ψlj,k converges unconditionally to f in

Hp
A, and

(6.14)

||f ||Hp
A
∼

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

(l,j,k)∈Λ

|〈f, ψlj,k〉|2|ψlj,k(·)|2
)1/2∣

∣

∣

∣

∣

∣

∣

∣

Lp

∼
∣

∣

∣

∣

∣

∣

∣

∣

(

∑

(l,j,k)∈Λ

|〈f, ψlj,k〉|2|(1El
)j,k(·)|2

)1/2∣
∣

∣

∣

∣

∣

∣

∣

Lp

,
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for any (or some) bounded measurable sets El ⊂ Rn with |El| > 0, l = 1, . . . , L.
The equivalence constants in (6.14) do not depend on f .

If, in addition, Ψ is an orthonormal multiwavelet then for any (clj,k)(l,j,k)∈Λ

satisfying

(6.4)

(

∑

(l,j,k)∈Λ

|clj,k|2|ψlj,k(x)|2
)1/2

∈ Lp(Rn),

there is a unique f ∈ Hp
A such that clj,k = 〈f, ψlj,k〉 for all (l, j, k) ∈ Λ and (6.14)

holds.

Proof. By Theorem 5.10 we have (5.26). By Lemma 6.3 we have (6.14). The
fact that the equivalence constants in (6.14) do not depend on the choice of f follows
by analyzing the proof of Lemma 6.3.

Suppose, in addition, that Ψ is an orthogonal multiwavelet. Given a sequence
(clj,k)(l,j,k)∈Λ satisfying (6.4) by Lemma 6.3,

∑

(l,j,k)∈Λ c
l
j,kψ

l
j,k converges uncondi-

tionally to some element f ∈ Hp
A. Since ψl’s belong to the dual of Hp

A we conclude
that for any (l′, j′, k′) ∈ Λ

〈f, ψl′k′,j′〉 =

〈

∑

(l,j,k)∈Λ

clj,kψ
l
j,k, ψ

l′

j′,k′

〉

=
∑

(l,j,k)∈Λ

clj,k〈ψlj,k, ψl
′

j′,k′〉 = cl
′

j′,k′ .

Finally, (6.14) holds by Lemma 6.3. �

Wavelet expansion coefficients for Lp. It comes as no surprise that The-
orems 5.8, 5.10, and 6.7 can be extended for exponents p > 1. In fact, orthogonal
wavelets with very mild decay conditions already form an unconditional basis for
Lp, 1 < p < ∞, see [Po]. Analogously, we can characterize the sequence space of
wavelet expansion coefficients for Lp. This sequence space is given by exactly the
same formula, e.g., (6.4) or (6.5). To show this, we will need two simple lemmas
which hold for arbitrary measures, see [Wo2, Corollary 7.10]

Lemma 6.8. Suppose 0 < p < ∞ and (fi)i∈N ⊂ Lp. If
∑

i∈N
fi converges

unconditionally in Lp then ||(∑i∈N
|fi|2)1/2||p <∞. Moreover,

(6.15) ||(
∑

i∈N

|fi|2)1/2||p ≤ (Ap)
−1/p sup

t∈[0,1]

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈N

ri(t)fi

∣

∣

∣

∣

∣

∣

∣

∣

p

.

Proof. By Khinchin’s inequality and the Fubini Theorem we have

Ap

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

i∈F

|fi|2
)1/2∣

∣

∣

∣

∣

∣

∣

∣

p

p

≤
∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈F

ri(t)fi

∣

∣

∣

∣

∣

∣

∣

∣

p

p

dt ≤ Bp

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

i∈F

|fi|2
)1/2∣

∣

∣

∣

∣

∣

∣

∣

p

p

,

for any finite F ⊂ N. If
∑

i∈N
fi converges unconditionally in Lp then by Lemma

5.4,

C = sup
t∈[0,1]

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈N

ri(t)fi

∣

∣

∣

∣

∣

∣

∣

∣

p

<∞.

Hence, Ap||(
∑

i∈F |fi|2)1/2||pp ≤ Cp. Since F ⊂ N is arbitrary this shows (6.15). �
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Lemma 6.9. Suppose 0 < p < ∞ and (fi)i∈N ⊂ Lp is such that ||fi||p ≥ δ for
some δ > 0 and all i ∈ N. Then there is a sequence of coefficients (ǫi)i∈N, ǫi = ±1
such that

(6.16) lim sup
N→∞

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

ǫifi

∣

∣

∣

∣

∣

∣

∣

∣

p

= ∞.

Proof. We claim that it suffices to show

(6.17)

∫ (

∑

i∈N

|fi|2
)p/2

= ∞.

Assume for the time being that (6.17) holds. We claim that for any j ∈ N and
r > 0 there is N ≥ j and a sequence ǫj , . . . , ǫN with ǫi = ±1 such that

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=j

ǫifi

∣

∣

∣

∣

∣

∣

∣

∣

p

> r.

Indeed, it suffices to take N such that ||(∑N
i=j |fi|2)||p > r(Ap)

−1/p and apply

(6.15). By a simple induction we can now produce a sequence (ǫi)i∈N, ǫi = ±1
satisfying (6.16).

In order to show (6.17) we need to consider two cases. Suppose first that

(6.18) lim sup
i→∞

|{x : |fi(x)| > η}| = 0 for every η > 0.

If (6.18) holds then there is a subsequence (fij ) and a decreasing sequence of positive
numbers 1 = η0 > η1 > . . . , such that

(6.19)

∫

ηj<|fij
|<ηj−1

|fij |p > δ/2 for all j = 1, 2, . . .

Indeed, we are going to proceed by induction. Let i1 be such that
∫

|fi1 |<1
|fi1 |p >

3/4δ. Choose η1 such that
∫

|fi1 |≤η1
|fi1 |p < 1/4δ. Hence, (6.19) holds for j = 1.

Assume (6.19) holds up to some j > 1. By (6.18) we can pick ij+1 such that
∫

|fij+1
|<ηj

|fij+1 |p > 3/4δ. Choose ηj+1 such that
∫

|fij+1
|≤ηj+1

|fij+1 |p < 1/4δ. This

completes the induction step since
∫

ηj+1<|fij+1
|<ηj

|fij+1 |p > δ/2.

Define sets Sj = {x : ηj+1 < |fij+1(x)| < ηj}. Again by induction we can find a
subsequence (jk) such that

(6.20)

∫

Sjk
\(Sj1∪...∪Sjk−1

)

|fijk
|p > δ/4 for all k = 1, 2, . . .

Indeed, by (6.18) and (6.19) for any set S with |S| <∞,

lim inf
j→∞

∫

Sj\S

|fij |p ≥ δ/2,
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since ηj → 0 as j → ∞. Therefore by (6.20),

∫ (

∑

i∈N

|fi|2
)p/2

≥
∑

k∈N

∫

Sjk
\(Sj1∪...Sjk−1

)

|fijk
|p = ∞.

On the other hand, if (6.18) fails then there exist η, µ > 0 such that |{x :
|fi(x)| > η}| > µ for infinitely many i’s. After taking a subsequence we can assume
that this holds for all i ∈ N. Let Si = {x : |fi(x)| > η}. If |⋃i∈N

Si| < ∞
then necessarily

∑

i∈N
1Si(x) = ∞ on a set of positive measure. Therefore, the

square function in (6.17) is infinite on a set of positive measure. Otherwise, if
|⋃i∈N

Si| = ∞ then the square function is at least η on a set of infinite measure.
This shows (6.17) and ends the proof. �

The analog of Lemma 6.3 in the range 1 < p <∞ is the following lemma.

Lemma 6.10. Suppose 1 < p < ∞ and Ψ is an 1-regular Bessel multiwavelet
consisting of nonzero functions. Given a sequence of scalars (clj,k)(l,j,k)∈Λ, the fol-
lowing are equivalent:

∑

(l,j,k)∈Λ

clj,kψ
l
j,k converges unconditionally in Lp,(6.21)

(

∑

(l,j,k)∈Λ

|clj,k|2|ψlj,k(x)|2
)1/2

∈ Lp(Rn),(6.22)

(

∑

(l,j,k)∈Λ

|clj,k|2|(1El
)j,k(x)|2

)1/2

∈ Lp(Rn),(6.23)

for any (or some) bounded measurable sets El ⊂ Rn with |El| > 0, l = 1, . . . , L.

Before we present the proof we need to introduce the standardized version of
the sequence space under consideration. We also need a description of its dual
which can be found in [NT, Section 9].

Definition 6.11. Given 0 < p < ∞, a dilation A, and L ∈ N we define
ℓpA = ℓpA(Λ) as the space of all sequences c = (clj,k)(l,j,k)∈Λ such that

(6.24)

||c||ℓpA =

∣

∣

∣

∣

∣

∣

∣

∣

(

∑

(l,j,k)∈Λ

|clj,k|2|(1[0,1]n)j,k|2
)1/2∣

∣

∣

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

∣

∣

∣

( L
∑

l=1

∑

I∈I

|clI |2|I|−11I

)1/2∣
∣

∣

∣

∣

∣

∣

∣

p

<∞.

If the dilation A = 2Id and L = 1 then the sequence space ℓpA coincides with

the space ḟ0,2
p introduced by Frazier and Jawerth in [FJ2]. Obviously we could

have defined a whole scale of spaces ḟα,qp for a general dilation A. However, the

investigation of anisotropic homogeneous Triebel-Lizorkin spaces Ḟα,qp is beyond
the scope of this work. For the isotropic theory we refer the interested reader to
[FJW, Tr1, Tr2]; for the function space theory on spaces of homogeneous type, see
[Hn, HS, HW].
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Lemma 6.12. Suppose A is a dilation and 1 < p < ∞. The dual of ℓpA is
isometrically isomorphic to ℓqA, where 1/p+ 1/q = 1. The duality is given by

(6.25) 〈c, d〉 =
∑

(l,j,k)∈Λ

clj,kd
l
j,k =

L
∑

l=1

∑

I∈I

clId
l
I for c ∈ ℓpA, d ∈ ℓqA.

Proof. Consider the space Lp(ℓ2) = Lp(Rn, ℓ2(Z)⊕L) of functions f : Rn →
ℓ2(Z)⊕L. The norm of f = (f1, . . . , fL), where f l : Rn → ℓ2(Z) in this space is
given by

||f ||Lp(ℓ2) =

( ∫

Rn

( L
∑

l=1

||f l(x)||2ℓ2(Z)

)p/2

dx

)1/p

.

We can identify ℓpA as a subspace of Lp(ℓ2). Indeed, given c ∈ ℓpA consider the
function f = (f1, . . . , fL) whose j’th coordinate is given by

(6.26) f l(x)j =
∑

I∈I
scale(I)=j

clI |I|−1/21I(x) for l = 1, . . . , L.

This identification defines an isometric inclusion of ℓpA into Lp(ℓ2). Functional
analysis tells us that the dual of Lp(ℓ2) is isometrically isomorphic to Lq(ℓ2), where
1/p+ 1/q = 1. Furthermore, the duality is given by

(6.27) 〈f, g〉 =

∫

Rn

L
∑

l=1

〈f l(x), gl(x)〉dx for f ∈ Lp(ℓ2), g ∈ Lq(ℓ2).

Also (ℓpA)∗ is isomorphic with the quotient of Lq(ℓ2) and the annihilator of ℓpA,
which consists of functions f ∈ Lq(ℓ2) with

∫

I f
l(x)jdx = 0 for all l = 1, . . . , L,

I ∈ I, j = scale(I). Therefore, the dual of ℓpA can be identified with ℓqA. Moreover,
the dual of the inclusion ℓpA →֒ Lp(ℓ2) is a projection P : Lq(ℓ2) → (ℓpA)∗ given by

(Pf)(x)j =

L
∑

l=1

∑

I∈I
scale(I)=j

(

|I|−1

∫

I

f l(y)idy

)

1I .

The duality (6.25) follows from (6.26) and (6.27). �

Proof of Lemma 6.10. (6.21) =⇒ (6.22) follows from Lemma 6.8. (6.22)
⇐⇒ (6.23) is shown in the same way as in Lemma 6.3. However, (6.23) =⇒ (6.21)
is shown in a different manner since we do not have an atomic decomposition at
our disposal for p > 1.

By Lemma 5.5 for any sequence of bounded scalars ǫ = (ǫlj,k)(l,j,k)∈Λ the oper-

ator Tǫ : L2(Rn) → L2(Rn) given by

(6.28) Tǫ(f) =
∑

(l,j,k)∈Λ

ǫlj,k〈f, ψlj,k〉ψlj,k,

is Calderón-Zygmund of order 1. Hence, Tǫ is a Calderón-Zygmund operator in the
sense of Definition 9.1, Chapter 1. Therefore, Tǫ extends to a bounded operator
on Lp for 1 < p < ∞. Furthermore, if |ǫlj,k| ≤ 1 then Tǫ’s are uniformly bounded

on Lp. We are going to show that (6.28) holds also for f ∈ Lp with unconditional
convergence in Lp.
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If the series
∑

(l,j,k)∈Λ〈f, ψlj,k〉ψlj,k does not converge unconditionally in Lp then

there are pairwise disjoint finite sets Fi ⊂ Λ and coefficients ǫlj,k = ±1, (l, j, k) ∈ Fi
such that

fi =
∑

(l,j,k)∈Fi

ǫlj,k〈f, ψlj,k〉ψlj,k,

satisfies ||fi||p > δ for some δ > 0 and all i ∈ N. By Lemma 6.9, there are coefficients

ǫi = ±1 such that lim supN→∞ ||∑N
i=1 ǫifi||p = ∞. This clearly contradicts the

uniform boundedness of Tǫ’s. Finally,
∑

(l,j,k)∈Λ ǫ
l
j,k〈f, ψlj,k〉ψlj,k converges to Tǫf

by considering f ∈ L2 ∩ Lp. By Lemma 6.8,

∫

Rn

(

∑

(l,j,k)∈Λ

|〈f, ψlj,k〉|2|ψlj,k(x)|2
)p/2

dx

≤ (Ap)
−1 sup

t∈[0,1]

∣

∣

∣

∣

∣

∣

∣

∣

∑

(l,j,k)∈Λ

ǫlj,k(t)〈f, ψlj,k〉ψlj,k
∣

∣

∣

∣

∣

∣

∣

∣

p

p

≤ C/Ap||f ||pp,

for any f ∈ Lp. Therefore, ||(〈f, ψlj,k〉)||pℓpA ≤ C||f ||p. In other words, the analysis

operator is bounded from Lp to ℓpA. By Lemma 6.12, the dual of analysis operator
is a synthesis operator

ℓqA ∋ (clj,k)(l,j,k)∈Λ 7→
∑

(l,j,k)∈Λ

clj,kψ
l
j,k ∈ Lq(Rn),

where 1/p+ 1/q = 1. We also have
∣

∣

∣

∣

∣

∣

∣

∣

∑

(l,j,k)∈Λ

clj,kψ
l
j,k

∣

∣

∣

∣

∣

∣

∣

∣

q

≤ C||c||ℓqA for all c ∈ ℓqA.

This shows (6.23) =⇒ (6.21). �

We are now ready to prove the characterization of the sequence space of wavelet
expansion coefficients of functions in Lp.

Theorem 6.13. Suppose 1 < p < ∞, and Ψ is a 1-regular tight frame multi-
wavelet. Then the series

∑

(l,j,k)∈Λ〈f, ψlj,k〉ψlj,k converges unconditionally to f in

Lp for any f ∈ Lp, and

(6.29)

||f ||Lp ∼
∣

∣

∣

∣

∣

∣

∣

∣

(

∑

(l,j,k)∈Λ

|〈f, ψlj,k〉|2|ψlj,k(·)|2
)1/2∣

∣

∣

∣

∣

∣

∣

∣

Lp

∼
∣

∣

∣

∣

∣

∣

∣

∣

(

∑

(l,j,k)∈Λ

|〈f, ψlj,k〉|2|(1El
)j,k(·)|2

)1/2∣
∣

∣

∣

∣

∣

∣

∣

Lp

,

for any (or some) bounded measurable sets El ⊂ Rn with |El| > 0, l = 1, . . . , L.
The equivalence constants in (6.29) do not depend on f .

If, in addition, Ψ is an orthonormal multiwavelet then for any (clj,k)(l,j,k)∈Λ

satisfying

(6.4)

(

∑

(l,j,k)∈Λ

|clj,k|2|ψlj,k(x)|2
)1/2

∈ Lp(Rn),
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there is a unique f ∈ Lp such that clj,k = 〈f, ψlj,k〉 for all (l, j, k) ∈ Λ and (6.29)
holds.

Proof. The first part of the theorem follows from Lemma 6.10, see the proof
of (6.23) =⇒ (6.21).

Suppose, in addition, that Ψ is an orthonormal multiwavelet. If (clj,k)(l,j,k)∈Λ

satisfies (6.4) then by Lemma 6.10,
∑

(l,j,k)∈Λ c
l
j,kψ

l
j,k converges unconditionally to

some f ∈ Lp. Since ψl’s belong to the dual of Lp we must have clj,k = 〈f, ψlj,k〉 for

all (l, j, k) ∈ Λ. This completes the proof of Theorem 6.13. �
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Notation Index

| · | the standard norm in Rn or the Lebesgue measure of a subset in Rn

B(z, r) the Euclidean ball with center z and radius r
〈·, ·〉 the scalar product in Rn, L2(Rn), or 〈f, ϕ〉 = f(ϕ) for f ∈ S′, ϕ ∈ S
{ei}ni=1 the standrad orthonormal basis in Rn

f̂(ξ) the Fourier transform of f , f̂(ξ) =
∫

Rn f(x)e−2πi〈x,ξ〉dx
supp f the support of f , supp f = {x : f(x) 6= 0}
D
kf(x) the derivative of f at the point x thought of as a symmetric

multilinear operator (Rn)k → Rn

1E the indicator function of the set E ⊂ Rn

A the dilation, i.e., n× n matrix with all eigenvalues λ, |λ| > 1
λ− the absolute value of the smallest eigenvalue of A
λ+ the absolute value of the biggest eigenvalue of A
b the number equal to | detA|
Bk the dilated balls of the form Bk = Ak∆, k ∈ Z, where ∆ is a special

ellipsoid tailored to the dilation A with |∆| = 1
B the family of dilated balls of the form x0 +Bk, x0 ∈ Rn, k ∈ Z

ω the smallest integer such that 2B0 ⊂ Bω
ρ the quasi-norm associated to the dilation A
ϕk the dilate of ϕ to the scale k ∈ Z, ϕk(x) = b−kϕ(A−kx)
ψj,k the dilate and translate of ψ given by

ψj,k(x) = | detA|j/2ψ(Ajx− k) where j ∈ Z, k ∈ Zn

Ψ the collection Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn)
I the collection of dilated cubes {Aj([0, 1]n + k) : j ∈ Z, k ∈ Zn}
ψI is ψ−j,k for I = Aj([0, 1]n + k) ∈ I; the exception to this rule is 1I
Λ the index set Λ = {(l, j, k) : l = 1, . . . , L, j ∈ Z, k ∈ Zn}
DA the dilation operator (usually on Hp), DAf(x) = | detA|1/pf(Ax)
τy the translation operator, τyf(x) = f(x− y)
(p, q, s) an admissible triplet with respect to the dilation A, i.e., 0 < p ≤ 1,

1 ≤ q ≤ ∞, p < q, s ∈ N, and s ≥ ⌊(1/p− 1) ln b/ lnλ−⌋
Mϕf the nontangential maximal function of f with respect to ϕ
M0
ϕf the radial maximal function of f with respect to ϕ

TNϕ f(x) the tangential maximal function of f with respect to ϕ
MNf the nontangential grand maximal function of f
M0
Nf the radial grand maximal function of f

MHLf the Hardy-Littlewood maximal function of f
Cr the space of functions with continuous partial derivatives

up to order r, r = 0, 1, . . . ,∞
S the space of test functions (the Schwartz class)
S′ the space of tempered distributions
SN the subset of S consisting of all ϕ satisfying

supx∈Rn sup|α|≤N max(1, ρ(x)N )|∂αϕ(x)| ≤ 1
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Ps the space of polynomials of degree ≤ s
Lp the space of functions with

∫

Rn |f(x)|pdx <∞, 0 < p ≤ ∞
||f ||p the quasi-norm in Lp, ||f ||p = (

∫

Rn |f(x)|pdx)1/p
Hp the anisotropic Hardy space Hp

A associated with the dilation A
||f ||Hp the norm of f ∈ Hp, ||f ||Hp = ||MNf ||p
Hp
q,s the atomic anisotropic Hardy space associated with the dilation A

for an admissible triplet (p, q, s)
Clq,s the Campanato space for l ≥ 0, 1 ≤ q ≤ ∞, s = 0, 1, . . .
Θq
s the space of functions in Lq with bounded support and vanishing

moments up to order s



116 NOTATION INDEX

Bibliography

[Au1] P. Auscher, Wavelet bases for L2(R) with rational dilation factor, Wavelets and their
applications, Jones and Bartlett, Boston, MA, 1992, pp. 439–451.

[Au2] P. Auscher, Toute base d’ondelettes régulières de L2(R) est issue d’une analyse multi-

résolution régulière, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1227–1230.
[Au3] P. Auscher, Solution of two problems on wavelets, J. Geom. Anal. 5 (1995), 181–236.
[Ay1] A. Ayache, Construction of non separable dyadic compactly supported orthonormal

wavelet bases for L2(R2) of arbitrarily high regularity, Rev. Mat. Iberoamericana 15

(1999), 37–58.
[Ay2] A. Ayache, Some methods for constructing nonseparable, orthonormal, compactly sup-

ported wavelet bases, Appl. Comput. Harmon. Anal. 10 (2001), 99–111.
[BS] A. Baernstein and E. T. Sawyer, Embedding and multiplier theorems for Hp(Rn), Mem.

Amer. Math. Soc. 53 (1985), no. 318.
[Ba] L. W. Baggett, An abstract interpretation of wavelet dimension function using group

representations, J. Funct. Anal. 173 (2000), 1–20.
[Bt] G. Battle, Phase space localization theorem for ondelettes, J. Math. Phys. 30 (1989),

2195–2196.
[BW] E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in R2,

SIAM J. Math. Anal. 30 (1999), 678–697.
[BDR] C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant

spaces in L2(Rd), J. Funct. Anal. 119 (1994), 37–78.
[Bo1] M. Bownik, Tight frames of multidimensional wavelets, J. Fourier Anal. Appl. 3 (1997),

525–542.
[Bo2] M. Bownik, A characterization of affine dual frames in L2(Rn), Appl. Comp. Harm.

Anal. 8 (2000), 203–221.
[Bo3] M. Bownik, The structure of shift invariant subspaces of L2(Rn), J. Funct. Anal. 177

(2000), 282–309.
[Bo4] M. Bownik, The construction of r-regular wavelets for arbitrary dilations, J. Fourier

Anal. Appl. 7 (2001), 489–506.
[Bo5] M. Bownik, Combined MSF multiwavelets, J. Fourier Anal. Appl. 8 (2002), 201–210.
[Bo6] M. Bownik, On a problem of Daubechies, Constr. Approx. (to appear).
[BRS] M. Bownik, Z. Rzeszotnik, and D. Speegle, A characterization of dimension functions

of wavelets, Appl. Comput. Harmon. Anal. 10 (2001), 71–92.
[BR] M. Bownik and Z. Rzeszotnik, The spectral function of shift-invariant spaces, preprint

(2002).
[BS1] M. Bownik and D. Speegle, Meyer type wavelet bases in R2, J. Approx. Theory 116

(2002), 49–75.
[BS2] M. Bownik and D. Speegle, The wavelet dimension function for real dilations and di-

lations admitting non-MSF wavelets, Approximation Theory X: Wavelets, Splines, and
Applications, Vanderbilt University Press, 2002, pp. 63-85.

[BGS] D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characteri-

zation of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137–153.
[Ca] A.-P. Calderón, An atomic decomposition of distributions in parabolic Hp spaces, Ad-

vances in Math. 25 (1977), 216–225.
[CT1] A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a dis-

tribution, Advances in Math. 16 (1975), 1–64.
[CT2] A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a dis-

tribution. II, Advances in Math. 24 (1977), 101–171.
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[LR] P.-G. Lemarié-Rieusset, Projecteurs invariants, matrices de dilatation, ondelettes et

analyses multirésolutions, Rev. Mat. Iberoamericana 10 (1994), 283–347.
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