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Abstract

The structural organization of biological tissues and cells often produces anisotropic transport

properties. These tissues may also undergo large deformations under normal function, potentially

inducing further anisotropy. A general framework for formulating constitutive relations for

anisotropic transport properties under finite deformation is lacking in the literature. This study

presents an approach based on representation theorems for symmetric tensor-valued functions and

provides conditions to enforce positive semi-definiteness of the permeability or diffusivity tensor.

Formulations are presented which describe materials that are orthotropic, transversely isotropic, or

isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced

anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder

subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow

pattern, rather than the rectilinear pattern observed when adopting a more specialized,

unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general

formulation presented in this study can produce both affine and non-affine reorientation of the

preferred directions of material symmetry with strain, depending on the choice of material

functions. This study addresses a need in the biomechanics literature by providing guidelines and

formulations for anisotropic strain-dependent transport properties in porous-deformable media

undergoing large deformations.

Introduction

Biological soft tissues can be described as mixtures of a solid matrix and an interstitial fluid.

If the solid matrix exhibits structural anisotropy, the transport properties of the fluid through

the solid matrix may also be anisotropic [1, 2]. For example, for a collagenous tissue that

exhibits preferred fiber orientations, permeability of the solvent or diffusivity of the solutes

in the directions parallel and perpendicular to the fibers may have different values [3–10].

Therefore, in general, transport properties are formulated in tensorial form, such as the

permeability or diffusivity tensors.

When tissues undergo finite deformation, the material symmetry in the deformed

configuration may be different than the material symmetry in the reference configuration. A

material that exhibits isotropic transport properties in the reference configuration may

develop strain-induced anisotropy under finite deformation. To the best of our knowledge, a

general approach for formulating anisotropic properties for the permeability tensor while

accounting for the possibility of strain-induced anisotropy under finite deformation has not

been presented previously. Such a formulation must take into account that the permeability

tensor is symmetric and positive definite. This study presents a general approach based on

representation theorems for symmetric tensor-valued functions [11, 12].
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Formulation

Permeability Tensor

The permeability tensor describes frictional interactions between a porous solid matrix and

its interstitial fluid. From the equation of conservation of linear momentum for the fluid,

when the effects of viscosity are neglected relative to the effects of permeability, under

quasi-static conditions and in the absence of external body forces, the basic relation for the

flux of interstitial fluid relative to the solid is

(1)

where w is the relative fluid flux, k is the second-order hydraulic permeability tensor, and p

is the interstitial fluid pressure. Based on the second law of thermodynamics, k must be

symmetric and positive semi-definite (see Appendix).

Material and Spatial Frames

The relation of Eq.(1) is given in the spatial configuration, therefore k represents the spatial

permeability tensor. The corresponding permeability tensor in the material frame is obtained

using the standard Piola transformation [13]:

(2)

where F is the deformation gradient for the solid matrix. Equivalently,

(3)

recovers the permeability tensor in the spatial frame [14].

In a nonlinear finite element implementation of mixture analysis under finite strain, it is

necessary to evaluate the linearization of the permeability tensor along increments Δu in the

solid matrix displacement:

(4)

where C = FT·F is the right Cauchy-Green tensor, D is the directional derivative operator

[13],1 and

(5)

1  for any function f( x).
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is a fourth-order tensor representing the rate of change of K with strain, in the material

frame. The corresponding tensor in the spatial frame is obtained using the Piola

transformation for fourth-order tensors, 2

(6)

Based on the relations of Eqs.(5)–(6) and the symmetry of K and C ,  and  exhibit minor

symmetries (for example,  =  and  = ) but not necessarily major symmetry (  ≠ ,

or equivalently  ≠ ).

Constraints on Constitutive Relations

The dependence of the permeability tensor on the deformation of the porous solid matrix

must be specified via a constitutive relation. Except for the requirements of symmetry and

positive semi-definiteness, there are no other formal thermodynamic constraints on this

formulation. However, the permeability should reduce to zero in the limit of pore closure, in

order to properly produce zero fluid flux according to Eq.(1). Let the solid and fluid volume

fractions be given by ϕ s and ϕ f , respectively. The mixture saturation condition (the absence

of voids) may be represented by

(7)

When each constituent is intrinsically incompressible, the conservation of mass for the

porous solid matrix implies that

(8)

where  is the solid volume fraction in the reference state ( C = I ).

In the analysis of saturated solid-fluid mixtures, pore closure occurs when all the fluid has

been squeezed out of the ϕf = 0 and ϕs = 1, implying that  at pore closure. Therefore, an

additional constraint that may be placed on constitutive relations for the permeability tensor

is the requirement that it reduces to zero in the limit of pore closure,

(9)

Representation Theorem for Tensor-Valued Functions

This study seeks to formulate a framework for constitutive modeling of the permeability

tensor, which is a second-order symmetric tensor function of the strain. A general approach

is sought, which can subsequently be specialized to account for various constraints specific

to the permeability tensor. Therefore, the formulation starts from basic principles embodied

in representation theorems for symmetric tensor-valued functions [11, 12]. These

representation theorems can be formulated for various postulated material symmetries,

2The tensor product ⨷ between second-order tensors A and B is defined by (A⨷B) ijkl = A ik Bjl in a Cartesian basis [15].
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though the literature generally describes representations for orthotropic and higher

symmetries. Therefore, the presentation starts with materials whose transport properties are

orthotropic, then proceeds to higher symmetries, including isotropy and transverse isotropy.

Orthotropy—An orthotropic material has three orthogonal planes of symmetry. Let the

vectors Aa represent the unit normal vectors to these planes in the material frame (a = 1,2,3).

Then, according to the representation theorem for orthotropic symmetric tensor-valued

functions [11, 12, 16], the functional dependency of the permeability tensor in the material

frame is given by K(A1, A2, A3, C), where Aa · Ab = δab (Kronecker delta), and the most

general dependence on strain is given by

(10)

where the scalars K0,  and  are functions of the following strain invariants:

(11)

C and C−1 are positive definite for any arbitrary state of strain (their eigenvalues are always

positive); based on its definition, Ma is similarly a positive semi-definite tensor. Since the

sum of positive definite tensors produces a positive definite tensor [17], to ensure that K is

positive semi-definite for any arbitrary state of strain, it is necessary and sufficient to

formulate the scalar functions Ki such that

(12)

In this expression, Ki is used generically to represent K0,  and . These constraints are

thus specific to the constraint of positive semi-definiteness for the permeability tensor. In

addition, to satisfy the constraint of Eq.(9), it is necessary and sufficient to satisfy

(13)

Where .

Using Eq.(3), the permeability tensor in the spatial frame is given by

(14)

where
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(15)

The derivative of K with respect to the strain may be obtained from Eq.(5) using the chain

rule of differentiation,3

(16)

where

(17)

In this expression, K̂i is used generically to represent K̂0,  and . Using Eq.(6), the

spatial representation of this fourth-order tensor becomes

(18)

where

(19)

k ̂i is used generically to represent k ̂0,  and .

Due to the symmetry of I, C, C−1 and Ma, it follows from Eq.(16) that  satisfies the two

minor symmetries, but not the major symmetry (  ≠  in general); the same argument

applies to .

Isotropy—The case of isotropy may be derived from the representation theorem for

isotropic tensor-valued functions, or simply reduced from the orthotropic case presented

above. For isotropic materials there is no preferred material direction, so that

(20)

3The tensor products ⊗ and  between second-order tensors A and B are respectively defined by (A ⊗ B)ijkl = AijBkl and

 in a Cartesian basis [15].
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In this case, since  and

(21)

the permeability tensors in the material and spatial frames reduce to

(22)

(23)

where all Ki’s depend on I1, I2, I3. The derivative of the material permeability tensor with

respect to the strain becomes

(24)

where

(25)

Similarly, for the spatial representation,

(26)

where

(27)

Transverse Isotropy—The case of transverse isotropy may be similarly reduced from

orthotropy by letting

(28)
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where  and  represent permeability functions in the transverse plane of isotropy and

along the axial direction normal to that plane, respectively. Then, the permeability tensors

are given by

(29)

(30)

where all Ki’s are functions of I1, I2, I3, I6, I9.4 Similarly,

(31)

where

(32)

and

(33)

where

4Conventionally, in a transversely isotropic formulation, the strain invariants M3: C and M3: C2 are denoted by I4 and I5,
respectively. They appear as I6 and I9 in this treatment, to maintain a consistent notation between orthotropic and transversely
isotropic formulations.
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(34)

Examples of Constitutive Relations

The most common constitutive relation for the hydraulic permeability tensor adopted in the

biomechanics literature has the form

(35)

where the specific dependence of k0 on J is often an exponential or power-law function [18,

19], such as

(36)

where k0r, κ0 and M0 are material constants to be determined from experiments [18]. This

function satisfies the constraints of Eqs.(12)–(13). This formulation represents a special case

of permeability as given in Eq.(14), with , which does not exhibit strain-induced

anisotropy. Regardless of the state of strain in the material, k remains an isotropic tensor,5

implying that every plane through the material represents a plane of material symmetry for

transport properties. It may be noted that this constitutive relation, formulated in the spatial

frame, corresponds to K = K0C−1 in the material frame, where K0 = Jk0 as per Eq.(15).

Thus, in the material frame, K is not an isotropic tensor for arbitrary states of strain.

For this special case of constitutive relation, the corresponding spatial form of the derivative

with respect to strain reduces to

(37)

Anisotropic permeability has generally been employed in problems with small deformations,

for which the spatial and material representations are approximately the same. The most

common choice of constitutive relation has had the form  for

transverse isotropy [10, 20], or  for orthotropy [9, 21]. These formulations

represent special cases of transversely isotropic permeability as given in Eq.(29) and

orthotropic permeability as given in Eq.(10), with  and  treated as constant.

Constitutive relations are guided by experimental measurements. Since permeation

experiments in deformable tissues are challenging to perform, most permeation studies

under finite deformation have been performed in one-dimensional setups, under

unidirectional flow conditions [22, 23]. More often, material coefficients for an assumed

5A second-order tensor T is isotropic when T = αI for any scalar α.
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permeability constitutive relation under finite deformation were obtained by curve-fitting the

load-deformation response of soft tissues in confined compression [24–28]. Therefore,

because of the one-dimensional nature of these finite deformation experiments, there is

limited experimental data in the literature that can shed insight into the potential mechanism

of strain-induced anisotropy in the permeability. Yet, even in the case of an isotropic

material, the more general formulation for the spatial permeability given in Eq.(23) suggests

that large deformations may induce an anisotropic permeability tensor, when either k1 ≠ or

k2 ≠ 0.

It is possible that the choices of permeability constitutive relations adopted for biological

tissues to date represent special cases that do not necessarily explore the full range of

possible deformation-induced responses. To explore the implications of strain-induced

anisotropy in the permeability, consider the general case of Eq.(23), which represents the

response for a material whose permeability is isotropic in a strain-free state ( b =I ). Under

general deformations however ( b ≠ I ), the permeability tensor is no longer an isotropic

tensor. For arbitrary strain fields in an isotropic material, three planes of symmetry emerge

which correspond to the principal planes of normal strain (the planes whose normals are the

eigenvectors of b ). Therefore, in a material whose transport properties are isotropic under a

strain-free state, strain-induced anisotropy produces orthotropic symmetry, with the

orientation of the planes of symmetry varying with the state of strain.

If the permeability is anisotropic in a strain-free state, such as in the case of orthotropy, Eq.

(14), it becomes evident that this anisotropy is manifested in the terms other than k0I
appearing in these general relations. Therefore, anisotropic transport properties can only be

specified with material functions  or . In a strain-free state, the three planes of

symmetry are normal to Va ( a = 1,2,3 ) by definition. However, under a general state of

strain (when the eigenvectors of b do not align with F·Va ), the strain-induced anisotropy

degenerates to complete loss of symmetry (triclinic form). In effect, it is not possible to

describe an orthotropic (or transversely isotropic, or monoclinic) spatial permeability tensor

k whose planes of symmetry remain invariant with strain under general conditions.

For example, consider the special case of an orthotropic material where , so that

(38)

It should be evident that the strain-induced anisotropy for this special case obeys an affine

transformation of the preferred material directions Aa , since the expression for ma in Eq.

(14) may also be written as ma = (F·Aa) ⨷(F·Aa). A constitutive form for  may be

selected such that it produces the same permeability as the form of Eqs.(35)–(36) when

considering the canonical problem of 1D permeation under finite deformation,

(39)

Where  and  represent material constants. The corresponding expression for 

becomes
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(40)

Another special case that may be considered here corresponds to , such that

(41)

For this choice, it is evident that the strain-induced anisotropy follows a non-affine

transformation of the preferred material directions Aa , since ma·b+b·ma is neither equal nor

proportional to ma. Once again, a constitutive form for  may be selected such that it

produces the same permeability as the form of Eqs.(35)–(36) when considering the

canonical problem of 1D permeation under finite deformation,

(42)

The corresponding expression for  becomes

(43)

These constitutive relations can be reduced to transverse isotropy and isotropy as shown

above. Clearly, any number of specialized forms and combinations may be adopted for these

constitutive relations. As a final example, for a referentially isotropic permeability tensor, a

choice of constitutive relation may be given by

(44)

In this formulation, prescribing various values to k0r , k1r and k2r can give preferential

weight to affine or non-affine strain-induced anisotropy. In the canonical problems analyzed

below, some salient features of strain-induced anisotropy are explored.

Canonical Problems

Isochoric Axial Stretch

Consider the isochoric axial stretch of an isotropic homogeneous cylinder,
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(45)

for which J = 1 (no change in pore volume with deformation). The matrix of the

permeability tensor resulting from Eq.(23) is

(46)

As λ increases above unity with axial stretching, the radial and circumferential permeability

components, k0 + k1/λ + 2k2/λ2,, will always be smaller than the axial component k0 + k1λ2 +

k2λ4, regardless of the functional dependence of ki on Ij ( j = 1,2,3). Thus, even though the

pore volume does not change, the shape of the pores is altered with deformation such that

the permeability tensor is no longer isotropic (unless k1 = k2 = 0 ); in this example, the

symmetry reduces to transverse isotropy under axial stretching.

For example, consider that the isotropic permeability arises from a solid matrix consisting of

randomly oriented fibers in the reference configuration, with each fiber orientation

represented by the vector N = sinφ er + cosφ ez , 0≤<π. Assuming that fibers deform

according to an affine transformation, they become oriented along

(47)

As the axial stretch λ increases, the fibers turn toward the long axis of the cylinder,

eventually lining up with ez in the limit as λ→∞. Therefore, for this example of isochoric

stretch of an isotropic material, according to Eq.(46), it is found that permeability becomes

greater along the direction of preferred fiber reorientation than along the directions

perpendicular to it.

The same conclusions would be reached for the case of confined axial stretch of a

homogeneous isotropic cylinder, when [F] = diag {1,1,λ}.

Finite Torsion

In this example, a finite element analysis was used to illustrate strain-induced anisotropy in a

biphasic isotropic cylinder subjected to torsion, with a pressure gradient applied axially to

promote permeation. The finite element implementation of these formulations was

incorporated into FEBio, an existing public-domain, open-source finite element program

(http://mrl.sci.utah.edu/software?menu=Software). The cylinder had a diameter of 10 mm

and was 25 mm long. Its solid matrix was described as a neo-Hookean isotropic elastic solid,

with a Young’s modulus of 1 MPa and Poisson’s ratio set to zero. The permeability tensor

was described by Eq.(44), where each of k0r , k1r and k2r was respectively set to 103 mm4/

N·s, while the other two were set to zero. In all cases, the remaining material parameters

were , κ = 2, and M = 0. One end of the cylinder was constrained to have zero
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displacements along all three coordinate directions, and a prescribed fluid pressure of 0.1

MPa. The other end was prescribed to rotate in its plane by a half-rotation (180° twist), and

constrained to zero displacement along the axial direction; the fluid pressure was also

constrained to zero on this face (free-draining conditions). The lateral surface was traction-

free and impermeable.

The steady-state response was examined here, since the focus of this analysis was on the

effect of strain-induced anisotropy on the relative fluid flux w , rather than the transient

response to the applied boundary conditions.

Results showed that the streamlines of solvent volume flux remained rectilinear in the case

of k = k0I (k0r ≠0 k1r = k2r = 0 ), regardless of the applied deformation (Figure 1c). For the

other two cases however, the flux twisted into a helical pattern with torsion (Figure 1d). A

closer examination of the flux pattern, when superposed on the deformed finite element

mesh, confirmed that the case k = k1b produced an affine transformation, with the flux

aligning exactly with the deformed mesh (Figure 2c). In contrast, for the case k = 2k2b2 , the

flux vector twisted further than the direction prescribed by an affine transformation (Figure

2d).

Discussion

This study proposed a systematic approach for formulating constitutive relations for the

anisotropic, strain-dependent hydraulic permeability tensor in deformable porous media. The

hydraulic permeability is a material function that relates the flux of interstitial fluid to the

pressure gradient, Eq.(1). A primary motivation for this aim was the observation that many

biological tissues undergo large deformations during normal function, yet few guidelines are

currently available in the literature for formulating strain-dependent anisotropic transport

properties under such deformations.

The first step was to recognize the constraints imposed by the entropy inequality on the

permeability tensor, which must be symmetric and positive semi-definite. This was followed

by the recognition that the fourth-order tensor representing the rate of change of the

permeability tensor with strain must satisfy minor symmetries but need not exhibit major

symmetry.

Using the framework of representation theorems for symmetric tensor-valued functions,

general expressions were provided for orthotropic, isotropic and transversely isotropic

permeability tensors. These tensor functions are dependent on scalar functions of the strain

invariants, ki (Ij) = J−1 Ki (Ij) , which, when positive for arbitrary strains, enforce positive-

definiteness of the permeability tensor.

These general formulations demonstrated that, in general, strain induces anisotropy in the

permeability tensor under finite deformation, even if the permeability tensor was isotropic in

the reference configuration. Thus, the most commonly used permeability constitutive

relation under finite deformation in soft tissue mechanics, Eq.(35) [14, 24, 29–37], was

shown to represent only a special case where permeability in the spatial frame remains

isotropic regardless of the state of strain. Whether the permeability of soft tissues should

obey Eq.(35) or a more general form that results in strain-induced anisotropy, such as Eq.

(44), can only be resolved experimentally. However, the canonical problem of 1D

permeation, most commonly used to measure permeability under finite deformation, cannot

discriminate uniquely between these two forms of constitutive relations and is thus unable to

resolve this question. The alternative canonical problem of permeation under torsion,

described above, may be able to resolve this question if the flow of interstitial fluid can be

visualized experimentally and shown to follow either a rectilinear or helical pattern (Figure
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1). In particular, an examination of whether or not the fluid flux pattern follows the

deformation according to an affine transformation (Figure 2) may determine the relative

contribution of the various terms appearing in the general expression for the permeability

tensor, such as in the example given in Eq.(44).

Depending on the material symmetry, the scalar functions ki(Ij) may depend on a narrower

or broader set of strain invariants Ij. In the prior literature, only a dependence on

 has been proposed, as in Eq.(36), motivated in part by the pore closure

constraint of Eq.(9). A dependence on other strain invariants would need to be motivated

from experimental findings, using testing configurations that can discriminate among the

contributions of the various strain invariants. The conceptualization and implementation of

such testing configurations may be the subject of future studies.

The orthotropic, transversely isotropic and isotropic strain-dependent formulations presented

above model transport properties that exhibit those material symmetries in the reference

configuration, but exhibit further anisotropy with applied finite strain. For example, the

transversely isotropic model may be applicable to fibrous tissues with a single preferred

fiber orientation, such as tendons and some ligaments, or for membranes or sheets with

random in-plane fiber orientation. Even if these tissues undergo small strains under normal

function, they may still experience large rotations (such as gliding tendons that wrap around

bones, ligaments that span across flexing diarthrodial joints, or heart valve leaflets that

undergo large bending). The preferred material directions for transport should conform to

these large motions, as demonstrated in these formulations.

As a final note, though the presentation of this study focused on the hydraulic permeability

tensor, every concept presented here is equally applicable to the diffusivity tensor for solute

transport in deformable porous media. Diffusivity is a measure of frictional interactions

between the solute and the interstitial solvent and porous solid matrix, just like permeability

is a measure of frictional interactions between the interstitial solvent and porous solid. The

diffusivity tensor must be symmetric and positive semi-definite according to the same

thermodynamic principles leading to these constraints for the permeability tensor

(Appendix). Consequently, the same method of formulating constitutive relations based on

representation theorems of tensor-valued functions applies.

In summary, this study provided guidelines and formulations for anisotropic strain-

dependent transport properties in porous-deformable media undergoing large deformations,

such as biological tissues and cells. The general formulation accounted for strain-induced

anisotropy. Examples of constitutive relations for isotropic and orthotropic materials were

illustrated, though the general framework presented here provides the foundation for any

choice of constitutive relations.
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Appendix

In a mixture of a solid and a fluid, when the effects of viscosity are neglected relative to the

effects of frictional interactions between the solid and fluid, under quasi-static conditions

and in the absence of external body forces, the momentum equation for the fluid is given by

(A1)

where  is the dissipative part of the internal momentum to the fluid due to frictional

interactions with the solid matrix [38–40]. A diffusive drag force  also acts on the solid
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matrix. There are two constraints that need to be satisfied by . From the rule of

mixtures, which states that a heterogeneous mixture must obey the ordinary equations of a

continuum [41], we must have

(A2)

in the absence of chemical reactions. Furthermore, from the entropy inequality,  must

satisfy

(A3)

where vα is the velocity of constituent α.

In the absence of chemical reactions, the general form for the diffusive drag that can satisfy

(A3) must be

(A4)

where fαβ (α ≠ β) is the diffusive drag tensor between constituents α and β. In general, fαβ

may be a function of the strain, temperature, magnitude |vα − vβ| of the relative velocities,

and fluid content. Equation (A2) can be satisfied for arbitrary velocities, and mixtures of

arbitrary pairs of constituents, if and only if

(A5)

Substituting Eq.(A4) into Eq.(A3), recognizing that the dummy indices on the resulting

double summation can be interchanged, and making use of Eq.(A5) yields the quadratic

form

(A6)

Therefore, the entropy inequality implies that the tensor fαβ must be positive semi-definite

(its eigenvalues must be non-negative [17]). An interesting property of the quadratic form of

Eq.(A6) is that it places a constraint only on the symmetric part of fαβ . This is easily shown

by splitting fαβ into the sum of its symmetric and antisymmetric parts, and recognizing that

the quadratic form of the latter reduces to zero. It follows that this antisymmetric part has no

influence on the energy dissipated by this frictional interaction, represented by the term on

the left-hand-side of Eq.(A6); consequently, it is not observable [42]. On the basis of this

argument, fαβ is taken to be symmetric, (fαβ)T = fαβ, since it can never be shown to be

otherwise.
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In the case of a solid-fluid mixture, the diffusive drag tensor ffs may be related to the spatial

hydraulic permeability tensor k via ffs = (ϕf)2K−1, so that , where w = ϕf(vf

− vs) is the flux of interstitial fluid relative to the solid. Substituting this relation for  into

Eq.(A1) produces Darcy’s law, as presented in Eq.(1). A symmetric, positive semi-definite

f fs implies the same properties for k.
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Figure 1.
Finite element results for permeation through a cylinder subjected to finite torsion. (a)

Cylinder geometry in reference configuration. (b) Cylinder geometry after one half-turn

(180°) twist. (c) Vector plot of relative volume flux of solvent in deformed configuration,

using k = k0I , which does not account for strain-induced anisotropy. (d) Vector plot of flux

in deformed configuration, using k = k1b , which accounts for strain-induced anisotropy.
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Figure 2.
Close-up of relative volume flux of solvent, in relation to mesh deformation: (a) Reference

configuration. (b) k = k0I . (c) k = k1b . (d) k = 2k2b2 . Case (c) confirms that this

constitutive relation produces strain-induced anisotropy that follows an affine transformation

of preferred material directions, since the flux realigns exactly with the deforming mesh.

Cases (b) and (d) represent non-affine transformations.
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