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Abstract The main aim of this work is devoted to study-

ing the existence of compact spherical systems representing

anisotropic matter distributions within the scenario of alter-

native theories of gravitation, specifically f (R, T ) gravity

theory. Besides, a noteworthy and achievable choice on the

formulation of f (R, T ) gravity is made. To provide the com-

plete set of field equations for the anisotropic matter distri-

bution, it is considered that the functional form of f (R, T )

as f (R, T ) = R+2χT , where R and T correspond to scalar

curvature and trace of the stress–energy tensor, respectively.

Following the embedding class one approach employing the

Eisland condition to get a full space–time portrayal interior

the astrophysical structure. When the space–time geometry is

identified, we construct a suitable anisotropic model by using

a new gravitational potential grr which often yields physi-

cally motivated solutions that describe the anisotropic matter

distribution interior the astrophysical system. The physical

availability of the obtained model, represents the physical

characteristics of the solution is affirmed by performing sev-

eral physical tests. It merits referencing that with the help

of the observed mass values for six compact stars, we have

predicted the exact radii for different values of χ -coupling

parameter. From this one can convince that the solution pre-

dicted the radii in good agreement with the observed values.

Since the radius of MSP J0740+6620, the most massive neu-

tron star observed yet is still unknown, we have predicted

its radii for different values of χ -coupling parameter. These

predicted radii exhibit a monotonic diminishing nature as the
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parameter χ going from −1 to 1 gradually. The M–R curve

generated from our solution can accommodate a variety of

compact stars from the less massive (Her X-1) to super mas-

sive (MSP J0740+6620). So the present study uncovers that

the modified f (R, T ) gravity is an appropriate theory to clar-

ify massive astrophysical systems, in any case, for χ = 0.0

the standard consequences of the general relativity are recov-

ered.

1 Introduction

The most striking revelation of the modern cosmology is

that the present universe is not only expanding yet in addi-

tion accelerating. This wonderful change in cosmic historical

events has been demonstrated from a different set of high-

accuracy observational data collected from different cosmic

sources like Cosmic Microwave Background (CMB) [1–3],

SuperNova type Ia (SNeIa) [4–8], large scale structure [9–

11], weak lensing [12] and baryon acoustic oscillations [13].

In perspective on this it is currently believed that energy

setting-up of universe has 76% dark energy, 20% dark matter

and 4% ordinary matter. The current accelerating expansion

behavior of the universe is driven by an exotic type of force

dubbed as dark energy having huge negative pressure with

repulsive impacts. It is assumed that this dominant energy

component repulsive by exotic gravity determines the even-

tual fate of the cosmos, but its enigmatic features are still

not established. To investigate the perplexing nature of dark

energy, various methodologies have been displayed. Modi-

fied theories of gravity are assumed to be one of the feasible

decisions to reveal its mysterious nature. The modified theo-

ries are determined by replacing or adding curvature invari-
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ants as well as their matching generic functions in the geo-

metric part of the Einstein–Hilbert action.

In the most recent years, modified theories of gravity at

large scales have been proposed to observe the dark energy

and dark matter in the dynamic and kinematic characteristics

of stars. Although the dark energy and dark matter models

are capable to solve problems effectively, nevertheless suf-

fer from certain confinements that motivate the researchers

to think about alternative theories of gravity. Moreover, the

modified theories of gravity have played a significant role in

attempts to explain or eliminate some of the shortcomings

encountered when considering general relativity as the stan-

dard gravitational theory. Nowadays, some modifications in

gravitational part of the general relativity action have been

given the progression of time where the most smooth modi-

fication of general relativity is f (R) gravity [14–32], which

takes a general function of the Ricci scalar R in the Einstein–

Hilbert action as its beginning stage. Along these lines, as a

result of presenting an arbitrary function, there might be an

opportunity to clarify the accelerated expansion and config-

uration formation of the Universe without including obscure

types of dark energy or dark matter, modifying just the grav-

ity part and not the matter one. Suitable f (R) gravity models

have been assumed by some authors [30–32] which manifest

the unification of late-time acceleration and early time infla-

tion. Anyhow, some f (R) gravity defects in the solar system

scale were announced, for example, in [33–35] and should

exclude most of the f (R) models assumed so far. For the

galactic scales, the f (R) theory additionally does not appear

to be appropriate [36–38].

Another endeavor to expound on the issue of cosmic

expanding conduct prompts to alternative theories. Specif-

ically, Gauss–Bonnet theory is a notably strengthening mod-

ified theory in which Gauss–Bonnet invariant is G = R2 −
4Rµν Rµν + Rµνλσ Rµνλσ where R, Rµν and Rµνλσ signify

the Ricci scalar, Ricci and Riemann tensors, respectively [39–

41]. This 4-dimensional topological invariant completely

avoids the instability of the spin-two phantom. Nojiri and

Odintsov [42] presented modified Gauss–Bonnet gravity by

embeddings nonexclusive function f (G) in the action of

Einstein–Hilbert. Cognola and his colleagues [43] updated

this impressive revelation to analyze the whole evolutionary

worldview of the universe and suggested a few answers to

deal with the problem of hierarchy. De Felice and Tsujikawa

[44,45] set up cosmologically suitable f (G) solutions which

give reliable outcomes with close planetary system limita-

tions. Bamba and his accomplices [46] investigated modified

f (G) as well as f (G, R) models with some developing high-

lights of late-time cosmic acceleration and finite-time future

singularities. They additionally introduced higher-order cur-

vature and flow remedies to fix these singularities for com-

paring gravity models.

The curvature-matter coupling in modified theories is

well-defined as a promising methodology may have the

option to reveal the fascinating phenomenon of accelerated

cosmic expansion. Harko and his accomplices [47] intro-

duced curvature and flow matter coupling alluded as f (R, T )

gravity for a better clarification of cosmic development. This

modified theory generalized f (R) gravity by introducing an

arbitrary function of the Ricci scalar R and the trace of the

stress–energy tensor T . One can take note of that reliance

of T might be presented by extraordinarily flawed fluids or

quantum impacts. Due to the coupling among matter and

geometry, the movement of test particles is non-geodesic

and an additional acceleration is constantly present. The the-

ory f (R, T ) portrays the regime of the solar system very

well [48]. New terms from this theory allow us to portray

the galactic impacts of dark matter [49]. It was also indi-

cated that f (R, T ) gravity can give an extensive contribu-

tion to the deviation to the standard geodesic equation [50]

and gravitational lensing [51]. This modified theory can be

applied to investigate diverse issues of actual premium and

may prompt some significant contrasts. Houndjo [52] con-

structed the cosmological reproduction of f (R, T ) gravity

for f (R, T ) = f1(R) + f2(T ) and talked about transition

of matter-dominated stage to an acceleration stage. More-

over, several authors [53–57] have described that the cosmic

acceleration of f (R, T ) cosmology avoids the problem of

dark energy because of the additional terms in T in field

equations of the model, instead of being because of the pres-

ence of the cosmological constant. This new terms lead to

the non-disappearance of the covariant derivative of the mat-

ter stress–energy tensor, i.e., ∇µTµν �= 0 [58–61]. The fact

that the stress–energy tensor of this theory is not preserved

can be connected, in a cosmological point of view, to the

destruction of matter during the evolution of the universe.

Many researchers [62–72] employed different techniques in

astrophysical and cosmological phenomena within the sce-

nario of f (R, T ) theory, to discuss the consistency as well

as stability of this theory.

Among the various situations proposed in the literature

to contemplate gravitational phenomenology beyond gen-

eral relativity, the one of astrophysical configuration models

depicts both a strong probe for testing gravity on its strong

field system [73] and a hopeful road to discover possible devi-

ations from general relativity predictions. The main objec-

tive of this examination are compact spherical objects, for

instance, white dwarfs and neutron stars, which depict the

end-state of astrophysical progress of main-sequence stars,

yet in addition other kinds of stars, for instance, brown and

red dwarfs. Besides, along the decades other astrophysical

objects have showed in the literature, for instance, hyperon

stars [74], quark/hybrid stars [75,76], strange stars [77–90],

and significantly more exotic spheres such as boson stars

[91].
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The investigation of exact spherical solutions for relativis-

tic objects is a troublesome issue due to the nearness of non-

linear terms in the field equations. To determine this issue,

we pursue the embedding class I method utilizing the Eisland

condition to get obvious outcomes in finding new physically

agreeable solutions for spherical compact structure. This is

a direct, orderly and straightforward way to generate new

anisotropic outcomes from a perfect distribution of fluid. The

embedding class I method is a concept that shows countless

intriguing constituents with regards to the construction of

new spherical solutions, such as those presented in [92–117].

In this work, we have studied a new class of anisotropic

general solutions to modified Einstein field equations for rel-

ativistic compact stellar structures by adopting the embed-

ding class one method within the framework of f (R, T )

gravity theory. We model an astrophysical compact config-

uration, namely an X-ray pulsar binary i.e., SMC X-4 and

demonstrate that the new exact solution is physically suit-

able. The outside area is defined by the Schwarzschild vac-

uum geometry. The inside area is portrayed by a space–time

that is acquired by embedding the manifold into a flat five-

dimensional space–time. This paper is structured as follows.

In Sect. 2, we have presented the basic formulation of class I

space–time and the spherical symmetric metric. In Sect. 3, we

give a general mathematical framework of our f (R, T ) the-

ory of gravity. In Sect. 4, we set up the relevant field equations

for anisotropic matter distributions in f (R, T )-gravity, and

their general solutions of anisotropic Karmarkar stars of class

I space–time in Sect. 5. in Sect. 6, we have determined arbi-

trary constants by utilizing coordinating conditions. Some

other physical salients of the anisotropic model have been

described in Sects. 7 and 8 , which examines all the essen-

tial requirements that an anisotropic solution of the Einstein

field equations in the system f (R, T ) theory gravity must

meet to be physically admissible. We finally summarize the

outcomes in the last section.

2 Interior space–time and Karmarkar condition

The interior space–time for spherically symmetric space–

time is chosen as,

ds2
− = eν(r)dt2 − eλ(r)dr2 − r2

(

dθ2 + sin2 θ dφ2
)

(1)

where ν and λ are functions of the radial coordinate ‘r ’ only.

It was proved by Eisenhart [118] that an embedding class

one space (n + 1 dimensional space V n+1 can be embedded

into a n + 2 dimensional pseudo-Euclidean space En+2) can

be described by a n + 1 dimensional space V n+1 if there

exists a symmetric tensor amn which satisfies the following

Gauss–Codazzi equations:

Rmnpq = 2eam[p aq]n and am[n;p] − Γ
q
[np]amq + Γ

q
m[n

ap]q
= 0, (2)

where e = ±1, Rmnpq denotes the curvature tensor and

square brackets represent antisymmetrization. Here, amn are

the coefficients of the second differential form. Moreover, A

necessary and sufficient condition for the embedding class I

of Eq. (2) in a suitable convenient form was given by Eiesland

[119] as

R0101 R2323 = R0202 R1313 − R1202 R1303 (3)

The components of Riemannian tensor for the spherically

symmetric interior space–time (1) are given as

R0101 = −
1

4
eν

(

−ν′λ′ + ν′2 + 2ν′′
)

,

R2323 = −r2 sin2 θ
(

1 − e−λ
)

, R0202 = −
1

2
rν′eν−λ,

R1313 = −
1

2
λ′r sin2 θ, R1202 = 0, R1303 = 0 (4)

By plugging the values of above Riemannian components

into Eq. (3) we obtain a differential equation in ν and λ of

the form

(λ′ − ν′)ν′eλ + 2(1 − eλ)ν′′ + ν′2 = 0. (5)

The solutions of Eq. (5) are named as “embedding class

one solution” and they can be embedded in five dimensional

pseudo-Euclidean space.

On integration of Eq. (5) we get

eν =
(

A + B

∫

√

eλ − 1 dr

)2

(6)

where A and B are constants of integration.

3 Mathematical formalism of f (R, T )-gravity

We devoted this section on how the f (R, T ) was intro-

duced. While deriving the Einstein’s field equations from

Einstein–Hilbert action, the Ricci scalar is integrated over a

four dimensional volume element d4x as

SE H =
1

16π

∫

R
√

−g d4x . (7)

Instead, if we choose f (R, T ) in place of the Ricci scalar R,

one can arrive at the f (R, T ) field equations. Here, T being

the trace of the stress–energy tensor, Tµν and the complete

action in f (R, T ) formalism is given by
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S =
1

16π

∫

f (R, T )
√

−g d4x +
∫

Lm

√
−g d4x (8)

with g as the determinant of the metric tensor gµν . The sec-

ond term is the source term for which the matter Lagrangian

density Lm gives to stress tensor as

Tµν = −
2

√
−g

δ
(√

−g Lm

)

δgµν
. (9)

Adopting Harko et al. [47], we ansatz the Lagrangian density

Lm is a function of gµν only, then one can get from Eq. (9)

as

Tµν = gµνLm − 2
∂Lm

∂gµν
. (10)

By the variation principle w.r.t gµν , (8) yields the field

equations

(

Rµν − ∇µ∇ν

)

fR(R, T )

+gµν� fR(R, T ) −
1

2
f (R, T )gµν

= 8π Tµν − fT (R, T )

(

Tµν + Θµν

)

, (11)

where fR(R, T ) = ∂ f (R, T )/∂ R and fT (R, T ) = ∂ f (R, T )

/∂T . The ∇µ denotes covariant derivative and box operator

� is defined as

� ≡
1

√
−g

∂

∂xµ

(√
−g gµν ∂

∂xν

)

with Θµν = gαβ δTαβ

δgµν
.

The covariant derivative Eq. (11) [120] yields

∇µTµν =
fT (R, T )

8π − fT (R, T )

[

(Tµν + Θµν)∇µ ln fT (R, T )

+∇µΘµν −
1

2
gµν∇µT

]

. (12)

which implies that the stress-tensor in f (R, T ) do not follow

the conservation law as in general relativity. By using Eq.

(10), the tensor Θµν is found to be

Θµν = −2Tµν + gµνLm − 2gαβ ∂2Lm

∂gµν ∂gαβ
. (13)

To find the field equations explicitly, we further assumed

anisotropic fluid source with the energy–momentum tensor

of the form

Tµν = (ρ + pt )uµuν − pt gµν + (pr − pt )gµν, (14)

provided, uν is the four velocity, satisfying uµuµ = −1 and

uν∇µuµ = 0, ρ is the matter density, pr and pt are the radial

and transverse pressures. If we defined the isotropic pressure

as −P = Lm = (pr + 2pt )/3 [47], then (13) reduces to

Θµν = −2Tµν − Pgµν . (15)

Further, we need to know the functional f (R, T ) so that

one can write the final form of the field equations. There-

fore, we choose, f (R, T ) = R + 2χT [47], where χ as

the coupling constant. Now the field equations (12) takes the

form

Gµν = 8π Tµν + χT gµν + 2χ(Tµν + Pgµν). (16)

Note that field equations (11) are reduced to Einstein field

equations when f (R, T ) ≡ R. The assumed linear expres-

sion of f (R, T ) has been accepted physically advantages

while addressing cosmological and astrophysical problems.

By substituting f (R, T ) = R + 2χT and (15) in Eq. (12),

we obtain

∇µTµν = −
χ

2(4π + χ)

[

gµν∇µT + 2 ∇µ
(

Pgµν

)

]

. (17)

Therefore, the conservation equation in Einstein’s gravity can

be recovered for χ = 0.

4 Field equations in f (R, T )-gravity

For the spacetime given in (1), the field equation (16)

becomes

8πρe f f = e−λ

(

λ′

r
−

1

r2

)

+
1

r2
(18)

8πpre f f = e−λ

(

ν′

r
+

1

r2

)

−
1

r2
(19)

8πpte f f =
e−λ

4

(

2ν′′ + ν′2 +
2(ν′ − λ′)

r
− ν′λ′

)

(20)

where,

ρe f f = ρ +
χ

24π

(

9ρ − pr − 2pt

)

pre f f = pr −
χ

24π

(

3ρ − 7pr − 2pt

)

pte f f = pt −
χ

24π

(

3ρ − pr − 8pt

)

. (21)

On using the above definitions, the field equations (18)–

(20) becomes

ρ =
e−λ

48r2(χ + 2π)(χ + 4π)

[

rλ′ {16(χ + 3π) − rχν′}

+16(χ + 3π)(eλ − 1) + rχ
{

2rν′′ + ν′ (rν′ + 4
)}

]

(22)

pr =
e−λ

48r2(χ + 2π)(χ + 4π)

[

r
{

χλ′(rν′ + 8) − 2rχν′′

+ν′ (20χ − rχν′ + 48π
) }

− 16(χ + 3π)(eλ − 1)

]

(23)
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pt =
e−λ

48r2(χ + 2π)(χ + 4π)

[

r
{

− λ′{r(5χ + 12π)ν′

+4(χ + 6π)
}

+ 2r(5χ + 12π)ν′′ + r(5χ + 12π)ν′ 2

+8(χ + 3π)ν′
}

+ 8χ
(

eλ − 1
)

]

. (24)

Solving the above field equations exactly is a difficult task.

Many authors have adopted several methods to obtained the

solution. Recently, many authors have adopted the embed-

ding class one approach to solve the field equations which

often yields physically motivated solutions. Forwarding this

technique, we are inspired to apply it in f (R, T )-gravity to

solve exactly and its impact on the physical systems.

5 A class one solution in f (R, T )-theory

Since the field equations depend on metric functions ν and

λ. To construct a viable anisotropic model, we have assumed

grr as

eλ = 1 + ar2
(

1 + br2 + cr4
)

(25)

where a, b and c are non-zero positive constants.

By substituting the value of λ from Eqs. (25) into (6) we

get

eν =
(

A +
2aB

√
c r f1(r) f2(r) − f5(r)

16c3/2 f3(r)

)2

(26)

where

f1(r) = 1 + br2 + cr4, f2(r) = b + 2cr2

f3(r) = r
√

a f1(r), f4(r) = 2
√

c
√

f1(r) + f2(r)

f5(r) = aB
√

f1(r) r(b2 − 4c) log [ f4(r)]

By using the metric potentials ν and λ, we directly obtain the

expression for thermodynamic variables like density, radial

and transverse pressure and anisotropy as

ρ =
χ1 f5(r){a f1(r)2r2 + f9(r)} − 2

√
c f17(r)

3 f11(r)(χ + 2π)(χ + 4π) f7(r)2
(27)

where

f6(r) =
[

a f1(r)2 − f2(r)

]

, f7(r) = 1 + ar2 f1(r)

f8(r) = 8Acf3(r) + aB f1(r) f2(r)r

f9(r) = 3 + 5br2 + 7cr4, χ1 = χ + 3π

f10(r) = 9π + 5χ + 9cr4χ + 21πcr4

f11(r) = f5(r) − 2
√

c f8(r)(r)

f12(r) = 4Aχ1

[

1 + cr4
]

f3(r) + Br f10(r)

f13(r) = χ1 + 7cr4χ + 17πcr4

f14(r) = 8Acr3χ1 f3(r) + 3B f13(r)

f15(r) = 5b2 Br2χ1 + b f14(r) + 2c f12(r)r

f16(r) = 4Aχ1 f9(r) f3(r) + Brχ

[

3 + 4br2 + 5cr4
]

f17(r) = a2 B f2(r) f1(r)3r3χ1 + a f15(r) f1(r)r + 2c f16(r)

f18(r) = 9 + 8br2 + 7cr4

pr =
a

[

2
√

cg7(r) − g8(r) f5(r)
]

3g10(χ + 2π)(χ + 4π) f7(r)2
(28)

where

g1(r) = 8Acr3χ1 f3(r) + 3B
[

π − 8cr4χ − 13πcr4
]

g2(r) = χ f18(r) + 24π f1(r)

g3(r) = Bg2(r)r − 4A f3(r)

[

3π f1(r) − f2(r)r2χ

]

g4(r) = 2χ

[

5 + 6cr4
]

+ 21π

[

1 + cr4
]

g5(r) = Bg4(r)r − 4Aχ1

[

1 + cr4
]

f3(r)

g6(r) = b2 Br2[3π − χ ] + bg1(r) − 2cg5(r)r

g7(r) = a2 B f2(r) f1(r)3r3χ1 + a f1(r)g6(r)r − 2cg3(r)

g8(r) = r2χ f6(r) + 3π f1(r) f7(r)

g9(r) = 8Acf3(r) + aB f1(r) f2(r)r

g10(r) = f5(r) − 2
√

cg9(r)

∆ =
ar2 f6(r)

[

2
√

c{h2(r) − 8Bcr} − f5(r)
]

2(χ + 4π) f7(r)2
[

2
√

ch2(r) − f5(r)
] . (29)

where,

h1(r) = b2r2 + 3bcr4 + b + 2cr2
(

cr4 + 1
)

h2(r) = 8Acf3(r) + aBrh1(r)

The variations of the above physical quantities are given in

Figs. 2, 3 and 4. We should ensure that values of pr/ρ and

pt/ρ at the interior must be less than unity for a physical

system (Fig. 5).

The other physical parameters such as mass, compactness

factor and red-shift can be determine as

m(r) =
r

2

(

1 − e−λ
)

=
r

2

[

1 −
1

1 + ar2
(

1 + br2 + cr4
)

]

(30)

6 Boundary conditions and determination of constants

It is necessary that we should match our interior space–time

to the exterior Schwarzschild [121] line element

ds2 =
(

1 −
2m

r

)

dt2 −
(

1 −
2m

r

)−1

dr2

−r2
(

dθ2 + sin2 θ dφ

)

(31)

at the boundary r = R.
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Using the continuity of the metric coefficients eν and eλ

across the boundary (r = R) and vanishing of radial pressure

at the boundary (r = R) we get the following equations

1 −
2M

r
= eνs = e−λs (32)

pr (r = R) = 0. (33)

On using the boundary conditions (32) and (33) we obtain

the value of arbitrary constants as,

a = −
2M

R2[2M − R]
[

1 + bR2 + cR4
] (34)

A =
√

1 −
2M

R
−

2aB
√

cR f1(R) f2(R) − f5(R)

16c3/2 f3(R)

B =
4 f3(R)

√

1 − 2M
R

[

3π f1(R) f7(R) + χ R2 f6(R)2
]

24π R f1(R) f7(R) + R
[

f18(R) + 10a R2 f1(R)2
]

χ

7 Energy conditions

In this section we are willing to verify the energy conditions

namely null energy condition (NEC), dominant energy con-

dition (DEC) and weak energy condition (WEC) at all points

in the interior of a star which will be satisfied if the following

inequalities hold simultaneously:

W EC : Tµν tµtν ≥ 0 or ρ ≥ 0, ρ + pi ≥ 0 (35)

N EC : Tµνlµlν ≥ 0 or ρ + pi ≥ 0 (36)

DEC : Tµν tµtν ≥ 0 or ρ ≥| pi | (37)

where Tµν tµ ∈ nonspace-like vector

SEC : Tµν tµtν −
1

2
T λ

λ tσ tσ ≥ 0 or ρ +
∑

i

pi ≥ 0. (38)

where i ≡ (radial r, transverse t), tµ and lµ are time-like

vector and null vector respectively.

We will check the energy conditions with the help of

graphical representation. In Fig. 7, we have plotted the L.H.S

of the above inequalities which verifies that all the energy

conditions are satisfied at the stellar interior.

8 Stability and equilibrium of the model

8.1 Equilibrium under various forces

Equilibrium state under three forces vi z gravitational, hydro-

statics and anisotropic forces can be analyze whether they sat-

isfy the generalized Tolman–Oppenheimer–Volkoff (TOV)

equation or not and it is given by

−
Mg(r) (ρ + pr )

r
e

ν−λ
2 −

dpr

dr
+

2

r
(pt − pr ) = 0, (39)

where Mg(r) represents the gravitational mass within the

radius r , which can derived from the Tolman–Whittaker

formula and the Einstein field equations and is defined by

Mg(r) = 4π

∫ r

0

(

T t
t − T r

r − T θ
θ − T

φ
φ

)

r2e
ν+λ

2 dr. (40)

The above Eq. (40) reduced to

Mg(r) =
1

2
r e

(λ−ν)
2 ν′. (41)

Plugging the value of Mg(r) in Eq. (39), we get

−
ν′

r
(ρ + pr ) −

dpr

dr
+

2

r
(pt − pr )

+
χ

3(8π + 2χ

d

dr
(3ρ + pr − 2pt ) = 0. (42)

The above expression may also be written as

Fg + Fh + Fa + F f r t = 0, (43)

where Fg , Fh , Fa and F f r t represents the gravitational,

hydrostatics, anisotropic forces and extra term due to FRT

modification respectively and can be written as,

Fg = −
ν′

r
(ρ + pr ) (44)

Fh = −
dpr

dr
(45)

Fa =
2∆

r
(46)

F f r t =
χ

3(8π + 2χ)

d

dr
(3ρ − pr − 3pt ) . (47)

The profile of three different forces are plotted in Fig. 8 and

we can see that the system is in equilibrium state.

8.2 Causality and stability condition

In this section we are going to find the subliminal velocity

of sound and stability condition. For a physically acceptable

model of anisotropic fluid sphere the radial and transverse

velocities of sound should be less than 1, which is known as

the causality condition. The radial velocity (v2
sr ) and trans-

verse velocity (v2
st ) of sound can be obtained as

v2
r =

dpr

dρ
, v2

t =
dpt

dρ
(48)
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8.3 Adiabatic index and stability condition

For a relativistic anisotropic sphere the stability is related to

the adiabatic index Γ , the ratio of two specific heats, defined

by [122],

Γr =
ρ + pr

pr

dpr

dρ
(49)

Now Γr > 4/3 gives the condition for the stability of

a Newtonian sphere and Γ = 4/3 being the condition for

a neutral equilibrium proposed by [123]. This condition

changes for a relativistic isotropic sphere due to the regen-

erative effect of pressure, which renders the sphere more

unstable. For an anisotropic general relativistic sphere the

situation becomes more complicated, because the stability

will depend on the type of anisotropy.

8.4 Harrison–Zeldovich–Novikov static stability criterion

The stability analysis of Harrison et al. [124] and Zeldovich

and Novikov [125] have shown that the adiabatic index of a

pulsating star is same as in a slowly deformed matter. This

leads to a stable configuration only if the mass of the star is

increasing with central density i.e. ∂m/∂ρc > 0 and unstable

if ∂m/∂ρc < 0. Figure 13 shows that the mass increases

with increase in central density i.e. ∂m/∂ρc > 0, hence static

stability criterion is fulfilled. It can also be noted that with the

increase in χ -parameter the range of perturbed density also

increases. Therefore, during radial perturbations the change

in density can be accommodate within the stable limit thus

stabilizing the perturbed system.

8.5 Equation of state

In the investigation of compact stellar systems such as neu-

tron stars, it is very important to know how the master thermo-

dynamic factors are connected. This connection known as the

EoS leads to a relationship between radial pressure (pr ) and

energy density (ρ). The microphysics, as portrayed by the

EoS, is connected to the macroscopic properties of the neu-

tron star, specifically, their radii and masses, by means of the

TOV equations, which give the immediate relation that is nec-

essary to utilize astrophysical perceptions to restrict nuclear

physics at very high densities. Nevertheless, the composition

of a neutron star mainly relies upon the type of strong inter-

actions, which are not well-understood in dense matter. Most

models that have been studied can be advantageously gath-

ered into three general classifications: non-relativistic poten-

tial models, relativistic field theoretical models, and rela-

tivistic Dirac–Brueckner–Hartree–Fock models. In addition,

in every one of these methodologies, the presence of extra

softening components, for instance, hyperons, Bose conden-

sates, or quark matter can be incorporated. Subtleties of these

methodologies have been additionally considered in Lattimer

et al. [126] and Prakash et al. [127]. On the other hand, there

are two general classes of EoS. First, normal EoS has a pres-

sure which disappears when the density tends towards zero.

Second, self-bound EoS have a pressure that disappears at

an important finite density. Regard to the self-bound EoS

the most popular model is the MIT bag model EoS. It was

emphasized by Witten [128] that strange quark matter is the

ultimate fundamental state of matter. This prompts the way

that the inward and outside vacuum densities of the hadrons

are totally different and that the vacuum pressure of the bag

wall equilibrium the pressure of the quarks, stabilizing the

ensemble system [129,130]. In this way, the quark matter EoS

then reads, p = 1/3(ρ−4B), where B is named bag constant

and depicts the dissimilarity between the energy density of

the perturbative and non-perturbative QCD vacuum. In this

system, the interactions of quarks and gluons are sufficient

small, neglecting quark masses and assuming that quarks are

constricted to the bag volume. Regarding ordinary matter,

the EoS portrays an interacting nucleon gas above a transi-

tion density 1/3×ρsur f ace to 1/2×ρsur f ace, where ρsur f ace

is the surface density. Beneath this density, the fundamen-

tal state of matter comprises of dense nuclei in balance with

a neutron-rich, low-density gas of nucleons. Regardless, the

balance of the framework exists beneath the transition density

[131,132]. In this way, so as to clarify the auxiliary properties

of compact stellar structures model at high densities, several

authors have suggested the EoS pr = pr (ρ) ought to be very

much approximated by a linear function of the energy density

[133–135]. Moreover, a linear relationship between the radial

pressure and the energy density guarantees the conservation

of causality condition.

The EoS of the matter interior the stellar structure, pr =
pr (ρ) for our stellar model is described in Fig. 12. Gener-

ally for these sort of models there is an approximately linear

reliance of the pressure on the energy density of the matter.

We can give an equation dependent on radial pressure and

matter density i.e. likely EoS which has an major importance

in the arena of astrophysics. So, in Fig. 12 we can graphi-

cally acknowledge the form of the EoS of the stellar model

under investigation. Despite the complex relationship given

between the radial pressure and energy density, the comport-

ment that arises from the surface to the core of the object

is approximately linear (the curves increases from regions

of low to high densities). With this curve of the pressure-

density relation, a simple polynomial linear interpolation of

the standard equations of stellar structure can be described

approximately by the following expression

pr = α(ρ − ρs), (50)
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where α is a non-negative constant. In this respect, it is clear

from the above expression (Eq. 50) that when the radius coin-

cides with the surface radius i.e r = R then the radial pressure

vanishes i.e pr = 0. This is so due to the energy density at

zero pressure (surface energy density) i.e. ρ(R) = ρs , which

is generally a non-zero quantity. However, if the EoS obey

polytropic form than the density vanishes at the boundary

where pr = 0.

9 Results and discussions

Modified gravity theories provide a significant possibility for

resolving or avoiding certain problems encountered when

regarding general relativity as the basic theory of gravity.

One of the most formidable attributes of prolonged theo-

ries is the incorporation of coupling among gravitational and

matter components that has prompted various scientists to

uncover the shrouded mysteries of dark side (dark matter

and dark energy). In this respect, we have worked with a

specific modified gravity, so-called f (R, T ) theory. Further-

more, we have taken simplified linear form of the arbitrary

function f (R, T ) given as f (R, T ) = R + 2χT , where χ is

a dimensionless coupling constant, and the Lagrangian mat-

ter Lm = −P = (pr + 2pt )/3 which has been provided by

Harko et al. [47], to portray the complete solution of modified

field equations for the distribution of anisotropic matter. The

dependence on T of the theory can be due to the taking into

account quantum effects (conformal anomaly), generating a

potential path towards a quantum gravity theory, or to the con-

ceivable presence of exotic imperfect fluids in the universe.

This dependence on the coupling between terms of matter and

curvature in alternative theories plays a fundamental role in

the description of the attractive problem of cosmic acceler-

ated expansion. The motivation of introducing trace of the

stress–energy tensor may begin from the outcomes of some

obscure gravitational co-operations or the effects of some

fascinating fluid. It is anticipated that such coupling gives

the non-vanishing conservation of stress–energy tensor as in

other theories of gravity [59,61]. Subsequently, an extra force

emerges because of which huge test particles pursue the non-

geodesic way while dust particles pursue the geodesic lines.

Our study is committed to a new class of generalized solu-

tions for the anisotropic spherically symmetric relativistic

stars. In our research, we adopted the embedding class one

approach where a 4-dimensional inside space–time is embed-

ded into the 5-dimensional flat Euclidean space within the

framework of f (R, T ) gravity theory, in order to obtain gen-

eral solutions of the modified Einstein field equations. Signif-

icantly, it is demonstrated that for our system by considering

the stress–energy tensor due to the complete matter distribu-

tion, we get the usual form of the energy conservation equa-

tion in Eq. (17). We have adopted the embedding class one

Fig. 1 Variation of metric potentials w.r.t radial coordinate r for M =
1.29M⊙, R = 8.831 km and b = 0.0031 km−2

approach to resolve the gravitational field equations which

often yields physically motivated solutions. Forwarding this

approach by considering the radius-radius component of the

gravitational potential to be eλ = 1+ar2(1+br2 +cr4) and

we get the time-time component of the gravitational potential

eν in Eq. (26), in order to resolve exactly and its effect on the

physical system in f (R, T ) gravity.

Throughout our analysis and study of the physical dis-

cussions of the accomplished solutions, we have been tak-

ing into account a compact stellar configuration, namely an

X-ray pulsar binary i.e., SMC X-4, having the observed

mass as M = 1.29 M⊙ [136]. We present our outcomes

for the diverse chosen parametric values of χ , viz., χ =
−1,−0.5, 0, 0.5, 1, so as to derive unknown values of the

different arbitrary constants of the astrophysical system in

f (R, T ) gravity. We presented the fundamental physical

amounts that describe the stellar system. These amounts are

the metric potentials, the density profile, the radial and trans-

verse pressure profiles, anisotropy profile, equation of state

parameter profiles, red-shift profile, energy conditions, TOV-

equation profile, Velocity of sound profile, Stability factor

profile and Adiabatic index profile. It is notable that in the

investigation of anisotropic compact stellar configurations,

all the amounts referenced above fulfill all the general pre-

requisites so as to portray a well behaved astrophysical inside.

These general prerequisites are summarized as follows:

– We have displayed the profile of physical amounts of both

gravitational potentials, in particular, eλ (in the upper

panel) and eν (in the lower panel) with respect to the radial

coordinate r in Fig. 1, which show that these two phys-

ical amounts are finite at the origin and monotonically

increasing towards the boundary at the surface. Figures 2

and 3 shown the density profile and the radial and trans-

verse pressure profiles respectively. The three amounts

have their greatest values at the core and decrease mono-

tonically towards the limit with expanding radius. It is
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Fig. 2 Density profile of SMC X-4 w.r.t radial coordinate r for M =
1.29M⊙, R = 8.831 km and b = 0.0031 km−2

Fig. 3 Radial and transverse pressure profile of SMC X-4 w.r.t radial

coordinate r for M = 1.29M⊙, R = 8.831 km and b = 0.0031 km−2

seen that the radial pressure is disappeared at the surface,

this fact decides the anisotropic compact stellar structure

size i.e. the radius of the spherical object. Besides, the

value of χ preponderantly affects the radial and trans-

verse pressures, as should be obvious changing χ from

−1 to 1, the upper value of radial pressure and transverse

pressure increments with expanding χ , notwithstanding,

the matter density is positive defined wherever inside the

anisotropic compact stellar structure. All these physical

amounts specifically appeared in Figs. 1, 2 and 3, viz.,

time-time component, radius–radius component, matter

density, radial pressure and transverse pressure which

mentioned above are free from mathematical singulari-

ties and with their most extreme values accomplished at

the core of the anisotropic compact stellar configuration.

– The plot corresponding to the anisotropy profile against

radial coordinates r , which shows the behaviour of

anisotropy factor wherever interior the astrophysical

object is represented in Fig. 4. At the core of the spherical

object ∆ = 0, in effect at the core pr = pt . In addition, as

increment ∆ grow up. Furthermore, the anisotropy fac-

Fig. 4 Anisotropy profile of SMC X-4 for M = 1.29M⊙, R = 8.831

km and b = 0.0031 km−2

Fig. 5 Equation of state parameter profiles of SMC X-4 for M =
1.29M⊙, R = 8.831 km and b = 0.0031 km−2

tor is positive ∆ > 0, it implies that pt > pr and in this

manner one has a more compact and huge configurations.

For this situation, the system encounters a repulsive force

that balances the gravitational slope improving the equi-

librium condition and steadiness. We note from Fig. 5

that the equation of state parameters corresponding to

ωr = pr/ρ and ωt = pt/ρ with respect to the radial

coordinate r are under 1, which proves that the physical

system is well-respected wherever interior the compact

stellar structure within the framework of f (R, T ) gravity

theory.

– Regarding the surface redshift Zs , in the situation of

isotropic matter distribution, the most extreme value that

it can attain is Zs = 2, which is in absolute concurrence

with the Buchdahl’s limit u = M/R ≤ 4/9. At that

point from Eq. (30), we see that the gravitational red-

shift of spherical object cannot be arbitrarily enormous

due to Buchdahl’s limit. All things considered, when

anisotropies are available into the matter content this limit

can be surpassed. Toward this path Ivanov [137] indicated

that for a achievable anisotropic spherical object mod-

els the upper bound of Zs is 5.211, which corresponds
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Fig. 6 Red-shift profiles of SMC X-4 for M = 1.29M⊙, R = 8.831

km and b = 0.0031 km−2

Fig. 7 Energy conditions of SMC X-4 for M = 1.29M⊙, R = 8.831

km and b = 0.0031 km−2

to a model without cosmological constant and can not

be surmounted. As Eq. (30) shows Zs relies upon the

eλ gravitational potential. On the other hand in Fig. 6,

we have shown graphically the surface red-shift with the

compact star. From this figure, it is established that the

gravitational red-shift inside standard value findings by

Ivanov’s [137] which leads to the physical validity of the

matter distribution of our astrophysical model.

– From Fig. 7 it is seen that all inequalities mentioned above

in (35)–(38) are fulfilled simultaneously at the stellar inte-

rior for various values of χ coupling constant. Further-

more, the fact that the inequalities (35)–(38) known as

the energy conditions are fulfilled averts non-physical

domains, such as energy propagating quicker than the

speed of light, negative matter density or void space will-

ingly decomposing into remunerating districts of nega-

tive and positive energy.

– Further, we have generated the four forces, namely,

the hydrodynamic force (Fh), gravitational force (Fg),

anisotropic force (Fa) and extra force (F f r t ) arises due

to f (R, T ) gravity as mentioned in Eqs. (44)–(47) which

gives the equilibrium of our stellar system. The profile of

Fig. 8 TOV-equation profile of SMC X-4 for M = 1.29M⊙, R =
8.831 km and b = 0.0031 km−2

these four forces is emphatically connected to the values

taken by the χ coupling constant. From Fig. 8 we can per-

ceive how the equilibrium of the stellar system is achieved

under these various forces. In this way, we can feature

certain points corresponding to the various values doled

out to the parameter χ in Fig. 8. In this plot, χ parameter

takes esteems −1,−0.5, 0, 0.5 and 1, respectively. It is

remarkable the impact of χ parameter has on the conduct

of hydrostatic force, extra force and gravitational force.

As should be obvious, when χ expands the hydrostatic

and gravitational forces increment however the extra one

diminishes. In spite of the fact that the extra force dimin-

ishes when χ expands, the augmentation of the hydro-

static force toward this path keeps up the equilibrium of

the system (the equivalent happens when χ diminishes,

for this situation the extra force increments and the hydro-

static force diminishes), this implies there is a supplement

between the conduct of the two forces to counteract the

gravitational gradient. Then again, the anisotropic force,

although very weak compared to the other forces, is repul-

sive in nature from ∆ > 0, which supports to counterbal-

ance the gravitational force together with the hydrostatic

and extra forces. According to the previous discussion, it

is clear that the examination under four various forces that

act on the spherical object gives an increasingly steady,

compact and massive system.

– With regard to the the steadiness of the astrophysical sys-

tem, it was examined by analyzing the causality con-

dition Abreu’s criterion, the adiabatic index Γ and the

Harrison–Zeldovich–Novikov static stability criterion.

The graphical portrayal of causality condition Abreu’s

criterion is appeared in Figs. 9 and 10, for different val-

ues of χ coupling constant. This indicates that our stellar

model is totally steady, in light of the fact that the sub-

liminal velocity of sound is under 1 wherever inside the

spherical object. Furthermore there is no change in sign

v2
t − v2

r and stability factor (v2
t − v2

r ) lies somewhere

in the range of −1 and 0 for steady structure and 0 to 1
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Fig. 9 Velocity of sound profiles of SMC X-4 for M = 1.29M⊙,

R = 8.831 km and b = 0.0031 km−2

Fig. 10 Stability factor (v2
t − v2

r ) profiles of SMC X-4 for M =
1.29M⊙, R = 8.831 km and b = 0.0031 km−2

Fig. 11 Adiabatic index profiles of SMC X-4 for M = 1.29M⊙, R =
8.831 km and b = 0.0031 km−2

for unsteady structure. The graphical depiction of adia-

batic index Γ is showed up in Fig. 11. This exhibits that

our considered compact stellar systems show dynamical

steady configuration for the picked values of coupling

constant χ as the value of Γ > 4/3. This shows that our

considered anisotropic compact star models are inside

the steadiness range even in the existence of curvature

terms present in f (R, T ) useful structure (Figs. 12, 13).

Fig. 12 Behavior of equation of state for SMC X-4 for M = 1.29M⊙,

R = 8.831 km and b = 0.0031 km−2

Fig. 13 M–ρc curve and verification of static stability criterion

Fig. 14 M–R curve fitted with observed masses and estimation the

radii for different values of χ

– The beauty of this new solution is not only the embed-

ding class one solution in f (R, T )-gravity but also in

its M − R curve (Fig. 14). The M − R curve gener-

ated from this solution can accommodate a variety of

compact stars from the less massive (Her X-1) to super

massive (MSP J0740+6620). In Table 1 we have cho-
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Table 1 Fitting of observed masses and radii with new predictions of radii w.r.t. χ-parameter

Objects M/M⊙ R (km) Predicted R (km)

χ

−1.0 −0.5 0.0 0.5 1.0

MSP J0740+6620 2.14+0.20
−0.18 – 10.36 10.06 9.78 9.533 9.286

PSR J1614-2230 1.97 ± 0.04 9.96 ± 0.2 10.18 9.912 9.665 9.418 9.204

Vela X-1 1.77 ± 0.08 9.56 ± 0.08 9.929 9.681 9.451 9.22 9.006

SMC X-4 1.29 ± 0.05 8.831 ± 0.09 9.171 8.94 8.759 8.544 8.396

SAX J1808.4-3652 0.9 ± 0.3 7.951 ± 0.1 8.33 8.132 7.968 7.819 7.638

Her X-1 0.85 ± 0.15 8.1 ± 0.41 8.125 7.902 7.737 7.572 7.424

sen 6 compact stars and their predicted radii for differ-

ent values of χ -coupling parameter. From this one can

agree that the solution predicted the radii in good agree-

ment with the observed values. Since the radius of MSP

J0740+6620, the most massive neutron star observed yet

is still unknown, we have predicted its radii for different

values of χ .

As we have seen that the presented solution satisfy a vari-

ety of physically acceptable criteria and its M–R curve fitted

quite well with observational values, one can immediately

conclude that the solution might have astrophysical signifi-

cance in future works.
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