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Peak-based meta-analyses of neuroimaging studies create, for each study, a brain map of

effect size or peak likelihood by convolving a kernel with each reported peak. A kernel is

a small matrix applied in order that voxels surrounding the peak have a value similar to,

but slightly lower than that of the peak. Current kernels are isotropic, i.e., the value of

a voxel close to a peak only depends on the Euclidean distance between the voxel and

the peak. However, such perfect spheres of effect size or likelihood around the peak are

rather implausible: a voxel that correlates with the peak across individuals is more likely

to be part of the cluster of significant activation or difference than voxels uncorrelated

with the peak. This paper introduces anisotropic kernels, which assign different values to

the different neighboring voxels based on the spatial correlation between them. They are

specifically developed for effect-size signed differential mapping (ES-SDM), though might

be easily implemented in other meta-analysis packages such as activation likelihood esti-

mation (ALE). The paper also describes the creation of the required correlation templates

for gray matter/BOLD response, white matter, cerebrospinal fluid, and fractional anisotropy.

Finally, the new method is validated by quantifying the accuracy of the recreation of effect

size maps from peak information.This empirical validation showed that the optimal degree

of anisotropy and full-width at half-maximum (FWHM) might vary largely depending on

the specific data meta-analyzed. However, it also showed that the recreation substantially

improved and did not depend on the FWHM when full anisotropy was used. Based on

these results, we recommend the use of fully anisotropic kernels in ES-SDM and ALE,

unless optimal meta-analysis-specific parameters can be estimated based on the recre-

ation of available statistical maps. The new method and templates are freely available at

http://www.sdmproject.com/.

Keywords: activation likelihood estimation, anisotropic kernel, coordinate-based meta-analysis, effect size, mag-

netic resonance imaging, neuroimaging, signed differential mapping

INTRODUCTION

In order to help summarize and integrate the results of the ever-

growing number of neuroimaging studies, some groups have

developed methods to conduct voxel-based meta-analyses solely

relying on the information reported in the papers, namely the

peaks of the clusters where there were statistically significant

activations or where patients and controls showed statistically

significant differences. Activation likelihood estimation (ALE) (1–

4), (effect-size) signed differential mapping (ES-SDM) (5–7) and

(multilevel) kernel density analysis (M-KDA) (8, 9) are commonly

used methods that have already been applied to meta-analyze a

wide range of normal brain functions (10–12) and abnormali-

ties in neurological (13–15) and psychiatric disorders (16–18). As

briefly introduced in Figure 1, these methods differ substantially in

their algorithms [for a deeper review, see Ref. (19)], but one char-

acteristic they share is that all convolve an isotropic kernel with the

peak. In this context, a“kernel”is a small matrix convolved with the

peaks in order that voxels surrounding a peak have a value similar

to, but slightly lower than that of the peak. An “isotropic kernel” is

identical in all directions. In simple terms, the effect size of a voxel

close to a peak would only depend on the effect size of the peak and

the Euclidian distance between the voxel and the peak (Figure 2).

All voxels at 1 cm of a peak would have the same effect size,

independently of whether they are in the same brain region or not.

However, such perfect spheres of effect size around the peak

are probably implausible. Independently on the distance, voxels in

the same brain region as the peak are more likely to be part of the

cluster of significant activation or difference. Conversely, voxels in

other brain regions, or separated from the peak by cerebrospinal

fluid, are less likely to be part of the cluster.

Applying an isotropic kernel may thus underestimate the effect

size of voxels in the same brain region as the peak, whereas it may

overestimate the effect size of voxels from other brain regions.

Some groups have recommended the use of large kernels, thus

www.frontiersin.org February 2014 | Volume 5 | Article 13 | 1

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/about
http://www.frontiersin.org/Journal/10.3389/fpsyt.2014.00013/abstract
http://www.frontiersin.org/Journal/10.3389/fpsyt.2014.00013/abstract
http://www.frontiersin.org/people/u/21549
http://www.frontiersin.org/people/u/7563
http://www.frontiersin.org/people/u/107810
http://www.frontiersin.org/people/u/11740
http://www.frontiersin.org/people/u/74270
http://www.frontiersin.org/people/u/134856
mailto:joaquim.radua@kcl.ac.uk
http://www.sdmproject.com/
http://www.frontiersin.org
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radua et al. Anisotropic coordinate-based meta-analyses

FIGURE 1 | Main steps of activation likelihood estimation (ALE) and

effect-size signed differential mapping (ES-SDM). ALE (left approach)

aims to estimate the likelihood that a peak lies in any given voxel. To this

end, it first applies a Gaussian kernel so that the likelihood is high in the

voxel where the peak is reported and similar but slightly lower in the close

voxels. Afterward, it calculates the probability of the union of the likelihoods

estimated from the different peaks and studies. ES-SDM algorithms (middle

and right approach) are different, as this method aims to estimate the effect

size rather than the peak likelihood. However, the first step also consists in

applying an (un-normalized) Gaussian kernel, this time to achieve that voxels

around a reported peak have an estimated effect size which is similar but

slightly smaller to that of the peak. Afterward, effect-sizes recreated from

the different peaks of a study are combined using a weighted average, i.e.,

when a voxel is close to two peaks, it has an effect size that depends on

both peaks. Finally, the effect size maps as well as their variance maps are

introduced in a meta-analytic random-effects general linear model.

minimizing the underestimation of the effect size, though at the

cost of a potential overestimation in some voxels (6, 20). Other

developers have recommended the use of narrow kernels, thus

minimizing the overestimation of the effect size, though at the

cost of potential underestimation in some other voxels (4).

The aim of this study was to develop anisotropic kernels for

coordinate-based meta-analyses, which would assign different val-

ues to the different neighboring voxels based on the spatial corre-

lation between them. This was specifically developed for ES-SDM,

although it might be easily implemented in other widely used

meta-analytical programs such as ALE. The paper also includes

the creation of new tissue-specific templates and a validation of

the new method. We hypothesized that the recreation of effect size

maps using anisotropic kernels would be more accurate than using

isotropic kernels.

THEORY

Previous versions of ES-SDM adopted the ALE Gaussian kernel

with the aim that, in the recreated statistical map, the voxels close

to a peak have slightly smaller effect sizes than that of the peak, and

progressively further voxels have progressively smaller effect sizes.

Specifically, the effect size of a voxel close to a peak depended on

the effect size of the peak and on the Euclidean distance between

the voxel and the peak by means of an un-normalized Gaussian

function:

dvoxel = exp

(

−D2

2 · σ2

)

· dpeak (1)

where d is the effect size, D is the distance, and σ is the standard

deviation of the kernel (approximately 0.425 of its full-width at

half-maximum, FWHM).

The new method described here is based on the correlation

between close voxels in the underlying structural image. Note that

correlated voxels (e.g., individuals with much gray matter in one

voxel tend to also have much gray matter in the other voxel) are

more likely to be from the same brain region. The method consists

of virtually deforming the distance so that highly correlated voxels

are brought closer, while uncorrelated voxels are moved further

away. A Gaussian kernel is then applied to the deformed space.

When the original space is restored, highly correlated voxels are

estimated to have larger effect sizes whereas uncorrelated voxels

are estimated to have smaller or null effect sizes (Figure 3).

DEFORMATION OF THE SPACE

Space is deformed to match the correlation of each voxel with

its neighbors. To match distances and correlations, the expression

of dvoxel in Eq. 1 is made equal the expression of dvoxel in Eq. 2,

obtaining Eq. 3 from which D may be isolated:

dvoxel = ρ · dpeak (2)

exp

(

−D2

2 · σ2

)

· dpeak = ρ · dpeak (3)

D =

√

2 · σ2 · log
(

ρ−1
)

(4)

where ρ is the coefficient of correlation between the voxel and the

peak.

The distance between a peak and its adjacent voxels is thus

deformed according to the Eq. 4, the only variables of which are

the constant standard deviation of the kernel (or equivalently the

FWHM) and the correlation between the two voxels. Figure 4

shows this correspondence between correlation and deformed

space.

To estimate the distance between the peak and a non-

contiguous voxel v, the software must sum the distances between

the pairs of contiguous voxels along the shortest path between

the peak and the voxel v. However it is difficult to know, in the

deformed space, which is the shortest path between two voxels.

A path composed of 10 voxels may be shorter than a path com-

posed of 6 voxels, if the sum of the distances between the nine

pairs of contiguous voxels of the former is smaller than the sum

of the distances between the five pairs of contiguous voxels of
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Radua et al. Anisotropic coordinate-based meta-analyses

FIGURE 2 | Recreation of clusters using isotropic kernels in previous

versions of effect-size signed differential mapping (ES-SDM) and

activation likelihood estimation (ALE). Note that the recreation of the

effect size (or the estimation of the activation likelihood) does not depend on

the strength of the spatial correlations, but only on the Euclidean distance

between each voxel and the peak.

FIGURE 3 | Recreation of clusters using the anisotropic kernel in the updated version of effect-size signed differential mapping (ES-SDM). Note that

the recreation of the effect size does depend on the strength of the spatial correlations, with the cluster being stretched toward voxels highly correlated with

the peak.

the latter. A Dijkstra’s algorithm (21) is used in the new method

to find the shortest distance between the peak and each of its

surrounding voxels. Specifically, the algorithm first calculates the

distances between the peak (“initial node”) and each of its’ 26

adjacent voxels. Second, it calculates the distances between one

of these adjacent voxels (“current node” in this step) and each its’
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Radua et al. Anisotropic coordinate-based meta-analyses

FIGURE 4 | Deformed distance between two adjacent voxels

depending on the correlation between them. Deformed distances in this

example have been calculated for σ = 8.5 mm (FWHM = 20 mm). Note,

however, that the recreation of effect size map does not indeed depend on

FWHM when full anisotropy is used [see text, Eq. 2 and Figure 6].

adjacent voxels. This step is repeated for each of the voxels adjacent

to the peak. Third, it calculates the distances between each of the

voxels adjacent to the voxels adjacent to the peak and their adja-

cent voxels. This is repeated until: (a) the total distance between

the peak and a voxel following a path of voxels is not shorter to

that previously calculated following another path; or (b) the total

distance is longer than the FWHM – which would correspond to

the effect size of the peak divided by 16, already negligible.

This algorithm does not restrict its calculations to voxels within

a mask of, e.g., gray matter. This is important because neuroimag-

ing studies not uncommonly show significant results outside the

expected tissue, due to, e.g., registration mismatches during pre-

processing. With this unrestricted spatial propagation: (a) peaks

outside the selected mask may be also used in the recreation

of the effect size; and (b) researchers can check whether peaks

of the recreated map match with those reported in the man-

uscript – which may be outside the mask. However, spuriously

strong correlations outside the tissue might potentially cause arti-

facts such as“bridges”between two separate brain regions. In order

to avoid such artifacts, correlations in voxels with a tissue prob-

ability lower than 0.1 in the smoothed average (see Creation of

correlation templates below) are decreased proportionally, e.g.,

are divided by 2 in voxels with a tissue probability of 0.1/2 = 0.05,

and by 10 in voxels with a tissue probability of 0.1/10 = 0.01.

GENERALIZATION TO VARIABLE DEGREES OF ANISOTROPY

Equation 2 can be generalized to:

dvoxel = ρ
1−α

isotropic · ρ
α

· dpeak (5)

where α is the degree of anisotropy and ρisotropic is a theoreti-

cal spatially constant correlation in the isotropic scenario. Note

that α = 0 corresponds to the isotropic scenario, α = 1 to the

fully anisotropic scenario, and 0 < α < 1 to variable degrees of

anisotropic scenarios.

The theoretical spatially constant correlation in the isotropic

scenario (ρisotropic) may be isolated from (3):

ρisotropic = exp

(

−D2
real

2 · σ2

)

(6)

where Dreal is the real Euclidean distance between the two voxels.

D may be again isolated following the same steps as outlined

above:

D =

√

(1 − α) · D2
real + α · 2σ2 · log

(

ρ−1
)

(7)

SUBSEQUENT PROCESSING STEPS

Once the deformed distances from a peak have been calculated,

these are used by the Gaussian kernel to estimate the effect size

of the voxels surrounding a peak. Remaining ES-SDM steps have

not been modified: (a) combination of the effect sizes of nearby

peaks by means of a weighted average; (b) estimation of the vari-

ances associated to these effect sizes; and (c) combination of the

effect sizes of the studies included in the meta-analysis by fit-

ting random-effects general linear models. Step (a) is conducted

throughout the whole volume for diagnostic purposes, but voxels

outside the tissue mask are subsequently discarded.

In ALE, the deformed distances could be used by the Gaussian

kernel to estimate the likelihood of a peak, and remaining ALE

steps (e.g., the estimation of the probability of the union) would

not need to be modified.

CREATION OF CORRELATION TEMPLATES

In order to apply the method described above, we needed to create

correlation templates for gray matter, white matter, cerebrospinal

fluid and fractional anisotropy (FA).

Raw magnetic resonance imaging (MRI) data were obtained

from the IXI dataset1. This dataset includes nearly 600 MR

images from normal, healthy subjects acquired in three different

hospitals in London. In order to avoid scanner-related differ-

ences, we only used those MR images acquired at Hammersmith

Hospital, where a Philips 3 T device was used. T1 parameters

were as follows: repetition time = 9.6, echo time = 4.6, 208 phase

encoding steps, echo train length = 208, reconstruction diame-

ter = 240, acquisition matrix = 208 × 208, and flip angle = 8. Dif-

fusion tensor imaging (DTI) parameters were as follows: repetition

time = 11894, echo time = 51, two averages, 110 phase encod-

ing steps, echo train length = 0, reconstruction diameter = 224,

acquisition matrix = 112 × 110, and flip angle = 90.

After exclusion of individuals younger than 20 years or older

than 80 years, the Hammersmith Hospital sample included 181

scans. A minimization script was used to select 120 of them

in order to obtain 6 equal-sized demographic groups (20–40-

year-old males, 40–60-year-old males, 60–80-year-old males, 20–

40-year-old females, 40–60-year-old females, and 60–80-year-old

females) and a relatively lower frequency of the over-represented

white and university-educated individuals (73 and 52% respec-

tively in the original sample, 60 and 40% in the selected sample).

1http://www.brain-development.org/, accessed on Oct 31 2013
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Radua et al. Anisotropic coordinate-based meta-analyses

The same individuals were used to create the FA template, although

DTI data were missing for four of them.

T1 scans were pre-processed following a standard voxel-based

morphometry (VBM) algorithm with FSL2, with the excep-

tion that no study-specific template was estimated in order

that the final images were exactly in Montreal Neurological

Institute (MNI) space: brain-extraction (22), tissue segmenta-

tion (23), non-linear registration to MNI space, and smoothing

(σ = 4mm; FWHM = 9.4 mm). DTI scans were also pre-processed

following a standard voxel-based FA algorithm with FSL: brain-

extraction, Eddy correction, FA estimation, linear registration to

the T1 scans, non-linear registration to MNI space, and smooth-

ing (σ = 3mm; FWHM = 7.1 mm). Non-linear registrations were

based on the warp parameters estimated for the T1 gray matter

segments.

Finally, individual values in each voxel were correlated with the

individual values in its contiguous voxels using R (24). The gray

matter density of a voxel x in the 120 individuals, for example,

was correlated with the gray matter density of its right-contiguous

voxel y in the same individuals, with x and y being variables with

one value per subject. A strong correlation would indicate that

individuals with more gray matter density in one of the voxels also

had more gray matter density in the other voxel. For computa-

tional and memory purposes, only 13 correlations were calculated

for each voxel, as the other complementary 13 correlation were

indeed also calculated for the corresponding neighboring voxel,

e.g., “correlation with the voxel at the left” had been already calcu-

lated when calculating the “correlation with the voxel at the right”

in the voxel at the left. An example of final template is shown in

Figure 5.

VALIDATION OF THE NEW KERNEL

METHOD

In order to validate the new method, six voxel-based effect

size maps were recreated from peak information using different

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

degrees of anisotropy and FWHM, and compared to the effect size

maps directly obtained from the raw statistical parametric maps

(“true” effect size maps). The idea is that the lower the difference

between peak-recreated and true effect size maps, the better the

recreation.

The 120 individuals from the IXI dataset were divided six times

in two groups of 60 individuals each, with these divisions being

orthogonal between them (25). A statistical parametric map was

obtained from the comparison of the registered and smoothed gray

matter segments between the two groups of each pair of groups.

The six independent statistical parametric maps were thresholded

liberally (p = 0.001, with a minimum extent of only 10 voxels) in

order to obtain significant differences. The mean (±standard devi-

ation) number of clusters was 22 ± 28, and the median (±absolute

deviation) was 16 ± 14.

Effect-size signed differential mapping pre-processing of peak

information was then conducted with different degrees of

anisotropy (0.0, 0.2. . . 1.0) and different FWHMs (5, 10. . .

100 mm). Differences between peak-recreated and true effect

size maps were summarized with the relative mean square error

(MSE), i.e., the MSE obtained under the current degree of

anisotropy and FWHM, divided by the MSE obtained under

default ES-SDM isotropic FWHM (20 mm) (6). A relative MSE

<100% would indicate an improvement of the recreation. A

set of six MSEs (one per statistical map) was obtained for

each combination of parameters, and we assessed whether

these were lower than the MSEs obtained from the same

statistical maps under default ES-SDM isotropic FWHM by

means of a non-parametric repeated-measures Wilcoxon signed-

rank test.

RESULTS

As shown in Figure 6, the optimal FWHM in this particular dataset

ranged from 40–45 mm in the absence of anisotropy (relative

MSE = 80%, p = 0.053), to 100 mm (or more) when anisotropy

was 0.4 or higher (relative MSE = 78–92%, p = 0.030–0.053). Nar-

rower FWHMs were associated to substantial increases of the

MSE (relative MSE = 120–128%). Wider FWHM also seem to

FIGURE 5 | Main correlation maps for white matter volume. For illustrative purposes, this Figure only shows correlations along the three main directions

(left-right, back-front and bottom-up). The templates created in this study include the correlations with all 26 voxels surrounding each voxel.
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Radua et al. Anisotropic coordinate-based meta-analyses

FIGURE 6 | Relative mean square error (MSE) of the recreation of

the statistical maps used in this study depending on the degree of

anisotropy and the full-width at half-maximum (FWHM). Relative

MSE was defined as the MSE obtained with the current set of

parameters divided by the MSE obtained after applying effect-size

signed differential mapping (ES-SDM) standard isotropic kernel

(FWHM = 20 mm). Please note that optimal degree of anisotropy and

FWHM were different when using other datasets (not reported here),

but use of full anisotropy was still associated to a substantial decrease

of MSE.

be associated to substantial increases of the MSE, at least in the

absence of anisotropy (relative MSE = 127%).

As expected from Eq. 2, the effects of FWHM were null when

recreations were conducted with full anisotropy, whereas there was

still a substantial decrease of MSE (MSE = 92%, p = 0.030).

Optimal degree of anisotropy and FWHM were different when

using other datasets (not reported here), but use of full anisotropy

was still associated to a substantial decrease of MSE.

DISCUSSION

This manuscript presents anisotropic kernels for peak-based meta-

analytic methods based on the spatial correlation between neigh-

boring voxels, as well as the creation of the required templates for

gray matter, white matter, cerebrospinal and FA. The empirical val-

idation showed that the optimal FWHM in the particular dataset

used was substantially larger than in previous validations (6, 20),

indicating that optimal FWHM might vary largely depending on

the data. However, it also showed that the recreation substantially

improved and did not depend on the FWHM when full anisotropy

was used. Both the method and the templates are readily available

with SDM software3.

These findings support our hypothesis that isotropic kernels

may underestimate the effect size in voxels strongly correlated

with the peak (e.g., more likely to be from the same brain region),

whereas they may overestimate the effect size in voxels weakly cor-

related (e.g., less likely to be from the same brain region). In this

regard, it must be noted that anisotropic kernels have also already

successfully been applied in other neuroimaging fields (26).

3http://www.sdmproject.com

In the absence of anisotropy, the optimal FWHM in this val-

idation was found to be 45 mm in the present study, whilst

reported to be 20–25 mm in previous work. Such difference might

be related to the extent and smoothness of the brain activa-

tions, differences or abnormalities. Spatially large and smooth

effects may be better recreated with large kernels, whilst small

and circumscribed effects with small kernels. Thus, recreation

could be optimized for each specific meta-analysis based on the

degree of anisotropy and FWHM found to optimally recreate the

available statistical maps. This optimization may be achieved fol-

lowing a series of steps analogous to those conducted in Section

“Method,” namely: (a) threshold the statistical parametric maps;

(b) conduct command-line ES-SDM pre-processing with differ-

ent degrees of anisotropy and FWHM; (c) calculate the MSE of

the differences between each peak-recreated map and the corre-

sponding effect size map under each combination of parameters;

(d) choose the optimal parameters based on a plot similar to

Figure 6. Robustness should be taken into account when deciding

which is the optimal combination of parameters, e.g., ensuring

that slight variations in anisotropy or FWHM are not associated

with large increase in MSE. On the absence of available statistical

parametric maps, however, the use of full anisotropy may rep-

resent a robust choice given that results do not depend on the

FWHM.

There is at least one situation in which isotropic and anisotropic

kernels may be probably equivalent, namely when meta-analyzing

studies using tract-based spatial statistics (TBSS) (27). These stud-

ies limit their statistical analysis to a FA skeleton, but skeletons

of different studies do not overlap. To overcome this difficulty,

TBSS protocol in ES-SDM consists in retrieving a mass number
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of liberally thresholded local peaks from the statistical maps and

incorporating them into the ES-SDM TBSS map in order to recon-

struct the effect size maps in a common skeleton (28). Given the

extreme proximity of the retrieved local peaks, no difference is

expected between using one or another kernel. Conversely, the

effects of anisotropy may be larger than those found in this paper,

in studies reporting few but high peaks, as the shape and intensity

of the recreated clusters may differ substantially.

Selecting one or another kernel is obviously irrelevant when

the ES-SDM meta-analysis does not include any effect size map

recreation from peak information. This could be the case in

the rare situations in which statistical parametric maps can be

obtained from all the studies in a field. Similarly, this is also the

case in the more common situation in which a meta-analytic

approach is used to combine data from different sites. This “mega-

analytic” approach improves upon simpler covariate-based mega-

analyses in that results may be extrapolated to sites other than

those included in the multi-site study. Finally, selecting one or

another kernel is also irrelevant when combining meta-analytic

maps from different modalities (e.g., gray matter volume and

BOLD response) to obtain a multi-modal meta-analysis (29–

31), as again it does not involve any map recreation from peak

information.

Two limitations of this study must be acknowledged. First,

the validation showed that the use of full anisotropy may be

sub-optimal as compared to some combinations of degree of

anisotropy and FWHM. However, full anisotropy is still associated

with a significant improvement as compared to default isotropic

kernels whilst it is more robust because results do not depend on

the FWHM. Second, we did not create a specific correlation tem-

plate for functional MRI (fMRI) or positron emission tomography

(PET). Unfortunately, creation of this template is not straightfor-

ward because functional correlations between voxels may depend

on the state of mind. The optimal template is likely to be different

for each specific fMRI task. Also, we do not know to which extent

the functional connectivity abnormalities reported in patients (32)

may bias the recreation of the effect size maps of task-based fMRI

studies when comparing patients with controls. Fortunately, the

use of the structural gray matter template may provide a general

correlation template, which seems unlikely to depend on the state

of mind or the functional connectivity.
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