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ABSTRACT

We consider a signal restoration from observations corrupted by random noise. The local maximum likelihood
technique allows to deal with quite general statistical models of signal dependent observations, relaxes the stan-
dard parametric modelling of the standard maximum likelihood, and results in ßexible nonparametric regression
estimation of the signal. We deal with the anisotropy of the signal using multi-window directional sectorial
local polynomial approximation. The data-driven sizes of the sectorial windows, obtained by the intersection
of conÞdence interval (ICI ) algorithm, allow to form starshaped adaptive neighborhoods used for the pointwise
estimation. The developed approach is quite general and is applicable for multivariable data. A fast adaptive
algorithm implementation is proposed. It is applied for photon-limited imaging with the Poisson distribution of
data. Simulation experiments and comparison with some of the best results in the Þeld demonstrate an advanced
performance of the developed algorithms.

Keywords: nonparametric regression, local maximum likelihood, adaptive window size, adaptive scale, photon-

limited imaging, Poisson regression.

1. INTRODUCTION

Although continuous models of the discrete image intensity are widely used in image processing, the corresponding
estimates are too rough in order to be useful for those applications where the sharpness and details are of Þrst
priority. For discrete images lacking global differentiability or continuity the only reliable way to obtain an
accurate restoration is to process y locally.

The nonparametric local regression originated in mathematical statistics offers an original approach to signal
processing problems (e.g.1, 9). It basically results in linear Þltering with the linear Þlters designed using some
moving window local approximations.4�6 Adaptive versions of these algorithms are able to produce efficient
Þltering with the varying window size (scale, bandwidth) which is pointwise adaptive (see8 and references therein).
This pointwise adaptive scale selection is based on the following idea known as Lepski�s approach. The algorithm
searches for a largest local vicinity of the point of estimation where the estimate Þts well to the data. The
estimates �yh(x) are calculated for a set of window sizes (scales) h ∈ H and compared. The adaptive scale is
deÞned as the largest of those windows in the grid which estimate does not differ signiÞcantly from the estimators
corresponding to the smaller window sizes. The intersection of conÞdence intervals (ICI ) rule3 being one of the
versions of this approach has appeared to be quite efficient for the adaptive scale image restoration.4�6

Cited above papers on the adaptive scale kernel estimation concern a scalar scale parameter and assume that
the estimators can be ordered by their variances. Vector scale parameter kernels in d-dimensional space, x∈Rd,
h ∈R

+d, are of special interest for anisotropic functions with highly varying properties at different directions.
Imaging is one of the typical examples of such problems. A direct generalization of the Lepski�s approach to
adaptive smoothing with a vector scale parameter h ∈ R

+d faces a principal obstacle as the variance of the
estimates calculated for different h cannot be ordered and can be only semi-ordered as there could be many
estimators with the same or similar variance.

The main intention of the new approach to anisotropic estimation introduced recently in7 is to obtain in a
data-driven way a largest local vicinity of the estimation point in which the underlying model Þts the data. It is
assumed that this vicinity is a starshaped set, which can be approximated by some sectorial segmentation with,
say, K sectors. These estimators are equipped with univariate scale parameters deÞning the size of the supports
in the sector. The ICI rule is exploited K times, once for each sector, in order to Þnd the optimal pointwise



Figure 1. A neighborhood of the estimation point x: a) the best starshaped estimation set U∗x , b) the unit ball segmen-
tation, c) sectors with adaptive lengths, d) sectorial approximation of U∗

x .

adaptive scales for each sector�s estimates which are then combined into the Þnal one. In this way, we reduce the
d-dimensional scale selection problem to a multiple univariate one. Figure 1 illustrates this concept and shows
sequentially: a local best estimation neighborhood U∗, a sectorial segmentation of the unit ball, and the sectorial
approximation of U∗ using the adaptive scales h∗(θi) deÞning the length of the corresponding sectors. Varying
size sectors enable one to get a good approximation of any neighborhood of the estimation point x provided that
it is a starshaped body.

All previously obtained techniques2, 5�7 based on the above strategy concerned the Gaussian observation
model and linear estimators.

The main contribution of this paper concerns two problems. First, we generalize the directional anisotropic
image processing to a broad class of non-Gaussian observation models and nonlinear Þlters based on the local
maximum likelihood methods. Second, the local polynomial approximation technique and the ICI rule are
modiÞed for these nonlinear estimation problems. As an example of these developments, a novel adaptive image
restoration algorithm for Poissonian data is presented.

2. LOCAL LIKELIHOOD

2.1. Basic concept

The observations given by pairs {zs,Xs}, where Xs ∈ Rd form the regular or irregular discrete d-dimensional
grids and z is random with a conditional probability density function (pdf) f(z, y(x)). Here y is a parameter of
this pdf depending on x. In this model the random zs depends on x through y(x) and corresponds to x = Xs.
For the Gaussian pdf and y(x) being the expectation of z we arrive to the standard additive observation model
with an invariant standard deviation of the noise

zs = y(X) + εs, s = 1, . . . , n, (1)

where εs ∼ N (0, σ). Depending on the pdf and the parameter y the considered models may allow or may not
allow this additive noise representation. Even if this representation is valid the noise ε, in general, is signal
dependent. As examples of this sort of imaging problems, we wish to mention the impulse noise observations
in radar and remote sensing applications as well as the Poisson random observations typical for many medical
imaging problems. For independent (w.r.t. s) observations {zs} with Þxed Xs, the conventional log-likelihood is
deÞned as

L =
X

s
log f(zs, y(Xs)).

Various models and methods are used for y(x) as a function of x in order to obtain a reasonable reconstruction
of this function even provided that we have only single observation for each Xs.

The standard likelihood approach starts from a global parametrical model yC(x) with the estimation of the
parameters C according to the maximum likelihood (ML) method

�C = argmax
C
(L(C)), L(C) =

X
s
log f(zs, y(Xs)).

Then y(x) can be estimated, for any x, as y �C(x). The local maximum likelihood (LML) is a nonparametric
counterpart of this widely used parametric ML technique. It extends the scope of the parametric ML to a much



wider class of functions. The local likelihood model does no longer assume a global parametric form of yC(x), but
Þts this model locally within a window. The local likelihood and local log-likelihood use the window function w
for localization of the likelihood function in a neighborhood of the point of the interest x and replace the global
parametric model yC(x) by a local one.

Let us use linear on C models for y in the log-likelihoods L(C). These linear models are known in statistics as
the generalized linear models. The standard linear model for y assumes a quadratic loss function and results in
estimates which are linear with respect to observations. �Generalized� means that the linear model is exploited
for the general type of distributions and for not necessarily quadratic loss functions. The generalized linear
models result in estimates which are nonlinear with respect to the observations.

For the polynomial linear model this local log-likelihood can be introduced in the form,1, 9

Lh(C) =
X

s
log f(zs, yh(x,Xs))wh(x−Xs), (2)

yh(x, v) = C
Tφh(x− v), φh(x) = φ(x/h), wh(x) = w(x/h)/h

d, x ∈ Rd (3)

where φ(x) is a vector of the polynomials, w(x) is the window function and h stays for a scalar scale (window
size) parameter.

A function yh(x, v) of the form (3) is called a local polynomial approximation (LPA) of y at the point x.
This x is termed centre of the LPA, since the polynomials φh are centered in x and the window wh has x as
its reference point. The scale h is used both in the window function w(x), x ∈ Rd, and for the scaling of the
polynomials φ(x), x ∈ Rd.
What distinguish the localized likelihood Lh(C) from the original non-local likelihood L(C) is that the latter

uses a global parametric model assumed to be valid for all x. The local likelihood relaxes this assumption and
assumes instead that the used linear model is valid only locally, in some neighborhood of the estimation point.
According to the idea of the LPA, the function estimate �yh for the point x is calculated as follows:

�yh = �yh(x, v)|x=v, �yh(x, v) = �CTφh(x− v), �C = argmax
C
(Lh(C)). (4)

It means that the parameter C is selected by maximization of the log likelihood and the corresponding function
estimate is obtained using the local ML Þt �yh(x, v) only for x = v.

It follows immediately that
�yh = �CTφh(0). (5)

It is well known that linear estimates can degrade signiÞcantly if the random observations obey a non-Gaussian
distribution. For a non-Gaussian noise the linear LPA should be replaced by relevant nonlinear operations.

The local maximum likelihood1, 9, 16 approach is introduced as a generalization of the linear LPA. It provides
ßexible tools for design of the nonlinear methods and algorithms for variety of stochastic models different from
standard Gaussian. This approach combines two different ideas: generalized linear model and localization of
parametric Þtting.

In the generalized linear models the parameters of the distributions of random observations are assumed to
be varying and the linear regression is used to Þt these varying parameters. TheML approach is used to estimate
these parameters.15

The localization is introduced in order to relax restrictions imposed by parametric modeling in the standard
ML. In what follows we restrict our attention to the 2D case, where the directionality can be presented in a very
transparent way. The generalization to a higher number of dimensions is straightforward.

2.2. Polynomials

Let us introduce the 2D polynomials in the form xk11 x
k2
2 /k1!k2!, k1 = 0, . . . ,m1, k2 = 0, . . . ,m2, where the

powers m1 and m2 can be different. These polynomials are linearly independent with the total number of the
polynomials (m1 + 1)(m2 + 1) and the maximum power equal to (m1 + m2). We will use the power m as a
multi-index m = [m1,m2] with elements showing the powers on the corresponding variables.

The LPA estimates are deÞned according to the model (3)-(4) where the vector φ(x) is composed from the
above polynomials, and (3) with a given multi-index m explicitely deÞnes the LPA model of y.



2.3. Windows

The Þnite support window w in (2) is a key tool in design of the directional estimate. We call the window
directional if it is narrow and oriented along the axis and pointed to one of the directions along this axis. The
sectors in Figure 1 are clear examples of such directional supports.

We consider a rotated sectorial support window wθ with the angle θ as the main direction. The axis u1, u2
are bound with the rotated sector. The axis u1 points in the direction θ, and u2 is orthogonal to u1. The variable
x = (x1, x2) and u = (u1, u2) are linked by the rotation transform equation

u = U(θ)x, x = UT (θ)u, U(θ) =

µ
cos θ sin θ
− sin θ cos θ

¶
. (6)

The rotated window is deÞned as wθ(x) = w(U(θ)x). The scaled rotated window is wθ,h(x) = w(U(θ)x/h)/h
2.

The above polynomials are used for the LPA of the powers m1 and m2 with respect variables u1 and u2.
Then, the directional estimates based on the observation in the sector θ are deÞned from the directional local
log-likelihood

Lh,θ(C) =
X

s
log f(zs, yh,θ(x,Xs))wh,θ(x−Xs), (7)

yh,θ(x, v) = C
Tφh(U(θ)(x− v)), wh,θ(x) = wh(U(θ)x))

and
�yh,θ = �CTφh(0), �C = argmax

C
(Lh,θ(C)).

The window w has to satisfy to the standard LPA assumptions. In particular, the origin (0, 0) is always corre-
sponds to the maximum value of w. The directionality of the estimate is guaranteed by the support and shape of
the window function. The only requirement restricting the window and the scale selection is that the likelihood
Lh,θ(C) is convex on C and the maximization of Lh,θ(C) on C has a unique solution. The window and the
scale are called admissable if this condition holds. When we use the zero order model, m = [0, 0], any nonempty
window wh,θ is admissible.

3. PARTICULAR DISTRIBUTIONS

The models of observations considered further on allow to cover a lot of practical scenarios where the noise
variance is signal dependent. In more general terms these models allow to take into consideration even a more
delicate case when the distribution is signal dependent.

In order to simply the notation we assume θ = 0 and drop the index θ in the estimates and in the distributions.
In order to obtain the estimate for the direction θ the rotation transform U(θ) should be used as it is (7).

3.1. Additive i.i.d. noise

First of all, the observation model (1) is changed from global yC(x) to the local one:

zs = yh(x,Xs) + εs, yh(x,Xs) = C
Tφh(x−Xs), s = 1, . . . , n, (8)

where the random εs are i.i.d. with the probability density f .

The deterministic part yh(x,Xs) of the model (8) is local depending on x. It is a local model valid for a
single Þxed x. Remind that in the LPA the argument x is treated as a Þxed parameter of the model. Further,
the local observation model depends on the scale parameter h.

The probability density of z is f(z − yC) and for the set of observations we have the local log-likelihood (2)
in the forms:

Lh(C) =
X

s
ln(f(es))wh(x−Xs), es = zs − yh(x,Xs).



Denote ψ(v) = − ln f(v). Then,
P
s ln(f(es)) = −

P
s ψ(es), and the local log-likelihood estimates are found

from the problem (2) as

�C = arg min
C∈RM

X
s
ψ(es)wh(x−Xs), es = zs − yh(x,Xs).

where ψ is a loss function of the residuals.

In this way we derive the local nonparametric LPA robust M-estimates with the loss function ψ deÞned
through the probability density f .11 This link with the ML guarantees for the M-estimates all good properties
of the ML provided that the loss function and the noise probability density agree.

3.2. Gaussian noise with a signal dependent variance

Let the observation noise in (8) be Gaussian with the variance depending on y, ε ∼ N
¡
0, σ2(y)

¢
. Omitting

the invariant part ln(
√
2πσ(y)) in ln f = − ln(

√
2πσ(y)) − v2/(2σ2(y)), we can deÞne the loss function ψ as

ψ(v) = v2/σ2(y) with the weighted mean squared residual criterion
X

s
e2s/σ

2(yh(x,Xs))wh(x−Xs), es = zs − yh(x,Xs). (9)

and the weighted LSM and the ML estimate in the form

�C = arg min
C∈RM

X
s
e2s/σ

2(yh(x,Xs))wh(x−Xs). (10)

Note that yh(x,Xs) as the estimate of the signal is used for calculation of the variance σ2(y).

3.3. Gaussian noise with constant variance

If σ2 is constant, it gives the standard linear LPA estimate

�C = arg min
C∈RM

X
s
e2swh(x−Xs). (11)

In this case, the analytical solution can be found as

�C = Φ−1h
X

s
wh(x−Xs)φh(x−Xs)zs, Φh =

X
s
wh(x−Xs)φh(x−Xs)φ

T
h (x−Xs). (12)

Inserting �C in (5), we obtain the estimate in the kernel form

�yh =
X

s
gh(x−Xs)zs, gh(x) = wh(x)φ

T
h (0)Φ

−1
h φh(x). (13)

For the unrestricted regular grid of the observation points Xs the matrix Φh is constant and the kernel gh(x) is
shift invariant. Then the estimate (13) can be calculated as the convolution

�yh(x) = (gh ~ zs)(x), x ∈ X. (14)

For zero order LPA, with m = 0, the local estimate is a constant, yh(x,Xs) = C1, and

gh(x) = wh(x)/
X

s
wh(Xs). (15)

Then, the estimate (13) is the weighted sample mean known as the Nadaraya-Watson nonparametric regression
estimate.1, 9

3.4. Laplacian noise

Let the observation noise in the additive model (8) be independent Laplacian, i.e. f(v) = 1
2a exp(−|v|). Then

ln f(v) = ln(1/(2a))− |v| and the loss function ψ can be deÞned as ψ(v) = |v| with the absolute value residual
criterion X

s
wh(x−Xs)|es|, es = zs − yh(x,Xs). (16)

In this way we derive the M -estimates with the loss function ψ(x) = |x| as the ML estimate. The absolute error
loss function ψ means that the estimate is the weighted median.12



3.5. Poisson observations

In many imaging systems the recorded observations have the physical meaning of numbers of detected photons.
The photons are counted at different spatial locations and in this way form an image of an object. The Poisson
distribution is a conventional probabilistic model used for a random number of photons detected during an
exposure time. When the number of photons is relatively small and the level of the noise is high the problem is
referred as the photon-limited signal processing .

For a Þxed x the observed random z has the discrete Poisson distribution z ∼ P (y):

P{z = k} = e−yyk/k!, k = 0, 1, . . . , E{z} = y, var{z} = y, (17)

where y stays for the intensity or the mean value of the Poisson distribution. It is emphasized that y is non-
negative, being the mean value of the integer counts.

For the model where the argument x is essential E{z(x)} = y(x), var{z} = y(x), we can see that the variance
of the observation is signal dependent. The problem is to reconstruct the function y(x) from the observations
zs = z(Xs).

The random variable z is nonnegative and integer. The corresponding likelihood for the observations {zs,Xs}
is deÞned as l = Πse−y(Xs)yzs(Xs)/zs!, with the log-likelihood

L = ln(l) =
X

s
[−y(Xs) + zs ln(y(Xs))− ln(zs!)]. (18)

The local version (2) of this log-likelihood is

Lh(x,C) =
X

s
wh(x−Xs)[−yh(x,Xs) + zs ln(yh(x,Xs))− ln(zs!)], (19)

�yh(x, v) = �CTφh(x− v), �yh(x) = �CTφh(0).

3.5.1. Zero-order model

The zero order model (m = 0) is of special interest since the local estimate yh(x,Xs) is constant and

Lh(x,C) =
X

s
(−C + zs lnC)wh(x−Xs),

�C = arg(max
C
(Lh(x,C)), �yh(x) = �C.

The equation ∂CLh(x,C) = 0 gives as a solution

�yh(x) =
X

s
gh(x−Xs)zs, gh(x) = wh(x)/

X
s
wh(Xs). (20)

Thus, we arrive again to the Nadaraya-Watson linear nonparametric estimate.

3.5.2. Higher-order model

For the higher order model there are some principal problems. The parameters C in (19) found by maximizing
the log-likelihood

�C = arg(max
C
Lh(x,C)), �yh(x) = �CTφh(0), (21)

gives the estimate �yh(x) which can be negative. It is in a contradiction with the meaning of y ≥ 0.

There are two ways how to overcome this problem. In statistics, the canonical variable η = log y is recom-
mended instead of y.1, 9 The LPA is exploited for this new variable η and the estimate of y is found by inversion
of the log function as �yh(x) = exp(�ηh), where �ηh is the local ML estimate of η. Then this estimate is always
non-negative �yh(x) ≥ 0.

Another way, more in tradition with the engineering signal processing, is to project the estimate (21) on the
half-line [0,∞).



4. ADAPTIVE SCALE SELECTION

The properties of the introduced nonlinear nonparametric regression estimates are quite similar to their well
known linear counterparts.4�6 We do not to go details in this paper, however, general features of this similarity
will be noted.

Firstly, if the estimated y(x) is polynomials of the powers m1 and m2 used in the LPA the ML estimates are
asymptotically unbiased. This asymptotic mainly assumes that the number of observations n→∞ and the scale
parameter h→ 0 in appropriate way (details can be seen in1, 4, 5). It ensures the convergence and the polynomial
smoothness of the estimates.

Secondly, the bias and the variance of the estimate have asymptotically the form cha and dh−b, respectively.
The bias is small for small h and large for large h. The order of the bias O(ha) depends on the smoothness of
the estimated regression and the order of the LPA. The variance is large for small scales and small for large ones.
We obtain for the mean squared error of estimation the expression l(h) = c2ha2+dh−b. This mean squared error
is concave on h and the optimal scale can be found from the equation ∂hl(h) = 0. This optimal scale gives the
optimal variance-bias trade-off typical for the nonparametric estimation.

The found optimal value of h is called ideal as its calculation requires an accurate knowledge of derivatives
of y(x). This information is not available in any practical scenario.

A similarity between this sort of accuracy results for general ML estimates and the results known for the
linear estimates4�6 allows to conclude that the intersection of conÞdence intarvals (ICI )3�6, 10 rule is applicable
for the ML estimates and it gives the adaptive scale estimates close to the ideal ones.

Let us remind the ICI rule technique.

Given a Þnite set of the ordered scales H = {h1 < h2 < .... < hJ} and their corresponding varying scale

kernel estimates
©
�yhj (x)

ªJ
j=1
, with decreasing standard deviations σ�yh1 > · · · > σ�yhJ , we determine a sequence

of conÞdence intervals
Dj =

h
�yhj (x)− Γσ�yhj , �yhj (x) + Γσ�yhj

i
, (22)

where Γ > 0 is a threshold parameter. The ICI rule can be stated as follows:

Consider the interesection of conÞdence intervals Ij =
Tj
i=1Di and let j

+ be the largest of the indexes j for
which Ij is non-empty, Ij+ 6= ∅ and Ij++1 = ∅. The optimal scale h

+ is deÞned as h+ = hj+ and the optimal
scale kernel estimate is �yh+ (x).

This is a procedure for a Þxed x. It is produced for all x ∈ X and in this way we obtain varying adaptive scale
h+(x). The ICI procedure requires to know only the estimates for different scales as well as the corresponding
variances of these estimates.

5. ANISOTROPIC ESTIMATOR BASED ON DIRECTIONAL OPTIMIZATIONS

The basic strategy to deal with the anisotropic y is follows. For each x and each θi, we calculate a collection
{�yh,θi (x)}h∈H of varying-scale sectorial directional estimates, �yh,θi = gh,θi ~ z. The ICI is used in order to Þnd
the best scale for each direction θi and each point x. It gives the pointwise adaptive-scale directional estimates
�y+θi(x) = �yh+,θi(x). With K sectors θi we have K adaptive-scale estimates �y+θi(x) for each x. These many
adaptive estimates have to be fused (combined) into the Þnal one.

We use as the Þnal estimate the convex combination of the adaptive directional estimates �y+θi with their
inverse variances as the weights:

�y(x) =
XK

i=1
λ(θi)�y

+
θi
(x), λ(θi) =σ

−2
θi
(x)/

XK

j=1
σ−2θj (x), (23)

where σ2θi(x) = σ
2
�y
h+,θi

is the variance of the adaptive estimate, and

σ2
�yh,θi

(x) =
X

s
g2h,θi(x−Xs)σ

2
zs
, gh,θi(x) = wh,θi(x)/

X
s
wh,θi(Xs). (24)

Note that the weights λ(θi) in (23) are data-driven adaptive as σ
−2
θi
(x) depend on the adaptive point-wise h+.



6. RECURSIVE LPA-ICI ADAPTIVE VARIANCE (AV ) ALGORITHM

This algorithm is developed for Poisson-distributed data and it assumes that the observation variance σ2z(x) =
E{z(x)} = y(x). Nevertheless, by specifying another dependence of the variance σ2z on the signal y, the algorithm
can be used also for many other signal dependent variance problems.

6.1. LPA-ICI adaptive variance Þlter

For each step the LPA-ICI Þlter is multidirectional with narrow conical supports of the estimation kernels. The
linear LPA estimates of the zero-order m = 0 are calculated for all scales H and for all K directions:

�yh,θi(x) = (gh,θi ~ z)(x), i = 1, . . . ,K, h ∈ H, x = X. (25)

The variance of these estimates can be calculated according to the formula

�σ2�yh,θi
(x) =

X
s
�σ2z(Xs)g

2
h,θi
(x−Xs), �σ2z(Xs) = �y(Xs), (26)

and applied in the ICI. Here �y(Xs) is some estimate of the signal.

6.2. Steps of the recursive LPA-ICI adaptive variance algorithm

The algorithm steps are different by: input data, methods used for calculation of the variances for these input
data and the parameters of the algorithms.

Step 1: initialization

The input data are the observations z. The variances of the observations used for the ICI (24) and fusing
(23) are �σ2z = z. This is the simplest �initial guess� for the observations� variance. Nevertheless, experiments
show that this choice works quite well. In particular, it is much better than a constant-variance assumption.

Output data are the estimates �y[1](x), where the superscript �[1]� shows the step number.

Step 2: The input data are again the original observations zs. The variances of the observations for ICI and
fusing are now �σ2z(x) = �y

[1](x).

In fact, the Þrst initialization step is used only in order to obtain a reÞned variance for the observations.
These two steps correspond to the LPA-ICI algorithm with one iteration for the variance update.

Outputs are the estimates �y[2](x). The Þltered estimate �y[2] is no longer Poissonian, and its variance is not
equal to the pointwise mean value of the observation.

Step 3: The input data are the estimates �y[2](x) used instead of the original data. The variances required for
ICI are calculated using both �y[2](x) and σ2

�y
[2]

h+,θi

(x) = σ−2θi (x) as

σ2�y(x) =
2

3




X

i
σ−2θi (x)−

X
i

Ã
�σz (x) gh+(x,θi),θi(0)

σ−2θi (x)

!2
+

Ã
X

i

�σz (x) gh+(x,θi),θi(0)

σ−2θi (x)

!2


³X

j
σ−2θj (x)

−́2

In this empirical formula we try to take into consideration also the correlation of the estimates, which are not
independent after the Þltering of the previous step, since the directional kernels always have the origin pixel as
the only common point. Note that the variance of the observation �σz (x) is calculated using the latest estimate
of the signal (i.e. �σz = �y[2]).

Outputs are the estimates �y[3](x).

Step 4 and further are identical to Step 3, with input signal obtained from the previous steps.

Comment: The particular form of recursive Þltering exploited from the third step onwards is a reÞned Poissonian
version of the recursive LPA-ICI Þltering for Gaussian-distributed observations.2



7. NUMERICAL EXPERIMENTS

7.1. Optimization of the algorithm

Some work has been done in order to optimize the design parameters of the above algorithm. After this optimiza-
tion, the algorithm with these parameter values was used for multiple experiments, part of which is presented in
what follows.

The directional kernels gh,θ are deÞned as a linear combination of zero and Þrst order kernels:

gh,θ = α�gh,θ|m=(0,0) + (1− α)�gh,θ|m=(1,0). (27)

These �gh,θ|m=(0,0) and �gh,θ|m=(1,0) are directional LPA kernels designed from a set of window functions wh
constant on their sectorial support. The scale parameters h, which deÞne the length of the support, were taken
from the following set:

H = {1, 2, 3, 4, 6, 8, 10, 12}. (28)

The ICI rule is applied for the selection of the length h of the kernel gh,θ.

It was found that signiÞcant improvement is achieved in the Þrst three steps described above. The maximum
number of steps has been thus restricted to four.

The parameter α in the combined kernel gh,θ (27) is taken with different values for the different steps of the
algorithm, starting from α = 1 (zero order), so to be consistent with the considerations from section 3.5.1, and
increasing then the importance of the Þrst order component as the algorithm progress.

The performance beneÞts if the observations are not oversmoothed at each single step, as further smoothing
will be provided by the subsequent iterations. Thus, the selected threshold parameter for ICI is rather small,
Γ = 0.7. The same Γ is used for all four steps.

7.2. Poisson observations

In our simulations for the Poissonian case, in order to achieve different level of randomness (i.e. different SNR)
in the noisy observations, we Þrst multiply the true signal yT RU E (which has range [0,1]) by a scaling factor χ:

y = χ · yT RU E , z ∼ P(y).

Thus, E{z} = var{z} = y = χ · yT RU E , and y/std{z} =
√
χ
√
yT RUE , i.e. better SNR corresponds to larger χ.

This modelling of Poisson data allows to produce a comparison with the similar simulation scenarios appeared
in a number of publications.13, 14, 17, 18 Wemake a comparison with the wavelet based methods recently developed
for the Poisson data and demonstrating a good performance.

Only to visualise the data we divide back by the factor χ, so that the expected range of the signal intensity
is again [0, 1]. Figure 2 illustrates the effect of this scaling factor in modelling Poisson observations. Comparing
the images in this Þgure, we can see that the noise level for χ=120 is much lower than it is for χ=30. From the
cross-section we can note that the level of this random disturbance is clearly signal-dependent. Large value of
the signal means larger level of the noise.

7.3. Simulation results

Images shown in Figures 3 and 4 show the noisy and original images and the estimates obtained at the Þrst
(initialization) and the last (fourth) iteration. The MSE values demonstrate a fast performance improvement
in the successive iterations. The quality of the Þnal estimates is quite good visually and numerically. In
particular, for Cameraman we achieve: ISNR=9.34dB for χ=30, ISNR=8.05dB for χ=60, ISNR=7.45dB for
χ=90, ISNR=6.82dB for χ=120.

Some numerical results and comparison with other methods for the Cameraman and Lena images are pre-
sented in Table 1. The results in the table are the values of the MSE, calculatated as the mean value of |�y − y|2.
This table includes and extends the results shown in.14

Comparing the MSE values obtained for the successive steps we can note that the main improvement is
achieved in Þrst three steps. Starting from the second step of the recursive procedure, the LPA-ICI shows
superior results which are essentially better than those from the other methods.13, 14



True image Noisy image, χ=120 Noisy image, χ=30 Cross-section

Figure 2. Cameraman fragment: true and Poisson noisy images.

Figure 3. Filtering a fragment of the Cameraman image: (from left to right) noisy data, χ=60 (MSE=23.9), estimate
from the Þrst iteration of the LPA-ICI-AV algorithm (MSE=7.90, ISNR=4.81dB), estimate after the fourth iteration
(MSE=4.36, ISNR=7.40dB), and original image.

Table 1. MSE for the Cameraman and Lena images for different algorithms and different levels of noise

Noisy image
TN method13

Improved TN method14

LPA-ICI , 1st step
LPA-ICI , 2nd step
LPA-ICI , 3rd step
LPA-ICI , 4th step

Cameraman

χ=30 χ=60 χ=90 χ=120
13.9 27.5 42.1 56.0
2.76 7.73 14.11 21.59
2.13 5.37 9.22 13.59
3.75 8.04 13.4 18.8
2.28 5.30 8.96 13.2
1.79 4.50 7.79 11.8
1.62 4.30 7.58 11.6

Lena

χ=30 χ=60 χ=90 χ=120
14.5 29.0 43.6 58.0
2.33 6.46 11.62 17.89
1.98 5.32 9.35 14.03
3.29 7.07 11.3 15.9
1.76 4.07 6.80 9.84
1.20 3.05 5.33 7.99
0.99 2.62 4.72 7.19
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