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Abstract: Magnetic field-structured-composites (FSCS) are made by structuring magnetic

particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while

polymerizing the suspending resin. A uniaxial field produces chain-like particle

structures, and a biaxial field produces sheet-like particle structures. In either case, these

anisotropic

remanence

field, and

structures affect the measured magnetic hysteresis loops, with the magnetic

and susceptibility increased significantly along the axis of the structuring

decreased slightly orthogonal to the structuring field, relative to the

unstructured particle composite. The coercivity is essentially unaffected by structuring.

We present data for FSCS of magnetically soft particles, and demonstrate that the altered

magnetism can be accounted for by considering the large local fields that occur in FSCS.

FSCS of magnetically hard particles show unexpectedly large anisotropies “in the

remanence, and this is due to the local field effects in combination with the large

crystalline anisotropy of this material.
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INTRODUCTION

When a magnetic particle suspension, consisting of multi-domain particles, is exposed to

a uniaxial magnetic field, the magnetic dipole moment on the particles will generally “

increase and align with the applied field. The particles will then migrate under the

influence of the dipolar interactions with neighboring particles, to form complex chain-

like structures [1]. If a magnetic particle suspension is instead exposed to a biaxial (e.g.

rotating) magnetic field, the induced dipole moments create a net attractive interaction in

the plane of the field, resulting in the formation of complex sheet-like structures [2].

Similar effects occur when suspensions of dielectric particles are subjected to uniaxial

and biaxial electric fields. These materials, which we call jield-structured composites

(FSCS), can have large anisotropies in properties such as their conductivity, perrnittivity,

dielectric breakdown strength, optical transmittance, etc.

In this paper we report on the magnetic hysteresis loops of uniaxial and biaxial

FSCS of magnetic particles in a thermosetting resin. Relative to unstructured particle

composites, the susceptibility and remanence of these materials is increased along the

axis of the structuring field, and decreased orthogonal to this, yet the coercivity is not

strongly affected by structuring. We demonstrate that in some cases these changes in the

magnetization curves can be attributed to structurally-induced changes in the local

magnetic field, which we compute for simulated FSC structures, obtained from large

scale dynamical simulations of interacting hard sphere dipoles. Other contributing

factors include the crystalline magnetic anisotropy and the shape anisotropy of the

particles. By considering invariants that involve the susceptibility, we can distinguish

between these factors experimentally.

EXPERIMENTAL

I. Sample preparation

Both ma=~etically soft and hard particles were used in these studies. The soft magnetic

particles were a 3-5 pm carbonyl iron powder from ISP TechnologiesT~ (ISP-R2430),



and was used to make samples with concentrations in the range of 2.0 -30.0 vol. O/O. The

magnetically hard particles were made of SmCo5, and were used at a concentration of 2.5

vol. O/O. Finally, stainless steel fibers from Bekaert Fibre TechnologiesTM were used at a

concentration of 1.55 vol. O/O. These fibers are 1.0 ym diameter and 1 mm in length.

The particles were suspended in a mixture of the epoxy resin Epon 828TMusing

1.0 wt ?40 Triton X-1 OOTMas a dispersant. These suspensions were placed in an ultrasonic

bath for 1 hr, and the amine hardener, a 50/50 mixture of Ancamine/Jeffamine,TM was

stirred into the suspension. The suspensions were then placed in 1 cm square polystyrene

cuvets and degassed in a vacuum oven at 50° C for 10 minutes. A 150 G magnetic field

was supplied by two large plate magnets oriented such that the magnetic field was

vertical, to prevent the sedimentation of evolving chain structures. To create a uniform

biaxial field, we simply mounted the square cuvet on a motor and rotated it around the

four-fold axis at a speed of 100 rpm and plunged the sample into the center of the

magnets. Of course, one can create a rotating field with orthogonal coils in quadrature

phase, but rotating the sample actually works quite well.

Curing the samples was done in several stages. The random particle dispersions,

which are our control samples, were cured at 25° C for 20 hrs while being rotated around

the horizontal four-fold axis, to prevent sedimentation. This gels the resin so that the

particles cannot sediment, but does not fully cure the epoxy. To fully cure the epoxy, we

then post-cured by ramping from 50° C to 100° C over 3 hrs, and then curing at 100° C

for at least 3 more hrs. The biaxial samples are made the same way, but the initial, 25° C

cure was done in a rotating magnetic field. The uniaxial samples were placed in a

uniaxial magnetic field and cured for 20 hrs at 50° C to gel the resin. A post-cure was

done by ramping from 50° C to 100° C over 3 hrs, and curing at 100° C for at least 3

more hrs. These samples were then sectioned with a diamond saw for susceptibility

measurements parallel and orthogonal to the direction of the structuring field. Optical

images of these structures are shown in Fig. 1.
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II. Magnetic measurements

Isothermal magnetic hysteresis data were measured at room temperature (293 K) for

applied fields between +1 and -1 T (+6 and -6 T for SmCo5) using a commercial SQUID

magnetometer with extended dynamic range. The extended range allowed the use of

relatively large random and FSC rectangular samples (typically 3x3x5 mm3) with

saturation moments up to 25 mA m2 (25 emu) for 30 vol 0/0 iron. These dimensions are

much larger than the coarseness of the field structuring shown in Fig. 1, assuring a

representative result. At the maximum field of 1 T these samples were in the reversible

approach-to-saturation regime, minimizing any history effects in the measurements.

III. Simulations

We have reported athermal [1,2] and thermal [3] simulation studies of structure formation

in field-structured composites. In this paper we use the results of those simulations as

model structures for the computation of the local field effects that we believe are

responsible for the susceptibility data.

Briefly, in these Langevin dynamics simulations the particles are essentially hard

spheres with induced dipolar interactions, Stokes friction against the solvent, and

Brownian motion. The structures used in this paper are obtained from a simulation

method developed to predict the evolution of large, N = 10,000 particle systems over

short times (in general, S 150 dimensionless time units). This method has time

complexity O(N), but gives structures that are statistically indistinguishable from a

separate, more direct 0(2/2) simulation developed to predict the evolution of smaller

systems over longer times. In most of the simulations cyclic boundary conditions are

used in all directions. The size of the simulations led to structures whose scale of

coarseness was much smaller than the simulation volume, minimizing the effect of the

cyclic boundary conditions. Representative simulation results for atherrnal simulations in

uniaxial and biaxial fields are shown in Fig. 2.

4
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Dipolar force. Itishelpfil todiscuss thedipolar forces used inouruniaxial and b;axial

simulations in detail. We adopt the convention that the uniaxial field is applied along the

z axis, HO= H$i, and the biaxial field is a rotating field in the x-y plane,

HO= HO[sin(cot)i + cos(~t)j], where the field frequency is assumed sufficiently high

that we need only consider the force of interaction averaged over a field cycle. In either

case, the dipole-dipole interaction force between two spheres whose center of mass

separation vector r is of length r and is inclined at an angle @to the z axis is

()[(Fd(r,@)= –crC ~ 4 3cos2e - 1);+ sif’z21s’rq.
r

(1)

where a = 1 for the uniaxial field and a = -1/2 for the biaxial field. For spherical

3 Pwcld,
particles of radius a, the constant C = — where m is the magnetic dipole

16 47m4

moment, which we take to be aligned with the instantaneous field, as justified forthwith

[4]. Here E is the relative permeability (to the vacuum permeability&= 47cx10-7H/m)

of the continuous polymeric phase, which in practice is very nearly 1. In the absence of

Brownian motion, the constant C determines only the timescale of structural evolution,

and is specifically not a parameter that can be used to control structure.

Brownian motion. To compare simulation to experiment requires a reasonable estimate

of the magnitude of thermal forces relative to the dipolar forces. For paramagnetic or

diamagnetic spherical particles

~ = (~,, - ~C)/(~l, + 2KC) is the

permeability of the particles [4].

the induced magnetic moment is m = 4nn3@H0 where

permeability contrast factor, and Kp is the relative

The force constant in this case is c= ~~OKca’~’lH,,l’.

5
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For ferromagnetic particles the magnetic dipole moment depends on the field

history as well as the applied field. If the particles are initially unpoled, then at low

applied fields they will act as paramagnetic particles having a high permeability. On the

other hand, if such particles are exposed to a saturating magnetic field HS the domain
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walls will move to create a dipole moment that is roughly m,, = — a M,$, Where M, k

3

the saturation magnetization along the easy axis of the magnetic material. After this

4X J
poling field is turned off, the dipole moment will decay to m, = —a M,, where M, is

3

the remanent magnetization. This dipole moment can be an order of magnitude larger

than that of a high permeability soft magnetic material in the low fields we apply to

structure the particles, so we will consider only the latter case in order to find a lower

bound to the dipolar interactions.

The minor (low field) hysteresis loops of ferromagnetic materials can be closely

approximated as a paramagnetic response with a relative permeability on the order of

K,, = 104. Because the relative permeability of the liquid phase is essentially 1, this gives

~ =1. For a typical magnetic field produced by our structuring magnets, of HOs 12x10~

Am”i (150 Oe), and a particle radius of 1 pm, this gives a dipole moment m ~ 1.5x10-’S

Amz. The interaction energy of the dipole moment with the applied field will be pOnzHO

= 2.3x10-*5 J, and because the thermal energy at room temperature is kBT = 4.1.x1.O-z1, the

poled particles will be completely aligned with the field, justi~ing the use of Eq. 1.

The energy required to separate two magnetized particles in contact along the z

m2&
axis is — = 5.6x 10-16J, which is vastly in excess of the thermal energy, so that such

167uz3

particles will contact irreversibly and Brownian motion should have a negligible effect on

the evolution of structure. Thus the structures we use to compare simulation to

experiment are those that have been generated athermally.

6

Timescale. In the ab-sence of Brownian motion the strength of the dipolar interactions

alters only the coarsening timescale, not the structural evolution. The dimensionless

numerical equation of motion is thus of the form AU = Asf(r, 0), where the dimensionless

length Au = Ar/2a. The dimensionless time is As= At#{)~C~zH,,z/ 16T7,). For a

suspending liquid with a viscosity qo of 1 cp, an applied field of HO= 3.58 A/m (45 Oe),

Kc = 1 and ~ = 1, As s At (s) x 103 (s-l) so under these conditions one dimensionless time

unit is about a millisecond. The simulation data we generate are for structures that have
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evolved for 150 dimensionless time units, which is far less than the time over which the ‘”

experimental samples were allowed to structure.

THEORY

There are at least three possible causes for the changes in the magnetic properties of field

structured composites. The first is that in the magnetic field the particles “rotate so that

the easy magnetic axis of the particles aligns with the field. The second is that the

particles are non-spherical and thus rotate so that their long axis aligns with the field,

since this increases their polarizability and thus reduces their free energy. The third is

that the local magnetic field is strongly affected by structuring the samples. Depending

on the type of particles used, some or all of these effects can be important.

Particles with a polycrystalline morphology, such as carbonyl iron, should not

exhibit a pronounced easy axis, due to the averaging over randomly oriented crystalline

domains within particles. Furthermore, these particles do not have sufficient shape

anisotropy to account for the effects we report below. (On the other hand, in the stainless

steel fiber samples, the measured anisotropy is nearly all due to shape anisotropy.) The

effects we have observe in the carbonyl iron suspensions are primarily due to the large

local fields in field-structured composites, and it is this that we will now consider.

I. Local field effects

In the method of Lorentz, the local field is viewed as the sum of three terms; the applied

field, the field due to the nearby dipoles, and field due to the cavity. To be definite, we

wilI call the unique axis of an FSC the z axis. This is the direction along which a uniaxial

structuring field is applied, and is orthogonal to the plane in which a biaxial structuring

field is applied. We will specifically compute the magnetic properties along this axis, the

x-y plane being trivial by extension.

Local field. The field produced at a reIative position r by a particle of dipole moment m

is [4]



~_3F(m.2)–m

4zr3 “
(3) “

When a susceptibility measuring field is applied along the z axis, the local field will be

reasonably well aligned with the z axis, due to the symmetry of the structures. Thus we

need only consider the z component of the field produced by the z component of the

nearby magnetic dipoles. In a lattice each site is equivalent: in disordered materials the

field produced at the j-th dipole by the nearby dipoles,

q(cos ez,u)Hjdi,+~~
2X , qiy

(4)

will fluctuate. Here P2(x)=(3x2- 1)/2 is the second Legendre polynomial, and @,,jiis the

angle the line of centers between the i-th and j-th dipoles make to the z axis. This

conditionally convergent sum is over all dipoles in the Lorentz cavity, which must be

chosen to be large compared to structural correlations in the material, so that the sum

converges, and for convenience is chosen to have cubic symmetry.

With little error these fluctuations can be ignored, [1] so we will average Eq. 4

over the N dipole sites in the system and use this average dipolar field

The quantity y, is an order parameter for these materials, and is readily shown to obey

the sum rule ~X + WY+ ~. = O. In both uniaxial and biaxial FSCS the z axis is unique

and the x,y axes are degenerate, leading to the useful relation ~X = WY= –y, / 2.

The field for a Lorentz cavity of cubic symmetry can be obtained by integrating

over the pole density at the surface, giving [5]

(6)

8
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Here the magnetization density of the composite M = m/ v has been used with v = —

3q)

the volume of composite per dipole and @the volume fraction of particles.

Particle moment. An expression for the particle dipole moment is now needed.

The magnetic dipole moment is m =
4Z ~
— a M,, where MP is the particle magnetization

3

density. For a soft, linear, isotropic magnetic material in a medium of permeability /0,

the magnetization density induced by an external field H.X~is a standard boundary vahie

problem, the solution of which is dependent on the particle shape [6]. The applied field

magnetizes the particle and this magnetization creates a field which opposes the applied

field, and to which the particle itself is subject, so that the field inside the particle, Eli., is

reduced. For ellipsoidal objects the internal field is constant and can be expressed as

Hi. = H~X,– nM where n is the shape-dependent demagnetizing factor, which is exactly

1/3 for a sphere. In terms of the susceptibility x,, = ~,, – 1 of the material of which the

particles are composed (~,, = ~P / /.), the magnetization is M = ~PHi~ and the internal

field is Hi,, = H,,, /(1+ n%,,). A shape-dependent particle susceptibility can be defined

dM
through the relation ~,, = —

2,,

dll,., ‘
which gives z,, = . Even for a magnetic material

1+ njy,,

of infinite permeability, this particle susceptibility will only be X,$(z,, + ~) = ~n, so that

for spherical particles z,, = 3 is the limiting value. For prolate spheroids the value of n

along the major axis is smaller than 1/3 and along the minor axes is (1-n)/2, and the sum

rule nX+ n} + n, = 1 obtains [6]. Because most of our measurements are made on nearly

x,
spherical particles we use X,$= 3P, where ~ = — is a permeability contrast factor

3 + x,,

that is roughly 1 for the high susceptibility materials we use in our experiments.

The external field near a particle in a many-particle system is H,(,Cso we can write

the magnetization density as M,, = X,,H[,,C= 3~~,,C which gives a particle dipole moment

9
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– — a M,, = 4m73~l,,C. If the material has a coercivity HC,,~,,then for fields very

3

close to the coercive field the magnetization will be MP = ) where the+3P(HI,,c * ‘cmr ~

refers to the separate branches of the hysteresis loop. “

For arbitrary fields we must take into account the nonlinear nature of magnetic

materials, which can saturate at experimentally accessible fields. Calling M,,d, the

saturation magnetization, the magnetization can be expressed

‘=30Mutf[H10iHc’’e

as

(7)

where f(x) = x for x<< 1 and f(x)= 1 for x >>1. It is not really necessary to speci~

a detailed form at this point, but data can be fit reasonably well using

‘a(x)=(I+l:q’a“
(8)

We can now compute the local field and the dependence of the magnetic hysteresis loops

on the composite structure.

Susceptibility. To compute the susceptibility we need only examine the linear response

region near one branch of the hysteresis loop, where M,, = 3@(H[,,C– HCO,,). Eqs. 5&6

can then be substituted into HI(,C= HO+ HCUY+ H.,,, to obtain

H,(,C= HO+ P(o + 3WYJZ)(H,0C– H.,,.,), where the COnStant ~,

along the z axis and 6X,, = 1 for a field applied in the x-y plane.

HO- HC,,,,

““c - “’’” = 1- p(@+ awyz)

10

= –2 for a field applied

Rearranging gives

(9)



Thesusceptibility along thezaxis, definedby M=~Z(HO –HC,,,,), can reobtained using”’

M = 3/3@(Hl,)C- HC,)=,)

(lo)

Thus the susceptibility is independent of the coercive field, and is quite large when c5W~Z

is large and positive, as it is for uniaxial FSCS along the z axis and biaxial FSCS in the x-

y plane. Local field effects do not alter the coercive field, since at the coercive field the

magnetization vanishes. The susceptibility anisotropy is

l-P(O+YZ)~=xz_
xv l-p(@-2yz)

(11)

which in the limit of zero concentration and for highly permeable particles is

p =(1 – y, )/(1 + 2yZ ). From the values of the order parameter given in Table I we see

that the expected maximum anisotropy for uniaxial FSCS is p = 2.45, whereas for biaxial

F$CS /3 = 0.308 (l/p= 3.24).

This susceptibility relation suggests a quantity f2 that is invariant to structure,

(12)

It is thus apparent that for a uniaxial FSC the smallest possible susceptibility in the x-y

plane is just 2/3 that of a random sample, whereas for a biaxial FSC the smallest possible

susceptibility along the z axis is 1/3 that of a random sample.

Values of the order parameter ty, computed for simulated structures are tabulated

11

in Table I for uniaxial and biaxial FSCS (y, = O for random dispersions), and the plots of

the susceptibilities are given in Figs. 3&4, for uniaxial and biaxial I?SCS. Note that the



biaxial susceptibility anisotropy is inverted relative to the uniaxial case, and that

susceptibility along the z axis is considerably lower than that of a random dispersion.

Hysteresis loops. To compute the complete hysteresis loops we need to solve a

transcendental equation. Writing in terms of the dimensionless fields H’= H/ M,,ufgives

(13)

for the local field as a function of the applied field. The dimensionless magnetization

M’= M/ M,,u, is then obtained by substituting the local field into

(14)

An example of how the hysteresis Ioop would be expected to change for a

uniaxial FSC is shown in Fig. 5. Here we compare the computed hysteresis loop for a 10

vol. 0/0 random particle suspension (y. = O) to that expected for a structured sample of the

same volume fraction along the direction of the structuring field (using ~, = -0.246 from

Table I). We chose the value 2 for the exponent a in Eq. 8, since this seems to describe

our experimental data well. Here we have assumed HC/M~~t=0.5,which leads to a 40°/0

increase in the FSC magnetic remanence, with the field applied along the z axis, relative

to the random dispersion. The energy dissipation during a major cycle of the magnetic

field is the area within the hysteresis loop, and this area is not affected by these local field

effects, a fact which is easily demonstrated by integrating these computed loops.

The changes in the hysteresis loops are more easily discerned by dividing the

magnetization of the FSC by that of a random dispersion. This is done in Figs. 6&7 for

10 vol. % uniaxial and biaxial FSCS, again using the values of y= from Table I. The

magnetization ratios reach a maximum at the coercive field, where the magnetization

ratio is just the susceptibility ratio. Note that the anisotropy of the biaxial FSC is inverted

relative to the uniaxial FSC, with two high magnetization axes and one low axis.

12
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Afewfixed points can beusedto construct a reasonable approximation to the””

magnetic hysteresis loops of particle composites. Specifically, we note that the saturation

magnetization and coercive field are not affected by the local field, and that the

susceptibility is given by Eq. 10. An expression that “satisfies these constraints is

M=3P@’fTatfa
[

Ho+ Hc,,er

M,,=,[l- p(@+ awyz)]
)

(15)

where ~a(x) is again given by Eq. 8. This form is useful for fitting experimental data.

II. Shape anisotropy

In suspensions of particles with shape anisotropy, such as prolate spheroids, liquid

crystalline ordering will occur in addition to the formation of anisotropic particle

structures when a field is applied to the sample, due to the demagnetizing fields that

occur within these particles and cause them to align. The parallel (to the long axis) and

perpendicular demagnetizing factors for a prolate spheroid of major axis a and minor axis

b, having an aspect ratio g = sib, are [6]

‘11=+[2A1n[:~E1-11=‘or’’”
(16)

nl =(l–n,, )/2.

From this we see that prolate spheroids will align with their long axis parallel to the

structuring field, because the demagnetization factor is a minimum in this orientation,

permitting a larger internal field and particle magnetization, reducing the magnetostatic

x,,
contribution to the free energy. The susceptibility in this direction will be ~11=

1+ n,l~,, ‘

where xl, is the susceptibility of the material of which the spheroid is made. For

13
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spheroids of high susceptibility materials, where ql~fl >>1, we can approximate ““

-1

xII = ~ = g2 /(in 2g – 1). The demagnetization factor in the perpendicular directions will

then be nl =(1-nl,)/2sl/2,0r ~1=2.

The susceptibility relationship for a field-structured composite of prolate

spheroids is simple in the approximation that the particles are completely aligned with the

field. (The case where the angular correlations are decoupled from the spatial

correlations is also straightforward.) From Eq. 10

XI!J - @

‘z= 1-&,(@-2YJ = %+-wz)

(17)

The anisotropy of such materials should be much larger than that of spherical particle

systems, but to evaluate this one would need a model of structure.

In the stainless steel fiber”composites we consider below, a good approximation is

that there is no spatial ordering, so ~, z O. At low concentrations, the susceptibilities of

the composite are then x, = ~[1~ and x,,, = xl~. To compute the susceptibility of a

control sample of randomly oriented prolate spheroids one notes that the susceptibility of

a single prolate spheroid rotates like a second rank tensor. Averaging over all

1
~(xll +2x.). This suggests that for low concentrationorientations then gives x,ti~~,,~= –

systems consisting of aligned particles, the sum of the susceptibilities is an invariant

quantity, in contrast to the sum of the inverse susceptibilities being an invariant for

systems whose magnetic anisotropy is derived from local field effects (see Eq. 12).

14



Experiment

I. Demagnetizing factors

.

.
.

The experimental measurements on these materials were complicated by several practical

considerations. First, in magnetic susceptibility measurements the sample does not fill

the gap between the magnetic plates, so for any sample geometry demagnetizing field

corrections must be applied to the measured M vs H curves. The demagnetization factor

n can be computed exactly for solid ellipsoids, and because the field inside solid

ellipsoids is constant when applied along principal axes, the demagnetization factor is a

simple constant that is independent of the material permeability. However, we feit it was

impractical to machine our composite materials into solid ellipsoids. Samples formed

into long needles or thin sheets aligned with the field have very small demagnetization

factors, but our susceptometer limits us to samples no longer than 10 mm, and we do not

wish to make the samples too narrow or thin as this would make the statistical sampling

of our mesoscopic structures rather poor.

In the end, a diamond saw was used to prepare samples at concentrations of 2.8-

30.0 vol. ‘Yoparticles into solid rectangles measuring roughly 3x3x5 mm. At each

concentration five samples were made: a control sample; a uniaxial sample with the 5

mm axis along the z axis of the FSC; a uniaxial sample with the 5 mm axis along the x

axis of the FSC; a biaxial sample with the 5 mm axis along the z axis of the FSC; and a

biaxial sample with the 5 mm axis along the x axis of the FSC. The 5 mm sample

dimension was aligned along the magnetic field in the susceptometer. The choice of

solid rectangular samples facilitates sample preparation, but makes correcting the data for

demagnetizing fields difficult. The measured susceptibilities x,. are shown in Table II.

Susceptibility corrections. The true composite susceptibilities are related to the

measured susceptibilities by the relation

x= x.
1- n(x)x,,,

15
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(18)
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where the demagnetization factor for the nonellipsoidal shapes of our samples is also

dependent on the true composite susceptibility. To compute the demagnetization factors

we wrote a 3-D finite difference code to model the scalar magnetic potential field inside

the solid rectangular shapes of our samples. The demagnetization factor was then

computed from the average field in the sample by

HO– ~i~’
n(z) =

Xq.n
(19)

The data from the 3-D code was extrapolated to infinite mesh size and zero sample size

and was run for values of the susceptibility of 0.5, 1.0, 2.0, 4.0, 9.0. These data are

shown in Fig. 8 for aspect ratios pertinent to our samples. Data for each aspect ratio were

fit to a function of the form n(z)= A + B/(x + C), and this function was used to

iteratively correct our experimental data, using Eq. 18. The results are in Table II.

II. Soft magnetic particles

Susceptibility. The qualitative trends in the susceptibility data in Figs. 9&1 O follow the

behavior anticipated in Figs. 3&4, but the measured values are larger than expected, by

nearly a factor of 2. This discrepancy is due to the fact that we have used a simple point

dipole approximation in computing the internal field, and this is not a good

approximation for particles consisting of high permeability materials, such as iron. In

essence, there are multipolar terms that need to be considered in order to get quantitative

agreement, yet the simple, self-consistent point dipole approximation does a good job of

describing the trends. The susceptibility anisotropy is p = 3.34 for the uniaxial FSC at

2.8 vol. Y. and is p = 0.241 (l/p = 4. 16) for the biaxial FSC at the same concentration.

These values are somewhat greater than the predictions of the point dipole calculations,

but it should be noted that the 75 ms coarsening times

small compared to that of the experimental samples.

of the simulated structures are very

16
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The susceptibility invariant f2 is plotted in Fig. 11 for the control sample, and the

uniaxial and biaxial FSCS. Despite the influence of multipolar interactions on the

measured susceptibilities, f2 does indeed seem to be an invariant of these structured

nanocomposites, suggesting that this invariant is not affected by multipolar interactions.

Hysteresis loops. In general, experimental hysteresis Ioops can be very difficult to

interpret, due to the complexity of the demagnetizing field corrections for our

nonellipsoidal samples. The essential problem is that the edges of the solid rectangles

saturate before the core, due to the nonuniform fields within the sample. This effect is

only small for composites of low susceptibility, so we only report data for the samples at

2.8 vol. % Fe. These Fe particles showed an extremely small coercive field (-10

Oersted), so to avoid confhsion we plot only one branch of the loop. These experimental

data were fit to the form in Eq. 15, and the resultant fits for the uniaxial structures are

shown in Fig. 12. The magnetization ratios for the uniaxial and biaxial samples are

shown in Figs. 13&14, respectively. All of these data bear a strong resemblance to the

expected behavior, shown in Figs. 5-7, which is surprising in light of the approximate

nature of the point dipole model.

It is interesting to determine how well the experimental data for the FSCS can be

predicted from the magnetization data for the control sample. The control sample has a

magnetization that is considerably greater than that predicted by the point dipole model,

so the local fields are much greater. The magnetization data for the control sample are

well described by M = 574fz
(H’G2)

Because the particle concentration is low,

the local field in this sample is essentially the applied field, so we can approximate the

)5:&(H’’’;;*:’’’”.single particle magnetization function by MP = — The local field in

the FSCS can then be found as a function of the applied field by numerically solving the

M,,
3 ($+~.v:) for a particularvalue of ~,. Substituting theequation HI,,, = Ho + —

computed local fields back into M~~c =
5744H’’’25”)

and plotting this against HO

then gives the curves shown in Fig. 15. The effective value of the order parameter, ~, =
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-0.181, was determined by matching the experimentally determined susceptibility ratio,

and this value gives reasonably good agreement over the full range of the curves.

This value of the order parameter is lower than expected at this particle

concentration, yet this is probably the most realistic means of computing the order

parameter, since appealing directly to the point dipole model per se, gives us a per

particle susceptibility that is about 1/2 that which we observe. The low order parameter

might be due to particle friction, and optical transmittance experiments we have

conducted on Fe particles seem to bear this out. We conclude that the rather good

agreement of the observed susceptibility anisotropies with the point dipole model is

fortuitous, the poorer than expected structural ordering tending to cancel the large

magnetization that occurs at the contact points between particles.

III. Hard magnetic particles

Creating composites of magnetically hard particles of SmCoS presented a number of

difficulties, due to the Iarge remanent moment on these particles. First, at low particle

concentrations the coarsening kinetics in a uniaxial field was so rapid that very large

particle columns formed. To reduce the growth kinetics we added 10 wt. YOBaTi03

particles to increase the suspension viscosity. Second, we were unable to form structures

in a biaxial field, due to the hydrodynamic effects produced by particle rotation, so our

measurements were restricted to uniaxial composites [7].

The magnetization curves in Fig. 16 show a surprisingly large remanence

anisotropy for this system, with NOM,= 3.8 mT in the x-y plane and poll, = 32.2 mT

along the z axis. This 8.5-fold anisotropy is larger than can be accounted for by local

field effects (which predict at most a factor of 2.5), and because the apparent saturation

magnetization is also anisotropic in this case, the excess remanence anisotropy can be

attributed to the large crystalline anisotropy in these particles, which must align along an

easy axis when the field is applied.



IV. Fibers

The effect of shape anisotropy is illustrated by measurements on samples of

stainless steel fibers having a nominal aspect ratio of 103. (These fibers come as bundles,

and we found it difficult to disperse them completely, so the effective aspect ratio is

much lower, more like 10.) We prepared a random sample at 1.55 vol. 0/0and measured a

susceptibility of ~,ti,l~,,~=0.324, which is roughly 3.6 times greater than that expected for

the spherical carbonyl iron at the same concentration. A uniaxial FSC gave a

susceptibility along the z axis of ZII=0.878 and a susceptibility in the x-y plane of

~l=O. 126, the latter of which is much larger than expected, indicating incomplete

alignment of the fibers with the z axis. From these measurements on uniaxial FSCS we

would expect Xr.n~(,m = 0.376, which shows that the sum of the susceptibilities is nearly

invariant for strongly oriented prolate spheroids. This analysis is only qualitative: To

treat these fiber samples adequately one would have to have a means of generating

orientational distribution functions, and estimating the local field effects, all of which

would require a model of structure, which is beyond the scope of this paper. Here we

only wish to emphasize that the expected magnetic anisotropy is subject to a different

invariant if form anisotrop y dominates.

CONCLUSIONS

A study of the magnetism of uniaxial and biaxial field-structured composites shows that

substantial alterations in the magnetization curves occurs. In soft, spherical magnetic

particle composites the susceptibility at the coercive field increases substantially in the

direction or plane of the structuring field, and decreases in the orthogonal directions.

Uniaxial FSCS have one high susceptibility axis and two low axes; biaxial FSCS have two

high axes and one low axis. The remanence is altered accordingly, but the coercive field

and the hysteretic losses are unchanged by structuring. The sum of the inverse

susceptibilities along the principal axes of the material is invariant to structuring. The

self-consistent point dipole approximation gives a good qualitative description of the

data, but underestimates by a factor of 2 the magnitude of the measured susceptibilities.
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A good description of the magnetization curves is obtained after accounting for this

factor of 2 in the amplitude.

FSCS of magnetically hard particles exhibit an anisotropy in the magnetic

remanence that is much larger than expected, based on the self-consistent point dipole

approximation. This is attributed to the large crystalline anisotropy, which causes

particles to align along an easy magnetization axis.

Finally, composites of magnetic fibers are shown to be dominated by shape

anisotropy, and exhibit an invariant for the sum of the susceptibilities along principal

sample axes. In the future we would like to investigate FSCS of prolate particles, such as

those used in recording media. To interpret these data would require a model of structure

formation in these systems, which should exhibit liquid crystalline ordering, in addition

to particle chaining. FSCS of superparamagnetic particles are also of interest, as these

should show a number of qualitatively different effects.

Appendix A: Computation of demagnetization factors

The computation of demagnetization factors for solid rectangular shapes is a problem

which deserves some description. First, we note that there is considerable confusion in

the literature between the Lorentz cavity field and the demagnetizing field. This

confision no doubt arises because these fields are the same (within a sign) for ellipsoidal

shapes, due to the fact that the internal field of a ellipsoids aligned with the external field

applied along the principal axes is a constant. For other shapes, such as the solid

rectangles used in our experiments, the internal field is not a constant. For these shapes

one must bear in mind that the Lorentz cavity field is merely a bookkeeping construct, it

does not actually exist. In other words, the Lorentz cavity field is a field due to an

imaginary cavity cut into a magnetic material without disturbing the scalar magnetic

equipotentials. .On the other hand, the demagnetizing field is very real, and is the solution

to a boundary value problem for a solid permeable body in a medium of different

permeability.

To solve this problem we wrote a 3-D finite mesh code to compute the field over

a symmetry element (1/8) of a solid rectangular material of relative permeability K. Each
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interior node had a furictionality of 6, and the solid rectangle of magnetic material was

represented as a cube at the center of two magnet faces. Reflecting boundary conditions

were used at the boundaries whose surface normals were perpendicular to the applied

field, so we had, in effect, a cubic lattice of image dipoles. The field produced by a cubic

lattice of image dipoles at a dipole site is zero, so these reflecting boundary conditions

help to reduce the fact that the permeable body is of finite size compared to the gap

‘between the magnets. We assumed that the magnet faces were of sufficiently high

permeability that the magnet scalar potential was a constant at each face.

The total weighting factors of the bonds connecting the nodes were the product of

two factors. The first represented the permeability of the solid, and this factor was K

inside the solid, 1 outside the solid, and (K+ 1)/2 for bonds connecting nodes on the

surface of the solid. The second weighting factor was used to define the shape of the

solid. For a solid shape of dimensions LX, LY, L,, all of the weights of the bonds in the

entire lattice pointing in the directions x, y, z, were multiplied by I/LX*, l/LY2, l/LZ2,

respectively. This method of defining the shape is much more useful than actually

putting the shape into the finite lattice, since shapes that might be incommensurate with a

finite lattice are exactly accommodated.

The scalar magnetic potential is then fully relaxed by reaching the condition

where the potential of each floating potential node is the weighted average of the

potential of its neighbors. Getting there is the trick. We used a very fast method,

wherein a small mesh, of total size 35x35x35, within which is solid permeable body of

dimensions MxMxM was relaxed first, using local update of the node potentials, and

overcorrecting the updates by a factor of 1.94. Good convergence was generally obtained

after 50-80 iterations. The internal field and demagnetizing factor were then computed,

being carefil to weight the node potentials in the field calculation at the top surface of the

solid body to account for the fact that we are dealing with a symmetry element of the

solid. Next a 70x70x70 mesh was run, using the results of the 35x35x35 to estimate the

node potentials. Good convergence took 25-50 iterations. The demagnetization factor

was again computed and then these results were used as the initial guess of a

140x 140x 140 mesh. Convergence at this size required -25 iterations. All of this took

just over a minute on a 400 MHz MacintoshT~ G3. This entire process was done with
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various sizes M of solid bodies, and the demagnetization factors were extrapolated to ~‘

infinite mesh size N by plotting n versus I/N, and then to zero body size by plotting

n(N=~) versus (M/N)3.
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Table I

Values of M,for simulated structures of uniaxial and biaxial FSCS

4 structuring field Yz

0.00 chain -0.301

0.05 uniaxial -0.263

0.10 I .0.246

0.15
11

-0.232

0.20
It -0.211

0.25
II

-0.187

0.30
If -0.162

0.40
It -0.115

0.50
II -0.070

0.00 hexagonal sheet 0.690

0.05 biaxial 0.454

0.10
!!

0.428

0.15
II 0.414

0.20 1! 0.393

0.25
!1

0.349

0.30 11
0.303

0.40
11

0.223
I I

0.50 11
0.120
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Table II

Measured and corrected susceDtibiliW data

type @ as~ect ratio fi ~

control

uniaxial, z

uniaxial, xy

biaxial, z

biaxial, xy

control

uniaxial, z

uniaxial, xy

biaxial, z

biaxial, xy

control

uniaxial, z

uniaxial, xy

biaxial, z

biaxial, xy

control

uniaxial, z

uniaxial, xy

biaxial, z

biaxial, xy

control

uniaxial, z

uniaxial, xy

biaxial, z

biaxial, xy

control

uniaxial, z

uniaxial, xy

biaxial, z

biaxial, xy

control

uniaxial, z

uniaxial, xy

biaxial, z

biaxial, xy

0.028
!1

1?

II

$1

0.05
It

tt

It

t!

0.10
11

!1

It

II

0.15
1?

11

It

If

0.20
$$

It

It

f!

0.25
II

t!

II

II

0.30
11

It

tt

It

1.50

1.58

1.55

1.56

1.60

1.69

1.60

1.66

1.53

1.67

1.51

1.63

1.55

1.49

1.57

1.61

1.47

1.69

1.65

1.68

1.47

1.49

1.69

1.67

1.59

1.41

1.55

- 1.62

1.63

1.77

1.54

1.55

1.60

1.54

1.71

25

0.155

0.336

0.106

0.076

0.298

0.288

0.636

0.234

0.136

0.685

0.609

1.049

0.520

0.310

1.180

0.926

1.423

0.775

0.774

1.484

1.200

1.710

1.125

1.111

1.739

1.486

1.983

1.437

1.421

1.935

1.796

2.188

1.808

1.832

2.216

0.161

0.364

0.109

0.077

0.320

0.308

0.742

0.247

0.141

0.805

0.712

1.355

0.592

0.335

1.593

1.162

2.110

0.928

0.930

2.130

1.662

2.764

1.469

1.380

2.750

2.287

3.434

2.064

2.027

3.073

2.936

4.066

2.912

3.030

3.900



Figure Captions

*
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1.

2.

3.

4.

5.

6.

7.

8.

Field-structured composites of particles structured by a uniaxial magnetic field (top),

and by a biaxial magnetic field (bottom]. Both samples consist of a magnetically

soft Fe powder with a particle size of 4 pm and at a concentration of 2.0 vol. O/O. The

magnification is 52x.

Simulated structures of uniaxial (top) and biaxial FSCS, both at 5 vol. ?40particles.

Susceptibilities calculated (~= 1) for simulated atherrnal structures ofuniaxial FSCS

show an enhancement along the z axis and a slight decrease in the x-y plane. The z

axis susceptibility is essentially proportional to particle volume fraction.

Susceptibilities calculated (~= 1) for simulated atherrnal structures of biaxial FSCS

show an enhancement in the x-y plane and a significant decrease along the z axis.

The anisotropy is inverted from the uniaxial case and in this case it is the x-y plane

susceptibility that is essentially proportional to particle volume fraction.

The magnetic hysteresis loops of a uniaxial FSC is compared to that of a random

particle dispersion, both with @= 10 vol. ‘?40, using the values of the order parameter

~om Table I, and ~ = 1. The hysteresis loop along the z axis is shifted so as to give

a magnetic remanence aImost 40°/0 greater, and conversely the x-y plane loop has a

slightly lower remanence. In these calculations we have assumed HC/M&=0.5.

The magnetic anisotropy of a 10 vol. % uniaxial FSC with HC/M,.Z=0.5 is shown by

dividing the computed magnetization of the FSC by the magnetization of a random

particle dispersion. The greatest anisotropy occurs at the coercive field, and the

remanence ratios are given by the the crossover points in the curves.

The magnetic anisotropy of a 10 vol. % biaxial FSC is shown by dividing the

computed magnetization of the FSC by the magnetization of a random particle

dispersion. In biaxial materials the decreased magnetization along the z axis is

comparable in magnitude to the enhancement in the x-y plane.

The demagnetization factors for solid rectangular bodies as a function of aspect ratio

and relative permeability. Fits to these data were used to iteratively correct the

measured susceptibilities.
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9. The susceptibilities of uniaxial FSCS of Fe particles over the range of 2.8 -30.0 VO1.7’O.

10.

11.

12.

13.

14.

15.

16.

These data are similar to the point dipole predictions in Fig. 3, but the values are

twice as large as expected, due to the large magnetization that occurs at particle

contact points.

The susceptibilities of biaxial FSCS of Fe particles show inverted anisotropy relative

to the uniaxial case. Again, these data are similar to the point dipole predictions in

Fig. 4, and the measured values are twice as large as expected.

The invariant L2 is computed for the experimental data. This invariant does seem to

be invariant to structuring, despite factor of 2 discrepancies in the measured

susceptibilities with the self-consistent point dipole model.

The measured magnetization curves for a uniaxial FSC of Fe particles at 2.8 vol. YO

were fit to the 4 parameter function in Eq. 15, and for clarity only the fits are shown,

since these run through the data. In these soft magnetic particles the coercive field is

extremely small (-1 O Oe), so to avoid congestion only one branch of the hysteresis

loop is shown. The behavior is otherwise similar to that of Fig. 5.

The magnetization ratios of a uniaxial FSC of Fe particles at 2.8 vol. YOare shown.

These curves were obtained by dividing the fits in Fig. 12, and are similar to those in

Fig. 6.

The magnetization ratios of a biaxial FSC of Fe particles at 2.8 vol. ‘?Aoare shown.

These curves were obtained by dividing the fits to the magnetization curves, and are

similar to those portrayed in Fig. 7, with an especially exaggerated lower curve.

The experimental magnetization data for a random sample of Fe particles at 2.8 vol.

?40is used to generate the observed data for the uniaxial FSC of Fe particles at the

same concentration. The best agreement is found using a value of the order

parameter that is lower than that obtained from simulation data, possibly indicating

that particle friction reduces ordering.

Magnetically hard uniaxial FSCS of SmCo5 particles show an extremely large

remanence anisotropy, approximately 8.5:1. This and the differences in the apparent

saturation magnetization, are due to the large crystalline anisotropy in this material.
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