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Abstract

In this paper, we have considered spatially homogeneous and anisotropic Bianchi type-

III space-time filled with matter and anisotropic modified holographic Ricci dark energy

in general relativity. We have solved the Einstein’s field equations using the following

possibilities: (i) hybrid expansion law proposed by Akarsu et al. (JCAP, 01, 022, 2014)

(ii) a varying deceleration parameter considered by Mishra et al. (Int. J. Theor. Phys.

52, 2546, 2013) and (iii) a linearly varying deceleration parameter given by Akarsu and

Dereli (Int. J. Theor. Phys. 51, 612, 2012). We have presented the cosmological models in

each of the above cases and studied their evolutions. We have also discussed physical and

kinematical properties of the models.

Key words: Bianchi type-III metric, Ricci dark energy, cosmology, general relativity, holo-

graphic dark energy.

1 Introduction

The scenario of modern cosmology is the accelerated expansion of the universe confirmed by

recent observational studies ( [1,2]). It is believed that the reason for the accelerated expansion

of the universe could be ‘dark energy’(DE) which is still a cosmological mystery. The concept of

DE refers to a kind of exotic energy with negative pressure which has been proposed to explain

the current accelerated expansion of the universe. The study of DE is possible through its

equation of state (EoS) parameter ω = p
ρ
where ρ is the energy density and p is the pressure of

DE. The current value of EoS parameter is not yet known. Hence many candidates have been

proposed for DE. The most talked about agents driving this cosmic acceleration are supposed

to be the cosmological constant (Λ), quintessence matter, the interacting DE models including

Chaplygin gas ( [3]) and holographic DE models ( [4]). Padmanabhan [5] and Copeland et al. [6]

have presented a comprehensive review of DE and DE models.

It is well known that the holographic principle ( [7]) plays an important role in the black hole

and string theory, which is based on the fact that in quantum gravity, the entropy of a system

scales not with its volume, but with its surface area L2. Inspired by the holographic principle,

Cohen et al. [8] suggested that the vacuum energy density is proportional to the Hubble scale
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lH ≈ H−1. In this model, both the fine-tuning and coincidence problems can be alleviated,

but it can not explain the cosmic accelerated expansion because that the effective equation of

state for such vacuum energy is zero. Recently, Li [9] proposed that the future event horizon

of the universe to be used as the characteristic length l. This holographic DE model not only

presents a reasonable value for DE density, but also leads to a solution for the cosmic accelerated

expansion. In fact, the choice of the characteristic length l is not unique for the holographic

DE model. Gao et al. [10] assumed that the length l is given by the the inverse of Ricci scalar

curvature, i.e.,|R|−1
2 , which is so called holographic Ricci DE model. It is argued that this model

can solve the coincidence problem entirely. Thus, the properties of such holographic Ricci DE

have been investigated widely ( [11]; [12]). Granda et al. [13] proposed a modified Ricci DE

model in which the density of DE is a function of the Hubble parameter H and its derivative

with respect to time (Ḣ). Chen and Jing [14] have presented a generalized DE model in which

density of DE contains the second order derivative of Hubble’s parameter with respect to time

(Ḧ) and find that the age problem of the old objects above can be solved. The expression for

energy density of this modified holographic Ricci DE (MHRDE) is defined by Chen and Jing [14]

as

ρΛ = 3M2
p (β1H

2 + β2Ḣ + β3ḦH−1), (1)

where M2
p is the reduced Planck mass, β1, β2 and β3 are three arbitrary dimensionless param-

eters. Recently, Sarkar and Mahanta [15], Sarkar [16], Adhav et al. [17], Kiran et al. [18] have

investigated minimally interacting and interacting holographic DE Bianchi models in general

relativity and scalar-tensor theories of gravitation. Santhi et al. [19] have studied LRS Bianchi

type-I generalized ghost pilgrim DE model in general relativity. Das and Sultana [20, 21] and

Santhi et al. [22, 23] have studied some Bianchi type anisotropic MHRDE cosmological models

in general relativity and scalar tensor theories.

Primordial magnetic fields can have a significant impact on the CMB anisotropy depending on

the direction of field lines ( [24,25]). Many people have investigated the influence of magnetic field

on the dynamics of universe by analyzing anisotropic Bianchi models. Milaneschi and Fabbri [26]

studied the anisotropy and polarization properties of CMB radiation in homogeneous Bianchi

I cosmological model. Sharif and Zubair [27, 28] have investigated dynamics of Bianchi type

universes with magnetized anisotropic DE. In spite of the fact that the present day universe

is homogeneous and isotropic and is better described by Friedman-Robertson-Walker (FRW)

model, it is said that Bianchi models are useful to study the anisotropies present in the early

stages of evolution of the universe.

In this paper, we would like to investigate the dynamics of anisotropic Bianchi type-III

model in the presence of anisotropic MHRDE and magnetic field. The paper has the following

format: In section 2, we present anisotropic Bianchi type-III models and derive the dynamical
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field equations which describe the evolution of the universe. In section 3, we obtain solutions to

the field equations and discuss the physical properties of the models. Finally, in section 4, we

summarize the results.

2 Metric and field equations

We consider the spatially homogeneous and anisotropic Bianchi type-III space-time de-

scribed by the line element

ds2 = dt2 − A2(t)dx2 − B2(t)e−2xdy2 − C2(t)dz2, (2)

where A, B and C are functions of cosmic time t only.

We assume that the universe is filled with matter and magnetized anisotropic MHRDE fluid.

Here we assume that the current is flowing along x-axis so magnetic field is in the yz-plane.

King and Coles [25], Jacobs [29], Sharif and Zubair [27] used the magnetized perfect fluid energy

momentum tensor to discuss the effects of magnetic field on the evolution of the universe.

Here we take a more general energy-momentum tensors for matter and the magnetized

anisotropic DE fluid in the following form

Tij = diag[ρm, 0, 0, 0]

T ij = diag[ρΛ + ρB,−ωΛρΛ + ρB,−(ωΛ + δy)ρΛ − ρB,−(ωΛ + δz)ρΛ − ρB] (3)

where ωΛ = pΛ
ρΛ

is equation of state (EoS) parameter of DE, ρm is the energy density of the

matter, pΛ and ρΛ are pressure and energy density of DE respectively, ρB stands for energy

density of magnetic field, which can be obtained from Maxwell’s equation (i.e., (F ij
√−g);j = 0).

F ij is the electromagnetic field tensor, δy and δz are deviations from ωΛ on y and z directions

respectively.

The Einstein’s field equations are given by

Rij −
1

2
Rgij = −8πG

c4
(Tij + T ij) (4)

where Rij is Ricci tensor, R is the Ricci scalar, Tij is energy-momentum tensor of matter and

T ij is the energy-momentum tensor of magnetized anisotropic MHRDE fluid. Here we choose

8πG = c = 1 (in relativistic units).

3
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The Einstein’s field equations (4) for the metric (2) with the help of (3) can be written as

B̈

B
+

C̈

C
+

ḂĊ

BC
= −ωΛρΛ + ρB (5)

Ä

A
+

C̈

C
+

ȦĊ

AC
= −(ωΛ + δy)ρΛ − ρB (6)

Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

A2
= −(ωΛ + δz)ρΛ − ρB (7)

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
− 1

A2
= ρm + ρΛ + ρB (8)

Ȧ

A
− Ḃ

B
= 0 (9)

The energy-momentum conservation equation (Tij + T
ij
);j = 0, leads to two equations for the

anisotropic DE and magnetic field ( [25]) as

˙ρm +

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

ρm + ρ̇Λ +

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

(1 + ωΛ)ρΛ +

(

δy
Ḃ

B
+ δz

Ċ

C

)

ρΛ = 0,(10)

ρB =
I

B2C2
(11)

where overhead dot stands for ordinary differentiation with respect to t and I is constant.

3 Solutions of the field equations

Integrating equation (9) and absorbing the constant of integration into B, we obtain

A = B (12)

Using equation (12), the field equations (5)-(10) form a system of four independent equations

(since the equation (10) is a consequence of field equations) with seven unknown parameters A,

C, ρm, δy, δz, ωΛ and ρΛ. Hence, three additional conditions relating these parameters are

required to obtain explicit solution of the system. We use the following conditions which are

physically significant:

(i) We assume that shear scalar of the model is proportional to expansion scalar, which leads

to ( [30])

A = Ck. (13)

4
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(ii) We consider the MHRDE energy density given by equation (1) in Einstein’s theory as

ρΛ = 3(β1H
2 + β2Ḣ + β3ḦH−1), (14)

where H = 1
3

(

2Ȧ
A

+ Ċ
C

)

is the mean Hubble’s parameter of the model.

3.1 Model-1

We consider the average scale factor is an increasing function of time ( [31]; [32]) as follows:

a(t) = a1t
α1eα2t (15)

where a1 > 0, α1 ≥ 0 and α2 ≥ 0 are constants. They referred this generalized form of scale

factor to as the hybrid expansion law, being the mixture of power-law and exponential law

cosmologies. We observe that (15) leads to the power law cosmology for α2 = 0 and to the

exponential law cosmology for α1 = 0. Thus, the power-law and exponential law cosmologies are

the special cases of hybrid expansion law cosmology. In hybrid cosmology, the universe exhibits

transition from deceleration to acceleration. Recently, Santhi et al. [33] have discussed some

Bianchi type generalized ghost pilgrim DE models in general relativity using hybrid expansion

law.

Now using equations (12) and (13) in equation (15) we obtain the expressions for metric

potentials as

A = B = (a1t
α1eα2t)

3k
2k+1

C = (a1t
α1eα2t)

3
2k+1 (16)

Now the metric (2) can be written as

ds2 = dt2 − (a1t
α1eα2t)

6k
2k+1 (dx2 + e−2xdy2)− (a1t

α1eα2t)
6

2k+1dz2 (17)

Physical discussion of the model

The following physical and kinematical parameters which are very important for physical dis-

cussion of the model. From equations (14) and (16), we get the energy density of MHRDE

as

ρΛ = 3

[

β1

(α1

t
+ α2

)

− β2α1

t2
+

2α1β3

3t2(α1 + α2t)

]

. (18)

From the equations (11) and (16), we have the energy density of magnetic field as

ρB =
I

(a1tα1eα2t)
6(k+1)
2k+1

(19)

5
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Now from field equations (5)-(8), (11), (16), (18) and (19) we get

the EoS parameter of MHRDE as

ωΛ = −
{

9(k2+k+1)
2k+1

(

α1

t
+ α2

)2 − 3(k+1)α1

(2k+1)t2
− I

(a1tα1eα2t)
6(k+1)
2k+1

3
[

β1

(

α1

t
+ α2

)

− β2α1

t2
+ 2α1β3

3t2(α1+α2t)

]

}

, (20)

the deviations from EoS parameter as

δy =
2I

3(a1tα1eα2t)
6(k+1)
2k+1

[

β2α1

t2
− β1

(

α1

t
+ α2

)

− 2α1β3

3t2(α1+α2t)

] (21)

δz =

(1− k)
[

9
2k+1

(

α1

t
+ α2

)2 − 3α1

(2k+1)t2

]

− 2I

(a1tα1eα2t)
6(k+1)
2k+1

+ 1

(a1tα1eα2t)
6k

2k+1

3
[

β1

(

α1

t
+ α2

)

− β2α1

t2
+ 2α1β3

3t2(α1+α2t)

] , (22)

and the energy density of matter can be found as

ρm =
9k(k + 2)

(2k + 1)2

(α1

t
+ α2

)2

− I + (a1t
α1eα2t)

6
2k+1

(a1tα1eα2t)
6(k+1)
2k+1

− 3

[

β1

(α1

t
+ α2

)

− β2α1

t2
+

2α1β3

3t2(α1 + α2t)

]

.

(23)

Thus the metric (17) together with equations (18)-(23) constitutes Bianchi type-III MHRDE

cosmological model in general relativity with hybrid expansion law.

Spatial volume of the model-1 as

V = ABC = (a1t
α1eα2t)3 (24)

The Hubble’s parameter

H =
ȧ

a

=
α1

t
+ α2 (25)

The scalar expansion is

θ = 3H

= 3
(α1

t
+ α2

)

(26)

The shear scalar is

σ2 =
1

3

(

Ȧ

A
− Ċ

C

)2

=
9(k − 1)2

2(2k + 1)2

(α1

t
+ α2

)2

(27)
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The deceleration parameter is

q =
−aä

ȧ2

= −1 +
α1

(α1 + α2t)2
(28)

The anisotropic parameter is

Ah =
1

3

3
∑

i=1

(

Hi −H

H

)2

=
6(k − 1)2

(2k + 1)2
(29)

where H1 = H2 =
Ȧ
A
and H3 =

Ċ
C
are directional Hubble’s parameters.

The statefinder parameters are

r =

...
a

aH3

= 1 +
2α1

(α1 + tα2)3
− 3α1

(α1 + tα2)2
(30)

s =
r − 1

3(q − 1
2
)

=
2α1[2− 3(α1 + α2t)]

3(α1 + α2t)(α1 − 3(α1 + α2t)2)
(31)

We use squared speed of sound for the stability analysis of our model. It is given by

v2s =
ṗΛ

ρ̇Λ
=

1
(2k+1)

(

α1

t
+ α2

)

[

3α1(k2+k+1)
t2

− I(k+1)

(a1tα1eα2t)
6(k+1)
2k+1

]

− α1(k+1)
(2k+1)t3

α1

[

β1

2t2
− β2

t3
+ β3(2α1+3tα2)

3(t3(α1+α2t)2)

] (32)

Fig. 1 represents the behavior of EoS parameter for MHRDE model. Which shows that the EoS

parameter starts from high phantom values approaches to lower phantom region for the values of

α1 = 0.2, 1.0, 1.8. However, the EoS parameter remains in the phantom region with time lapses.

Hence, in these cases, we observe that the EoS parameter favors the pilgrim DE phenomenon

for these three values of α1.

From Fig. 2, we observe that the present universe with hybrid expansion law evolves with

variable deceleration parameter and transition from deceleration to acceleration takes place

at t =
√
α1−α1

α2
. It is also clear from Fig. 2 that for α1 ≥ 1, the model is evolving only in

accelerating phase whereas for α1 < 1, the model is evolving from early decelerated phase to

present accelerating phase.

The squared speed of sound remains positive for model-1 as shown in Fig. 3. It starts

from negative values (represents instability of the model), goes towards positive maxima and
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Figure 1: Plot of ωΛ versus t ( in Gyr) for

α2 = 0.7, k = 1.5, β1 = 1.8, β2 = 0.3 and

β3 = 0.8 in model-1.
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Figure 2: Plot of deceleration parameter (q)

versus t ( in Gyr) for α2 = 0.7 in model-1.
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Figure 3: Plot of velocity of sound versus t ( in

Gyr) for α2 = 0.7, k = 1.5, β1 = 1.8, β2 = 0.3

and β3 = 0.8 in model-1.
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Figure 4: Plot of statefinder parameters (r, s)

for α2 = 0.7 in model-1.

eventually decreases and approaches to positive value (exhibits stability of the model) for α1 =

1.8, whereas the model remains stable for α1 = 0.2, 1.0 throughout the evolution.

We can obtain the plane of statefinder parameters by plotting r versus s for three different

choices of α1 as shown in Fig. 4. It can be observed from the r − s plane that MHRDE model

correspond to ΛCDM ((r, s) = (1, 0)) model for all three values of α1 = 0.2, 1.0 and 1.8. The r−s

plane corresponding to α1 = 0.2 also provide the regions of phantom (s > 0) and quintessence

(r < 1) and Chaplygin gas model (s < 0 and r > 1). For α1 = 1.0 and 1.8 the r − s plane

corresponding to phantom (s > 0) and quintessence (r < 1).
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3.2 Model-2

We assume the physical variation of average scale factor ( [34]) as

a(t) = [sinh(αt)]
1
n (33)

which yields a time dependent mean deceleration parameter (q). Pradhan [35] has studied two-

fluid model from decelerating to accelerating FRW DE models using this average scale factor.

Now using equations (12) and (13) in equation (33) we obtain the expressions for metric

potentials as

A = B = [sinh(αt)]
3k

n(2k+1)

C = [sinh(αt)]
3

n(2k+1) (34)

Now the metric (2) can be written as

ds2 = dt2 − [sinh(αt)]
6k

n(2k+1) (dx2 + e−2xdy2)− [sinh(αt)]
6

n(2k+1)dz2 (35)

Physical discussion of the model

From equations (14) and (34), we get the energy density of MHRDE as

ρΛ = 3α2

[

β1

n2
coth2αt+

(

2β3 −
β2

n

)

csch2αt

]

(36)

From the equations (11) and (34), we have

ρB =
I

(sinhαt)
6(k+1)
n(2k+1)

(37)

Now from the field equations (5)-(8), (11), (34), (36) and (37), we get

the EoS parameter of MHRDE as

ωΛ = −
{

9α2(k2+k+1)
n2(2k+1)2

coth2αt− 3α2(k+1)
n(2k+1)

csch2αt− I

(sinhαt)
6(k+1)
n(2k+1)

3α2
[

β1

n2 coth2αt+
(

2β3 − β2

n

)

csch2αt
]

}

, (38)

the deviations from EoS parameter as

δy =
2I

3α2(sinhαt)
6(k+1)
n(2k+1)

[(

β2

n
− 2β3

)

csch2αt− β1

n2 coth2αt
]

(39)

δz =

3α2(1−k)
n(2k+1)

[

3
n
coth2αt− csch2αt

]

− 2I

(sinhαt)
6(k+1)
n(2k+1)

+ 1

(sinhαt)
6k

n(2k+1)

3α2
[

β1

n2 coth2αt+
(

2β3 − β2

n

)

csch2αt
] , (40)
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and the energy density of matter can be written as

ρm =
9α2k(k + 2)

n2(2k + 1)2
coth2αt− 3α2

[

β1

n2
coth2αt+

(

2β3 −
β2

n

)

csch2αt

]

− (I + (sinhαt)
6

n(2k+1) )

(sinhαt)
6(k+1)
n(2k+1)

.

(41)

Thus the metric (35) together with equations (36)-(41) constitutes Bianchi type-III MHRDE

cosmological model in general relativity with time varying deceleration parameter.

Spatial volume of the model-2 as

V = (sinhαt)3/n (42)

The Hubble’s parameter

H =
α

n
cothαt (43)

The scalar expansion is

θ =
3α

n
cothαt (44)

The shear scalar is

σ2 =
3α2(k − 1)2

n2(2k + 1)2
coth2αt (45)

The anisotropic parameter is

Ah =
2(k − 1)2

(2k + 1)2
(46)

The deceleration parameter is

q = −1 + n(sech2αt) (47)

Statefinder parameters are

r = 1 + n(2n− 3)sech2αt (48)

s =
2n(2n− 3)sech2αt

3(2nsech2αt− 3)
(49)

Squared speed of sound for the stability analysis of the model-2 is given by

v2s =
1

[

β1

n2 + 2β3 − β2

n

]

{

3(k2 + k + 1)

n2(2k + 1)2
+

(k + 1)cschαt

2n(2k + 1)
+

I(k + 1)(sinhαt)
−6(k+1)
n(2k+1)

n(2k + 1)α2csch2αt

}

(50)

Fig. 5 describes the behavior of EoS parameter of model-2 in terms of time t for n = 0.5, 1.0

and 1.5. In this model, we attain the quintessence (ωΛ > −1) and vacuum DE. The nature of
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Figure 5: Plot of ωΛ versus t ( in Gyr) for

α = 0.5, k = 1.5, β1 = 1.8, β2 = 0.3 and

β3 = 0.8 in model-2.
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β3 = 0.8 in model-2.
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Figure 8: Plot of statefinder parameters (r, s)

for α = 0.5 in model-2.

deceleration parameter (q) versus time t is shown in Fig. 6. It is observed that for n ≤ 1 the

model is evolving only in accelerating phase and for n > 1 the model is evolving from early

decelerated phase to present accelerating phase. Figure 7 shown the velocity of sound versus

time t, it is observed that the model remains stable (i.e., v2s > 0) for all values of n throughout

the evolution of the universe. The r − s plane plotted in Fig. 8. We observed that the r − s

plane corresponding to ΛCDM model for all three values of n. The model also represent the

phantom (s > 0) and quintessence (r < 1) DE eras for n = 0.5 and 1.
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3.3 Model-3

We assume that the linearly varying deceleration parameter proposed by Akarsu and Dereli

[36] as

q =
−aä

ȧ2
= −l1t + l2 − 1 (51)

where l1 ≥ 0, l2 ≥ 0 are constants and “a” is the average scale factor of the universe. For

l1 = 0, equation (51) reduces to the constant deceleration parameter ( [37]). Assuming that the

deceleration parameter is not a constant i.e. l1 6= 0 and solving equation (51) with a proper

choice of integrating constants, we get

a(t) = exp

{

2

l2
arc tanh

(

l1t

l2
− 1

)}

for l1 > 0; l2 ≥ 0 (52)

Recently, Reddy et al. [38,39] have investigated some anisotropic cosmological models with this

linearly varying deceleration parameter in modified theories of gravitation.

Now using equations (12) and (13) in equation (52) we obtain the expressions for metric poten-

tials as

A = B = exp

{

6k

m(2k + 1)
arc tanh

(

l1t

l2
− 1

)}

C = exp

{

6

l2(2k + 1)
arc tanh

(

l1t

l2
− 1

)}

(53)

Now the metric (2) can be written as

ds2 = dt2 − exp

{

12k

l2(2k + 1)
arc tanh

(

l1t

l2
− 1

)}

(dx2 + e−2xdy2)

−exp

{

12

l2(2k + 1)
arc tanh

(

l1t

l2
− 1

)}

dz2 (54)

Physical discussion of the model

From equations (14) and (53), we get the energy density of MHRDE as

ρΛ = 6

[

2β1 − 2β2(l1t− l2)− β3(l
2
2 + (l1t− l2)

2)

t2(2l2 − l1t)2

]

(55)

From the equations (11) and (34), we have

ρB = I exp

{−12(k + 1)

l2(2k + 1)
arc tanh

(

l1t

l2
− 1

)}

(56)

Now from field equations (5)-(8), (11), (53), (55) and (56) we get

the EoS parameter as

ωΛ =

−12((k+1)(l1t−l2)+3)
t2(2k+1)(2l2−l1t)2

+ I exp

{

−12(k+1)
l2(2k+1)

arc tanh
(

l1t
l2

− 1
)

}

6
[

2β1−2β2(l1t−l2)−β3(l22+(l1t−l2)2)

t2(2l2−l1t)2

] , (57)

12

Page 12 of 18

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly

the deviations from EoS parameter as

δy =
I

3exp

{

12(k+1)
l2(2k+1)

arc tanh
(

l1t
l2

− 1
)

}

[

2β2(l1t−l2)−2β1+β3(l22+(l1t−l2)2)

t2(2l2−l1t)2

]

(58)

δz =

12(1−k)(l1t−l2+3)
t2(2k+1)(2l2−l1t)2

− 2I exp

{

−12(k+1)
l2(2k+1)

arc tanh
(

l1t
l2

− 1
)

}

+ exp

{

−12k
l2(2k+1)

arc tanh
(

l1t
l2

− 1
)

}

6
[

2β2(l1t−l2)−2β1+β3(l22+(l1t−l2)2)

t2(2l2−l1t)2

] ,(59)

and the energy density of matter can be found as

ρm =
36k(k + 2)

t2(2k + 1)2(2l2 − l1t)2
−

2I + exp

{

12
l2(2k+1)

arc tanh
(

l1t
l2

− 1
)

}

exp

{

12(k+1)
l2(2k+1)

arc tanh
(

l1t
l2

− 1
)

}

−6

[

2β2(l1t− l2)− 2β1 + β3(l
2
2 + (l1t− l2)

2)

t2(2l2 − l1t)2

]

. (60)

Thus the metric (54) together with equations (55)-(60) constitutes Bianchi type-III MHRDE

cosmological model in general relativity with linearly varying deceleration parameter.

Spatial volume of the model-3 as

V = exp

{

6

l2
arc tanh

(

l1t

l2
− 1

)}

(61)

The Hubble’s parameter is

H =
2

t(2l2 − l1t)
(62)

The scalar expansion is

θ =
6

t(2l2 − l1t)
(63)

The shear scalar is

σ2 =
12(k − 1)2

t2(2k + 1)2(2l2 − l1t)2
(64)

The anisotropic parameter is

Ah =
2(k − 1)2

(2k + 1)2
(65)

Statefinder parameters are

r = 1 +
1

2

[

6(l1t− l2) + 3l1t(l1t− 2l2) + 4l22
]

(66)

s =
6(l1t− l2) + 3l1t(l1t− 2l2) + 4l22

3(−2l1t+ 2l2 − 3)
(67)
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Squared speed of sound of the model-3 is given by

v2s =

{

12

2k + 1

{

l1(k + 1)(t2(2l2 − l1t)
2)− 4t(2l2 − l1t)(l2 − l1t)((k + 1)(l1t− 3) + 3)

− 12(k + 1)l2I

l1t(2k + 1)(2l2 − l1t)
exp

{−12(k + 1)

l2(2k + 1)
arc tanh

(

l1t

l2
− 1

)}}

{

2β2l1 − 2β3l1(l1t− l2)(t(2l2 − l1t))
2 − 4(2l2t− l1t

2)(l2 − l1t)

(2β1 − 2β2(l1t− l2)− β3(l
2
2 + (l1t− l2)

2))

}

−1

. (68)
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Figure 9: Plot of ωΛ versus t ( in Gyr) for

l1 = 0.1, l2 = 1.3, k = 1.5, β1 = 1.8, β2 = 0.3

and β3 = 0.8 in model-3.
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for l1 = 0.1, l2 = 1.3 in model-3.
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Fig. 9 shows the behavior of EoS parameter with cosmic time t. It has been observed that the

EoS parameter starts from high phantom values approaches to lower phantom region. However,

the EoS parameter has remained in the phantom region with time lapses. We observe the EoS

parameter favors the pilgrim DE phenomenon. The Fig. 10 shows the early deceleration and the

present acceleration phase of the universe. Observational data (Ade et al. [40]) shows that the

present value of deceleration parameter lies somewhere in the range −1 ≤ q < 0. Therefore our

model with linearly varying deceleration parameter consistent with the observational results.

Figure 12 shows that at the cosmic time the statefinder parameters curve passes the point

[(r, s) = (1, 0)] which correspondence to the ΛCDM model. At this special point our MHRDE

model with linearly varying deceleration parameter behaves like a ΛCDM model. The rs plane

corresponding to linearly varying deceleration parameter also provide the regions of phantom

(s > 0), quintessence (r < 1) DE models and Chaplygin gas models (s < 0 and r > 1). It can be

viewed from Fig. 11 that the MHRDE model exhibits stability in this scenario due to positive

behavior of squared speed of sound.

4 Conclusions

We have obtained magnetized MHRDE Bianchi type-III cosmological models in general

relativity. We have presented three different models by considering the possibilities: hybrid

expansion law ( [31]) of average scale factor and varying deceleration parameters ( [34]; [36]) to

obtain the models. The physical properties of the models are discussed and we observed the

following:

The model-1 obtained by using hybrid expansion law provides very nice description of the

transition from the early deceleration to present cosmic acceleration, which is an essential feature

for evolution of the universe. We observe that the spatial volume of the model tends to zero at

t = 0. Therefore, the model has point-type singularity at t = 0. At this epoch, all the physical

and kinematical parameters diverse. As time increases, these parameters decrease. As t → ∞,

spatial volume becomes infinite. As t → ∞, Hubble’s parameterH is constant hence the universe

expands forever with constant rate. The spatial volume of the models-2 and 3 vanish at t = 0

and increase with time. This shows that the universe starts evolving with zero volume at t = 0

and expand with cosmic time. The Hubble’s parameter (H) and expansion scalar (θ) are infinite

at t = 0 whereas, they are finite as t → ∞, which indicates inflationary scenario. From Figs. 2,

6 and 10 we conclude that our models represent early decelerated phase to present accelerating

phase. Recent observations of SNe Ia, expose that the present universe is accelerating and value

of deceleration parameter lies in the range of −1 ≤ q < 0. It follows that in our models, one can

choose values of deceleration parameter consistent with recent observations.
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The behavior of EoS parameter of the models-1 and 3 is shown in Figs. 1 and 9 respectively.

We observe that the EoS parameter starts with comparatively high value of phantom and always

remains in that region throughout the evolution of the universe. This behavior resembles the

pilgrim DE, whereas, the behavior of EoS parameter of the model-2 shown in Fig. 5, is always

varying in quintessence region. The contribution of magnetic field is exhibited in the expression

of the physical parameters ωΛ, ρm and skewness parameters. If I = 0, the effect of magnetic

field is vanishes. In Figs. 3, 7 and 11, it is observed that MHRDE remains stable due to positive

behavior of squared speed of sound. The r − s planes corresponding to three models are shown

in Figs. 4, 8 and 12. It is observed that the trajectories of r − s plane for all three models

corresponds to ΛCDM model. Also, the trajectories coincide with some well known DE models

corresponding to phantom, quintessence and Chaplygin gas.

Acknowledgments: We are grateful to the anonymous reviewer for useful comments which
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