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We theoretically analyze the anisotropic magnetoresistance (AMR) effects of bec Fe (+), fcc Co (+),
fcc Ni (+), Fe4N (-), and a half-metallic ferromagnet (—). The sign in each ( ) represents the sign of
the AMR ratio observed experimentally. We here use the two-current model for a system consisting of a
spin-polarized conduction state and localized d states with spin—orbit interaction. From the model, we first
derive a general expression of the AMR ratio. The expression consists of a resistivity of the conduction
state of the o spin (o0 =T or |), p,,, and resistivities due to s—d scattering processes from the conduction
state to the localized d states. On the basis of this expression, we next find a relation between the sign
of the AMR ratio and the s—d scattering process. In addition, we obtain expressions of the AMR ratios
appropriate to the respective materials. Using the expressions, we evaluate their AMR ratios, where the
expressions take into account the values of p, /p of the respective materials. The evaluated AMR ratios

correspond well to the experimental results.

KEYWORDS: anisotropic magnetoresistance effect, weak ferromagnet, strong ferromagnet, half-metallic
ferromagnet, spin—orbit interaction, s—d scattering, spin-polarized conduction electron, two-

current model

1. Introduction

The anisotropic magnetoresistance (AMR) effect,!"!® in
which the electrical resistivity depends on the relative angle
between the magnetization direction and the electric current
direction, is one of the most fundamental characteristics in-
volving magnetic and transport properties. The AMR effect
has been therefore investigated for various magnetic materi-
als. In particular, the AMR ratio has been measured to eval-
uate the amplitude of the effect. The AMR ratio is generally
defined as

Ap _pi—pu

P pL
where pj| (o0, ) represents a resistivity for the case of the elec-
trical current parallel to the magnetization (a resistivity for the
case of the current perpendicular to the magnetization). Table
I shows the experimental values of the AMR ratios of typ-
ical ferromagnets, i.e., body-centered cubic (bcc) Fe® face-
centered cubic (fcc) Co,® fec Ni,® FesN, 017 and the half-
metallic ferromagnet.!'~'> Here, bce Fe is categorized as a
weak ferromagnet,?! in which its majority-spin d band is not
filled (see Fig. 1(a)). In contrast, fcc Co, fcc Ni, and Fe4N are
strong ferromagnets," in which their majority-spin d band is
filled (see Fig. 1(b)). In addition, the half-metallic ferromag-
net is defined as having a finite density of states (DOS) at the
Fermi energy Er in one spin channel and a zero DOS at Ey in
the other spin channel (see Figs. 1(d) and 1(e)). As remark-
able points, Fe,¥ Co,® and Ni® exhibited positive AMR ra-
tios, while Fe,N'® 17 and the half-metallic ferromagnets''-!>
showed negative AMR ratios. Furthermore, in the case of
Fe304'%1% of the half-metallic ferromagnet, the sign of the
AMR ratio changed from negative to positive with increas-

ey
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ing temperature. For such ferromagnets, however, theoretical
studies to systematically explain their AMR ratios have been
scarce so far. In particular, a feature that strongly affects the
sign of the AMR ratio has not yet been revealed.

Theoretically, expressions of the AMR ratio have been de-
rived by taking into account a resistivity due to the s—d scat-
tering.!:347:9-10.12.18) Thig scattering represents that the con-
duction electron is scattered into the localized d states by im-
purities. The d states have exchange field H.x and spin—orbit
interaction, i.e., AL-S, where A is the spin—orbit coupling con-
stant, L (=Ly, Ly, L) is the orbital angular momentum, and $
(=S, Sy, S;)is the spin angular momentum. Here, the d states
are spin-mixed owing to the spin—orbit interaction.

The applicable scope of the previous theories, however, ap-
pears to be limited to specific materials because only the par-
tial components in the whole resistivities have been adopted.
For example, Campbell, Fert, and Jaoul® (CFJ) derived an ex-
pression of the AMR ratio of a strong ferromagnet” such as
Ni-based alloys, i.e.,!”

A
2o y@-1), ®)
P

withy = (3/4)(A/Hex)? and @ ~ ps_q;/ps1. 2" Here, py, Was a
resistivity of the conduction state (named as s) of the o spin,
with o =7 or |. In addition, p,_,4c Was a resistivity due to the
s—d scattering, in which the conduction electron was scattered
into the localized d states of the ¢ spin by impurities. The ¢
spin represented the spin of the dominant state in the spin-
mixed state, where the up spin (¢ =T) and down spin (¢ =)
meant the majority spin and the minority spin, respectively.
Note that the CFJ model adopted only pss and p;_,4; on the
basis of scattering processes between the dominant states at
Ey. The processes were s T— s T, s T—d |,and s |— d 12
where so — so represented the scattering process between
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Table 1. AMR ratio py /pst and Did) /D(Td) of the various ferromagnets. The AMR ratios represent experimental values. Note that for every material except
for Fe4N, the AMR ratio defined in each paper, xamr = (o) — p1)/[(0)/3) + (2p;/3)], has been transformed into Ap/p of eq. (1) by using Ap/p =
3xaMr/(xamR +3). The ratios py /ps1’s of bee Fe, fce Co, fee Ni, and FeyN are the respective theoretical values evaluated from analyses using a combination

of the first principles calculation and the Kubo formula. Their D(Td)/ D(ld)’s are roughly estimated from the respective DS‘T) / DSf’s. Here, Difl) is the DOS of

each d state of the ¢ spin at Ef (see eq. (27)), where D(qd) is set to be D(qd) = D%l by ignoring M for D;Z)g of eq. (B-18). In addition, DS? is the partial DOS

of the d band at EF obtained by the first principles calculation. In a simple term, DSE = Zi,[?z D;‘Z is realized. The ratios ps| /ps1’s and D(Td)/ D(fb’s of the

half-metallic ferromagnets are, respectively, assumed to have ps| /psr — 0 or co and D(Td)/D(ld) — 0 or oo, judging from the DOS’s at Ef of Figs. 1(d) and

1(e).

Category Material AMR ratio Ap/p (experimental value) PsL/Pst D(Td) / Dj‘l)
Weak ferromagnet?! bee Fe 0.0030 at 300 K (ref. 8) 3.8x 107! (ref. 22)  ~ 2.0 (ref. 39)
Strong ferromagnet®!) fcc Co 0.020 at 300 K (ref. 8) 7.3 (ref. 22) ~ 0 (ref. 40)
fce Ni 0.022 at 300 K (ref. 8) 1.0 x 10 (ref. 23) ~ 0 (ref. 41)
FeyN —0.043 - —0.005 for 4.2 K - 300 K (ref. 16) 1.6 X 1073 (ref. 25)  ~ 0.2 (ref. 42)
—0.07 - —0.005 for 4 K - 300 K (ref. 17)
Half-metallic ferromagnet ~ CopMnAl;_,Si, —0.003 - —0.002 at 4.2 K (ref. 11) — 00 — o0
Lag 7Sr9g3MnO3 —0.0015 at 4 K (ref. 15) — o0 — o
Lag7Cap3MnO3  —0.0012 at 75 K (ref. 12) — 00 — o0
—0.004 at 100 K (ref. 14)
Fe304 —0.005 - 0.005 for 100 K - 300 K (refs. 12 and 13) ~0 ~0

the conduction states of the o spin, while s — dg was the
scattering process from the conduction state of the o spin to
the o spin state in the localized d states of the ¢ spin. On
the other hand, Malozemoft®'9 extended the CFJ model to
a more general model which was applicable to the weak fer-
romagnet as well as the strong ferromagnet. This model took
into account pg1, P\, Ps—dt. and ps_q; on the basis of the scat-
tering processesof s 7> s T, s T>d T,s 1> d |, s |—> s |,
s|l—d],and s |— d 7. In the actual application to mate-
rials, however, he often used an expression of the AMR ratio
with pgr = py = ps. Ve,

% _ '}/(p.v—uii _ps—>dT)2 (3)

P (05 + Ps—at)(Os + Ps—dy) ’
which was always positive. Equation (3) was an expression
for the weak ferromagnet, while Eq. (3) with p,_,4; = 0 was
that for the strong ferromagnet.

Furthermore, we point out a problem, namely, that the pre-
vious theories have not taken into account the spin depen-
dence of the effective mass and the number density of elec-
trons in the conduction band in expressions of the resistivi-
ties. For example, the half-metallic ferromagnets which have
the DOS’s of Figs. 1(d) and 1(e) may show significant spin
dependence.

On the basis of this situation, we suggest improvements
for a systematic analysis of the AMR effects of various ferro-
magnets. First, the expression of the AMR ratio should treat
Psi/psy as a variable. The reason is that p,| /ps actually de-
pends strongly on the materials (see Table I). Namely, ps;/ps1
has been evaluated to be 3.8 x 10! for bee Fe,2? 7.3 for fcc
Co,2? 1.0 x 10 for fcc Ni,22% and 1.6 x 1073 for Fe4N, 220
from analyses using a combination of the first principles cal-
culation and the Kubo formula within the semiclassical ap-
proximation. The half-metallic ferromagnet is also assumed
to have py| /ps1 = 0 or ps /psy — oo. It is noteworthy here that
the conduction state (called s in suffixes of p.) is considered
to consist of not only the s and p states but also the conductive
d state. In addition, the exchange splitting of the s and p states

is attributed to the fact that the s and p states are coupled to the
d states with exchange splitting through the transfer integrals.
Second, in the case of the half-metallic ferromagnet, the ex-
pressions of the resistivities should take into account the spin
dependence of the effective mass and the number density of
the electrons in the conduction band.

In this paper, we first derived general expressions of the
resistivities and the AMR ratio. We here treated p,; /o1 as a
variable and took into account the spin dependence of the ef-
fective mass and the number density of the electrons in the
conduction band. Second, on the basis of the expressions,
we roughly determined a relation between the sign of the
AMR ratio and the dominant s—d scattering process. Namely,
when the dominant s—d scattering process was s T— d |
or s |— d T, the AMR ratio tended to become positive.
In contrast, when the dominant s—d scattering process was
sT—dTors |— d |, the AMR ratio tended to be nega-
tive. Finally, using the expression of the AMR ratio, we sys-
tematically analyzed the AMR ratios of Fe, Co, Ni, Fe4N, and
the half-metallic ferromagnet. The evaluated AMR ratios cor-
responded well with the respective experimental results. In
addition, the sign change of the AMR ratio of Fe;O,4 could
be explained by considering the increase of the majority spin
DOS at Eg.

The present paper is organized as follows: In §2, we derive
general expressions of the resistivities and the AMR ratio. We
then find the relation between the sign of the AMR ratio and
the s—d scattering process. In §3 and §4, from the general ex-
pression, we obtain expressions of AMR ratio appropriate to
the respective materials. Using the expressions, we analyze
their AMR ratios. Concluding remarks are presented in the §5.
In the Appendix A, we obtain wave functions of the localized
d states (i.e., the spin-mixed states) from a single atom model
that involves the spin—orbit interaction. In Appendixes B and
C, we derive expressions of s—d and s—s scattering rates, re-
spectively. In the Appendix D, we show matrix elements in
the s—d scattering rate. Some parameters are formulated in the
Appendix E.
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Fig. 1. Schematic illustration of the density of states (DOS) of the vari-
ous ferromagnets. (a) The partial DOS of bec Fe?*39 of the weak fer-
romagnet. (b) The partial DOS of fcc Co*® and fec Ni244D of the
strong ferromagnet. (c) The partial DOS of FeyN?42 of the strong
ferromagnet. (d) The DOS of the half-metallic ferromagnet such as
COQMHAll_xSix,M) Laoero,gMnO; ,45’46) and La0'7Ca0'3MnO3 A47) (C)
The DOS of Fe304°253 of the half-metallic ferromagnet. In (a) - (c), light-
gray areas (dark-gray areas) correspond to the sp band DOS (the d band
DOS). The sp band is partly covered by the d band (see lighter areas in the
d band). The d band consists of the conductive and localized d states, and
the respective portions are unspecified here. In (d) and (e), only the DOS’s
in the vicinity of Ef (i.e., the d band DOS) are shown. In (e), Fe (A) and
Fe (B) denotes sublattices, and egr and 2¢ are 3d orbitals of the Fe ion.5®

2. Theory

We derive general expressions of resistivities due to elec-
tron scattering by nonmagnetic impurities and then obtain a
general expression of the AMR ratio. On the basis of the resis-
tivities and the AMR ratio, we explain a feature of the AMR
effect. In addition, we find a relation between the sign of the
AMR ratio and the scattering process.

2.1 Model

Following the Smit model" and the CFJ model,® we use a
simple model consisting of the conduction state and the local-
ized d states. The conduction state is represented by a plane
wave, while the localized d states are described by a tight-
binding model, i.e., the linear combination of atomic d or-

bitals.® The d orbitals are obtained by applying a perturbation
theory to a Hamiltonian for the d electron in a single atom, H:

H =Hy+H, 4)
h2

Hy = -3 V2 + V(r) + HeS -, 3)

H' =AL-S. (6)

Here, the unperturbed term H, is the Hamiltonian for the
hydrogen-like atom with Zeeman interaction due to Hc,
where Hey is the exchange field of the ferromagnet, m, is the
electron mass, and 7 is the Planck constant £ divided by 2x.
The term V(r) is a spherically symmetric potential energy of
the d orbitals created by a nucleus and core electrons, with
r = |r|, where r is the position vector. The perturbed term
H’ is the spin—orbit interaction with |1/H.| < 1. Here, the
azimuthal quantum number L and the spin quantum number
S are chosen to be L=2 and S=1/2, respectively. From this
model, we obtain the spin-mixed states within the second-
order perturbation (see Appendix A).

2.2 Resistivity

Using the localized d states and the conduction state, we
can obtain the resistivity for the case of a parallel (||) or per-
pendicular (L) configuration. As a starting point, we consider
the two-current model?” composed of the up spin and down
spin current components. In addition, this model is improved
by including the spin-flip scattering, which is due to, for ex-
ample, spin-dependent disorder’®2?? and magnon.3*3" The
resistivity of ¢ configuration p, (¢ =|| or L) is then written
2532

PPl + PePelr T Pe P

pe = , )
per +pey+ (1 +@peg + (1 +aDpeys
with
m*
Plo = —5—: (8)
e
m*
Ptoo = 2—0—’ (9)
Ng€“Te o’
miny
a=—, (10)
ani

where p; is a resistivity of the o spin state for the ¢ con-
ﬁguration,18’31’33‘37) while p¢ oo (0 # 07) is a resistivity due
to the spin-flip scattering process from the o spin state to the
o’ spin state for the ¢ configuration. It is noted that eq. (7)
with p; - =0 corresponds to the resistivity of the two-current
model. The constant e is the electronic charge, and n, (m;)
is the number density®*39 (the effective mass®®) of the elec-
trons in the conduction band of the o spin, where the con-
duction band consists of the s, p, and conductive d states. The
quantity 7, is a relaxation time of the conduction electron of
the o spin for the ¢ configuration, and 7,4, is a relaxation
time of the spin-flip scattering process from the o spin state
to the o spin state for the € configuration. The scattering rate
1/7¢, is expressed as*>

1 1 2 1
@=;+Z D

7 M=-2¢=10 T.s‘(r—>dMq

)
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Here, 7, is a relaxation time of the conduction state of the
o spin, where this state consists of the s, p, and conductive
d states. In addition, ‘rﬁ?_} Ve is a relaxation time of the s—d
scattering for the ¢ configuration. This s—d scattering means
that the conduction electron of the o spin is scattered into “the
o spin state in the localized d state of M and ¢” by nonmag-
netic impurities. The quantities M (M = -2, -1, 0, 1, 2) and
¢ (¢ =T or |) are, respectively, the magnetic quantum number
and the spin of the dominant state in the spin-mixed state (see
Appendix A). The expressions of 1/7{,‘2_> M and 1/7,, are
derived in Appendixes B and C, respectively.

Using egs. (B-17), (A1) - (A-10), and (D-1) - (D-3), we
obtain p; of eq. (8) as

12)
13)

P11 = Pst + 2¥psroary + (1 = 2y)ps15d01s

o1 = psy + (1 =2y)pga0p + 2YPs15d-115

_ Y Y 3
PL1 =Pt F 5Ps1odIL F 5Ps1=d-1L T gPs1-d2

3 4 1

slt-3 sT—d—- —-(1-2 sT— 5 14

+8( 37)P‘T d 2T+4( Y) Pst—dors  (14)
= + é + E 1 — i

P1l = Ps| 8Ps¢—>d—2¢ 3 37’ Psl-d2)

1 Y Y
+7 (1 = 2y) psi a0y + SPsimai + Epu—wz—m(ﬁ)

with
34V
= - , 16
Y= ( Hex) (16)
ny
Pso = > s a7
Ny €T
mg
Prormsirts = —mT—, (18)
g€ Tso—odMg
1 2w
= = nimp|V,I’ DY, 19
T Rimp|Vs|"Dyy (19)
1 2n
= —NimpM|Vso—do ZD(d) P 20
Tso—dMg h i | ‘ . | Ms ( )
|VS(r—>d(r|2 =
1 2 2 . g
3 Vimp(Rn) R(r)(z" — x°) exp (ikp»z) dxdydz
(2D

Here, terms higher than the second order of A/H. have
been ignored. Accordingly, terms with yps—4c in eqs. (12) -
(15) correspond to terms obtained from only the Smit! spin-
mixing mechanism’”!? with (1/2)(L,S_ + L_S.) (see Ap-
pendix A). In contrast, terms related to the AL,S, operator
have been eliminated. A resistivity of the conduction state of
the o spin, py., is due to the s—s scattering, in which the con-
duction electron of the o spin is scattered into the conduction
state of the o spin by nonmagnetic impurities (see Appendix
C). In addition, p,—4m. 1s a resistivity due to the s—d scatter-
ing. The s—d scattering means that the conduction electron of
the o spin is scattered into “the o spin state in the localized d
state of M and ¢” by the impurities, where M and ¢ are as ex-
plained above (see Appendixes A and B). The quantities 7,
and T,,_4m¢ are the relaxation times of the s—s and s—d scat-

terings, respectively. The quantity V is the matrix element of
the impurity potential for the s—s scattering (see eq. (C-4)),
while V,_4, is that for the s—d scattering (see eqs. (B-16),
(B-17), and (A-11), and Appendix D), where kg is the Fermi
wavevector of the o spin in the current direction. Here, each
impurity is assumed to have a spherically symmetric scatter-
ing potential which acts only over a short range. The quantity
Df,f) is the DOS of the conduction state of the o spin at Ey. (see
eq. (C-5)), and D;‘Z is that of the d state of M and ¢ at Ey (see
eq. (B-18)). Furthermore, iy, is the impurity density, and NV,
is the number of the nearest-neighbor host atoms around the
impurity (see eq. (B-14)).

When the M dependence of DE\’Z in eq. (20) is ignored in a
conventional manner,” egs. (12) - (15) become

o1 = Pst + 2¥pst—ay + (1 = 2V)psr—ar,  (22)
Pl.L = Psl + (1 - 2’)/)psl—>dl + 2ypsl—>dT7 (23)
P11 = Pst +YPs1odl + (L= ¥)Ps1-ars (24)
oLy = psp + (1 =Y)psi—a) + YPs1—dr> (25)
respectively, with
m*
Pso—ds = 2—0—5 (26)
Ng € Tso—ds
1 2
Tormds = ?nimpNnIV‘s‘(red(rlzng)’ (27)

where vy, py, and [Vsosaol? are given by egs. (16), (17), and
(21), respectively. Here, ng) is the DOS of each d state of the
¢ spin at Ey, where D(cd) is set to be D(cd) = sz by ignoring
M for D%)g of eq. (B-18).

2.3 AMR ratio
Using eqs. (1), (7), and (22) - (25), we obtain the general
expression of the AMR ratio as

Ap A+B
— = , 28
o YD (28)

with

A = (ps1md) — Pst—dr) X

{(Pw + Ps1-al)(Ps) + Psi—dy +O1r — P1L)

+][(1+ @y + (1 +a i | o5y + ps1oar + pn)}’ 29
B = (pr,adT _pxlﬂdl) X

{(PST + Pst—at)Pst + Pst—ar + P11 = P17

+[ (1 + @y + (1 + a Doy | (o1 + pstoar + pm}, (30)

C = (P51 + Pst=an)(Ps] + Psi—ay + P11) + (Os) + Psi—dl)P1Ls
(3D

D = pgt + Ptoar + psi + Psioay + (L +a)py, + (1 +a Doy,
(32)
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Table II.

s—d scattering terms in p¢,, of egs. (12) - (15) or egs. (22) - (25). The configuration £ is £ =|| or L, and o~ is o~ =T or |. The terms with pss_qp are

listed for each m. Here, m is the magnetic quantum number of the d orbital ¢,, ,(r), where ¢,, () corresponds to the final state in the s—d scattering process

(see egs. (A-1) - (A-10)). For each p¢ o, terms with psr_,qp are written in

the upper line, while those with ps-_4u1 are given in the lower line. For each

line, the summation of the s—d scattering terms is written in the right-hand column, where pss—4um¢ is put to be psr—dme = Pso—de-

m=-2 m=0 m=2 Summation
Pl 2Ypst—dil 2yPs1-d)
(1 =2y)psp—dor (1 =2y)psp—ar
Pl (1 =2y)ps—doy (1 =2y)ps1—d)
2yps|—d-17 2ypsi—dr
Y Y
PLr 5PsT—d-1] 5PsT—dl] YPs1—d]
%(1 - %7)%%%27 }; (1 =2y) psr—aor %Pspcm (I = y)pst—ar
pLl %psl—»d—u % (I =2y) psy—doy %(1 - %Y)Psi—nm (I =¥)psi—al
%pxlﬂd—lT %Psbm YPs|—dr
mg . @ 2. -
Poo = e (33) Here, | f P (NP}, (r)dr| is adopted on the basis of the
o oo’

where p,, (00 # 0”) is a resistivity due to the spin-flip scat-
tering process from the o spin state to the o spin state, and
T, 18 arelaxation time of this scattering. Here, 7, has been
assumed to be independent of the configuration (see 775 Of
eq. (9)).

2.4 Feature of the AMR effect

On the basis of the above results, we introduce a certain
quantity based on the AMR ratio and then reveal a feature
of the AMR effect. In particular, we find that the sign of the
AMR ratio is determined by the increase or decrease of “exis-
tence probabilities of the specific d orbitals” due to the spin—
orbit interaction. In addition, we roughly determine a relation
between the sign of the AMR ratio and the scattering process.

24.1 Zs

Taking into account the after-mentioned (i) - (iii), we in-
troduce the quantity based on the AMR ratio. Here, the AMR
ratio reflects the difference of “changes of the d orbitals due
to the spin—orbit interaction” between different m’s, where m
is the magnetic quantum number of the d orbital ¢,, »(r) of eq.
(A-11). Such a quantity Z.. is written as

Zo‘;g‘ =X(0,0;¢) - Ya-;(;y (34)
1 3 3
Yoo = ZX(O’ o6+ gX(Z, o6+ gX(—2, 03 6), (35)

2 2

X(m,o5¢) = ) ( —6m,M60,g),(36>
M=—2

where (D;j?c(r) is given by egs. (A1) - (A-10).

Roughly speaking, Z,. may correspond to the nu-

merator of the AMR ratio of eq. (1), pj — p.. In par-

- 2 . @ 2

ticular, >y, ' f ¢0’0_(r)(DM’§(r)dr| in X(0,0;¢) and
2

S |5 5000 + 3 5mn

in Y, may be related to p; and p,, respectively. This

X(m, 0; ¢) represents the change of “the existence probability
of the d orbital of m and o due to the spin—orbit interaction.

[ ol ar

[ o ] |

scattering rate in ps,—qc (see Appendix B), and Z%,,:_z
comes from that in the right-hand side of eq. (11). In addition,
1/4, 3/8, and 3/8 in Y,.. correspond to the coefficients of
|Vsoodol? of eq. (21) in the scattering rates of m=0, 2, and
-2, respectively (see Appendix D). Such Z,.c and X(m, o; ¢)
have been based on the following (i) - (iii):

(i) By comparing eqs. (22) and (24) or egs. (23) and (29),
we find that the AMR effect arises from the difference
of s—d scattering terms between || and L configurations.
All the s—d scattering terms with py,_4c in egs. (22) -
(25) are listed in Table II, where terms with pss—4m¢ in
eqs. (12) - (15) are also listed. The s—d scattering terms
in p) - originate from a transition from the plane wave
to the d orbital of m=0, ¢ (r) (see Appendix D).> In
contrast, the s—d scattering terms in p, , are due to tran-
sitions from the plane wave to the d orbitals of m = +2
and 0, ¢.»,(r) and ¢o(r). The d orbitals of m = =+1,
¢+1,(r), give no contribution to pj .~ and p, 4.

In such s—d scattering terms, only terms with yp,_,4¢ ac-
tually contribute to the AMR effect. The yp,_qc terms
are induced by the spin—orbit interaction. As found from
eqs. (22) - (25) or the summation in Table II, the case of
v # 0leads to pj s # p. 1 and p # py |, while the case
of y=0leads to pj; = p,rand pj | =p, |-

The yp;-qc terms stem from the change of the d orbitals
due to the spin—orbit interaction. The d orbital is slightly
changed by the spin-mixing term (1/2)(L;S_+L_S ;) in
the spin—orbit interaction. It is noteworthy that the con-
tributions due to the AL,S, term are eliminated by ig-
noring terms higher than the second order of 1/Hex (see
Appendix A).

(i)

(iii)

2.4.2 Sign of Zy.. and s—d scattering
In order to obtain Z;.., we first investigate X(im, o7; ¢) of eq.
271(36). As seen from Table III, X(2, |; |), X(0, |; 1), X(O,T; 1),
and X(-2,T;7) become negative, while X(0,T;]), X(-2,7
;1) X(2,1; 1), and X(0, |; T) are positive. Here, the former
X(m,0;¢)’s are obtained from the first terms in the right-
hand sides of egs. (A-1) - (A-4) and (A-7) - (A-10). The latter
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Table III. Change of the d orbital due to the spin—orbit interaction
X(m,o;¢) of eq. (36) (m=0, £2), Zs. of eq. (34), and sc — dg. Here,
terms higher than the second order of € (=1/Hex) have been ignored. In ad-
dition, o~ and ¢ of s — dg are extracted from X(m, 07; ¢). Since Z;.; may
correspond approximately to p —p . of the AMR ratio, we can roughly de-
termine a relation between the sign of the AMR ratio and the s—d scattering
process.

(0, ¢) () () aTn [y
so — dg sl—>dl sT—d| sT—>d1T sl—od7
X(2,0;¢) —€ 0 0 e
X(0,0:9) —% % —% %
X(=2,03¢) 0 e - 0
Zoie S L0 -2« X0

X(m, 0; ¢)’s are obtained from the second terms in them. The
negative sign of the former means that the existence probabil-
ity of the pure d orbital of m decreases owing to hybridization
with the other d orbital in the presence of the spin—orbit inter-
action (see the gray areas in Fig. 2(b)). In contrast, the positive
sign of the latter represents the addition of the existence prob-
ability of the other d orbital (see the black areas in Fig. 2(b)).
Note that the spin of the other d orbital is opposite to that of
the pure d orbital under the influence of S . in the spin-mixing
term.

Furthermore, we find a relation of |X(0,0;¢) >
|X(£2, 0; ¢)| for each set of o and ¢. The relation is attributed
to the mixing effect of the d orbitals due to L, = Ly +iL,
in the spin-mixing term. This effect is verified from the m
dependence of C. (=V(L ¥ m)(L + m + 1)) in Fig. 3, where
Ly o (r)= Ci¢pme1 »(r) and L=2. The coeflicient C. atm = 0
becomes larger than that at m = +2; that is, the mixing effect
at m = 0 is larger than that at m = +2.

Using such X(m, 0;¢)’s, we can obtain Z,.. of eq. (34) as
shown in Table III. In addition, we find the following relation
between the sign of Z.. and the s—d scattering process so- —
de:Z;, <Ofors |—>d |, Zy >0fors T—>d |, 211 <0
fors 7= d T,and Z;;; > 0 for s |— d T (see Table III).
Here, so — dg indicates that the conduction electron of the
o spin is scattered into ¢,, ,(r) in CDESL(r) of M = -2 -2.
The o spin is conserved in the scattering process. The spins
o and ¢ of so — dg¢ are extracted from X(m, 0; ¢). Roughly
speaking, the negative sign of Z|,| and Z;.; originates from
the decrease of the existence probability of the pure d orbital,
while the positive sign of Z;,; and Z, .1 is due to the addition of
the existence probability of the other d orbital (see Fig. 2(b)).

Since Z,.. may correspond approximately to p; — p, of
the AMR ratio, we can roughly determine the relation be-
tween the sign of the AMR ratio and the s—d scattering pro-
cess. Namely, when the dominant s—d scattering process is
sl—d]orsT—d1T,the AMR ratio tends to become nega-
tive. In contrast, when the dominant s—d scattering process is
sT—d | ors |— d T, the AMR ratio tends to be positive.
Such a relation agrees with a trend for real materials, as will
be shown in §2.5.

¢c=T c=l

(@1=0 b)ya+0

Fig. 2. Effect of the spin—orbit interaction on the DOS of a typical d band.
(a) The case of A = 0. Here, A is the spin—orbit coupling constant (see eq.
(6)). (b) The case of 2 # 0. In (b), the partial DOS of the pure d orbital
with ¢, ¢ is indicated by the gray areas, while that of the other d orbital
with ¢, is shown by the black areas, where o # ¢. The orbital ¢, , or
om 1s given by eq. (A-11), where ¢ denotes the spin of the dominant state
in the spin-mixed state. In (b), a slight amount of ¢, is mixed with ¢, ¢.
This mixing reduces the existence probability of ¢,, . (see Appendix A).
The dashed curves in (b) represent the shape of the DOS of (a).

Fig. 3. m dependence of C. = V(LFm)(L+m+ 1) with L=2 and m =
-2, -1,0, 1, 2. Here, we have Ly ¢y, »(r)= Cidms1,o(r), where ¢y, (1) is
given by eq. (A-11).

2.5 Sign of the AMR ratio and s—d scattering of real mate-
rial
Within a unified framework, we find the sign of the AMR
ratio and the dominant scattering process of each material in
Table I. We here utilize p;| /ps1 and Dﬁd)/ Did) from Table I.

2.5.1 A simple model
Toward the unified framework, we present a simple model
with ny =. ny (# 0), m’; = mI, VST—>dT = Vé‘l—nll’ and Pl =
p11=0. This model has a relation of p 1+p),; = p1 1+p., from
eqs. (22) - (25). The AMR ratio of eq. (1) is then expressed as
Ap _ PitPIL ~ PurPul
P PL1PLl
Using egs. (22) - (27), eq. (37) is rewritten as

(37

A — - — — - —
Ap :y(psi d1 = Psimdl | Psi=dl ~Ps) dT) (38)

p Pl o1
DY _pd  pd _ p@
S o et Bt Wt (39)
Pl Pt
=y (D D(d))( 1 _ i) (40)
[ AV
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Negative Positive
T spin ! spin
sT—dT sl —dT
[ Co,MnAl,_Si_ J (bec Fe )
La ;Sr, ;MnO;
La, ,Ca, ;MnO
0.7-°0.3 3 0 pT _ p~L
Positive Negative
T spin ! spin
sT—>dl sl —>dl
[Een) (r5.)

Fig. 4. Sign of the AMR ratio Ap/p and the dominant s—d scattering pro-
cess so- — dg in a simple model with ny = n, m’; = m’i, Vitoar = Vsioal
and p7| = py1=0. They are shown in the (o1 —p l)‘(D(Td) —D(ld)) plane, where
Po = Pso +Pso—do- In €ach quadrant, the first, second, and third lines from
the top denote the sign of the AMR ratio, the spin of the conduction elec-
trons contributing dominantly to the transport, and so- — dg, respectively.
Here, the sign of the AMR ratio can be judged from eq. (40). In addition,
so — dg is extracted from py,_.4c, Which contributes dominantly to the
sign of the AMR ratio. Namely, this pss—4c corresponds to the greater of
psl—dr and pg| 4 in the case of pr > p| and the greater of ps_.4 and
Pst—ar in the case of py < p|. Furthermore, materials in Table I are as-
signed to the respective quadrants on the basis of results of (i) - (v) of
§2.5.2.

with

Po = Pso T Pso—dos (41)

where p,, is given by eq. (17), and p,,—4, 1S Written by eq.
(26) with ¢ = o. This p, corresponds approximately to the
resistivity of the o spin for a system with no spin—orbit inter-
action, i.e., egs. (22) - (25) with 1=0. Note here that fo) in
Pso—do N €q. (41) actually contains the effect of the spin—orbit
interaction, as found from eq. (B-18).

From eqgs. (38) - (40), we can find the relation between the
sign of the AMR ratio and the dominant s—d scattering pro-
cess. First, the sign of the AMR ratio is shown in each quad-
rant of the (p; — p l)-(D(Td) - Djd)) plane of Fig. 4. The AMR

ratio becomes positive in the case of p; > p; and D(Td) > D(ld)
or in the case of p; < p; and D(Td) < D(ld). In contrast, the
AMR ratio is negative in the case of py > p; and D(Td) < D(ld)

or in the case of py < p; and D(Td) > D(ld). Here, the case of
pr > py (pr < py) shows that the down spin electrons (the
up spin electrons) contribute dominantly to the transport. Fur-
thermore, the dominant s—d scattering process is indicated by
so — dg in each quadrant of Fig. 4. The process s — dg¢
is extracted from p,—,4c, Which contributes dominantly to the
sign of the AMR ratio. Concretely speaking, this py,—4c cOI-
responds to the greater of py 4 and p,s 4 in the case of
p1 > py and the greater of ps_4; and ps—4r in the case of
pr < py. It is also noteworthy that the relation in Fig. 4 is
consistent with the result in §2.4.2 or Table III.

2.5.2  Application to materials

Applying ps; /ps and D(Td)/ D' of Table I to the results of
Fig. 4, we can roughly determine the dominant s—d scattering
and the sign of the AMR ratio of each material. The deter-
mined signs agree with the experimental results of Table L.
The details are written as follows:

(i) bcc Fe
The dominant s—d scattering is s |— d T because of
D(Td) > D(ld) and py > p;. The AMR ratio is thus positive.
Here, p; > p, originates from ps; > pg and pyoap >
Psl—d] due to D(Td) > Did).

(i) fcc Co and fee Ni
The dominant s—d scattering is s T— d | because of
D(Td) < D(ld) and p; < p;. The AMR ratio is then positive.
Here, py < p is obtained from py < py; and pg—ap <
Psl—d| due to D(Td) < Did).
(iii) Fe4N
The dominant s—d scattering is s |— d | because of
D(Td) < D(ld) and py > p;. The AMR ratio is thus neg-
ative. Here, p; > p; mainly results from ps/ps =
(1.6 x 1073)~! (see Table I). The relation ps3_41=0 is as-

sumed by considering that D(Td) is considerably smaller

than D(ld), where it is reported that this model has n, # 0.
In addition, we assume that 0.01 < pg—a1/psr S 0.5,
which will be estimated in §3.3.

(iv) Co,MnAl,_,Si,, Lag7Srg3MnOs3, and Lag7Cag3MnOs3
The dominant s—d scattering is s T— d T because of
D(Td) > D(ld) and p; < p;. The AMR ratio is thus negative.
Here, p; < p; mainly originates from p| /ps 2 10° (see
(1) of §4.1 or §4.3). The relation p;|_,4; =0 is roughly set
on the basis of D(ld) ~ 0, where n, # 0. In addition,
we assume that ps_,41 ~ ps, Which will be estimated in
§4.3.

(v) Fe304

The dominant s—d scattering is s |— d | because of
D(Td) < D(ld) and p; > p|. The AMR ratio is then negative.
Here, p; > p, mainly stems from ps3/ps 2 10° (see (i)
of §4.1 or §4.3). The relation p—_,4,=0 is roughly set on
the basis of D(Td) ~ 0, where n, # 0. In addition, we
assume that pg 4 ~ ps, which will be estimated in
§4.3. Note that, in this system, the direction of each spin
in (iv) has been reversed by taking into account the DOS
of Fig. 1(e).

3. Application 1: Weak or Strong Ferromagnet

On the basis of the theory of §2, we obtain the expressions
of the AMR ratios of “bcc Fe of the weak ferromagnet” and
“fcc Co, fce Ni, and FeyN of the strong ferromagnet.” Using
the expressions, we analyze their AMR ratios.

3.1 AMR ratio

From eq. (28), we first derive an expression of the AMR
ratio of the weak or strong ferromagnet. The weak or strong
ferromagnet has the sp band DOS of the up and down spins
at Er (see Figs. 1(a), 1(b), and 1(c)). We thus use the conven-
tional approximation in order to reduce parameters. Namely,
we set ny = ny, m; = m’i, VST—>dT = Vsl—vil’ and T = T|1-
Meanwhile, the o dependence of Df,f) and the ¢ dependence
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of D are taken into account (see eqs. (17), (19), (26), and 0.01 = —r—rr—r—rrrmm—rrrrm——rr

(27)). The AMR ratio of eq. (28) is then given simply by i PP 1

Ap T ——:0.001 |

— = N —— 001

P 0.005 o1 A

y(ps—m’T _ps—>dl)(psT — Ps| T Ps—dr _ps—>dl) a r - 05 ]

(pST +ps—>dT)(psl +ps—>dl) +pTl(psT + Ps| + Ps—dr +ps—>dl)’ ;Q L — 1 i

(42) " —: 2 .

0 N

where F 4

m* | ]

prr = —o—, 43) i Fe ]

ne’ry, L |
. 20.005 Lol il c Ve il ol
Do = — (44) 10° 107 10" 10° 10° 10° 10°
¢ nez‘rs—m’g 1% /,0
L/ Pt
Here, we have m, = m*, ny = n, and Tys4c = Ty—dg, Where

/75 o DS and 1/7,4c o« D In addition, pyo- of eq. (33)  Fig- 5. (Color) Quantity pyy /py1 dependence of the AMR ratio Ap/p of bec

is rewritten by p,o = m*/(ne*ty,-). It is noteworthy that py|
has no influence on the sign of the AMR ratio of eq. (42).
Also, eq. (42) with p;;=0 corresponds to an expression of the
AMR ratio obtained by Malozemoft.”

3.2 Weak ferromagnet: Fe

Using eq. (42), we analyze the AMR ratio of bcc Fe of
the weak ferromagnet. Here, ps_,41/0s—d (=D(Td) / Djd)) is as-
sumed to be ps—41/ps—q;=2.0 on the basis of D(T‘l) /D(ld)=2.0
of Table 1.3 The constant vy is chosen to be y=0.01 as a typ-
ical value. Meanwhile, we ignore p;; which does not change
the sign of the AMR ratio. It is noteworthy that the spin-
dependent disorder,?®2® which gives rise to the spin-flip scat-
tering, may be weak for the present ferromagnets with non-
magnetic impurities.

InFig. 5, we show the p, /ps dependence of the AMR ratio
for any py_.4;/ps;- The AMR ratio behaves as a smooth step-
like function. In addition, the AMR ratio tends to be positive
for ps;/psy < 1 or negative for ps;/psy 2 1. In the case of
0s1/p51=3.8x107"! of Table I, the AMR ratio becomes positive
irrespective of ps_,4/psr. In particular, when p,_,4; /p5s1=0.5,
the AMR ratio agrees fairly well with the experimental value,
i.e., 0.003.

Figure 6 shows the p,_4 /ps1 dependence of the AMR ra-
tio. Our model with py; /p+=3.8x107! is compared with the
Malozemoff model with psl/pﬁzl,g) i.e., eq. (3). The dif-
ference of the AMR ratio between them becomes prominent
for ps—ay/pst < 1. For example, in the case of the above-
mentioned p,_.q;/ps1=0.5, the AMR ratio of our model is
about four times as large as that of the Malozemoff model.

3.3 Strong ferromagnet: Co, Ni, and FesN

Utilizing eq. (42), we investigate the AMR ratios of fcc Co,
fcc Ni, and FeyN of the strong ferromagnet. The DOS of this
system is schematically illustrated in Figs. 1(b) and 1(c). The
fcc Co*® and fcc Ni**#D have little d band DOS of the up
spin at Er. As to FeyN,*? the d band DOS of the up spin is
considerably smaller than that of the down spin at Er. We thus
assume D<Td>=o and then have p,_,4;=0. Substituting p,_,4=0
into eq. (42), we obtain the AMR ratio as

Ao _ YPs—dy (=Pst + PsL + Ps—dy)
P st (P +Psoay) + o1 (O + Psy + Psodl)

(45)

Fe for any p;_.4) /pst. The expression of the AMR ratio is given by eq. (42).
Here, y=0.01, ps—41/ps—a;=2.0, and p3; =0 are set. In addition, an arrow
indicates the theoretical value of ps| /ps (=3.8 X 10") (see Table I).

107 ¢ ,~~ —: Our model
S with p,, /P =0.38

- /

100k - - -: Malozemoff model
with p.\i/ Py =1

b
10 - L \- L I L

107 510" 5 10" 510"

p.radl/psT

Fig. 6. Quantity p;_4)/pst dependence of the AMR ratio Ap/p of bee Fe.
The solid curve represents our model, i.e., eq (42) with p,| /ps3=3.8 X 107!
(see Table I) and py=0. The dashed curve is the Malozemoff model with
pxl/pﬁ:l,g) i.e., eq. (3). Here, y=0.01 and p,_,41/ps—aq;=2.0 are set.

Here, when p; /ps is sufficiently small or sufficiently large,
eq. (45) with pq;=0 is approximated as

Ap 0% Psmdl _ 1), for Pst <1, p—Hdl,
— = Ps1 Ps? Ps? (46)
p yEod for Psb s q Pomdt

Pst Pst Ps1

where psq;/psy 1s set to be 0 < peq/pst < 5 in the
present calculation. The respective expressions of eq. (46) in-
crease with increasing ps—.q;/pst and y, while the magnitude
of the difference between the two expressions is given by 7.
We also mention that y(p,—q;/pst — 1) corresponds approxi-
mately to the CFJ model® of eq. (2), which is applicable to
the strong ferromagnet. Here, « in eq. (2) is originally de-
fined by @ = p,/p.1 (see eqgs. (24) and (25)). This a can
be rewritten as @ =~ ps_q;/psy under the following condi-
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tions: One is the condition of the CFJ model, i.e., psr—ap = 0,
Psi/psi—a; — 0,y < 1, and pso—d; = Ps—ay- The other is the
condition of yps14;/ps1 << 1. The latter reflects that y=0.01
and ps-q;/psy < 10 are set in the present study (see Figs. 7
and 8).

0.03

p:%dl/pﬁzz

1/100 1

: Ni
-0.01 FFe,N Col
107 10% 10" 10° 10" 10* 10°
PP

Fig. 7. (Color) Quantity p, /ps+ dependence of the AMR ratio Ap/p of the
strong ferromagnet for any p,_.q| /pst. The expression of the AMR ratio
is given by eq. (45). Here, ¥=0.01 and p;; =0 are set. In addition, arrows
indicate theoretical values of ps| /ps of the respective materials, i.e., 7.3
for Co, 1.0 x 10 for Ni, and 1.6 X103 for FeyN (see Table I).

0.05
Our model
0.04 + . Co
0.03 - - Ni
——: FeyN
X 0.02 ¢
QU
<
0.01
0 “/’/' ——-: CFJ model
/ —-—: Malozemoff model
-0.01 with p, /p4 =1

0 1 2 3 4 5
Pyar] P

Fig. 8. (Color) Quantity ps_.4; /pst dependence of the AMR ratio Ap/p of
Co, Fe, Ni, and Fe4N. The AMR ratio of our model is given by eq. (45)
with p1; =0, where p;| /ps is set to be 7.3 for Co, 1.0 x 10 for Ni, and 1.6
x 1073 for Fe4N (see Table I). The dashed curve represents the CFJ model
of eq. (2), where a is given by @ ~ ps_.4| /psr. The dot-dashed curve is the
Malozemoft model with py| /ps1=1, i.e., eq. (3), where p,_,4;=0is adopted.
Here, y=0.01 is set.

In Fig. 7, we show the p,, /psy dependence of the AMR ratio
of eq. (45) with p;;=0. The quantity y is chosen to be y=0.01
as a typical value. We find that the AMR ratio behaves as a
smooth step-like function with the limiting values of eq. (46).
In particular, the AMR ratio is positive for ps| /ps > 1, while

it can be negative for p,;/psr < 1 and psq;/ps1 < 1. Note
that the system of p,| /ps1 > 1 corresponds to Co and Ni, while
that of p,; /ps1 << 1 corresponds to FesN.

When py; /ps1’s of Co, Ni, and FesN are respectively set
to be 7.3, 1.0x10, and 1.6x1073 of Table I, we obtain the
Ps—dl/ps dependence of the AMR ratios as shown in Fig.
8. The main results are as follows:

(i) The fcc Co and fcc Ni exhibit a positive AMR ratio ir-
respective of py_,4/ps, While Fe4N can take the nega-
tive AMR ratio depending on p;_,q4;/ps. Such tenden-
cies roughly correspond to the experimental results (see
Table I). On the basis of the experimental values of the
AMR ratios, ps—.q4;/pst’s of Co, Ni, and FesN are eval-
uated to be psa1/pst ~ 2.2, pssay/psy ~ 2.5, and
0.01 < ps—ay/psy < 0.5, respectively. It is noted here
that the large AMR ratio of FesN (e.g., —0.07) cannot be
obtained in the present theory. Eventually, a theoretical
model that takes into account a realistic band structure
may be necessary for a quantitative analysis.**

(i1) The AMR ratios calculated for fcc Co and fcc Ni are
clearly different from the CFJ model of eq. (2) because
psi/psy’s of Co and Ni are largely different from that
in the CFJ model (i.e., ps /psy — 0). In contrast, the
AMR ratio calculated for Fe4N agrees well with the CFJ
model, because p, /psr (=1.6 X 1073) of Fe4N is much
smaller than 1.

(iii) The AMR ratios calculated for fcc Co, fcc Ni, and Fe,N
deviate from the Malozemoft model with p, /p=1, i.e.,
eq. (3). The reason is that their ps| /ps’s are different
from 1.

4. Application 2: Half-Metallic Ferromagnet

On the basis of the theory of §2, we derive an expression
of the AMR ratio of the half-metallic ferromagnet. Using the
expression, we obtain an accurate condition for the negative
or positive AMR ratio and further analyze the AMR ratio.

4.1 AMR ratio

We first report the feature of the half-metallic fer-
romagnet of Table 1. The DOS of Co,MnAl;_,Si,*Y
Lag 7S193Mn0;,%49 or Lay;Cag3MnO3*7 is schematically
illustrated in Fig. 1(d). The conductive and localized d band
DOS’s of the up spin are present at Eg, while there is little
DOS of the down spin. In real systems, however, there may
be a slight DOS of the down spin in the presence of disorders
or defects. According to previous studies, such a feature of the
DOS of Co,MnAl,_,Si, originates from atomic disorders,*®
while that of Lag 7Sry3Mn0O3*-°9 or Lay;Cag3MnO; may be
due to oxygen vacancies.’" It is also noted that, by reversing
the direction of each spin, we can treat the opposite case (i.e.,
Fe304%3% of Fig. 1(e)), in which the DOS of the down spin
is present at Er, while there is little DOS of the up spin.

Focusing on the half-metallic ferromagnet with the DOS
of Fig. 1(d), we now obtain an expression of the AMR ratio
as accurately as possible. We here utilize the AMR ratio of
eq. (28) because n, and m, are considered to have the signif-
icant o~ dependence. Meanwhile, p;; and p}; are ignored in
the same manner as in §3.2. The AMR ratio of eq. (28) with
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P11 = pyp = 01s rewritten as

v—w(u+l)2
r_

Ap u—t u—t\w+1
o 4
P y(u +1 ) u+1 ’ @7
w+1
with
N1, 0N
o Pl (ml] (DT (48)
* ()
pst \mp) DY
-1 DY
_ Pstodl _ Tstodl !
1= PP _'BTF’ (49)
sT 5T 1
-1 D(d)
_ Pstodt _ Tstodt _ o, 1
u= i _ﬁTF’ (50)
sT ST T
-1 D@
_ Pslodt _ Tsioar _ 5 U1
VS T P eb
sl sl |
-1 D9
_ Psisal _ Tsloay L
w= o ol =B, =5k (52)
sl sl B
|V —d |2
Bs = Ny —T;le” , (53)

where eq. (48) has been derived in the Appendix E and egs.
(49) - (52) have been obtained by using eqgs. (17), (19), (26),
and (27). We also have assumed Did) # 0 and D(ls) # 0 on
the basis of the above-mentioned feature of the DOS of the
down spin. Here, the conduction state (named as s in Dfﬁ))
may correspond to the conductive d state in the case of the
present half-metallic ferromagnet (see Figs. 1(d) and 1(e)).
From eqs. (49) - (52), we find the following relation:

t

.y (54)

u v

Using this relation, we express eq. (47) as
L (u +1 )2
A - +1
oo (jor)| el 55
p ul+1 v u+1
r+
w+1

Here, parameters in eq. (55), r, u, v, and w, are suggested as
follows:

(i) The parameter r of eq. (48) may become extremely large
owing to p;; > pg. This relation is based on the fact
that the resistivity of semiconductors is more than 10*
times larger than that of metals.>® As a typical sys-
tem, we consider r to be r > 10° on the assumption of
D(TX) /D(f) > 10° and m; /m ~ 0.1. Here, m] /m; has been
roughly estimated on the basis of the effective mass of
the carrier of the semiconductor divided by the electron
mass.>¥

(i) The parameter u of eq. (50) takes a finite value, where
D(Td) # 0 and D(Ts) # 0. In the present calculation, u is
treated as a variable number of 0.01 < u < 50.

(iii) The parameter v of eq. (51) may be sufficiently large
because of D(Td) > D(f). In the case of the D(Ts) /D(f) >

10° reported above, we find the relation of v/u =
(,Bl/,BT)D(TS) /D(f) > 10°, where 84 ~ S, has been as-
sumed.

(iv) The parameter w of eq. (52) may take a finite value, al-
though both D(ld) and D(f) are extremely small. In addi-

tion, the relation of w/v = Did)/D(Td) < 1 is realized.

On the basis of egs. (48) - (52) and the above suggestions,

we next obtain an approximate expression of eq. (55). We here

assume 1 ~ B and u ~ w and also take into account w/v < 1

in(iv), r > 1,and r > v/u ~ D?) /DY, where D(T‘Y) /Di-" >

10° and mI /m’f ~ 0.1 in (i) have been adopted. Equation (55)

has thus been written as

O

o uwl+1l’

(56)
The AMR ratio of eq. (56) always takes a negative value.

4.2 Sign of AMR ratio

From eq. (55), we can find the condition for the negative
or positive AMR ratio of the half-metallic ferromagnet. This
condition is more accurate than the result in the unified frame-
work of §2.5. Because of w/v < 1 in (iv), we focus on the nu-
merator in [ ] of eq. (55). The numerator is written by rf(u)
with

2
f(u)——(uﬂ) +1, (57)
éu
2
&= @, (58)

where £ > 0 and u > 0. Here, f(u) > 0 and f(u) < O corre-
spond to the negative and positive AMR ratios, respectively.
From eq. (57), we first find that the AMR ratio becomes pos-
itive when ¢ < 4. Second, in the case of ¢ > 4, the AMR ratio
is negative for

o <u <y, (39
while it is positive for
0<u<p_andy, <u, (60)

withu = (6-2— V& — 48)/2and i, = (€ -2+ V& — 49)/2.
Note that the AMR ratio becomes 0 at u = ..

Figure 9 shows the sign of the AMR ratio in the &-u plane
based on the above results. From this figure, we can find signs
of the AMR ratios of various systems. We here focus on a
simple system with 84 = S, and D(Td) /D(T‘Y) = D(ld) /D(ls) (ie.,
u = w). For this system, we first determine the specific sets of
& and u. The relation between & and u has been obtained as

.f:p(u+£+2), (61)
with p = (7 /m’ )41)(;) /Dj” (see eq. (E-6)). In Fig. 9, we show
eq. (61) with p=0.1, 0.5, 2, 3, 5, and 7 by the dashed curves,
where eq. (61) with p=1 corresponds to u_ and y, . It is found
that eq. (61) with p >1 exists in the region of the negative
AMR ratio. For example, the case of D% /D(f) > 10° and
mj/m’; ~ 0.1 in (i) leads to p 2 10. This case thus can take
the negative AMR ratio. Negative AMR ratios been experi-
mentally observed, as shown in Table 1.



J. Phys. Soc. Jpn.

FurL Paper

30

20

10

Fig. 9. (Color) Sign of the AMR ratio Ap/p of the half-metallic ferromag-
net in the &-u plane. The negative and positive AMR ratios are shown by
the dark and white regions, respectively. The AMR ratio becomes zero at
u = pz. Here, u = p_ and u = p. are shown by the solid curves with u > 1
and u < 1, respectively. The relation between & and u of a half-metallic
ferromagnet, eq. (61), is shown by the dashed curves, where p=0.1, 0.5, 2,
3,5, and 7. In addition, eq. (61) of p=1 corresponds to y— and .

4.3 Evaluation of AMR ratio

Using the results of §4.1 and §4.2, we evaluate the AMR
ratio. The u dependence of the AMR ratio is shown in Fig. 10.
The dashed curves represent eq. (55) with the parameters of
y=0.01,0 < u < 50,v = (D(Ts)/D(f))u, r= (0.1)4(13(;)/1)3”)2,
w=1,10, and D{’/D{"=10%, 10, 10°, where m] /m;=0.1 and
B1 = B;. The parameters have been chosen on the basis of
(i) - (iv) in §4.1. We observe that each AMR ratio exhibits a
convex downward curve with a negative minimum value. The
AMR ratio approaches 0 with decreasing u, while it changes
from negative to positive with increasing u. In addition, the
AMR ratio comes close to eq. (56) with y=0.01 (the solid
curve) with increasing D(T‘Y)/D(S). It is noted that eq. (56) is
obtained from eq. (55) under the condition of r > (v/u)[(u +
D/w+ D2 r> w+1)/w+ 1), and w/v < 1 in (iv). Also,
in the case of D /D(f) > 10°, the AMR ratio becomes about
—0.004 at u = w = 1 (see the upper panel of Fig. 10), where
the system of u = w corresponds to the simple system in §4.2.
This AMR ratio agrees well with the experimental results of
Table I.

4.4  Sign change of the AMR ratio in Fe304

Utilizing eq. (55), we analyze an experimental result of
Fes;Oy4, in which the sign of the AMR ratio changes from
negative to positive as the temperature increases.'>'3 Here,
Fe;O4 has been theoretically predicted to have a half-metallic
property at the ground state in the absence of the spin—orbit
interaction.>® The DOS of Fe;0, is schematically illustrated
in Fig. 1(e):>>% the DOS of the down spin is present at E,
while there is little DOS of the up spin.

Recently, Ziese has experimentally observed that the Fe;O4
film on MgO with film thickness of 50 nm or 200 nm changed
the sign of the AMR ratio from negative to positive with
increasing temperature (see the inset of Fig. 11).!>!¥ This
Fe;O,4 eventually exhibited positive AMR ratios of about
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Fig. 10. (Color) Quantity u dependence of the AMR ratio Ap/p of the
half-metallic ferromagnet. Upper panel: w=1. Lower panel: w=10. In
each panel, the dashed curves show the AMR ratios of eq. (55) with
D(T‘V)/D(l‘v):lo“, 10, and 10°. In addition, the solid curve is the AMR ratio
of eq. (56). Here, y=0.01, mI /m; =0.1, and 87 = B, are set.

0.005 at temperatures higher than 200 K. As a cause of this
phenomenon, he considered that the majority spin band (i.e.,
eq1 band) came close to Er with increasing temperature, and,
furthermore, this band was present at Er. in the high tempera-
ture region (e.g., the region higher than 200 K). On the basis
of such an idea, he proposed a two-band model composed
of 1y, and ey bands; 15, and e,; bands have been shown in
Fig. 1(e). Using the model, he primarily found that the AMR
ratio became 0.005 for the specific values of the minority-to-
majority resistivity ratio and the reduced spin-flip scattering
resistivity. Meanwhile, he also showed that the sign of the
AMR ratio changed from negative to positive with increas-
INg Ps—dy /px_,dT.SS) Here, ps_4 /ps—ar 1s reduced to D(ld) / D(Td)
in our formulation (see eq. (44)). From the standpoint of the
AMR ratio versus D(ld) / D(Td), however, we see a problem; that
is, the sign change of this model appears to be contrary to the
experimental trend of the inset of Fig. 11 or the above idea.
In fact, with decreasing D(ld)/ D(Td), the sign may change from
negative to positive. In addition, we notice that this model
consists of only the resistivities due to the s—d scattering but
neglects the resistivity of the conductive d states, p,,, due to
the scattering process between the conductive d states.’® For
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this situation, we believe that there is a need to reexamine the
sign change of the AMR ratio by using a model that takes into
account both resistivities.

We, therefore, demonstrate the sign change of the AMR
ratio using our model with both resistivities. On the basis
of the behavior of the e,y band reported above, we assume
that the DOS of the up spin at Er increases with increasing
temperature. Our concern, thus, is with how the DOS of the
up spin influences the AMR ratio. To clearly show the influ-
ence, we consider a simple case of D(Ts) /D(lS) = D(Td) /D(ld) (or
D(ld)/ D(ls) = D(Td)/ D(Ts)) and B; = B,. By paying attention to the
DOS of Fig. 1(e), i.e., the reversion of the direction of each
spin of eq. (55), eq. (55) is then rewritten as

(m’{ /m’j)4 - Xp

A —
= -(1 = xp) . : (62)
pu At (m’f/m’i) +x%)

with xp = DYDY = D/DY and w' = pyoalps

=ﬁlD(ld)/D(f). Figure 11 shows the xp dependence of the
AMR ratio of eq. (62) for m3/m;=0.4, 0.55, 0.6, 0.65, 0.8,
and 1. The AMR ratios of m?/mj:0.4, 0.55, 0.6, 0.65, and
0.8 change from negative to positive with increasing xp, al-
though that of my/m)=1 is always negative. The sign change
appears to originate from the feature in which the s—d scat-
terings of s |— d 7T and s T— d | increase with increasing
D(Ts) and D(Td). Here, it is noteworthy that these s—d scatterings
tend to lead to the positive AMR ratio (see §2.4 and §2.5). In
addition, roughly speaking, the xp dependence of the AMR
ratio appears to be qualitatively similar to the experimental
trend of the inset of Fig. 11. In particular, the AMR ratios of
m’{ / m*j =0.6 and 0.65 may correspond well to the experimental
results for film thicknesses of 50 nm and 200 nm, respectively.
In addition, the AMR ratio of m*T‘ /m=0.55 may partially cor-
respond to the experimental result for film thicknesses of 15
nm.

3¢ ‘ :
r A A
f * * ~ T Fe,O, (Exp.) 1
L omy/mi=04  Eof TP
. 2 1: 15nm i
2 r S| M, 1
[ o 0 o
L = & 200nm 1
¥ <.ab  €50nm 1
r I NS FE R T
1 ; 50 100 150 200 250 300 4

Temperature (K)

(Aplp)[H(u™ +1)]
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Fig. 11. (Color) Quantity xp (:D(T’r) /DY = D(Td)/D(ld)) dependence of the
AMR ratio Ap/p of eq. (62) for any m’{ /mI. The inset shows an experi-
mental result of the temperature dependence of the AMR ratio of Fe3O4
films on MgO obtained by Ziese.!? The respective film thicknesses are 15
nm, 50 nm, and 200 nm. Note also that the DOS of Fe3Oy is schematically
illustrated in Fig. 1(e).

5. Conclusion

We systematically analyzed the AMR effects of bcc Fe
of the weak ferromagnet, fcc Co, fcc Ni, and FesN of the
strong ferromagnet, and the half-metallic ferromagnet. We
here used the two-current model for a system consisting of
a spin-polarized conduction state and localized d states with
spin—orbit interaction.

From such a model, we first derived general expressions of
resistivities composed of p,, and psr—ac. The resistivity py,
arose from the s—s scattering, in which the conduction elec-
tron of the o spin was scattered into the conduction state of
the o spin by nonmagnetic impurities. The resistivity s —4c
was due to the s—d scattering, in which the conduction elec-
tron of the o spin was scattered into the o spin state in the
localized d states of the ¢ spin by the impurities, where the ¢
spin represented the spin of the dominant state in the d states
(i.e., the spin-mixed states).

Using the resistivities, we next obtained a general expres-
sion of the AMR ratio. On the basis of the AMR ratio and
the resistivities, we showed that the AMR effect reflected the
difference of “changes of the d orbitals due to the spin—orbit
interaction” between different m’s, where m was the magnetic
quantum number of the d orbital. In addition, we roughly de-
termined a relation between the sign of the AMR ratio and the
scattering process. In brief, when the dominant s—d scattering
process was s T— d | or s |— d T, the AMR ratio tended to
become positive. In contrast, when the dominant s—d scatter-
ing process was s T— d Tor s |— d |, the AMR ratio tended
to be negative.

Finally, from the general expression of the AMR ratio, we
obtained expressions of AMR ratios appropriate to the respec-
tive materials. Using the expressions, we analyzed their AMR
ratios. The results for the respective materials were written as
follows:

(i) bee Fe of weak ferromagnet
Using the AMR ratio of eq. (42) with p,/psr = 3.8 X
107! in Table I and p;;=0, we found that the AMR
ratio became positive irrespective of ps_.4/ps7, Where
Psoc—de = Ps—de has been set. In particular, when
Ps—dl/ps1=0.5, the AMR ratio agreed fairly well with
the experimental value in Table I, i.e., 0.003. Here, the
positive AMR ratio originated from the dominant s—d
scattering process of s |— d T. Regarding the ps_.4 /st
dependence of the AMR ratio, the difference of the AMR
ratio between our model with pg; / psT=3.8><10‘1 and the
Malozemoff model with p| /psp=1 was clearly observed

for ps—»dl/psT <L

(ii) fcc Co, fec Ni, and FeyN of strong ferromagnet
Using the AMR ratio of eq. (45) with py; =0 and py /ps1’s
in Table 1, i.e., 7.3 for fcc Co, 1.0x10 for fcc Ni, and
1.6x1073 for Fe4N, we found that fcc Co and fec Ni ex-
hibited a positive AMR ratio irrespective of ps_.4/ps1,
while Fe4N could take the negative AMR ratio depend-
ing on py_q)/psr- In particular, when py_,4) /ps1’s of fcc
Co, fcc Ni, and FesN were, respectively, chosen to be
pS—Hil/pST ~2.2,ps_,dl/psT ~2.5,and 0.01 < Ps—»dl/PsT <
0.5, their AMR ratios corresponded well to the respec-
tive experimental values in Table I, i.e., 0.020 for fcc
Co, 0.022 for fcc Ni, and —0.01 - —0.005 for Fe4N. It
is noted, however, that the large AMR ratio of FesN
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(e.g., —0.07 - —0.02) could not be obtained in the present
theory. The positive AMR ratios of fcc Co and fcc Ni
originated from the dominant s—d scattering process of
s T— d |. In contrast, the negative AMR ratio of
Fe4N was due to the dominant s—d scattering process
of s |— d |. As for the ps_4/ps1 dependence of the
AMR ratios, the calculation result of fcc Co and fcc Ni
by our model was obviously different from those by the
CFJ model and the Malozemoft model. The reason was
that p,; /psy (> 1) of fcc Co or fcc Ni was largely differ-
ent from p; /ps (1) of the CFJ model and py; /ps1 (=1)
of the Malozemoff model. In the case of Fe4N, the result
by our model agreed well with that by the CFJ model be-
cause ps /pst (=1.6 X 1073) of Fe4N corresponded well
to ps; /psy (1) of the CFJ model.

(iii) half-metallic ferromagnet
Using the AMR ratio of eq. (55), which took into ac-
count the spin dependence of the effective mass and the
number density of electrons in the conduction band, we
showed that the AMR ratio could become negative for a
typical system with D(TS) /D(f) > 10° and m;/m; ~ 0.1.
In particular, when psar/p5t = psy—ar/psy = 1, the
AMR ratio was evaluated to be about —0.004, which
was close to the experimental values. Here, the nega-
tive AMR ratio of Co,MnAl,_,Si,, Lay7Srp3MnO3, and
Lag7Cap3MnO; originated from the dominant s—d scat-
tering process of s T— d T, while the negative AMR
ratio of Fe;O4 was due to the dominant s—d scattering
process of s |— d |. We also analyzed the experimental
result of the AMR effect of Fe;Oy4, in which the sign of
the AMR ratio changed from negative to positive as the
temperature increased. Such a sign change occurred with
increasing the DOS of the majority spin at Ep, D(TS) and

D' The increase of D' and D¥ appeared to enhance
the s—d scatterings of s T— d | and s |— d T, which
tended to lead to the positive AMR ratio.
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Appendix A: Localized d States

Applying the perturbation theory to H of eq. (4), we obtain
the wave function of the localized d state (i.e., the spin-mixed
state), ®fy) (r), with M = =2, 1,0, 1,2, and ¢ =7 or |. Here,
r is the pésition vector, while M and ¢ are, respectively, the
magnetic quantum number and the spin of the dominant state
in the spin-mixed state.

Within the second-order perturbation, ©
as

o (r) = (1 -2 )¢2¢(r)+ (e+ e )m(r)

q><")( ) = (1 - %e )¢1 () + [%a ie ]¢0T(r) (A-2)

%?T(r) is obtained

(A-1)

o (r) = (1 - %ez)m(r) + (%e— ie ]¢ 11(r), (A3)

1 3
o) () = (1 - 5€ )¢ L) + (e— §e2)¢ 21, (A4)

O (1) = ¢2, (1), (A'5)
while @%?l(r) is
O5N(r) = 1 (1), (A-6)
) 1,
(D (r) = (1 - 56 )qﬁm(r) (e + —€ )qbu(r) (A7)

o r )—(1—§e2)¢m<r> [£e+£e]¢u(r> (A)

Y (r) = (1 - Je€ )¢ 11(r) - [ie— Vo )qm(r)

(A-9)

) (r) = (1_-6)%@ (e——e)mm (A-10)

with € = A/He. Here, ¢,,,(r) represents the d orbital of the
magnetic quantum number m and the spin o, defined by

Pmor (1) = um(r)Xo, (A-11)

with ua(r) = RO £ iy)*/2V2), wa(r) = FR(z(x +
i)/ V2, uo(r) = RNB2 = rA)/(2V3), r = |rl, x = sinfcos ¢,
y = sinfsin ¢, and z = cos 8, where R(r) is the radial part of
the d orbital and y, (o0 =7 or |) is the spin state.

Here, we mention the right-hand sides of egs. (A-1) - (A-4)
and (A-7) - (A-10). The coefficient (1 - 3€2) or (1 - 1€?)
means that the probability amplitude of the pure orbital de-
creases from 1 owing to hybridization with the other or-

bital. In contrast, (e + %52) or ({ ‘f 2) corresponds to

the probability amplitude of the other orbltal. Here, —%62 and

—%62 in the former and € and %e in the latter arise from the

Smit? spin-mixing mechanism7 10) with (1/2)(L.S_+L_S ).
On the other hand, +2¢2 and + ‘fe in the latter stem from a
combination of the /lLZS . operator and the Smit! spin-mixing
mechanism. In deriving the resistivities of eqs. (22) - (25),
however, the terms related to the AL.S, operator are elimi-
nated by ignoring terms higher than the second order of €.

Appendix B: s—d Scattering Rate

We derive an expression of the s—d scattering rate for the
case of the ¢ configuration (¢ =|| or L), I/TEQHdMg (see eq.
(11). This scattering means that the conduction electron is
scattered into the localized d states by nonmagnetic impuri-
ties. Here, we consider a system in which some atoms of the
host lattice are substituted by the impurity atoms. In addition,
the conduction state is represented by a plane wave, while the
localized d states are described by a tight-binding model.

The scattering rate 1/ ‘1"(3H Ve is written as

2
PO A Vimp(r)[ ),
v (vl -

1 2n

I
Tso'—>dM S
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X (E —E ) B1) 1 ’
. kK M.s = N_Q < Z C;kn’a-’M,gAm(r > P (B7)
with m imp
‘P(?[) (r) = T Xp (1k£f()f . r)/\/a, (B-2) Ao Z fexp 1k' ¢mg(r R)
F.o0
(@) = ik RO (r—R.: . . _R TAOMR .
Y 0= N Z exp (ik’ - R;) @) (r - R)). (B3) XVimp(r = Ry) exp (iki, - r) dr, (B-8)
! where the inner product between y, and the spin state of ¢,
cl);j)g(r -R)) = Z CmoMecPmo(r — R)), (B-4) has been taken in eq. (B-7). Note here that the case of i = j
' mo corresponds to the scattering from the conduction state to the
_ R B d states of the impurity atom. Such a case may be suitable for
Vimp(r) = Z Vimp(r = Ry), (B-5) a system containing transition-metal impurities. In the present
' study, however, the impurity is considered to be a light ele-
Ze? ment, such as carbon, in which 2s and 2p orbitals contribute
mp(r = R) = —————exp(~qir—Ri). (B ) ’ R
Vimp(F ) 4reo|lr — Ry exp (=i D (B-6) to the transport. We, therefore, treat the case of i # j. Using

The function ‘P(S)[) (r) is the plane wave, where r is the posi-
Fo

tion vector, k( )_is the Fermi wavevector of the - spin in the
current dlrectlon for the case of the £ configuration, Q is the
volume of the system, and y, is the spin state.'?) The eigenen-

ergy of p o (r)issettobe Eg. The function pil) (r) is the
kr,,.o kK m¢

wave function of the tight-binding model.*> Here, k’ is the
wavevector, N is the number of unit cells, and (I)EZ) g(r -R))is
the spin-mixed state in the atom located at R, where ¢ o p¢

is the coefficient of ¢,,,(r — R;) (see Appendix A). The
(d)
kK Mg
Vimp(r) is the scattermg potential created by nonmagnetic im-

purities located randomly,”” where vim,(r—R;) is a spherically
symmetric scattering potential due to the impurity at R;.¥ The
quantity AZe is the difference of the effective nuclear charge
between the impurity and the host lattice, ¢ is the reciprocal
screening length, and ¢ is the dielectric constant. In addition,
(X)imp represents the average of X over the random distribu-
tion of the impurities, defined by (X)inp, = 23, X({R})/ (X, 1),
where {R}; (={R},R», R3,- - -};) is the Ith set of the random
distribution of the impurities.

eigenenergy of ‘P(d) (r) is given by E . The function

atom of host lattice
r

R

electron

impurity

Fig. B-1. Vectors r, ¥, R;, R, and Rj;. Here, r, R;, and R; are, respec-
tively, the position vectors of the electron, the jth atom of the host lattice,
and the ith impurity measured from the origin 0. In addition, r’ is the posi-
tion vector of the electron measured from the jth atom of the host lattice,
while R ; is the position vector of the jth atom of the host lattice measured
from the ith impurity.

To rewrite eq. (B-1) as a more specific expression, we con-

sider
2>
imp

Fo:0

ot

R;; (=R; - R;), we represent A, as

Anr=) > f exp (—ik’ - (R; + R;)) ¢}, (r — (R; + R;))
i

XVimp(r = R;) exp (i, (B9)

By replacing r — (R; + R ;) by r’ (see Fig. B-1), A, becomes
Amr = D" > exp itk — k) - (R; + )
i

r) dr.

X f B (' Wimp(r’ + Ri) exp (ik;’fj,.r’)dr'. (B-10)

We now assume that vinp(r’' + R ;) acts between the impurity
and its nearest-neighbor atoms. We then have vin,(r' + R ;) =
Vimp(r’ + R 1), indicating that vi,,(r’ + R};) is independent of
i. In addition, since R} is larger than the orbital radius of the
3d electron ¥/, |[r' + R 1| is roughly replaced by the dominant
component R;;. Namely, we have |[r' + Rj;| = (R?1 + 7+
2r - R;)'? ~ R;; owing to R§1 > 2, 2|r - Rji|. As aresult,
Vimp(r’ + R 1) is approximated as follows:

AZe?
Vimp(r’ + Rj1) = - <1| P (_q |r’ +Rji |)
J
- A262 (_ R )
- 47T€0R]'1 %P el
= Vimp(Rj1). (B-11)

The distance Rj; is here set to be constant independently of
Ji that is, R;; is written as Rj; = R,, where R, is constant.
By substituting eq. (B-11) with R;; = R, into eq. (B-10), A+

becomes
Ay = Z exp (1(k([) -k)- Ri) Z exp (1(k([) -K)- le)

i j (n.n.)

XVimp(Rn) f ¢:. () exp (ik;f; . r’) ar’, (B-12)

where 3’ ; of eq. (B-10) has been replaced by 3; (1), i-€.,
the summation over the nearest-neighbor atoms around the

K- R,-)|2>imp,

which is contained in eq. (B-7) (in addition, see eq. (B-12)).

impurity. Next, we consider <'Z,~ exp (i(kff?, -
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This part is expressed as follows:

< Z exp (i(k{), — k') - R;) >
i imp
= <Z exp (i(kg?r - k) (R; - Ri’))>

— .
ii imp

<Z S+ ) exp (i) - k) - (Ri - R[,))>

i#i imp

(B-13)

2

~ Nimp + Nimp (Nimp - 1)(5k;:[) k>
where Nip, is the number of impurities in the volume of Q.
In the calculation process of eq. (B-13), we have taken the
summation about random points on a unit circle in a complex
plane and the average over the impurity distributions.’” In a

2
similar manner, we deal with ‘Zj (nn) EXP (i(k;i)r ~-K)-Rj )'
in eq. (B-7) to obtain a simple expression. Note, however, that
( Dimp 1s in fact not contained in this expression and the
number of j (i.€., X ; mn) 1) is also much smaller than Njy,.
Though this treatment may be crude, we have

2

Z exp (i(kf:?, -k le)

J (n.n)

= Z djj + Z exp (1(k£f(),

K)-(Rji = Ryv))

J.J (n.n.) Jj#j (n.n.)
~ Ny + Ny (N, — 1)6k<n iz (B-14)
where N, is the number of nearest-neighbor atoms around the
impurity.

Using eqgs. (B-1), (B-7), (B-12), (B-13), and (B-14), we ob-
tain
1 _ 271' Nlmp
o T h
kK

so—dMg¢

[1 + (Vimp = D0 o ]

XN, [1 (Vo = Do g0 k,]

Fo»

X [var s ) —5( -EQ ). ®19)
Vg(iily) = Vimp(Ra)
XZ s f Br(r) exp (i, - r) dr.
(B-16)
We consider a case in which ) K 0 (EF - E;;J)Mg) is much

larger than (Nimp — 1)(Ny — 1)6 (EF EY ) Equation
Mg

F.o»
(B-15) may then be given by the following approximate ex-

pression:

1 2n 2
G) = ?nimpNn |VM,§(kg<)y)| D;ZL, B-17)
Tm'ﬁdMg
1
(d) = (d) -
D _N;(s( - EY) M;) (B-18)

with nimp = Nimp/Q. It is noted that the unit of D(d) of eq.
(B-18) is J~!, while that of DS of eq. (C-5) is J- m—3. The
unit of [vyc(kS) )P in eq. (B-17) is J?m?, while that of |V,
in eq. (C-4) is J*m®. As to the calculation of D{”/DS and B,
in eqs. (49) - (53), Dg,d) and |V, 4[> should be replaced by
Di,d) /Qunit and |V a0 12 Qunits respectively, where Q;; is the
unit cell volume.

Appendix C: s—s Scattering Rate
We derive an expression of the s—s scattering rate 1/7, of
eq. (19).
The scattering rate 1/7 is originally written as>®>%
I _ 2« <'< ®) o \[
— =3[ ey )
Tso i k;_ k‘r,0'| | kl:",.,(r imp
x3(Ex - Ege ) (1= costy,_ g ). (e8)
where ‘I’(I;) and Vinp(r) are given by egs. (B-2) and (B-5),
F.o o

respectively. Here, ki, is the wavevector of the incident elec-
tron of the o spin (i.e., the Fermi wavevector of the o spin
in the current direction), k.. is the wavevector of the scattered
electron of the o spin, and Gk K, is the relative angle be-
tween kg, and k. In addltlon EF (E K. ) is the energy of the

incident electron (the energy of the scattered electron). Equa-
tion (C- 1) is also rewritten as>®
['ole )

- el
Tw' kF A a'

X (l — cos gkm»k;) R (C2)
where v ke, -k is given by
Vg, = | ) explithe, - K -nar,(©3)

where vimp(r) is a short-range potential due to the impurity,
i.e., eq. (B-6). In the case of the s—s scattering, vin,(r) may be
replaced by an approximate potential on the impurity site be-
cause such a potential contributes dominantly to v ke, k.- In
brief, vimp(r) is approximated as Vimp(r) = V0(r), where V, is
constant. We thus obtain v ke, k. =V, which is independent
of the o spin and the wavevectors. As a result, eq. (C-2) is

expressed as>®>”
1 2m
— = - nimp VD5, (C4)
1
D=2 6(EF - Ek:r). (C5)

o

Here, 2.p ¢ (EF -Ep )cos GkF J disappears.

Appendix D: Matrix Elements

We consider the matrix element in eqs. (B-17) and (B-16),
Vimp(Ry) [ 85, (1) exp (1k<§3, )dr, with m=—=2 - 2 and £=|| or
1.

The matrix elements are written by

Vinp(Ro) f Gt (P) exp (KD, - ) dr
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= %Vimp(Rn) fR(r)(z2 — x*) exp (ikg,z)dr, (D-1)

Vimp(Rn) f @6 (r)exp (iki) - r) dr

= %"imp(Rn) f R(r)(Z* - x*) exp (ike »x) dr, (D-2)

Vimp(Rn) f¢12’o_(r) eXp (lk}(:%o), . r) dr

= %ﬁvimp(zen) f R(r)(x* = 72 exp (iks »-x) dr, (D-3)

with k) =(0,0,keo) and  kLo=(ke,, 0,0),
Omo(@) is eq. (A-11). In addition, we
Vinp(Ra) [ @, (r)exp (ik{) - r)dr=0 for —m=xl, =2,
and  Vimp(Ry) [ ¢L, (P exp (1k(FL(3 - r) dr=0. As for
| . (0 2 2
vimp(Rn) f‘l’m,a—(r) €xXp (lkF,g- . I') dr' , W€ have |Vm'~>d(r|

foreq. (D-1), %|Vmﬁdtrl2 for eq. (D-2), and %|Vmédo-|2 for eq.
(D-3), where |V, _40|* is eq. (21).

where
note

Appendix E: Parameters
We obtain concrete expressions of py, of eq. (17), r of eq.
(48), and £ of eq. (58).
The resistivity p,, of eq. (17) is first written as
6" m i,V
Pso = n(2,-/332ﬂ1/3h3
Here, 1/74, of eq. (19) has been given by

2n
= ?nimp“/xlzD(;)

(E-1)

Tso
1/3 2.1/3

_ 6 / m:—nimp|vs| Ny
- n—l/3h3 ’

(E-2)

where

1 (2m:\*?
oY = o (5E] VB,

T An?\ R?
1 2m; 5 4 1/3

=g g O
with Ex + Ay = (hkso)?*/(2m2) = (67°13n,)* /(2m) and
ke» = (6m°n,)'/3 37 The quantity n, (m?) is the number den-
sity*>*3% (the effective mass®®) of the electrons in the con-
duction band of the o spin. In addition, A, is the exchange
splitting energy of the conduction electron, where Ay = A and
Ay =-A.

Using eqgs. (E-1) and (E-3), r of eq. (48) is expressed as

r=l—
my

Using eqgs. (E-4), (51), and (52), £ of eq. (58) is obtained as

(E-3)

(5)\2
D,

L (E-4)
Dl

. ()2 @
AR
my) B D@D (7 DY ’

where S, is eq. (53). Furthermore, in the case of a simple

(E-5)

system with 8 = 3, and D%d)/ D(TS) = D(ld)/ D(ls), £ becomes

§=p(u+i+2), (E-6)

with p = (m /m;)“D(T” /D', where u is eq. (50).
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