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Abstract We present an explicit detailed theoretical and
observational investigation of an anisotropic massive Brans–
Dicke (BD) gravity extension of the standard �CDM model,
wherein the extension is characterized by two additional
degrees of freedom; the BD parameter, ω, and the present day
density parameter corresponding to the shear scalar, �σ 2,0.
The BD parameter, determining the deviation from general
relativity (GR), by alone characterizes both the dynamics of
the effective dark energy (DE) and the redshift dependence
of the shear scalar. These two affect each other depending
on ω, namely, the shear scalar contributes to the dynamics
of the effective DE, and its anisotropic stress – which does
not exist in scalar field models of DE within GR – controls
the dynamics of the shear scalar deviating from the usual
∝ (1 + z)6 form in GR. We mainly confine the current work
to non-negative ω values as it is the right sign – theoreti-
cally and observationally – for investigating the model as a
correction to the �CDM. By considering the current cosmo-
logical observations, we find that ω � 250, �σ 2,0 � 10−23

and the contribution of the anisotropy of the effective DE
to this value is insignificant. We conclude that the simplest
anisotropic massive BD gravity extension of the standard
�CDM model exhibits no significant deviations from it all
the way to the Big Bang Nucleosynthesis. We also point out
the interesting features of the model in the case of nega-
tive ω values; for instance, the constraints on �σ 2,0 could
be relaxed considerably, the values of ω ∼ −1 (relevant to
string theories) predict dramatically different dynamics for
the expansion anisotropy.
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1 Introduction

The base �-cold dark matter (�CDM) model, relying on the
inflationary paradigm [1–8], is the simplest and most suc-
cessful cosmological model to describe the dynamics and
the large scale structure in agreement with the most of the
currently available observational data [9–12]. It is today cred-
ited as the standard cosmological model, yet it is probably
not where the story has concluded but the hardest part has
just begun. It suffers from severe theoretical issues relating
to the cosmological constant � being responsible for the
late time acceleration of the Universe [13–19] and, on the
observational side, from tensions of various degrees of sig-
nificance between some existing data sets [20–28]. Besides,
based on the most minimal a priori assumptions, model inde-
pendent reconstructions of the evolution of the dark energy
(DE) equation of state (EoS) parameter w [29–31] and also
model independent diagnoses [32,33] exhibit a dynamical
behaviour of w(z).

Nevertheless, even small deviations from/corrections to
the �CDM mostly imply/require profound, and sometimes
highly non-trivial, modifications to the fundamental theories
of physics [34]. Indeed, we still do not have a promising and
concrete fundamental theory leading to DE models that are
more general than � and also can account for the small, but
significant, deviations from the �CDM model as persistently
suggested by the high precision data. Though, depending on
the characteristics of the DE models favored by observations,
we can decide whether it is more natural to consider DE as an
actual physical source [15,35] or as an effective source orig-
inated from a modification [36–40] to the standard theory of
gravity, i.e., general relativity (GR). For instance, eliminating
� by detecting w > −1 would not be by itself illuminating
to the nature of DE, but any detection of w < −1 would be
very illuminating to the nature of gravitation. For a perfect
barotropic fluid, the adiabatic sound speed c2

a is the physical
propagation speed of perturbations, and therefore w < −1
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(viz., phantom [41] or quintom [42,43] DE models) typically
accompanying by c2

a < 0, implies the instability of pertur-
bations (and/or ghost instabilities, see, e.g., [44]), whereas,
as shown in [45,46], scalar-tensor theories of gravity, such
as Brans–Dicke (BD) theory, can lead to an effective source
with w < −1 that does not correspond to the change of
the sign of c2

a , and hence perturbations can still be stable.
Similarly, any detection of DE with negative energy density
would also be hugely informative, such that this for an actual
physical source is of course physically ill, whereas it can be
an effective source so that negative energy density does not
lead to any pathology since this is not the true energy den-
sity. On the observational side, the constraints on the EoS
parameter of DE persistently indicate that w ≈ −1, and so
do not exclude w < −1 [12] and it has recently been shown
in [21,32,47] that DE models with energy densities passing
below zero at high redshifts fit the data better and can address
the tensions relevant to Lyman-α forest measurements [20].
Such DE sources are indeed possible, in general, in modified
theories of gravity with an effective gravitational coupling
strength weaker in the past, e.g., in scalar-tensor theories, if
we collect all modifications to the usual Einstein field equa-
tions to define an effective DE. Consequently, it can be argued
that any detection of a deviation from �CDM model implies
that the late time acceleration is not driven by �1 and of DE
yielding w < −1 and/or ρ < 0 implies that gravity is not
minimally coupled (which eliminate the actual perfect-fluid
models of DE and stands as a strong sign in favor of the
effective DE models from modified gravity).

Generically, the effective DE models from modified grav-
ity induce non-zero anisotropic stresses,2 which can be real-
ized if we relax the isotropic space assumption of the �CDM
model along with the modification to GR. Of course, we are
not able to observe anisotropic stresses directly, yet they can
reveal themselves through their effect on the evolution of the
expansion anisotropy as well as on the average expansion rate
of the Universe. Then, a natural question is whether the obser-
vations allow or suggest an anisotropic space, unless other-
wise anisotropic stresses would be irrelevant. Indeed, there
are some clues for questioning the spatially maximally sym-
metric Universe assumption, i.e., Robertson–Walker (RW)
background, of the �CDM model. This has been mainly
motivated by hints of anomalies in the CMB distribution first
observed on the full sky by the WMAP experiment [49–52]
and so remained in Planck experiment [53–56]. So far, the
local deviations from the statistically highly isotropic Gaus-
sianity of the CMB in some directions (the so called cold
spots) could not have been excluded at high confidence lev-

1 The converse is not true, even if it turns out that DE exactly yields
w = −1.
2 See [48] for a list of well know anisotropic stresses and their effects
on the expansion anisotropy.

els [52,53,57,58]. Furthermore, it has been shown that the
CMB angular power spectrum has a quadrupole power lower
than expected from the best-fit �CDM model [59,60]. Sev-
eral explanations for this anomaly have been proposed [61–
70] including the anisotropic expansion of the Universe. On
the other hand, inflation (canonical) isotropizes the Universe
very efficiently [71,72], leaving a residual anisotropy that
is negligible for any practical application in the observable
Universe. This could be irrelevant if an anisotropic expansion
is developed only well after the matter-radiation decoupling,
for example during the domination of DE, say, by means of
its anisotropic pressure acting as a late-time source of not
insignificant anisotropy [69,73–83] (see also, e.g., [84–87]
for constraint studies on the anisotropy of DE). Indeed, the
CMB provides very tight constraints on the anisotropy at the
time of recombination [88–90] of the order of the quadrupole
temperature, i.e., (�T/T )ℓ=2 ∼ 10−5. And, in the sim-
plest anisotropic generalization of the standard �CDM (viz.,
replacing the spatially flat RW metric by Bianchi type I
metric), the energy density corresponding to the expansion
anisotropy scales as the inverse of the square of the comoving
volume, ρσ 2 ∝ S−6, which implies an isotropization of the
expansion from the recombination up to the present, leading
to the typically derived upper bounds on the correspond-
ing density parameter today as �σ 2,0 ∼ 10−20. However,
this is true if the anisotropic expansion is not generated by
any anisotropic source, say, by an anisotropic DE (effective
or actual), arising after decoupling [69,73–83]. Neverthe-
less, almost all of these strong constraints on the expansion
anisotropy in the late Universe, �σ 2,0 � 10−22, assume the
non-existence of anisotropic sources (actual or effective) in
the late universe, and are derived in fact from the contribution
of the expansion anisotropy on the average expansion rate of
the Universe [91–95]. On the other hand, direct observational
constraints, e.g., from SNIa data, on the expansion anisotropy
of the later Universe are much weaker, namely, on the order
of �σ 2,0 � 10−4 for z ∼ 0 [96,97].

It is in fact always possible to imitate any modification to
the Einstein field equations as GR with an arbitrary mixture
of scalars, vectors and tensors [98,99]. Therefore, one may
think of abandoning any attempt to distinguish between the
actual physical DE and the effective DE from modified grav-
ities. However, a modified theory of gravity, e.g., the Brans–
Dicke theory, can modify both the average expansion rate of
the Universe and the evolution of the expansion anisotropy
in a distinctive way depending on its free parameter charac-
terizing the model, e.g., the Brans–Dicke parameter ω. So, of
course, owing to Occam’s razor, looking for these two con-
current modifications predicted by a specific modified the-
ory of gravity and testing them against the observational data
can provide us a strong reason for favoring or disfavoring the
modified theory of gravity under consideration over GR. In
this paper, for instance, the effective EoS parameter corre-
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sponding to the expansion anisotropy, the present day EoS of
the effective DE and the redshift at which it evolves into the
phantom region range in specific intervals as 1 < wσ 2 ≤ 5

3 ,
−1.14 � w < −1 and 0.50 ≤ zPDL < 0.65 (see [100] for
a similar result) for positive values of the BD parameter ω.
Indeed, revealing the origin of the late time acceleration of
the Universe considering such distinctive features of the DE
models from modified theories of gravity is among the sci-
entific themes underlying some upcoming experiments (e.g.,
[101]).

Finally, we have also independent motivations for modify-
ing GR by fundamental theoretical physics. Namely, almost
all of the attempts to quantize GR introduce deviations from
it in the form of extra degrees of freedom, higher powers of
the curvature in the action, higher order derivatives in the
field equations, or non-local terms. The low-energy limits of
the string theories typically yield BD gravity with ω = −1
and similarly d-brane models yield BD gravity with ω ∼ −1
[102–105]. Indeed, among all possible alternatives to GR, it is
found natural by many to first consider scalar-tensor theories
[106–110], which only add a (usually massive) scalar degree
of freedom, the BD-like scalar field, to the two massless,
spin-2 polarizations (gravitons) contained in the metric ten-
sor. In relevance with our focus in this paper, the field equa-
tions in such models can be regarded as effective Einstein
field equations and so the terms originating from the BD-like
scalar field and its derivatives, moved to the right hand side,
can always be interpreted as an effective fluid. Within this
approach, the correspondence between general scalar-tensor
theories and this effective fluid has been worked out explic-
itly first in [111] (see also [112] for the preceding work), and
has shown that, in general, the corresponding effective fluid
is imperfect. A recent work [113] extended and completed
the correspondence showing how a symmetry of BD theory
translates into a symmetry of this fluid such that this corre-
spondence is valid for any spacetime geometries. Brans and
Dicke’s 1961 theory [106,110], motivated first by the imple-
mentation of Mach’s principle in gravity, today provides a
prototype of scalar-tensor theories [107–109].

The original BD theory [106,110] has only one additional
constant parameter ω, determining the deviations from GR,
which is recovered in the limit of |ω| → ∞. Theoretically
ω ≥ − 3

2 is necessary to avoid the Jordan/scalar field (ϕ) from
yielding negative energy density values in the Einstein frame
that leads, e.g., the Minkowski vacuum to be unstable. Obser-
vations on a wide range of scales further constrain BD the-
ory around GR. The tightest constraints, to date, are imposed
by the observations of gravitational phenomena in the Solar
System; specifically, ω � 40000 at the 2σ confidence level
(C.L.) from observations of radio signals from the Cassini
spacecraft as it passes behind the Sun [114]. It can be vastly
relaxed for the massive BD theory, i.e., when the Jordan
field is accompanied by a potential U (ϕ), as in this case one

should consider the corresponding mass (M) of the Jordan
field along with the BD parameter, viz., the {ω, M} parame-
ter region [115]. It is shown that ω = O(1) is allowed for the
Solar System constraints provided that M � 2 × 10−17eV
[115]. The constraints on M , however, are typically sub-
ject to the cosmological observations, since, in particular,
it becomes cosmologically significant at substantially lower
scales, viz., at the Hubble mass scale MH0 ≃ 10−33eV, which
leaves the constraint from the Cassini spacecraft still valid.

The cosmological constraints on ω are complementary
to the local constraints as they probe different length and
time scales, as well as different epochs of the Universe. The
strongest cosmological constraint, which assumes U (ϕ) =
const. and considers CMB data from the first Planck release
along with the constraints from Big Bang Nucleosynthesis
(BBN) light element abundances, gives ω > 890 at the 2σ

C.L. [116]. The constraints from Planck 2015 (2013) and a
compilation of baryon acoustic oscillations (BAO) data are
ω > 333 (ω > 208) at the 2σ C.L., weakly dependent on
the exponent n > 0 for a power-law potential U (ϕ) ∝ ϕn

mimicking � in the late universe [117,118] (also see [119]
for a recent work considering a more complicated potential).
The BBN leads to ω � 277 (for a universe containing dust,
radiation and conventional vacuum energy), which assumes
power-law solutions and, by using general solutions, can be
somewhat altered depending on the behaviour of the Jordan
field in the early universe [120]. It is forecast that future
cosmological experiments will be able to constrain ω at a
level comparable to the local tests [121–123].

The typical mass scale of M ∼ 10−33eV imposed by cos-
mological observations is so small that the local constraint
ω � 40000 from the Cassini spacecraft must be satisfied
at all times in all parts of the Universe, and leads to the
conclusion that the massive BD extension of the standard
�CDM model must be phenomenologically very similar to it
throughout most of the history of the Universe, implying that
the cosmological features of BD theory would be observa-
tionally irrelevant. On the other hand, it is still worth studying
in detail and understanding the cosmological constructions
within massive BD theory by considering the cosmological
constraints on ω only, as BD theory is representative of some
more general gravity theories that can evade the local con-
straints (see [37] and references therein for further reading).
For instance, straightforwardly, it is possible to consider a
further extension of BD theory by allowing the BD param-
eter to be some functions of the Jordan field, ω = ω(ϕ), in
addition to the presence of potential U (ϕ) and this leads to
the possibility of having an ω small enough to be signifi-
cant in the past, while being large enough today to be con-
sistent with the tight constraints imposed by observations
of gravitational phenomena in the Solar System. Alterna-
tively, for instance, in the Horndeski theory (the most general
scalar–tensor theory having second-order field equations in
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four dimensions) [124,125], while on cosmological scales
BD theory emerges as an approximation, the derivative self-
interactions of the Horndeski scalar can be large enough on
small scales (higher curvature than cosmological environ-
ments) to screen the scalar resulting at the same time to the
recovery GR. For example, it was proposed in [126] that the
so called Galileon theories (a close cousin of BD theory)
could also explain the late time acceleration of the Universe
while evading solar system constraints. A different kind of
example is that, in the presence of extra dimensions, it is
possible to make BD theory (massive or massless) consis-
tent with gravitational tests (including solar system tests) for
|ω| = O(1) [127]. See also [128] for a recent overview on
cosmological probes of gravity for testing deviations from
GR in relevance with such modified gravity theories.

Motivated by the discussions above, we present a detailed
theoretical and observational investigation of the anisotropic
(LRS Bianchi type I metric) massive Brans–Dicke gravity
extension of the standard �CDM model, which is char-
acterized by two additional free parameters, namely, the
BD parameter ω and the corresponding present day density
parameter of the expansion anisotropy �σ 2,0. The role of
the cosmological constant is taken over by the Jordan field
potential of the form U (ϕ) ∝ ϕ2 and the physical ingredient
of the Universe is considered as in the standard �CDM. We
confine the present work, basically, to the non-negative val-
ues of the BD parameter since, here, we mainly consider the
extension as a correction to the standard �CDM.

2 Anisotropic massive Brans–Dicke gravity extension of
the �CDM model

We consider the BD action [106,110] written in the Jordan
frame in the following form:

SJBD =
∫

d4x
√

−g

[

ϕ2

8
R − ω

(

1

2
∇μϕ∇μϕ +

1

2
M2ϕ2

)]

+ SMatter,

(1)

where ϕ = ϕ(t) is the Jordan scalar field (function of cosmic
time t only) and ω = const. is the Brans–Dicke parameter,
R is the Ricci scalar, g is the determinant of the metric gμν ,
and SMatter is the matter action, which is independent of ϕ

so that the weak equivalence principle is satisfied. It is clear
from the way of writing the action that the term M2 stands
as the bare mass-squared of the Jordan field.3 We assume
M2 = const. so that, as can also be seen from the action,

3 We consider the bare mass as it is done in [100], where it formally
appears as the mass of a minimally coupled canonical scalar field when
curvature scalar is dropped. On the other hand, when the effective mass

it stands like a cosmological constant as 2ωM2 ≡ � and
thereby can drive accelerated expansion. Hence, switching to
massive BD from GR with a positive cosmological constant
provides us with an opportunity to construct �CDM-type
cosmologies, such that the mass of the Jordan field alone can
play the role of positive cosmological constant like in the
standard �CDM cosmology provided that 2ωM2 ≡ � > 0,
and the Jordan field ϕ varying slowly enough on the top
of this can account for small deviations from the standard
�CDM model in a particular way, which in turn may lead to
an improved fit to the observational data w.r.t. the standard
�CDM model. In line with that, we intend to study the BD
extension of the standard �CDM model as a correction, and
therefore we demand the term 2ωM2 to be positive definite,
which requires ω > 0 as long as we keep M2 > 0 to avoid
the Jordan field from having an imaginary mass.4 Hence, in
this study, unless otherwise is mentioned, we carry out our
investigations by assuming ω > 0, which is already stronger
than the assumption ω ≥ −3/2 to avoid the Jordan field from
yielding negative energy density values in the Einstein frame
that leads, for instance the Minkowski vacuum to be unstable.

We consider the simplest anisotropic generalization of the
spatially flat and homogeneous spacetime, i.e., locally rota-
tionally symmetric (LRS) Bianchi type I metric, which can
be written as follows;

ds2 = −dt2 + S2
[

e4βdx2 + e−2β(dy2 + dz2)
]

, (2)

where S = S(t) is the mean scale factor. Here, the exponent
β = β(t) satisfies the relation β̇2 = 1

6σ 2, where σ 2 = σi jσ
i j

and σ i j are shear scalar and tensor, respectively. The scalar
curvature for this metric (2) may be written in terms of the

Footnote 3 continued
of the Jordan field is considered there are various definitions in the
literature (see, e.g., [130] for a recent discussion and further references),
though one cannot say that these would not fail from a strict particle
physics point of view.
4 If this is not the case then 2ωM2 = � will contribute to the field
equations like a negative cosmological constant, which may be com-
pensated by a rapidly changing Jordan field. Within the standard BD
gravity (i.e., massless BD gravity) in the presence of pressureless
source, there exist cosmological solutions with accelerating expansion
if −2 < ω < −1, and Jordan field is real (i.e., the effective cosmologi-
cal gravitational coupling is positive definite) as well if − 3

2 < ω < − 4
3

leading to deceleration parameter in the range 0 > q > −1, and to
ϕ2 ∝ (1 + z)2 and ϕ2 ∝ (1 + z)3 in the two boundaries of this range,
correspondingly [131]. Hence, obviously, if we consider ω < 0 and
M2 > 0 leading to 2ωM2 < 0 (i.e., effectively negative cosmological
constant), then it will be necessary to confine ourselves to the range
− 3

2 < ω < − 4
3 , and moreover the decelerating effect of the term

2ωM2 < 0 would be compensated by bringing the value of the BD
parameter closer to −4/3, which in turn, implies a faster Jordan field
[viz., for ω ∼ −4/3 Jordan field changes as fast as the pressureless
source, i.e., ϕ2 ∼ (1 + z)3] whereas we are looking for slowly chang-
ing Jordan field, say, ϕ2 ∼ const. since we demand it to do only small
modifications on the �CDM dynamics.
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mean scale factor and shear scalar as R = −6
(

S̈
S

+ Ṡ2

S2

)

−σ 2.

Throughout the paper a dot denotes derivative w.r.t. cosmic
time t .

We consider all types of matter distribution (namely, the
usual cosmological sources such as radiation, baryons, etc.)
as isotropic perfect fluids, which are described by the follow-
ing energy-momentum tensor (EMT)

Tμ
ν = diag[−ρ, p, p, p], (3)

where ρ and p are the energy density and pressure, respec-
tively.

The field equations for the action (1) within the framework
of the metric (2) in the presence of (3) read:

3
Ṡ2

S2 −
1

2
σ 2 − 2ω

ϕ̇2

ϕ2 + 6
Ṡ

S

ϕ̇

ϕ
− 2ωM2 =

4

ϕ2 ρ, (4)

2
S̈

S
+

Ṡ2

S2 +
1

2
σ 2 −

√

2

3

[

σ̇ +
(

3
Ṡ

S
+ 2

ϕ̇

ϕ

)

σ

]

+ (2ω + 2)
ϕ̇2

ϕ2 + 2
ϕ̈

ϕ
+ 4

Ṡ

S

ϕ̇

ϕ
− 2ωM2 = −

4

ϕ2 p, (5)

2
S̈

S
+

Ṡ2

S2 +
1

2
σ 2 +

√

1

6

[

σ̇ +
(

3
Ṡ

S
+ 2

ϕ̇

ϕ

)

σ

]

+ (2ω + 2)
ϕ̇2

ϕ2 + 2
ϕ̈

ϕ
+ 4

Ṡ

S

ϕ̇

ϕ
− 2ωM2 = −

4

ϕ2 p, (6)

for which the latter two correspond to the pressure equations
along the x-axis and the y- and z-axes, respectively. The
Klein–Gordon equation for the Jordan field reads

ϕ̈

ϕ
+ 3

Ṡ

S

ϕ̇

ϕ
−

3

2ω

(

S̈

S
+

Ṡ2

S2

)

−
1

2ω

σ 2

2
+ M2 = 0. (7)

We consider the standard cosmological fluids, namely, pres-
sureless fluid (pm = 0) and radiation/relativistic fluids
(pr = ρr/3), so that, here, ρ = ρm + ρr and p = pr. If the
Jordan field is approximately constant then the first Fried-

mann Eq. (4) becomes 3 Ṡ2

S2 ≈ 4
ϕ2 ρ + σ 2

2 + 2ωM2 (as like
in GR), where the effective cosmological gravitational cou-

pling strength is then given by G = ϕ2
0

ϕ2 G0, where G = 1
2πϕ2

and G0 = 1
2πϕ2

0
with zero subscript denoting today’s value

(throughout the paper).5

We consider the conventional representation of the true
equation for scalar-tensor gravity interacting with matter in
the Einsteinian form with the constant G0 = G(t0)

5 Note however that for bound systems in the quasi-static regime, e.g.,
our solar system, the effective Newton’s constant is GN = 2ω+3

2ω+4 G0
[110], thus observers in a bound system which formed today would
measure the same cosmological and local gravitational strength if ϕ2 =
2ω+4
2ω+3 ϕ2

0 .

Rμν −
1

2
Rgμν = 8πG0(Tμν,m + Tμν,DE), (8)

8πG0 = 4/ϕ2
0 following Refs. [45,46], where it is discussed

that modified gravity theories can be recast in the standard GR
form such that (8) where all the new geometrical terms are
grouped (on the r.h.s.) to form an effective DE contribution
denoted as Tμν,DE (for a detailed discussion, see introduction
in Ref. [46]). We note that the shear scalar is kept on the left
hand side as it is a part of the Einstein tensor, namely, the
metric itself only. Accordingly, we define the effective DE in
the following way:

3
Ṡ2

S2
−

1

2
σ 2 =

4

ϕ2
0

(ρ + ρDE), (9)

2
S̈

S
+

Ṡ2

S2
+

1

2
σ 2 −

√

2

3

(

σ̇ + 3
Ṡ

S
σ

)

= −
4

ϕ2
0

(p + pDE,x ),

(10)

2
S̈

S
+

Ṡ2

S2
+

1

2
σ 2 +

√

1

6

(

σ̇ + 3
Ṡ

S
σ

)

= −
4

ϕ2
0

(p + pDE,y),

(11)

where ρDE is the energy density and pDE,x and pDE,y are the
principal pressures of the effective DE along the x-axis and
the y- and z-axes, respectively, and which read

ρDE =
ϕ2

0

4

[

(

4

ϕ2 −
4

ϕ2
0

)

ρ + 2ω
ϕ̇2

ϕ2 − 6
Ṡ

S

ϕ̇

ϕ
+ 2ωM2

]

,

(12)

pDE,x =
ϕ2

0

4

[

(

4

ϕ2 −
4

ϕ2
0

)

p − 2

√

2

3

ϕ̇

ϕ
σ

+(2ω + 2)
ϕ̇2

ϕ2 + 2
ϕ̈

ϕ
+ 4

Ṡ

S

ϕ̇

ϕ
− 2ωM2

]

, (13)

pDE,y =
ϕ2

0

4

[

(

4

ϕ2 −
4

ϕ2
0

)

p +
√

2

3

ϕ̇

ϕ
σ

+(2ω + 2)
ϕ̇2

ϕ2 + 2
ϕ̈

ϕ
+ 4

Ṡ

S

ϕ̇

ϕ
− 2ωM2

]

. (14)

We note that the Jordan field and shear scalar are coupled
and they together lead to an anisotropy in the pressure of the
effective DE, which may be represented by

�pDE = pDE,y − pDE,x =
√

6
ϕ2

0

4

ϕ̇

ϕ
σ. (15)

This, in turn, leads to a modification in the evolution of the
expansion anisotropy provided that ϕ is dynamical and the
space is not exactly isotropic as would be expected from a
realistic cosmological model (see, e.g., [132]). We can restate
this equation in terms of the cosmological gravitation cou-
pling strength as
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�pDE = −
√

3

2

1

8πG0

Ġ

G
σ. (16)

This effective anisotropic pressure (in the presence of shear)
induced by the Jordan field in the Jordan frame is absent in
the Einstein frame (see, e.g., Ref. [132]).

3 Exact solution compatible with standard �CDM
model

We follow the method, given in [100], for obtaining exact cos-
mological solutions of a scalar-tensor gravity theory compat-
ible with the �CDM model, albeit we consider LRS Bianchi
type I spacetime rather than spatially flat Robertson–Walker
spacetime.6,7 To do so, we first re-express the set of differen-
tial equations given by Eqs. (4)–(7) using dz

dt
= −H(1 + z),

where H = Ṡ/S is the average Hubble parameter and z is
the cosmic redshift we define in terms of S as z = −1 + 1

S
.

Accordingly, we re-express the energy density equation (4)
as

3H2
[

1 −
2ω

3
(1 + z)2 ϕ′2

ϕ2 − 2(1 + z)
ϕ′

ϕ

]

−
σ 2

2
− 2ωM2 =

4

ϕ2 ρ, (17)

and obtain the pressure equation as

−
dH2

dz

[

1 + z − (1 + z)2 ϕ′

ϕ

]

+3H2
{

1 + (1 + z)2
[

2

3

ϕ′′

ϕ
+

2

3
(1 + ω)

ϕ′2

ϕ2

]

−
2

3
(1 + z)

ϕ′

ϕ

}

+
σ 2

2
− 2ωM2 = −

4

ϕ2 p, (18)

6 We note that in the GR limit (say, ϕ = const.) the anisotropic model
under consideration here, (4)–(7), reduces mathematically to the stan-
dard �CDM+stiff matter model in the RW framework [133]. However,
the role of the stiff matter with positive energy density in [133] is played
by the shear scalar here, so that one can straightforwardly utilize the
rich class of solutions given in [133] for the GR limit in our model.
This presents a good example that one could find various solutions of
the model under consideration here but yet we focus on the solution
obtained by extending the method given in [100] to LRS Bianchi type
I metric.
7 We followed the method given in [100] for obtaining an exact cosmo-
logical solution of BD gravity theory for the expansion rate H(z), with
its �CDM model counterpart up to a large redshift, viz., for pressure-
less matter in a spatially flat, homogeneous and isotropic universe. A
more general exact solution of the same setup was given in [134] (much
earlier than [100]), was nevertheless given for the scale factor in cosmic
time and very complicated for extracting an exact H(z) required for
observational analyses.

using Eqs. (5) and (6), the shear propagation equation as

σ ′

σ
−

3

1 + z
+ 2

ϕ′

ϕ
= 0, (19)

by subtracting Eq. (5) from Eq. (6), and finally re-express the
scalar field equation (7) as

−
dH2

dz

[

ω(1 + z)2 ϕ′

ϕ
+

3

2
(1 + z)

]

+H2
[

−2ω
ϕ′′

ϕ
(1 + z)2 + 4ω(1 + z)

ϕ′

ϕ
+ 6

]

+
σ 2

2
− 2ωM2 = 0, (20)

where ′ denotes derivative with respect to redshift (d/dz).
We note that Eqs. (18) and (20) have exactly the same

mathematical form, that is, a first order linear differential
equation in H2, such as

Ai (z)
dH2

dz
+ Bi (z)H2 + Ci (z) + Di = 0, i = 1, 2, (21)

provided that we set p = pm = 0, viz., the universe is filled
with only pressureless matter. We next note that constants
D1 = D2 = −2ωM2, and that the shear scalar σ 2 is the term
that differs in our system of equations from the one given in
[100]. Fortunately, it contributes to (18) and (20) in the same

way, namely, as C1(z) = C2(z) = σ 2

2 . In accordance with
these points, we assume A1(z) = A2(z) in (18) and (20) and
then solve for the rate of change of Jordan field in z as

ϕ′

ϕ
= −

1

2(1 + ω)

1

1 + z
, (22)

which in turn renders the coefficients of H2 identical, i.e,
B1(z) = B2(z), as well. Thus, integrating (22), it turns out
that the solution of the Jordan field is

ϕ2 = ϕ2
0(1 + z)−

1
1+ω , (23)

where ϕ0 = ϕ(z = 0) is the present time value of the Jordan
field, and which in turn gives

G = G0(1 + z)
1

1+ω . (24)

The integration of the shear propagation equation given in
Eq. (19) gives

σ 2 = σ 2
0 (1 + z)6

(

ϕ

ϕ0

)−4

, (25)
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where σ 2
0 = σ 2(z = 0) is the present time value of the shear

scalar, leading, together with (23), to

σ 2 = σ 2
0 (1 + z)6+ 2

1+ω , (26)

whereas it is σ 2
GR ∝ (1 + z)6 in GR (corresponding to the

|ω| → ∞ limit of the BD gravity), and thereby the energy
density corresponding to the shear scalar can be defined as

ρσ 2 ≡
σ 2

2

ϕ2
0

4
=

σ 2
0

2

ϕ2
0

4
(1 + z)6+ 2

1+ω , (27)

by considering the present time value of the Jordan field, i.e.,
of the cosmological gravitational coupling strength. Because
BD theory [110] satisfies the local conservation of EMT, the
energy density of the pressureless matter can immediately be
written as

ρm = ρm,0(1 + z)3, (28)

which is exactly the same as the one for the pressureless
matter in the standard �CDM model. Finally using ϕ2, σ 2

and ρm from Eqs. (23), (26) and (28), respectively, in Eq.
(17) we reach the following modified anisotropic Friedmann
equation for BD theory in this solution

H2 =
4

3

γ

ϕ2
0

[

ρM + ρm,0(1 + z)3+ 1
1+ω + ρσ 2,0(1 + z)6+ 2

1+ω

]

,

(29)

where

γ =
6(1 + ω)2

(3ω + 4)(2ω + 3)
, (30)

and the energy densities corresponding to the mass of the Jor-
dan field and to the expansion anisotropy today read, respec-
tively,

ρM = 2M2ω
ϕ2

0

4
and ρσ 2,0 =

σ 2
0

2

ϕ2
0

4
. (31)

One may check for consistency that we recover the H(z)

of the standard �CDM model when we set ω → ∞ (viz.,
in the GR limit of BD gravity giving ϕ → constant) and
ρσ 2,0 = 0 (viz., isotropic expansion as in the RW spacetime
metric). We also note that ρM can be regularized to give
a finite positive value consistent with the observations by
setting M2ω = constant so that M2 → 0 as ω → ∞ such
that the term M2ω arising from their multiplication would
always remain unaltered and finite.

3.1 Inclusion of radiation

The solution of the BD extension of standard �CDM model,
for either isotropic or anisotropic spatially flat spacetimes,
can be achieved by using the method given in Ref. [100]
provided that p = 0, viz., the Universe is filled with only
pressureless matter. It covers also the epoch of the Universe
when the contributions from the pressureless matter in (29),

namely, 4
ϕ2 ρm ∝ (1 + z)3+ 1

1+ω , is dominant over the effec-

tive cosmological constant 2ωM2 and one may check that
for this epoch, neglecting anisotropy, it reduces to the well

known solution with S ∝ t
2+2ω
4+3ω and ϕ2 ∝ t

2
4+3ω (see, e.g.,

[120] and references therein). We could not obtain analyti-
cally an exact cosmological solution – other than the trivial
solution with ϕ = const. – using the same method when we
include relativistic source, pr = ρr

3 . Fortunately the effects
of the relativistic source on the background dynamics can be
neglected in the late Universe. Namely, because local energy
conservation holds in BD gravity in the Jordan frame, we have
ρr ∝ (1+ z)4 and ρm ∝ (1+ z)3, implying that the effects of
the relativistic source on the dynamics of the Universe will be
significant for large redshift values, in particular, for the red-
shift values larger than the matter-radiation equality redshift,
zeq = −1 + ρm,0

ρr,0
∼ 3380 [12], as in the standard cosmology

[138]. The attractor solution of the BD gravity for radiation
domination is well known that it is exactly the GR solution,
i.e., ϕ = const. [120,135–138]. Indeed, in general, BD cos-
mologies have exact solutions which show that they are dom-
inated by the Jordan field at early times and by the perfect
fluid matter sources at late times, which here can be consid-
ered as the period all the way down from matter-radiation
equality to the earlier times covering the times relevant to
Big Bang Nucleosynthesis (BBN). Hence, for z > zeq, we
have ϕ = ϕ1 = const., implying G = G1 = const. as long as
anisotropy is negligible. Note that ϕ1 (or G1) will be different
than ϕ0 (or G0) as a consequence of the fact that the Jordan
field has been evolving approximately in accordance with
(23) for z < zeq, i.e., between the matter-radiation equal-
ity and today. Accordingly, our model will more approach
a general relativistic cosmology as the radiation dominates
over pressureless matter as we go to higher redshifts, yet the
most part of period of the Universe during which z < zeq the
Jordan field evolves approximately in accordance with (23)
and thereby we can estimate that

ϕ1 ∼ ϕ0(1 + zeq)
− 1

2+2ω at z ∼ zeq

as well as ϕ ∼ ϕ1 for z � zeq,
(32)

which implies

G1 ∼ G0(1 + zeq)
1

1+ω for z � zeq, (33)
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where G1 is then approximately the cosmological gravita-
tional coupling strength for z > zeq (see [120] for further
details). Thus, for ω > 0, the cosmological gravitational cou-
pling strength will remain constant (provided that anisotropy
is negligible) during the radiation dominated epoch as just
like in the standard cosmology, but will be larger than its

present time value, e.g., G1/G0 ∼ 3380
1

1+ω . This implies an
enhanced expansion rate of the Universe during this epoch,
which in turn will affect, for instance, the primordial ele-
ment abundances. We shall further discuss this point in
Sect. 5. We next see from (19) that we approximately have
σ 2 ∝ σ 2

0 (1 + z)6 like in GR in the presence of isotropic per-
fect fluid, since we have ϕ ∼ constant when the radiation is
dominant over pressureless matter and expansion anisotropy
is still insignificant. As we go to even larger redshift values,
say, z ≫ zBBN, expansion anisotropy will dominate over the
terms due to the radiation and hence we obtain once again

ρσ 2 ∝ (1+z)6+ 2
1+ω (which can be obtained simply by setting

ρM = 0 and ρσ 2,0 = 0 in our solution).
In the light of the above discussion, although we do not

have exact analytical solution when we include the radiation
as well, we can find out the contribution from the radiation.
First of all, it is obvious that during radiation domination the
Jordan field is constant, then the inclusion of radiation to the
model will in general slow-down the Jordan field, namely, the
model in general will deviate less from GR. Of course, that
effect will be insignificant for a viable and realistic cosmolog-
ical model [namely, cosmological model satisfying, roughly,
ρσ 2,0 ≪ ρr,0 ≪ ρm,0 ∼ ρM for ω � 10 (see Sect. 3.3.1 for
this choice on ω)] for z < zeq. Thus, we can write

H2 ≈
4

3

γ

ϕ2
0

[

ρM + ρm,0(1 + z)3+ 1
1+ω + ρr,0(1 + z)4+ 1

1+ω

+ρσ 2,0(1 + z)6+ 2
1+ω

]

for z < zeq, (34)

which can be safely used all the way to the recombination
redshift (CMB release), such that it is well known that the
Universe should have transited from radiation to matter domi-
nated era when z ∼ 3380, and the recombination that leads to
photon decoupling should have taken place when z ∼ 1100,
at which the pressureless matter is still dominant over radi-
ation. Therefore, we note that H(z) given in (34) can safely
be used for constraining the model by using CMB radiation
data as well.

For the times before the matter-radiation equality, set-
ting ϕ constant relying on its attractor behavior during the
radiation-dominated phase, we can write

H2 ≈
4

3

γ

ϕ2
1

[

ρr,0(1 + z)4 + ρσ 2,1(1 + z)6
]

for zeq < z < zeq,σ 2,r. (35)

Note that, for consistency between (34) and (35), here in (35)

we have ϕ1 ∼ ϕ0(1 + zeq)
− 1

2+2ω in contrast to ϕ0 in (34), in
accordance with the above discussions leading to (32), and

similarly ρσ 2,1 ∼ ρσ 2,0(1+zeq)
1

1+ω . Using (35), we estimate
(at least roughly) the radiation-expansion anisotropy equality
redshift as zeq,σ 2,r ∼ −1+

√

ρr,0
ρ

σ2,1
, which can also be written

as follows;

zeq,σ 2,r ∼ −1 +

√

√

√

√

ρr,0

ρσ 2,0

(

ρm,0

ρr,0

)− 1
1+ω

. (36)

Avoiding expansion anisotropy from spoiling the physi-
cal processes relevant to BBN will then roughly require
zeq,σ 2,r > zBBN. Typically, in a viable cosmological model,
we expect the matter-radiation equality redshift to be zeq =
−1+ ρm,0

ρr,0
∼ 3380, the BBN to take place at zBBN ∼ 3×108

and �r,0 ∼ 10−4. Accordingly, taking zeq,σ 2,r > 3×108, we

obtain
ρ

σ2,0
ρr,0

= �
σ2,0

�r,0
� 10−17− 4

1+ω , namely, the following
stringent constraint on the density parameter of the expansion
anisotropy today:

�σ 2,0 � 10−21− 4
1+ω , (37)

which reduces to �σ 2,0 ∼ 10−21 in the GR limit (ω → ∞).
It is noteworthy that, in the GR limit, at which anisotropy in
the pressure also disappears, our estimation on the expansion
anisotropy for today is already of the same order of magni-
tude with the ones given in [94] from a general test of isotropy
using CMB temperature and polarization data from Planck
and in [91] from primordial nucleosynthesis, both of them
consider GR and only isotropic fluids. This also shows the
reliability of our estimation. We note that, for the case ω > 0
we consider in this study, BD theory leads to more stringent
constraints on the expansion anisotropy (e.g., �σ 2,0 � 10−25

for ω = 0), while the case ω < −1, which we do not consider
in the present study, can relax it. For instance, Campanelli
et al. [96] have put model-independent upper bounds on the
expansion anisotropy, from type Ia SNe observations, in the
late Universe, namely, for z � 1.6, as �σ 2,0 � 10−4 (see also
[97] for a recent work). We note that this value is achieved
upon choosing ω = − 21

17 in (37), which can be done without
worrying for theoretical issues associated with ω < − 3

2 , but
this will cost large deviations from GR (viz. rapidly varying
strength of the gravitational coupling) as well as the stan-
dard �CDM. We shall further discuss possible modifications
on the expansion anisotropy for different values/ranges of ω

and their comparisons with the standard �CDM model in
Sect. 3.3.2.

Finally, for the times when the expansion anisotropy dom-
inates over radiation (and hence obviously on pressureless
matter), we can write
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H2 ∝ (1 + z)6+ 2
1+ω for z > zeq,σ 2,r, (38)

from our solution (see, e.g., Refs. [132,139–141] for
anisotropy dominated universes in the context of scalar-
tensor theories). This epoch however is out of interest in the
present work.

3.2 Effective anisotropic dark energy

The discussions in the previous subsections reveal that the
massive BD gravity modification on the gravity sector, man-
ifests itself when radiation becomes subdominant, say, in the
relatively late Universe, that is, switching from GR+� to the
massive BD introduces corrections on the redshift depen-
dencies of both the average expansion rate and expansion
anisotropy. Although we consider the presence of radiation
when we constrain the model using the cosmological data,
while we are discussing the effective DE in what follows,
we shall neglect its presence due to the following reasons:
(i) Its effect on the effective DE will obviously be negligi-
ble in the late universe. (ii) When it is dominant the Jordan
field ϕ freezes, implying the BD gravity mimics GR, and
thereby the effective DE will mimic nothing but � (not to
mention that DE would be subdominant at this epoch). (iii)
A practical reason, such that we don’t have explicit analyt-
ical solution when we include radiation into the model. On
the other hand, although we expect anisotropy to be negligi-
ble (even with respect to radiation) in the late universe, we
keep expansion anisotropy due to the following reasons: (i)
To see its effect on the effective DE explicitly. (ii) It leads
to an anisotropy in the pressure of the effective DE, which
in turn modifies the redshift dependency of the expansion
anisotropy w.r.t. GR (|ω| → ∞). (iii) In relevance with (ii),
its modified redshift dependency w.r.t. the one in GR (pro-
vided that it can be detected) would be a strong signal in
favor of modified gravities (such as BD theory), rather than
the presence of a DE (such as �, scalar fields) ingredient of
the Universe assuming that GR is the true theory of gravity.

We implement the solution given in Sect. 3 and accord-
ingly we re-write (9) as follows:

3H2 =
4

ϕ2
0

(

ρm + ρDE + ρσ 2

)

, (39)

where the energy density of the effective DE, ρDE, reads

ρDE = γρM +ρm

[

γ

(

ρm

ρm,0

)
1

3(1+ω)

− 1

]

+ρσ 2(γ −1),

(40)

which gives

ρDE,0 = γρM + ρm,0 (γ − 1) + ρσ 2,0(γ − 1) (41)

for z = 0. Dividing (39) by 3H2
0 , we obtain

H2

H2
0

= �DE,0 f (z) + �m,0(1 + z)3 + �σ 2,0(1 + z)6+ 2
1+ω ,

(42)

where we define f (z) = ρDE
ρDE,0

, reading

f (z) = 1 +
�σ 2,0

�DE,0
(γ − 1)

[

(1 + z)6+ 2
1+ω − 1

]

+
�m,0

�DE,0

{

(1 + z)3
[

γ (1 + z)
1

1+ω − 1
]

+ 1 − γ
}

, (43)

which gives f (z = 0) = 1 consistently with �m,0 +
�DE,0 + �σ 2,0 = 1. Note that we define the present time
values of the density parameters as �i,0 = ρi,0/ρc,0, where
ρc,0 = 3H2

0 ϕ2
0/4 is the present time value of the critical

energy density, and that we eliminate �M,0, that appears in
f (z) originally, using the relation

�M,0 = γ −1 [

�DE,0 − (γ − 1)(�m,0 + �σ 2,0)
]

, (44)

which can easily be obtained from (40). Using (44) along
with �m,0 + �σ 2,0 = 1 − �DE,0, we see that the present
time density parameter of the effective DE is determined by
the Jordan field’s mass and the BD parameter ω [viz., γ (ω)]
as8

�DE,0 = ω
2

3

(

M

H0

)2

+
γ − 1

γ
. (45)

We obtain – upon straightforward arrangements in the
equations obtained by using (29), (44) in the equations
obtained by substituting (23), (30), (31) in (13), (14) – the
principal EoS parameters of the effective DE along the x-axis
and y- and z-axes in terms of the present day values of the
density parameters as follows, respectively,

wDE,x ≡
pDE,x

ρDE
= −1 +

1

f (z)

[

�m,0

�DE,0

2ω + 2

2ω + 3
(1 + z)3+ 1

1+ω

−
�m,0

�DE,0
(1 + z)3 −

2

2ω + 3

�σ 2,0

�DE,0
(1 + z)6+ 2

1+ω

−
2

3(1 + ω)

√

�σ 2,0

�DE,0
(1 + z)3+ 1

1+ω

×

√

1 +
�m,0

�DE,0
(1 + z)3 +

�σ 2,0

�DE,0
(1 + z)6+ 2

1+ω

]

,

(46)

8 It may be interesting to note here that for the case M = 0 (i.e., the
massless Jordan field case), �DE,0 is a function of ω only, and if we
set �DE,0 = 0.7 we find that ω = − 5

4 from (45) and w̄DE,0 ≈ −1.29
from (56) assuming the contribution from the expansion anisotropy is
insignificant (presence of expansion anisotropy shifts it to even larger
negative values). This (ω = − 5

4 ), in turn, implies from (26) that the
shear scalar (viz., expansion anisotropy) contributes to the modified
Einstein field equations interpreted in accordance with (8) like a phan-
tom source with an effective equation of state as p = − 5

3 ρ.
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wDE,y ≡
pDE,y

ρDE
= −1

+
1

f (z)

[

�m,0

�DE,0

2ω + 2

2ω + 3
(1 + z)3+ 1

1+ω −
�m,0

�DE,0
(1 + z)3

−
2

2ω + 3

�σ 2,0

�DE,0
(1 + z)6+ 2

1+ω

+
1

3(1 + ω)

√

�σ 2,0

�DE,0
(1 + z)3+ 1

1+ω

×

√

1 +
�m,0

�DE,0
(1 + z)3 +

�σ 2,0

�DE,0
(1 + z)6+ 2

1+ω

]

,

(47)

which give

wDE,x,0 = −1 −
�m,0 + 2 �σ 2,0

(2ω + 3)�DE,0
−

2
√

�σ 2,0

3(1 + ω)�DE,0
,

(48)

wDE,y,0 = −1 −
�m,0 + 2 �σ 2,0

(2ω + 3)�DE,0
+

√

�σ 2,0

3(1 + ω)�DE,0

(49)

for z = 0.
The anisotropy of the EoS of the effective DE may be

given as the difference between its principal EoS parameters
(�wDE = wDE,y − wDE,x ) as

�wDE =
1

(1 + ω)

(1 + z)3+ 1
1+ω

f (z)

√

�σ 2,0

�DE,0

×

√

1 +
�m,0

�DE,0
(1 + z)3 +

�σ 2,0

�DE,0
(1 + z)6+ 2

1+ω .

(50)

Accordingly, we have

�wDE,0 =
1

1 + ω

√

�σ 2,0

�DE,0
for z = 0, (51)

which is approximately equal to 1
1+ω

√

�
σ2,0

�DE,0
, provided that

the effective DE is dominant today (z = 0). Additionally, we
can write for dust domination

�wDE ∼
1

(1 + ω)γ

√

�σ 2,0

�m,0
(1 + z)

3
2 , (52)

which is positive definite as ω > 0, and for expansion
anisotropy domination

�wDE ∼ −
1

1 + ω

1

1 − γ
, (53)

which depends only on ω, is negative definite as ω >

0, monotonic in ω > 0 and takes values as �wDE =
{−2,−1.2} for ω = {0,∞}.

We finally, using ρ̇DE + 3HρDE(1 + w̄DE) = 0, define
a mean/volumetric effective EoS parameter for the effective
DE as

w̄DE = −1 +
1 + z

3

ρ′
DE

ρDE
= −1 +

1 + z

3

f ′(z)

f (z)
, (54)

which explicitly reads

w̄DE = − 1 +
�m,0(1 + z)3

[

γ 3ω+4
3(1+ω)

(1 + z)
1

1+ω − 1
]

+ �σ 2,0
2(γ−1)(3ω+4)

3(1+ω)
(1 + z)6+ 2

1+ω

�DE,0 + �m,0

{

(1 + z)3
[

γ (1 + z)
1

1+ω − 1
]

+ 1 − γ
}

+ �σ 2,0(γ − 1)
[

(1 + z)6+ 2
1+ω − 1

] , (55)

and

w̄DE,0 = − 1 −
1

2ω + 3

�m,0

�DE,0
−

2(5ω + 6)

3(2ω + 3)(ω + 1)

�σ 2,0

�DE,0

(56)

for z = 0. We note that, given �DE,0 > 0 and �m,0 and
�σ 2,0 are already positive definite, for ω > 0, the contri-
butions from both the pressureless matter and the expansion
anisotropy to the present value of the mean EoS of the effec-
tive DE, w̄DE,0, are negative, i.e., anisotropic BD extension
of the standard �CDM model predicts phantom like effective
DE in the present time Universe.

3.3 Preliminary investigations

3.3.1 Features of effective anisotropic dark energy

In this section, before the observational analysis, we dis-
cuss some of the features of the model, in particular those
corresponding to the effective DE and the evolution of the
expansion anisotropy. To do so, we start with justifying
the positivity assumption on ω in our study by making
use of one of the important parameters about the kinemat-
ics of the Universe, the deceleration parameter. We define
the mean/volumetric deceleration parameter in terms of the
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average Hubble parameter as q = −1+ H ′
H

(1+z). This reads,
as we expect in a viable cosmology �σ 2,0 < �r,0 ≪ �m,0,

q ≈ −1 +
4 + 3ω

2 + 2ω

�m,0(1 + z)3+ 1
1+ω

1 + γ�m,0

[

(1 + z)3+ 1
1+ω − 1

] (57)

for z ∼ 0, and

q0 ≈ −1 +
4 + 3ω

2 + 2ω
�m,0, (58)

for z = 0 today. We confine the present study to small devi-
ations from the standard �CDM model and hence it is rea-
sonable to expect, in accordance with the most recent Planck
results [12], that �m,0 ∼ 0.3 leading to q0 ∼ −0.55 from
q = −1+ 3

2�m in the standard �CDM, which in turn implies
from (58) that we should have |ω| � 10, which leads to ω �

10 since have already assumed ω ≥ 0.9 Unless otherwise, for
instance, ifω = 0, then q0 ∼ −0.4, which could be decreased
to a reasonable value, viz., q0 ∼ −0.55, by decreasing �m,0

considerably, namely �m,0 ∼ 0.22, which implies very large
deviations from the standard �CDM. Therefore, our assump-
tion ω ≥ 0 already allows large deviations from the standard
�CDM, in other words, we do not oversimplify the model
but yet basically avoid the cases most likely non-viable that
would lead to extended discussions since the model exhibits
various complicated dynamics particularly at small negative
values of ω, namely, when ω ∼ −1. Hence, in this section, we
shall depict some key/interesting features of the anisotropic
BD model and its deviation from the standard �CDM model
assuming ω ≥ 0.

First of all, one may check easily that, similar to the stan-
dard �CDM, its anisotropic BD extension asymptotically
approaches to de Sitter Universe in the far future,

H2 →
4

3

γ

ϕ2
0

ρM =
2γ

3
ωM2, ρσ 2 → 0 and ρm →0

for z → − 1,

(59)

and accordingly, at this limit, the effective DE mimics exactly
the cosmological constant as

ρDE → γρM, w̄DE → −1 and �wDE → 0. (60)

9 Measured current values and fitting results of q0 obtained from dif-
ferent models are given in [142,143], see also [143] for both the history
of the accurate estimations of q and recent q parametrizations without
focusing in any concrete cosmological model, using cosmography.

At low redshifts, viz., at which ρm ≃ ρm,0 and ρσ 2 ≪ ρm,
the effective DE can approximately be described by

ρDE ≃ γρM + (γ − 1)ρm and

w̄DE � −1 +
(γ − 1)ρm

γρM + (γ − 1)ρm
for z ≃ 0.

(61)

Here, we first note that the non-negativity of the effective
DE today (z = 0), ρDE,0 ≥ 0, leads to a natural lower bound
on the value of the energy density corresponding to the effec-

tive cosmological constant (viz.,ρM) as ρM ≥
(

1
γ

− 1
)

ρm,0,

which allows zero lower bound only at the GR limit, i.e., at
ω → ∞ (viz., γ → 1). We next note that γ takes values
within the range 1

2 ≤ γ < 1 for ω ≥ 0 and hence the coef-
ficient of ρm is negative definite, γ − 1 < 0, which implies
that, because ρm decreases as the Universe expands, ρDE will
increase as the Universe expands at z ∼ 0, i.e., the effective
DE will behave like a phantom fluid (w̄DE � −1) at z ∼ 0
[see (56) for w̄DE(z = 0)]. Namely, we see from (40) or (55)
that given ρm = ρm,0(1+ z)3, the effective DE passes below
the phantom-divide-line (PDL, wDE = −1) at

z = zPDL ≡
(

2ω + 3

2ω + 2

)1+ω

− 1, (62)

and afterwards stays there forever, i.e., w̄DE < −1 for z <

zPDL. It is worth noting that the BD gravity predicts almost
a specific redshift for the PDL crossing, such that

1

2
≤ zPDL ≤ e

1
2 − 1 = 0.65 for ω ≥ 0, (63)

and 0.63 ≤ zPDL < 0.65 for ω ≥ 10 (see [100] for a similar
result). This is indeed an interesting result, such that zPDL ∼
0.6 can be taken as the signature of BD gravity. In other
words, observations suggesting the presence of a DE source
passing below PDL at z ∼ 0.6 with high confidence would
imply a strong reason for favoring the BD gravity over GR, or
vice versa. During this period, �wDE can approximately be
given by (51) and we note that the effective DE will be almost
isotropic, �wDE ≈ 0, for ω > 0 since �σ 2,0 ≪ �DE,0 in a
realistic cosmology.

At moderate redshifts (e.g., zPDL ≪ z � zeq), namely,
when the contribution from the pressureless matter to the
EoS parameter of the effective DE given in (55) becomes
significant but those from the expansion anisotropy and the
mass of the Jordan field are not, the mean/volumetric EoS
parameter of effective DE yields a plateau where

ρDE ∼ ρm,0γ

(

ρm

ρm,0

)
3ω+4
3ω+3

as w̄DE ∼
1

3ω + 3

for zPDL ≪ z � zeq.

(64)
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This plateau is persistent all the way to the large redshift
values at which either the radiation becomes dominant over
pressureless matter (z ∼ zeq), or the contribution from the
expansion anisotropy becomes significant. The plateau of
w̄DE is located within the range 0 ≤ w̄DE ≤ 1

3 depending
on the value of ω ≥ 0. For ω = 0, the effective DE behaves
like an extra relativistic degree of freedom as w̄DE = 1

3 dur-
ing this period and hence requires special attention. On the
other hand, as it is discussed above, to obtain a viable model
(viz., which deviates from the standard �CDM model only
slightly), we expect ω � 10 and this places the plateau in a
value in the range 0 < w̄DE � 0.03. During this period, the
evolution of the anisotropy of the effective DE can approx-
imately be given by (52). We note that, although �wDE

increases as (1+z)
3
2 during this period, the EoS parameter of

the effective DE would not achieve a significant anisotropy
during this period even under the weakest observational con-
straints we give in Sect. 4.

At very/sufficiently large redshifts, viz., when the only
dominant contribution is from the expansion anisotropy in
(55), the ratio of the energy densities of the effective DE and
the expansion anisotropy freezes out;

ρDE ∼ (γ − 1)ρσ 2 and w̄DE ∼
3ω + 5

3ω + 3
. (65)

We note that, except the GR limit ω → ∞ (i.e., γ → 1), the
mean/volumetric EoS parameter of the effective DE yields
a second plateau placing in the range 1 � w̄DE � 5

3 for
ω ≥ 0, and the effective DE behaves like the expansion
anisotropy with a value of magnitude of ratio in the range
0 < |ρDE/ρσ 2 | � 1

2 but yields negative energy density since
the coefficient γ −1 is negative for ω ≥ 0. According to this
the energy density of the effective DE changes sign and we
calculate from (40) that this occurs at

z = zDE,pole ∼
(

γ

1 − γ

�m,0

�σ 2,0

)
ω+1
3ω+4

− 1, (66)

at which its EoS parameter exhibits a pole since at that red-
shift its energy density becomes zero. For z > zDE,pole,
�wDE asymptotically approaches to (53) with increasing
redshift and the EoS of the effective DE will be signif-
icantly anisotropic, viz., we have 1 < w̄DE ≤ 5

3 and
−2 ≤ �wDE < −1.2 for ω ≥ 0. However, for ω ≥ 0, this
interesting behavior is always irrelevant to the observable
Universe since it occurs when the Universe is strongly domi-
nated by the expansion anisotropy: Substituting z = zDE,pole

into
ρ

σ2

ρm
= �

σ2,0
�m,0

(1 + z)3+ 2
1+ω , which may be read off from

(42), we obtain

ρσ 2(z = zDE,pole)

ρm(z = zDE,pole)
=

(

γ

1 − γ

)
3ω+5
3ω+4

(

�m,0

�σ 2,0

)
1

3ω+4

. (67)

We note that, in a realistic cosmological setup, say, ω � 10
(even for ω ≥ 0) and �m,0 ≫ �σ 2,0, this ratio is obviously
much larger than unity, implying that zDE,pole occurs always
at a redshift at which the expansion anisotropy is already
dominant. If we consider the presence of radiation as well,
then we have the following: During the radiation domination
BD gravity mimics GR (as Jordan field ϕ freezes out) so that
the effective DE will be constant (i.e., mimics cosmological
constant) while the expansion anisotropy keeps on growing
as ρσ 2 ∝ (1 + z)6 as z increases. Eventually, the expansion
anisotropy will dominate over radiation and the dynamical
effective DE – viz., ρDE ∝ ρσ 2(γ − 1) as may be seen from
(40) by setting ρM = 0 = ρm – will show up again and
then its EoS parameter will respectively realize a pole and a
plateau that follows that pole as z increases. Thus, in a real-
istic setup, the pole and the second plateau features of the
effective DE occur in the expansion anisotropy dominated
universe that takes place before (in terms of time) the radia-
tion dominated universe and hence they are irrelevant to the
observable universe.

3.3.2 Modified expansion anisotropy

Almost all of the model dependent observational constraints
on the expansion anisotropy in the literature, e.g., [91–95],
consider GR+isotropic sources leading to the steep redshift
dependency of the energy density corresponding to the shear
scalar as ρσ 2 ∝ (1+z)6 and thereby give �σ 2,0 � 10−21. On
the other hand, the direct/model independent observational
constraints from, e.g., type Ia SNe observations are rather
weak, e.g., �σ 2 � 10−4 for z ∼ 0 [96,97]. Such large val-
ues may be possible provided that the redshift dependence of
ρσ 2 is modified properly (viz., is made modest), which may
be done, in principle, by either introducing an anisotropic
source, e.g., anisotropic DE, in GR or considering usual cos-
mological sources in modified theories of gravity such as BD
gravity that leads to an effective anisotropic source.

As we have shown in Sect. 3.1 that switching to the mas-
sive BD gravity (1) with ω ≥ 0 results in having more strin-
gent constraints on the expansion anisotropy [see (37) and
discussion that follows]. These constraints in fact can be
weakened for ω < −1 (since the expansion anisotropy in
this case yields flatter redshift dependency) and even vastly
for − 5

3 < ω < −1, which however would cost to large devi-
ations from GR, hence from �CDM model, such that in this
case we will have rapidly varying cosmological gravitational
coupling strength [see (24)] or, in the approach realized in
(39), to an effective DE significantly deviating from � [see
(40) along with (27)]. It may be interesting to discuss a bit
more on how the expansion anisotropy can be eased down in
case ω < −1 by considering (39) based on the approach that
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Fig. 1 Effective equation of state parameter corresponding to the
expansion anisotropy wσ 2 versus Brans–Dicke parameter ω. wσ 2

exhibits a pole at ω = −1, and wσ 2 → 1 as |ω| → ∞

can be described by (8). We see from (65) – or directly from
(26) – that the effective EoS parameter corresponding to the
expansion anisotropy, viz., shear scalar, is

wσ 2 = 1 +
2

3ω + 3
. (68)

We first note that it approaches Zeldovich fluid, i.e., wσ 2 →
1, at the GR limit |ω| → ∞ and, for ω ≥ 0 (finite), is in
the range 1 < wσ 2 ≤ 5

3 , which is stiffer than the Zeldovich
fluid. Zeldovich fluid yields the most rigid EoS parameter
(w = 1) compatible with the requirements of relativity theory
[144], which in turn implies that we can not have a minimally
interacting source whose energy density redshift dependence
is steeper than (1+ z)6 within GR, whereas we have it in BD
gravity from the expansion anisotropy as an effective source

provided that ω > −1 as can be seen from (27). We depict
wσ 2 versus ω in Fig. 1.

For ω ≤ − 4
3 , the EoS parameter spanning the range

−1 ≤ wσ 2 < 1, which is familiar from the conven-
tional cosmology: (i) ω = −2 (wσ 2 = 1

3 ), the expansion
anisotropy mimics radiation, viz., plays the role of an extra
relativistic species. (ii) ω = − 5

3 (wσ 2 = 0), it mimics
dust, viz., CDM. (iii) ω = − 3

2 –the scale invariant limit
– (wσ 2 = − 1

3 ), it mimics constant negative spatial cur-
vature (hyperboloid space). (iv) ω = − 4

3 (wσ 2 = −1),
it mimics � > 0. It might be interesting to remind here
that − 3

2 < ω < − 4
3 corresponds to the range in which the

universe exhibits accelerating expansion in the presence of
only pressureless matter (see footnote 4). The BD parame-
ter ω ∼ − 4

3 appears in d-branes string models [104,105]
and hence it is conceivable that such models would predict
σ 2 ∼ const. For − 4

3 < ω < −1, we have wσ 2 < −1, i.e.,
the expansion anisotropy mimics phantom sources imply-
ing that the expansion anisotropy decreases/increases with
increasing/decreasing redshift in contrast to the all other
cases. The case ω = −1 (the low energy effective string
action limit of BD gravity [104,105]) is interesting that

wσ 2 exhibits a pole, namely, limω → −1+ wσ 2 = +∞ and
limω → −1− wσ 2 = −∞, which imply that we must set
σ 2 = 0 in this case (at least in our solution). In relevance
with this, in the case of ω > −1 but ω ≈ −1, wσ 2 will be
extremely large, implying that in this case the presence of the
expansion anisotropy today or at any moment in the observ-
able Universe will require extreme fine tuning. Finally, for
ω = 0 – the lowest value we consider in this study – we have
ωσ 2 = 5

3 and for ω � 10, which, as we discussed above,
is required for small deviations from the �CDM model (by
keeping isotropic RW metric), we have 1 < wσ 2 � 1.06.
These imply that considering BD gravity with w � 10 rather
than GR as the law of gravity will additionally lead to small
modification in the evolution of the expansion anisotropy
(viz., a slightly steeper redshift dependency of the shear
scalar compared to the one in GR) in the anisotropic gen-
eralization of the �CDM model in contrast to DE models
that can be described by scalar field/s within GR.

4 Constraints from recent cosmological data

In this section we perform a parameter estimation and pro-
vide observational constraints on the free parameters of the
model: the pressureless matter density parameter today �m,0,
the baryon density parameter today �b,0h2, and the dimen-
sionless Hubble constant h as well as the two free parameters
ω and �σ 2,0 that account for the anisotropic BD extension

of the �CDM model. We consider H(z) given in (34) rather
than (39), since the former one contains radiation (viz., �r,0)
as well and can be safely used all the way to the recombination
redshift (covering last scattering surface), so that we could
include CMB data in our analysis. For the derived parameters
we present the ones relevant to the effective DE. We consider
(39), where the effective DE is defined in accordance with
the exact explicit solution in redshift given in Sect. 3 and the
approach described by (8). In this way, even though this solu-
tion ignores the presence of radiation, we could go further
and investigate the dynamics of the model under considera-
tion in terms of redshift for z < zeq (during which radiation is
negligible) analytically in the light of the observational con-
straints. We keep in mind that H(z) throughout this study
is averaged over the volumetric expansion rate of the Uni-
verse and hence the method we use constrains the expansion
anisotropy through its contribution to the average expansion
rate of the Universe (viz., the shear scalar σ 2, which con-

tributes to the H(z) directly via the term ρσ 2,0(1 + z)6+ 2
1+ω

and also indirectly via its effect on the ρDE as a result of BD
theory).

In order to perform the parameter space exploration, we
make use of a modified version of the simple and fast Markov
Chain Monte Carlo (MCMC) code that computes expan-
sion rates and distances from the Friedmann equation, named
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Table 1 Constraints on the
anisotropic Brans–Dicke
extension of the standard
�CDM model using the
combined data sets
PLK+BAO+SN+H . For
two-tailed distributions, the
results are given in 1σ and for
one-tailed distributions, the
results are given in 2σ . �CDM
column corresponds to GR limit
(Brans–Dicke gravity with
ω → ∞) and the shear scalar
σ 2 = 0 (isotropic). Parameters
and ranges of the uniform priors
assumed in our analysis and
derived parameters are labeled
with ∗

Parameter Anisotropic BD �CDM Priors

�m,0 0.3002(67) 0.3021(64) [0.05, 1.5]
�b,0h2 0.02241(16) 0.02244(15) [0.02, 0.025]

h 0.6848(65) 0.6817(49) [0.4, 1.0]
log10 ω > 1.69 [ω → +∞] [0, 6]

log10 �σ 2,0 < −8.48 [0] [−12, 0]
∗w̄DE,0 > −1.0044 [−1]
∗�wDE,0 < 4.23 × 10−7 [0]
∗zPDL 0.64839(58) –
∗ log10 zDE,pole 4.80(58) –
∗zeq 3368.62 ± 30.89 3359.45 ± 24.14
∗2ωM2 [10−66eV2] 4.48 ± 1.22 (�) 4.48 ± 1.25
∗M [10−34eV] < 1.51 –

−2� ln L −0.62 0 –

SimpleMC [21,145]. For an extended review of cosmolog-
ical parameter inference see [146]. The code uses a com-
pressed version of the Planck data (PLK), where the CMB is
treated as a “BAO experiment” at redshift z = 1090, mea-
suring the angular scale of the sound horizon at that time, a
recent analysis of Type Ia supernova (SN) data dubbed Joint
Light-curve Analysis (JLA) compressed into a piece-wise
linear function fit over 30 bins spaced evenly in log z, and
high-precision Baryon Acoustic Oscillation measurements
(BAO), from the comoving angular diameter distance only
(viz., growth rate measurement is not considered), the Hub-
ble distance and the volume averaged distance, at different
redshifts up to z = 2.36. For a more detailed description
about the datasets used see [21]. We also include, indepen-
dent of/separate from other data sets, a collection of currently
available data on H(z) obtained from cosmic chronometers
(H ) (see [143] and references therein). Table 1 displays the
parameters used throughout this paper along with the corre-
sponding flat priors; derived parameters labeled with ∗.

In the analysis, we assume radiation content by includ-
ing three neutrino species (Neff = 3.046) with minimum
allowed mass

∑

mν = 0.06 eV theoretically well deter-
mined within the standard model of particle physics and the
density parameter of radiation �r,0 = 2.469×10−5h−2(1+
0.2271Neff ), where dimensionless Hubble constant h =
H0/100 km s−1 Mpc−1 [147]. Throughout the analysis we
assume flat priors over our sampling parameters: �m,0 =
[0.05, 1.5], �b,0h2 = [0.02, 0.025] and h = [0.4, 1.0].
Whereas priors for the two parameters that characterize the
anisotropic BD extension of the standard �CDM model are
given by log10 ω = [0, 6] and log10 �σ 2,0 = [−12, 0].
The photon energy density today ργ,0 is not subject to
our analysis since it is well constrained, such that it has a

simple ργ = π2

15 T 4
CMB relation with the CMB monopole

temperature [148], which is very precisely measured to be

TCMB,0 = 2.7255±0.0006 K [149]. Table 1 summarizes the
observational constraints on the free parameters as well as the
derived parameters of the model under consideration using
the combined datasets PLK+BAO+SN+H ; and for compar-
ison those parameters used on the standard �CDM model.

Figure 2 summarizes the constraints on the parameters
that characterize the anisotropic BD extension to the stan-
dard �CDM model. Left panel of this figure displays 2D
marginalized posterior distributions on the BD parameter
ω (deviation from GR) and the density parameter corre-
sponding to the expansion anisotropy today �σ 2,0 (deviation
from isotropic expansion). We see from Table 1 that current
observations prefer small contributions from the expansion
anisotropy log10 �σ 2,0 < −8.48 (95% C.L.) with a large
BD parameter (small deviation from GR) log10 ω > 1.69
(95% C.L.), signaling that the anisotropic BD extension to
the standard �CDM model should be studied indeed as a
small correction in line with what we have been claiming
and basically doing so far. Right panel of Fig. 2 displays 3D
posterior distributions in the {w̄DE,0,�wDE,0, log10 ω} sub-
space: the average/volumetric EoS parameter of the effective
DE w̄DE,0 and the measure of anisotropy of its EoS parame-
ter �wDE,0 coloured code with log10 ω. The former two are
derived parameters that determine deviations of the effective
DE from � (w̄DE = −1 and �wDE = 0) today and are con-
trolled by ω. We notice that for large values ω (color coded
with red) we recover the �CDM case at the present time,
where �wDE,0 = wDE,y,0−wDE,x,0 → 0 and w̄DE,0 → −1,
as expected by our previous analysis. We would like to remind
here that in our observational analysis only positive values of
ω were allowed. The left panel of Fig. 3 shows that current
data impose upper bounds on the mass of the Jordan field
given by M < 1.51 × 10−34eV (95% C.L.). The correla-
tion observed on the parameters ω and M is an interesting
point to note. Even though both parameters have only one
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Fig. 2 (Left panel): 2D marginalized posterior distribution of the
parameters log10 �σ 2 and log10 ω that determine the extension from
the standard �CDM model. The 2D constraints are plotted with 1σ

and 2σ confidence contours. (Right panel): the 3D posterior distribu-
tion in the {w̄DE,0, �wDE,0, log10 ω} subspace, where the colour code
indicates the value of log10 ω using the colour bar

Fig. 3 (Left panel) 2D
marginalised posterior
distribution of the parameters
corresponding to the mass of the
Jordan field M and the
Brans–Dicke parameter log10 ω.
(Right panel) 1D constraints
corresponding to the redshift of
matter-radiation equality (zeq)
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tail constraints, the effective cosmological constant 2ωM2

–a component of the effective DE, see (31) and (40)– is well
limited by 2ωM2 = 4.48 ± 1.22 × 10−66eV2 and in agree-
ment with the current value of � = 4.48±1.25×10−66eV2,
see Table 1. The extra two parameters from the anisotropic
BD extension to the �CDM model may shift and relax some
of the constraints, as it is the case of �m,0 = 0.3002±0.0067,
and therefore as a consequence the earlier redshift at matter-
radiation equality zeq = 3368.62 ± 30.89, compared to the
�CDM model with zeq = 3359.45 ± 24.14 (see right panel
of Fig. 3).

We depict, in Fig. 4, the behaviour of the effective DE
(top and middle panels) as well as the evolution of its den-
sity parameter �DE = ρDE/3H2 (bottom panel) in red-
shift, according to the constraints obtained from observa-
tional analysis (see Sect. 3.3.1 for the features of the effec-
tive DE). Left panel of Fig. 4 displays the behaviors of w̄DE,
�wDE and �DE for redshifts up to z = 2. This panel was
drawn by taking random samples from the posterior distribu-
tion of the parameter-space and colour coded by its likelihood
(bluer colors represent regions of higher probability). Right
panel of Fig. 4 displays the extended behaviors of the same
functions; from redshift z = 1 to z = 106 for w̄DE and from
redshift z = 10 to z = 106 for �wDE and �DE. Though, note
that the extensions to the redshift values z ∼ zeq and larger

should be seen with a caution that these are obtained by mak-
ing use of the effective DE derived in Sect. 3.3.1 without con-
sidering the presence of radiation. In this panel we depict the
probability of a function normalized in each slice of constant
z, with colour scale in confidence interval values. The 1σ

and 2σ confidence intervals are plotted as black lines and red
lines correspond to the best-fit values found over the analysis.
At low redshifts, the upper-left panel shows that the cross-
ing of the PDL occurs at zPDL = 0.64839 ± 0.00058, just
as we concluded from the discussion that follows equation
(62). For redshift values z < zPDL, the effective DE exhibits
phantom behaviour w̄DE < −1 as may be seen from (56) or
(61) and for higher redshift values, z > zPDL, w̄DE > −1 as
may be seen from (64) and (65). Evolving DE with an EoS
parameter being below −1 at present, evolved from w > −1
in the past is named as quintom DE. We obtain the quin-
tom DE as the upper-left panel shows, whereas, the explicit
construction of quintom scenario is more difficult than other
dynamical DE models, due to a no-go theorem which for-
bids the EoS parameter of a single perfect fluid or a single
scalar field to cross the w = −1 boundary [43]. This property
is distinctive that single-scalar-field models with canonical
kinetic term are not allowed to satisfy, which also lead to
that the Hamiltonian is unbounded from below. Interestingly
this property is also achieved throughout some model inde-
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zeq

zeq

zeq

Fig. 4 The constraints on g(z) as a result of the data. These show the
posterior probability Pr(g|z): the probability of g as normalized in each
slice of constant z, with color scale in confidence interval values. The
1σ and 2σ confidence intervals are plotted as black lines and red lines
correspond to the best-fit values found over the analysis, while dotted

lines to the redshift of matter-radiation equality. (Top) w̄DE(z) at low
z values (left) and at high redshift values in log-scale (right). (Middle)
�wDE(z) at low z values (left) and at high redshift values in log-scale
(right). (Bottom) �DE(z) at low z values (left) and at high redshift values
in log-scale (right)

pendent analyses [23,29,30]. The middle left panel shows
that, as can be deduced from (51) and (52), the effective
DE becomes slightly more anisotropic with the increasing
redshift, viz., the anisotropy of the EoS parameter �wDE

increases only about an order of magnitude from its current
value �wDE,0 � 10−7 (see Table 1) to the one at z = 2.
Looking at the right panel we see that after few redshifts,
as pressureless matter becomes dominant (see in the bot-
tom panel that �DE ∼ 0.1 for z ∼ 1.75 and �DE ∼ 0 for
z � 10), w̄DE starts to noticeably climb up and settles in
the first plateau of w̄DE ∼ 0 (see (64) and paragraph cover-
ing it) lying between z ∼ 50 and z ∼ zeq (viz., through-
out the pressureless matter dominated epoch). There is a

period in this plateau during which w̄DE > 0 [see (64)], viz.,
�DE increases (i.e., the energy density of the effective DE
increases faster than of the pressureless matter) with increas-
ing redshift. However, as can be seen in the bottom right
panel, �DE during this period can never grow up to consid-
erable values, viz., remains less than a percent at 1σ C.L. and
few percents at 2σ C.L.. The anisotropy of the effective DE
keeps on increasing with increasing redshift approximately
in accordance with (52) during this plateau, but it remains
positive definite and insignificant (e.g., �wDE � 0.07 at
photon decoupling redshift z ∼ 1100) until the effective DE
starts to leave this plateau as the expansion anisotropy starts
to become dominant. We see that w̄DE exhibits a pole at
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log10 zDE,pole = 4.80 ± 0.58 then settles in a new plateau of
w̄DE ∼ 1 starting at z ∼ 105 during which �wDE exhibits a
similar behavior and settles down at �wDE ∼ −1.2, i.e., the
effective DE eventually becomes highly anisotropic. How-
ever, note that this last stage of the effective DE starting just
after z ∼ zeq is basically an artifact of omitting radiation
in Sect. 3.3.1 to have explicit expression of ρDE(z), strickly
speaking, is in fact unlikely to be realized at an observation-
ally relevant past of the Universe (see the discussion starting
with equation (65) in Sect. 3.3.1).

Instead, in a realistic setup, the radiation domination
should start at z = zeq and be maintained all the way to
the redshift values at which BBN took place z ∼ zBBN.
During which the Jordan field is constant and hence, except
an altered cosmological gravitational coupling strength, the
Universe evolves exactly the same as in GR (see Sect. 3.1),
such that the effective DE mimics � (viz., w̄DE = −1 and
�wDE = 0 implying that it is isotropic and maintains its
energy density value at z ∼ zeq for z > zeq) and expansion
anisotropy increases as ∝ (1 + z)6. However, although the
data constrain zDE,pole to be about 1-2 orders of magnitude
larger than zeq, we see in Fig. 4 that, even within the 68%
C.L. error region, the abrupt behaviour of the effective DE
can start at redshift values less than zeq, which implies that the
expansion anisotropy in this case is too large that it will never
allow radiation to be dominant in the Universe, though over
pressureless matter. Moreover, even there is a region where
abrupt behaviour of the effective DE starts at redshift values
larger than zeq, using the constraint on �σ 2,0 from Table 1 we
calculate that the expansion anisotropy dominates over radi-
ation at redshift values smaller than zBBN, i.e., it will spoil
the BBN processes. All these imply that the observational
constraint method we performed here is able to put strin-
gent enough constraints on neither �σ 2,0 nor ω. These two
parameters are not independent and hence we should further
investigate the upper boundary on �σ 2,0 and lower bound-
ary on ω, of course, particularly, by using the data providing
information about the Universe at z � zeq, such as the peak
of the matter-power spectrum relevant to z = zeq and BBN
relevant to z ∼ 108.

5 Some further observational consequences and
discussions

5.1 Variation of cosmological gravitational coupling
strength

The normalized rate of change of the cosmological gravi-
tational coupling strength in our exact solution (neglecting
radiation), from (24), reads

Ġ

G
= −

H

1 + ω
, (69)

which is negative definite considering ω ≥ 0 in this study,
provided that the Universe is expanding (H > 0). The con-
straints we found on ω and H0 (see Table 1) predict

∣

∣

∣

∣

Ġ

G

∣

∣

∣

∣

< 1.092 × 10−12 yr−1 (68% C.L.) for z = 0, (70)

similar to those given for z ∼ 0 from various physical sys-
tems in which gravity is not negligible, such as the motion of
the bodies of the Solar System, astrophysical and cosmologi-
cal systems (see [150] for a comprehensive review). Assum-
ing this relation (69) holds all the way to matter-radiation
equality, we obtain |Ġ/G| � 10−8 yr−1 for z ∼ zeq. On the
other hand –given that ϕ = const. (and hence G = const.) is
an attractor solution when radiation is dominant– the redshift
dependence of G becomes flatter w.r.t. G ∝ (1 + z)

1
1+ω [see

(24)] as the radiation becomes more significant w.r.t. pres-
sureless matter and thereby |Ġ/G| � 10−8 yr−1 for z ∼ zeq

will never be achieved, but instead G will become almost
constant for z ∼ zeq and remain so for z > zeq as long as
radiation continues to be dominant. Yet, in accordance with
our detailed discussion in Sect. 3.1, (69) is mostly valid all

the way to zeq and leads to G1 ∼ G0(1 + zeq)
1

1+ω [see (33)].
Accordingly, we find that the constraints from the data pre-
dict the upper bound on the relative change in the strength
of the cosmological gravitational coupling at z ∼ zeq w.r.t.
its present time value as �G

G0
|z∼zeq = 0.138 (0.175) 68%

C.L. (95% C.L.). This, in turn, implies that the strength of
the cosmological gravitational coupling during the radiation
dominance will be a constant G1 satisfying the following
constraints:

G0 ≤ G1 � 1.138 G0 (1.175 G0) 68% C.L. (95% C.L.)

(71)

for z � zeq. These constraints, of course, are valid also for the
epoch of primordial nucleosynthesis that takes place when
zBBN ∼ 3 × 108, provided that the expansion anisotropy is
still insignificant at that redshift. We finally note that these
constraints are similar to those obtained from CMB and BBN
(see Ref. [150] for a review on CMB and BBN constraints
on �G/G0).

5.2 Matter-radiation transition

We find using (36) that, along with the constraints on
the BD parameter and the radiation density parameter, the
upper bound on the expansion anisotropy today, �σ 2,0 =
10−8.48 (see Table 1), leads to a lower bound on the expan-
sion anisotropy-radiation equality (�σ 2 = �r) redshift as
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zeq,σ 2,r ∼ 103, which is obviously not acceptable in a
viable cosmological model since it implies that the expansion
anisotropy dominates the Universe even at redshift values
less than the matter-radiation equality (�m = �r) redshift
zeq ∼ 3369 (see Table 1). Indeed, using the results given
in Table 1, we see that the Universe could be dominated by

the expansion anisotropy as
�

σ2,eq
�r,eq+�m,eq

=
�

σ2,eq
2�m,eq

� 102 at
the matter-radiation equality, and thereby conclude that the
upper bound on �σ 2,0 given above should be further reduced
to values guaranteeing that the Universe is radiation and mat-
ter dominated at the matter-radiation equality. Additionally,
transition from radiation to matter domination is one of the
most important epochs in the history of the Universe. This
transition alters the growth rate of density perturbations: dur-
ing the radiation era perturbations well inside the horizon
are nearly frozen but once matter domination commences,
perturbations on all length scales are able to grow by gravi-
tational instability and therefore it sets the maximum of the
matter power spectrum in GR as well as BD [138]. Namely,
it determines the wavenumber, keq, of a mode that enters the
horizon, Heqaeq, at the matter-radiation transition [138,151].

In our model, keq = Heqaeq = Heq
(1+zeq)

can be estimated

analytically by assuming H(z) given in (34) holds all the way
to matter-radiation equality. At this point, both the radiation
and matter contribute equally to the total energy density. This
gives us opportunity to reduce the constraints on �σ 2,0. To
do so, using (34), we write

keq = H0
[

�M,0(1 + zeq)
−2 + 2�m,0(1 + zeq)

1+ 1
1+ω

+ �σ 2,0(1 + zeq)
4+ 2

1+ω
]1/2

, (72)

where we use a0 = a(z = 0) = 1, and �M,0 = 1 − �m,0 −
�r,0 − �σ 2,0. We note that, for ω � 50 and zeq ∼ 3369 (see
Table 1), the contribution to keq from the term with �M,0

is negligible, keq is by far more sensitive to �σ 2,0 and, for
a given set of values of the parameters, keq increases with
increasing �σ 2,0 and decreases with increasing ω (viz., as
the BD gravity approaches to GR).

We obtain keq = 0.01034 ± 0.00012 for �σ 2,0 = 0
(isotropic expansion), which is slightly larger than, but yet
consistent with the isotropic �CDM model value keq =
0.01024 ± 0.00007. Accordingly, switching to the massive
BD (1) leads only to a slight increase in keq, as expected
from the constraint ω � 50 (see Table 1). It may be
useful to note that these two values are consistent with
the recent Planck release [12] value keq = 0.010339 ±
0.000063 (TT,TE,EE+lowE+lensing+BAO) obtained for the
base �CDM model. On the other hand, we see that the expan-
sion anisotropy, although negligible today, shifts keq to unre-
alistically large values, viz., we obtain keq = 0.15159 ±
0.00327 for the upper bound �σ 2,0 = 10−8.48 (see Table 1).

0 10−14 10−13 10−12

Ω
σ

2,0

0.0102

0.0103

0.0104

0.0105

0.0106

0.0107

0.0108

keq

Fig. 5 The wavenumber (keq) of a mode that enters the horizon
(Heqaeq) at matter-radiation transition (zeq), viz., the maximum of mat-
ter power spectrum, for some fixed values of the expansion anisotropy
today (�σ 2,0). Anisotropic BD extension of the �CDM model, is
labeled by green color, the standard base �CDM (in this study) is
labeled by blue color, while the recent Planck release value for the
standard base �CDM model is shown with red color

We then work out the values of �σ 2,0 that can shift keq to
reasonable values. See Fig. 5 showing explicitly keq with
respect to �σ 2,0 with errors to make a simple comparison
between the models. We obtain keq = 0.02824 ± 0.00057
by setting �σ 2,0 = 10−10, and keq = 0.01067 ± 0.00013 by
setting �σ 2,0 = 10−12, which are still inconsistent with the
keq values given for the isotropic �CDM model. But then, we
obtain keq = 0.01037 ± 0.00012 by setting �σ 2,0 = 10−13,
and keq = 0.01034 ± 0.00012 by setting �σ 2,0 = 10−14,
where we notice that only the last decimals are different. We
observe further that keq does not change for �σ 2,0 � 10−14

anymore and remains consistent with the isotropic �CDM
model values obtained in this study as well as recent Planck
release, which in turn implies that we cannot distinguish
�σ 2,0 � 10−14 from �σ 2,0 = 0 by means of keq. We finally
calculate using �σ 2,0 ∼ 10−14 that the Universe is indeed
dominated by matter+radiation at matter-radiation equality,

viz., we now have
�

σ2,eq
2�m,eq

∼ 10−3. Thus, by means of matter-
radiation transition, we conclude

�σ 2,0 � 10−14 along with ω � 50, (73)

where the upper bound on the expansion anisotropy is
improved by reducing about six orders of magnitude w.r.t.
the ones given in Table 1.

5.3 Big Bang Nucleosynthesis

Big Bang Nucleosynthesis provides a probe of the dynam-
ics of the early Universe, which in turn gives us opportu-
nity to further investigate the constraints on the anisotropic
BD extension of the standard �CDM model. Such that, in
the standard-BBN (SBBN) –assuming the standard model
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of particle physics is valid and the expansion of the Uni-
verse is governed by GR– the processes relevant to BBN
take place when the temperature ranges from T ∼ 1 MeV to
T ∼ 0.1 MeV and the age of the Universe from t ∼ 1 s to
t ∼ 3 min corresponding to redshift z ∼ 3 × 108 at which
the Universe is radiation dominated. These, of course, should
not be altered significantly in a viable cosmological model.
Accordingly, we first looked for the condition of radiation
dominance at z ∼ 3 × 108 (implying zeq,σ 2,r � 3 × 108) by
using the constraints on the relevant parameters from Table 1
and found out that �σ 2,0 � 10−21 for ω � 50 in line with our
preliminary investigation in Sect. 3.1 [cf., see Eq. (37)]. On
the other hand, zeq,σ 2,r corresponds to the redshift at which
ρσ 2/ρr = 1, but as may be seen from the investigations in
[91,152] the expansion anisotropy does not lead to a consid-
erable deviation from the SBBN for the ρσ 2/ρr ratio up to a
few percents, viz.,

ρσ 2(z = zBBN)

ρr(z = zBBN)
� 10−2. (74)

Hence, considering this condition, we can obtain a new con-
straint on �σ 2,0 stronger than the one given in (37) obtained
from the condition zeq,σ 2,r � 3 × 108. To work this out, we
first write, from (35),

ρσ 2

ρr
∼

ρσ 2,0(1 + zeq)
1

1+ω (1 + z)6

ρr,0(1 + z)4

=
�σ 2,0

�m,0
(1 + zeq)

1
1+ω

+1(1 + z)2, (75)

where we also used �m,0
�r,0

= ρm,0
ρr,0

= 1 + zeq. Then, we use
in this equation the condition (74) along with the constraints
on �m,0 and zeq given in Table 1 by setting z = 3 × 108 and
reach the following constraint

�σ 2,0 � 10−23 along with ω � 50. (76)

We note that, here, the contribution from the effective
anisotropic pressure of the Jordan field during z < zeq, which

is encoded in the term (1+ zeq)
1

1+ω in (75), is not significant,
such that it leads to only fifteen percent smaller upper bound

value for �σ 2,0, viz., (1 + zeq)
− 1

1+ω � 10−0.07 = 0.85 for
ω � 50. Thus, provided that the condition on the expan-
sion anisotropy today given in (76) is satisfied, the expan-
sion anisotropy will not have considerable effect on BBN,
but the altered strength of the cosmological gravitation cou-
pling depending on the BD parameter ω will, as we shall
investigate in what follows.

Provided that the condition (76) is satisfied, the Universe
is radiation dominated during the BBN epoch and hence, as

it is discussed in Sect. 3.1, we have a ∝ t
1
2 as in the SBBN

based on GR except that the strength of the cosmological
gravitational coupling during this epoch, G1, can be slightly
larger than its present time value, G0, in our model based on
BD gravity, see (71) and (33). Consequently, in accordance
with (33), we can write the expansion rate of the Universe
during the radiation dominance, hence during the BBN as
well, as follows:

H2 =
G1

G0
H2

SBBN with H2
SBBN =

8πG0

3

π2

30
g∗T 4, (77)

where T is the temperature and g∗(T ) is the effective number
of degrees of freedom counting the number of relativistic
particle species determining the energy density in radiation

as ρr = π2

30 g∗T 4. According to this, BD gravity can lead to a
larger expansion rate for a given temperature since G1 > G0

is allowed, see (71). We note that this is analogue of altering
the expansion rate of the Universe during BBN by modifying
g∗ (for instance, by introducing an extra massless degree of
freedom such as sterile neutrino) within GR as

H2 =
g̃∗
g∗

H2
SBBN with H2

SBBN =
8πG0

3

π2

30
g∗T 4. (78)

It is clear from (77) and (78) that we can set the following
relation g̃∗ = G1

G0
g∗ implying that the altered G, i.e., G1,

in the BD gravity can equivalently be treated as modified
g∗, namely, g̃∗, in GR. The effect of altered expansion rate
of the Universe during BBN due to the modified g∗ within
GR is well investigated in the literature [153–155] and is

parametrized in terms of S ≡ H
HSBBN

=
√

g̃∗
g∗

, which can be

adopted as S =
√

G1
G0

for our work within BD gravity by
preserving g∗ as in the SBBN. Such that, deviations from
S = 1 (SBBN) will modify the neutron abundance and the
time available for nuclear production/destruction, changing
the BBN-predicted primordial element abundances. In gen-
eral, it is necessary to access to a BBN code to study the
BBN-predicted primordial abundances (viz., mass fractions)
as functions of S and η10 (the number density of baryons
nb to the number density of CMB photons nγ defined as
η10 = 1010nb/nγ ). On the other hand, luckily, they have
been identified (e.g., in [153–155]) by extremely simple but
quite accurate analytic fits over a limited range in these vari-
ables as 5.5 � η10 � 6.5 and 0.85 � S � 1.15 and, for 4He
(helium) and D (deuterium) these are10 [155]

10 We consider Yp and yDP equations given in Ref. [155], which were
updated with respect to the ones given in [153,154] in accordance with,
e.g, most importantly, the change in the recommended neutron lifetime
from τn = 885.7 ± 0.8 s to τn = 881.5 ± 1.5 s by Particle Data Group
in 2011 [156]. To adopt these equations from [155] for our work, as
we assume the standard particle physics is valid, we set ξ = 0 in the
original equations given in [155], where ξ is a parameter to quantify the
lepton asymmetry in non-standard particle physics.
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Yp = 0.2381 ± 0.0006+0.0016[η10+100(S−1)], (79)

yDP = 45.7(1 ± 0.06)[η10 − 6(S − 1)]−1.6, (80)

where, Yp ≡ nHe
nb

and yDP ≡ 105 nD
nH

are 4He and D mass frac-

tions, respectively, and here in our study, η10 = 273.9 �b,0h2

and S =
√

G1
G0

≃ (1 + zeq)
1

2(1+ω) , see (33). We see that

η10 ≈ 6.1 for both models from the constraints on �b,0h2

given in Table 1 and find that the cosmological data we con-
sidered constrain the altered expansion rate of the Universe
for z > zeq, hence during BBN, as 1 < S < 1.0665 at
68% C.L. and 1 < S < 1.0839 at 95% C.L.. These are well
inside the validity intervals of (79) and (80) and hence they
can be safely utilized here for obtaining the BBN-predicted
Yp and yDP values, which in turn can be used for a further
investigation of the constraint on the BD parameter ω.

In the standard �CDM model [S = 1 (GR), �σ 2,0 = 0
and accommodating SBBN], considering the constraint on
�b,0h2 given in Table 1, we obtain η10 = 6.1469 ± 0.0404
leading, from (79) and (80), to

Y SBBN
P = 0.24793 ± 0.00065 (68% C.L.), (81)

ySBBN
DP = 2.4999 ± 0.1642 (68% C.L.). (82)

On the other hand, in the BD extension of the standard
�CDM model, by assuming �σ 2,0 � 10−23 [viz., expansion
anisotropy is negligible during BBN, see (76)] and consid-
ering the constraints on �b,0h2, ω and zeq given in Table 1,
we obtain η10 = 6.1373 ± 0.0448 and 1 < S < 1.0665 at
68% C.L. leading, from (79) and (80), to

Yp = 0.24898 ± 0.00199 (68% C.L.), (83)

yDP = 2.5338 ± 0.1726 (68% C.L.). (84)

Observations of helium and hydrogen recombination lines
from metal-poor extragalactic H II regions provide an inde-
pendent method (viz., a direct measurement) for determin-
ing the primordial helium abundance and a latest and widely
accepted estimate comes from the data compilations of [157]
giving Yp = 0.2449 ± 0.0040 (68 % C.L.). Similarly, the
most recent estimate of the primordial deuterium abundance
comes from the best seven measurements in metal-poor
damped Lyman-α systems studied in [158] giving yDP =
2.527 ± 0.030 (68 % C.L.). We note that the BBN-predicted
Yp and yDP for both the �CDM model (81) and its anisotropic
BD extension (83) obtained by using the cosmological data,
led to consistent values with independent observational esti-
mates. We notice, however, slightly larger mean values in
the case of BD gravity, as suggested by (79) and (80) when
S > 1 (assuming η10 is fixed). We give a summary of our
findings by depicting the 2D marginalized posterior distri-
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Fig. 6 The 2D constraints on the BBN predicted 4He (helium) mass
fraction Yp (top panel) and D (deuterium) yDP mass fraction (bottom
panel) in BD gravity are plotted with 1σ (dark green) and 2σ (light
green) confidence contours. Grey bands are for the SBBN-predicted
mass fractions with 1σ . Red bands are independent observational esti-
mates with 1σ from [157,158]

bution of the BBN-predicted YP via (79)/yDP via (80) and ω

in the top panel/bottom panel of Fig. 6. In which, for a com-
parison, we depict also the bands of the SBBN-predicted YP

via (79)/yDP via (80) for the �CDM model accommodating
SBBN (S = 1) and of their independent observational esti-
mates given in [157,158]. We note that there is an increasing
anti-correlation between YP and ω with decreasing ω as it
approaches its lower bound, whereas for large values of ω

the YP − ω contour at 68% C.L. (dark green) approaches
the band of the SBNN-predicted YP at 68% C.L. (grey) as it
should be. Besides these, more importantly, we see that the
YP − ω contour at 68% C.L. (dark green) stays above the
band of the independent observational estimate band (red)
for ω � 250, namely, its consistency with the independent
observational estimate of Yp = 0.2449 ± 0.0040 from [157]
requires ω � 250 at 68% C.L. providing us an improved
constraint on the BD parameter ω. We see that the BBN-
predicted yDP via (80) is insensitive to ω, yDP − ω con-
tour at 68% C.L. (dark green) already covers the indepen-
dent observational estimate band (red) for ω � 250 (the
improved constraint from our YP investigation) but is much
wider than it (due to the relatively large internal error in (80),
viz., yDP ∝ 1 ± 0.06), and yDP − ω contour for BD grav-
ity (dark green) approaches the SBBN-predicted yDP band
at 68% C.L. (grey) for large ω values as it should be. These
show that we are not able to deduce a new constraint on the
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BD parameter ω by comparing the BBN-predicted value of
yDP via (80) with its independent observational estimate.

Thus, by means of the BBN, we reach the most stringent
constraints on�σ 2,0 andω, the two free parameters that deter-
mine the anisotropic BD extension to the standard �CDM
model, as follows;

�σ 2,0 � 10−23 and ω � 250. (85)

Finally, considering these improved constraints, we find
that the contribution to this constraint of �σ 2,0 from the
anisotropy of the effective pressure of the Jordan field dur-

ing z < zeq, which is encoded in the term (1 + zeq)
1

1+ω

in (75), is quite insignificant, such that, it leads to only
a few percent smaller upper bound value for �σ 2,0, viz.,

(1 + zeq)
− 1

1+ω � 10−0.01 = 0.977 for ω � 250.

6 Conclusions

We have carried out an explicit detailed theoretical and
observational investigation of an anisotropic massive Brans–
Dicke (BD) gravity extension of the standard �CDM model,
wherein the extension is characterized by the two additional
degrees of freedom: the so called BD parameter ω and the
present day value of the density parameter corresponding
to the shear scalar (a measure of the expansion anisotropy),
�σ 2,0. The role of the cosmological constant � is taken over
by the Jordan field potential of the form U (ϕ) = 1

2 M2ϕ2 with
M being the bare mass of the field. We have considered the
LRS Bianchi type I metric, which generalizes the spatially
flat RW metric simply by allowing a different scale factor
along one of the three orthogonal axes, while preserving the
spatial homogeneity and flatness, and the isotropic spatial
curvature.11 We have solved the field equations analytically
and obtained the average Hubble parameter, H(z), explic-
itly by extending the method developed in [100]; described
the anisotropic effective DE in accordance with the way of
defining effective source given in [45,46], and consistently
included the radiation into the model.

The BD parameter ω, being the measure of the deviation
from GR (|ω| → ∞), by alone characterizes the dynamical
behaviour of the effective DE as well as the redshift depen-
dency of the expansion anisotropy. These two affect each
other depending on ω, such that the shear scalar contributes

11 In more complicated anisotropic spacetimes, the anisotropic spatial
curvature contributes to the shear propagation equation and hence to the
redshift dependency of the shear scalar. For instance, the most general
spatially flat anisotropic spacetimes are of Bianchi type VII0, which,
in addition to the simple expansion-rate anisotropies, yield anisotropic
spatial curvature that mimics traceless anisotropic fluid [48].

to the dynamics of the effective DE, and its anisotropic stress
controls the dynamics of the shear scalar, in particular devi-
ations from its usual form σ 2 ∝ (1 + z)6 in GR, see H(z)

in (34). We planned the current study as an extension in the
sense of a correction to the standard �CDM model, so we
have mainly confined our investigations to small deviations
from this model via sufficiently small �σ 2,0 and large ω val-
ues. We have shown through some preliminary cosmologi-
cal discussions that |ω| � 10 (roughly) cannot be called as
a small deviation, yet, for completeness we have extended
our investigations to non-negative values of ω. Indeed, con-
sidering the combined data sets PLK+BAO+SN+H , we have
obtained ω � 50, M < 1.51×10−34eV and �σ 2,0 � 10−8.48

(�σ 2,0 � 10−14, when matter-radiation equality is consid-
ered).12 Then by means of BBN, we have improved these
constraints to ω � 250 (in particular, from the compari-
son of the helium abundance prediction of the model with
the direct measurements) and �σ 2,0 � 10−23. We have also
found that the contribution of the anisotropy of the effec-
tive DE (viz., �wDE,0 < 4.23 × 10−7) to this constraint
on �σ 2,0 is insignificant, namely, led to only a few percent
smaller (stronger) upper bound value.13

All these have led us to conclude that, with the obser-
vations relevant to the dynamics of the Universe, the sim-
plest anisotropic massive BD gravity extension of the stan-
dard �CDM model presents no significant deviations from
it all the way to the BBN. The strongest cosmological con-
straints on ω present in the literature, e.g., ω � 890 [116],
would obviously just strengthen this conclusion. Moreover,
we should further consider the strongest local constraint
ω > 40000 [114] as well since the constraint M < 1.51 ×
10−34 eV obtained here for the mass of the Jordan field leads
to no relaxation on it [115]. This in turn implies that, against
the local constraints, the cosmological features that arise
from replacing GR by massive BD (such as the modified
expansion anisotropy due to the anisotropic effective DE)
are not significantly sensitive to the current cosmological
observations. In other words, in view of the local constraints
on ω, the simplest anisotropic massive BD gravity extension
of the standard �CDM model cannot be distinguished from

12 We make use of a modified version of the simple and fast MCMC
code that computes expansion rates and distances from the Friedmann
equation, named SimpleMC [21,145]. The method we use constrains the
expansion anisotropy through its contribution to the average expansion
rate of the Universe.
13 It can be seen from H(z) given in (34) that the sufficiently large neg-
ative ω values also lead to small deviations from �CDM, but in this case
we have slightly flatter redshift dependence of the expansion anisotropy,
which in turn can relax the constraint on �σ 2,0 at few percents level
compared to the one we have obtained along with large positive ω val-
ues. Nevertheless, for such large negative values of ω, being less than
the scale invariant limit − 3

2 , one also should cope with stability issues.
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its simplest GR based anisotropic extension [95] when we
consider the data from cosmological observations.14

It is conceivable that our findings, when we consider only
the observations relevant to the background dynamics of
the Universe, are representative for the ones that would be
obtained in the more general extensions, namely, through a
gravity theory more general than the massive BD and there-
fore can evade the local constraints. For instance, promot-
ing ω to be some functions of ϕ, the observations from the
Cassini spacecraft place upon strong constraint on ω as in
the original BD theory. This constraint, however, now only
applies to the local value of ω(ϕ), i.e., of the present day
value of ϕ in the Solar System. Similarly, it is possible that
ω has spatial variation, so that, for instance, it could be con-
strained to be ω > 40000 locally, but could be in line with
ω ∼ 102 at cosmological scales [159,160]. See, for instance,
[37] and references therein for a further reading on such grav-
ity theories closely related to the BD theory, of which the
Horndeski/Galileon [124–126] theories are the most popu-
lar ones. In the anisotropic extensions through such gravity
theories, however, one should deal with more complicated
field equations, those may not be solved analytically and lead
to the explicit expression of H(z), and hence the solutions
and findings, presented in this work, are useful as they may
be considered as the good approximations to such construc-
tions. Consequently, the theoretical investigations we car-
ried out here are, in general, instructive for the anisotropic
extensions of the standard �CDM model replacing GR by
a modified theory of gravity approximating massive BD at
cosmological scales. When the observational constraints are
considered as well, our findings against the cosmological
constraints (the local constraints) with ω � 102 (ω � 40000)
are instructive for the extensions through those gravity the-
ories that can (cannot) evade local constraints. Yet, this also
implies that the lesson learned from this study based on the
massive BD would approximately be valid for such more
general constructions, namely, many interesting features of
such anisotropic extensions of the �CDM model that do not
exist within its simple GR based anisotropic extension, would
remain insignificant when the model is constrained by the
observations.

We note that, in fact, these features become quite signifi-
cant for |ω| ∼ O(1), which, interestingly, is in principle the
natural order of magnitude for the BD parameter (as, e.g.,
ω = −1 appears in the low energy limit of string theories).
This by alone, makes it quite interesting, at least theoreti-
cally, to further study this region in spite of that, as we have

14 For example, the deviation of the effective EoS parameter corre-
sponding to the expansion anisotropy from wσ 2 = 1 (corresponding to
the GR limit) becomes just ∼ 10−5 for ω = 40000, whilst it is already
very small, viz., ∼ 10−3, for the cosmological lower bound ω ∼ 250
(and ω ∼ 890).

discussed above, it implies large deviations from the standard
�CDM dynamics, and hence is not expected to be consistent
with the real Universe. Such a study, however, is beyond the
scope of the current paper, but yet, here, we would like to
make a couple of relevant comments. In case of small neg-
ative values of ω, say, ω ∼ −1 but larger than the scale
invariant limit − 3

2 (below which stability issues appear) the
model exhibits several critical points that complicates the
investigation in this region. So it is necessary to carry out
several separate analyses within this small region. Mean-
while, this region is distinguished that it is relevant to string
theories, namely, ω = −1 corresponds to the low energy
effective string action and ω ∼ −1 appears in d-brane con-
structions [102–105]. For these reasons in fact, although we
have devoted the current work to non-negative ω values, we
carried out a discussion in Sect. 3.3.2 showing how dramat-
ically the redshift dependence of the expansion anisotropy
can alter when ω ∼ −1. For instance, for ω = − 4

3 , expan-
sion anisotropy becomes non-dynamical (mimicking �) and
for ω = −1, expansion anisotropy should be set to zero. The
region − 3

2 < ω < − 4
3 is also interesting that, in the presence

of only dust (without � or the mass of Jordan field), it is the
region of BD theory leading to accelerated expansion of the
Universe, and we notice that the expansion anisotropy also
contributes to this acceleration since it also behaves like DE
in this region. We do not know, so far, a concrete and suc-
cessful mechanism making such small values (negative or
positive) of ω consistent with local experiments and cosmo-
logical observations. Yet, involving extra spatial dimensions
may be good place for looking for such possibilities as it
was shown that it is possible to make BD theory (massive or
massless) consistent with the gravitational tests (including
solar system tests) for |ω| = O(1) in the presence of extra
dimensions [127]. Noticing the presence of extra dimensions
as part of string theories and the dynamical extra dimensions
(internal space) contribute to the evolution of the four dimen-
sional anisotropic spacetime like an anisotropic stress in a
similar way that the Jordan field does in BD theory make
this option more appealing and interesting [161–165]. This
shows one of the many possibilities of rich behaviors which
could be worthwhile to investigate in future studies on the
extensions of the standard �CDM model wherein the expan-
sion anisotropy exhibits non-trivial behaviors that may have
interesting cosmological consequences.

A more rigorous observational investigation of the model
may be another direction to follow. We have studied the
observational constraints on the parameters of the model
by considering the background dynamics of the Universe
through the evolution of the comoving volume scale factor.
These constraints can be improved when we consider the per-
turbation sector – as in [116–118] providing the most strin-
gent cosmological constraints on ω– along with, for instance,
the full Planck data – as in [93,94] providing constraints
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on the anisotropic expansion on the top of the �CDM at a
level close to the ones from BBN by considering the CMB
radiation temperature and polarization data-. Such a further
observational investigation of the model requires consider-
able amount of work beyond the aim of the current paper, as it
is necessary to study perturbations on the anisotropic back-
ground in the presence of an effective anisotropic source.
This would strengthen the constraints on the parameters of
the model, but would probably not change our conclusion
that the model exhibits no significant deviations from the
standard �CDM model all the way to the BBN. Yet, we can-
not be sure about that unless we undertake this work in future
and see the results.
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