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Anisotropic Mean Shift Based Fuzzy C-Means
Segmentation of Dermoscopy Images

Huiyu Zhou, Gerald Schaefer, Member, IEEE, Abdul H. Sadka, Senior Member, IEEE, and
M. Emre Celebi, Member, IEEE

Abstract—Image segmentation is an important task in analysing
dermoscopy images as the extraction of the borders of skin lesions
provides important cues for accurate diagnosis. One family of seg-
mentation algorithms is based on the idea of clustering pixels with
similar characteristics. Fuzzy c-means has been shown to work
well for clustering based segmentation, however due to its iterative
nature this approach has excessive computational requirements.
In this paper, we introduce a new mean shift based fuzzy c-means
algorithm that requires less computational time than previous
techniques while providing good segmentation results. The pro-
posed segmentation method incorporates a mean field term within
the standard fuzzy c-means objective function. Since mean shift
can quickly and reliably find cluster centers, the entire strategy is
capable of effectively detecting regions within an image. Exper-
imental results on a large dataset of diverse dermoscopy images
demonstrate that the presented method accurately and efficiently
detects the borders of skin lesions.

Index Terms—Dermoscopy, fuzzy c-means, image segmentation,
mean shift, melanoma, skin cancer.

I. INTRODUCTION

M
ALIGNANT melanoma, the most deadly form of skin

cancer, is one of the most rapidly increasing cancers in

the world, with an estimated incidence of 62 480 and an esti-

mated total of 8420 deaths in the United States in 2008 alone

[1]. Early diagnosis is particularly important since melanoma

can be cured with a simple excision if detected early.

Dermoscopy, one of the major tools for the diagnosis of

melanoma, is a noninvasive skin imaging technique that in-

volves optical magnification which makes subsurface structures

more readily visible compared to conventional clincal images

[2]. This in turn reduces screening errors and provides greater

differentiation between difficult lesions such as pigmented

Spitz nevi and small, clinically equivocal lesions [3]. How-

ever, it has also been demonstrated that dermoscopy might
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lower the diagnostic accuracy in the hands of inexperienced

dermatologists [4]. Therefore, in order to minimize diagnostic

errors resulting from the difficulty and subjectivity of visual

interpretation, the development of computerized image analysis

techniques is of paramount importance.

Automatic border detection of lesions is often the first step in

the automated or semi-automated analysis of dermoscopy im-

ages and is crucial for accurate diagnosis. Image segmentation

can be defined as the grouping of similar pixels (i.e., lesion and

non-lesion pixels) in a parametric space, where they are asso-

ciated with each other in the same or different images. Fuzzy

c-means (FCM) is a segmentation algorithm that is based on

clustering similar pixels in an iterative way where the cluster

centers are adjusted during each iteration [5]. Due to its iterative

nature the computational cost of the algorithm is relatively high

compared to other segmentation techniques. Hence, a number

of approaches, e.g., [6] and [7], have been presented that allow

for significant speedups while maintaining good segmentation

performance.

In this paper we introduce a new mean shift based FCM al-

gorithm that requires less computational time than these estab-

lished techniques. The proposed method incorporates a mean

field term within the standard FCM objective function. Since

mean shift can quickly and reliably find cluster centers, the en-

tire strategy is capable of effectively segmenting clusters within

an image. We evaluate the proposed algorithm on a large dataset

of dermoscopic images. Based on these experiments we show

that our approach delivers excellent segmentation of lesions in

a computationally efficient manner.

The rest of the paper is organized as follows: In Section II,

the original FCM algorithm and its variants are introduced and

discussed. Our proposed anisotropic mean shift based FCM ap-

proach is described in Section III. Section IV presents extensive

comparative results of the proposed scheme and conventional

approaches. Finally, conclusions and future directions are given

in Section V.

II. FUZZY C-MEANS IMAGE SEGMENTATION

AND ITS VARIANTS

A. Classical Fuzzy C-Means

Fuzzy c-means (FCM) is based on the idea of finding cluster

centers by iteratively adjusting their positions and evaluation

of an objective function similar to the original hard c-means,

yet it allows more flexibility by introducing the possibility of

partial memberships to clusters. The effect of the general FCM

algorithm is illustrated in Fig. 1.

1932-4553/$25.00 © 2009 IEEE
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Fig. 1. Illustration of classical FCM that attempts to find appropriate cluster centers. (a) Available clusters. (b) Random centers. (c) Converging and (d) final
settlement.

The objective function usually follows the form

(1)

where is the fuzzy membership of sample (or pixel) and

the cluster identified by its center , and is a constant that

defines the fuzziness of the resulting partitions.

can reach the global minimum when pixels nearby the cen-

troid of corresponding clusters are assigned higher membership

values, while lower membership values are assigned to pixels

far from the centroid [8]. Here, the membership is proportional

to the probability that a pixel belongs to a specific cluster where

the probability is only dependent on the distance between the

image pixel and each independent cluster center. The member-

ship functions and the cluster centers are updated by

(2)

(3)

The steps involved in fuzzy c-means image segmentation are

[5] as follows.

1) Initialize the cluster centers and let .

2) Initialize the fuzzy partition memberships functions ac-

cording to (2).

3) Let and compute new cluster centers using (3).

4) Repeat Steps 2 to 3 until convergence.

An initial setting for each cluster center is required and FCM

converges to a local minimum. The efficiency of FCM has been

comprehensively investigated in [9]. To effectively address the

inefficiency of the original FCM algorithm several variants of

the FCM algorithm have been introduced which we cover briefly

in the following subsections.

B. Fast FCM With Random Sampling (RSFCM)

To reduce the computational requirements of FCM, Cheng

et al. [6] proposed a multistage random sampling strategy. This

method has a lower number of feature vectors and also needs

fewer iterations to converge. The basic idea is to randomly

sample and obtain a small subset of the dataset in order to

approximate the cluster centers of the full dataset. This approx-

imation is then used to reduce the number of iterations. The

random sampling FCM algorithm consists of two phases. First,

a multistage iterative process of a modified FCM is performed.

Phase 2 is then a standard FCM with the cluster centers approx-

imated by the final cluster centers from Phase 1.

Phase 1: Randomly initialize the cluster centers

Let % be a subset whose number of subsamples is %

of the samples contained in the full dataset and denote

the number of stages as . and are parameters used as

stopping criteria. After the following steps the dataset (denoted

as % ) will include % samples.

1) Select % from the set of the original feature vectors

matrix .

2) Initialize the fuzzy memberships functions using (2)

with % .

3) Compute the stopping condition

and let .

4) Set .

5) Compute the cluster centers % using (3).

6) Compute % using (2).

7) If
% %

, then go to Step 4.

8) If then select another % and merge it with the

current % and set , otherwise move to

Phase 2 of the algorithm.

Phase 2: FCM clustering

1) Initialize using the results from Phase 1, i.e., %
with (3) for the full data set.

2) Go to Step 3 of the conventional FCM algorithm and iterate

the algorithm until stopping criterion is met.

Evidence has shown that this improved FCM with random

sampling is able to reduce the computation requested in the

classical FCM method [10]. Other variants of this multistage

random sampling FCM framework have also been developed

and can be found, e.g., in [11] and [12].

C. Enhanced FCM (EnFCM) and Variants

Ahmed et al. [13] introduced an alternative to the classical

FCM by adding a term that enables the labelling of a pixel to be

associated with its neighborhood. As a regulator, the neighbor-

hood term can change the solution towards piecewise homoge-

neous labelling. As a further extension of this work, Szilágyi

et al. [7] introduced their EnFCM algorithm where, in order

to reduce the computational complexity, a linearly weighted

sum image is formed from the original image, and the local

neighbor average image evaluated as

(4)
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where denotes the gray value of the -th pixel of the image

represents the neighbors of is the cardinality of

a cluster, represents the set of neighbors inside a window

around .

The objective function used for segmenting image is defined

as

(5)

where denotes the number of the gray levels in the image,

and is the number of the pixels having an intensity equal to

, which refers to intensity levels with . Thus,

under the constraint that for any .

Finally, we can obtain the following expressions for member-

ship functions and cluster centers [14]:.

(6)

(7)

EnFCM considers a number of pixels with similar intensities

as a weight. Thus, this process may accelerate the convergence

of searching for global similarity. On the other hand, to avoid

image blur during the segmentation, which may lead to inaccu-

rate segmentation, Cai et al. [14] utilizes a measure in a fast

generalized FCM algorithm (FGFCM), which incorporates the

local spatial relationship and the local gray-level relation-

ship , and is defined as

(8)

with

(9)

(10)

where describe the coordinates of the -th pixel, is a

global scale factor of the spread of , and and represent

scaling factors. replaces in (4).

Hence, the newly generated image is updated as

(11)

and is restricted to [0, 255] due to the denominator.

Given a predefined number of clusters and a threshold

value , the reported FGFCM algorithm [14] proceeds in

the following steps.

1) Initialize the clusters .

2) Compute the local similarity measures using (8) for all

neighbours and windows over the image.

3) Compute linearly-weighted summed image using (11).

4) Update the membership partitions using (6).

5) Update the cluster centers using (7).

6) If go to Step 4.

Similar efforts to improve the computational efficiency and ro-

bustness have also been reported in [15] and [16].

D. Other FCM Variants

Other variants of the classical FCM algorithm can be classi-

fied into two groups: those with added spatial constraints, and

those with optimization of termination conditions or objective

functions.

1) FCM With Spatial Constraints: There are certain similari-

ties when considering spatial contents of an image. For example,

a number of regions in the image can be very similar to each

other in intensity or colour. These similarities can be labelled

before any segmenting process starts. During the actual seg-

menting process, one of the areas from the similar groups will

be utilized for segmentation, while the others may be directly

assigned to the same clusters as the former with little computa-

tional effort. This is the basis of one strategy to applying spatial

constraints to the standard FCM.

Pham [17] proposed an improved FCM objective function

with an added spatial penalty term in the membership functions.

This technique needs some extented computational efforts to

search for an appropriate penalty term. However, the entire FCM

scheme is of lower computational complexity upon determina-

tion of the penalty term.

psFCM, as proposed by Hung and Yang [18], is a two-stage

scheme. A smaller data set is extracted from the entire image

using the classical tree method, followed by a standard

FCM segmentation which uses the cluster centers previously

generated. This strategy reduces the computational require-

ments of the FCM segmentation significantly. Eschrich et al.

[11] presented the brFCM algorithm, which can reduce the

number of distinct patterns by aggregating similar examples

and then using a weighted exemplar in the FCM process.

2) FCM With Optimisation of Functionals: Modifications or

adjustment of membership functions can also be used to reduce

the number of iterations required in the FCM scheme. The mo-

tivation behind this strategy is the possibility of simplifying the

original membership functions or modifying the classical con-

vergence criterion so as to accelerate the segmentation proce-

dure.

Höppner [10] re-organized the original data sets as a tree be-

fore segmentation starts, leading to fast convergence of the later

process. Unfortunately, this re-organisation is not an ideal model

in the presence of large data sets or increasing number of clus-

ters [19]. Cannon et al. [20] reported a speed-up factor of 6 for

an improved FCM scheme by look-up tables for exponential and

distance function. Frequent updating of the standard FCM can

be used to reduce the iterations and hence improves the compu-

tational efficiency [21].

A similarity-driven cluster merging method was proposed by

Xiong et al. [22]. This method takes into account the similarity

between clusters by a fuzzy cluster similarity matrix, and

an adaptive threshold is used for merging. De Gruijter and

McBratney [23] modified the objective function to account for
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outliers (extragrades) and hence improve the performance of

the FCM in noisy environments.

III. ANISOTROPIC MEAN SHIFT BASED FCM

In this subsection, we will present a new combinatorial

approach to fuzzy c-means segmentation that utilizes an

anisotropic mean shift algorithm coupled with fuzzy segmen-

tation.

Mean shift based techniques have been shown to be capable

of estimating the local density gradients of similar pixels. These

gradient estimates are iteratively performed so that all pixels can

find similar pixels in corresponding images [24], [25]. A stan-

dard mean shift approach method uses radially symmetric ker-

nels. Unfortunately, the temporal coherence will be reduced in

the presence of irregular structures and noise in the image. This

reduced coherence may not be properly detected by radially

symmetric kernels and thus, an improved mean shift approach,

namely anisotropic kernel mean shift [26], provides better per-

formance.

A. Proposed Algorithm

In mean shift algorithms the image clusters are continuously

moved along the gradient of the density function before they be-

come stationary. Those points gathering in an outlined area are

treated as the members of the same segment. To determine the

membership of an image point a density estimate at the point

needs to be conducted. In other words, similarity computation

must be achieved between this point and the center of the seg-

ment. Furthermore, the coherence between this point and its sur-

rounding image points needs to be discovered (e.g., colour or

intensity consistency), as this coherence can be used to remove

any inconsistency such as image artifacts or noise. In this sub-

section, we mainly discuss about the estimation of the density

function of an image point (this kernel density estimation is also

known as the Parzen window technique).

The motivation of introducing the density estimation based

segmentation is that the image space can be represented by em-

pirical probability density functions (PDF) of certain parame-

ters (e.g., color or intensity). Dense or sparse regions of similar

image points correspond to local maxima or minima of the PDF

(or the modes of the unknown density) [25]. After the modes

have been located in the image, the membership of an image

point to a particular segment will be determined.

A kernel density estimate on an image point is defined by

(12)

with

(13)

where is the number of samples, and stands for a sample

from an unknown density function . is the -variate

kernel function with compact support satisfying the regularity

constraints, and is a symmetric positive definite band-

width matrix. Usually, we have , where is

a convex decreasing function, e.g., for a Gaussian kernel

(14)

or for an Epanechnikov kernel

(15)

where is a normalising constant.

If a single global spherical bandwidth is applied,

(where is the identity matrix), then we have the classical form

as

(16)

Since the kernel can be divided into two different radially sym-

metric kernels, we have the kernel density estimate as

(17)

where represents a vector of cluster centers, and are two

ratios, and and denote the spatial and temporal components

respectively [26]. Classical mean shift utilizes symmetric ker-

nels that may experience a lack of temporal coherence in the

regions where the intensity gradients exist with a slope relative

to the evolving segment. In contrast, anisotropic kernel mean

shift links with every data point by an anisotropic kernel. This

kernel associated with a pixel can update its shape, scale and

orientation. The density estimator is represented by

(18)

where is the Mahalanobis distance

(19)

Anisotropic mean shift is intended to modulate the kernels

during the mean shift procedure. The objective is to keep re-

ducing the Mahalanobis distance so as to group similar samples

as much as possible. First, the anisotropic bandwidth matrix

is estimated using a standard radially symmetric diagonal

and . The neighborhood of pixels around has the following

constraints:

(20)
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Fig. 2. Examples of AMSFCM iterative segmentation. (a) Original image. (b) Three iterations. (c) Four iterations. (d) Six iterations.

A new full matrix will use the variance of as its

components. To show how the modulation of happens, we

first decompose the required bandwidth matrix to

(21)

where is a scalar, is a matrix of normalized eigenvectors,

and is a diagonal matrix of eigenvalues whose diagonal ele-

ments satisfy [26]

(22)

The bandwidth matrix is updated by adding more and more

points to the computational list: the more image points with sim-

ilar colour or intensity gather in the same segments, the less total

Mahalanobis distance between the image points and the centers

of individual segments will be obtained [refer to (19)–(22)].

In the proposed algorithm we combine fuzzy c-means and

anisotropic mean shift segmentation. A significant difference

between our approach and other similar methods is that our al-

gorithm continuously inherits and updates the states, based on

the interaction of FCM and mean shift. Stemming from the al-

gorithm reported in [26], the proposed anisotropic mean shift

based FCM (AMSFCM) proceeds in the following steps.

1) Initialize the cluster centers . Let the iteration count

.

2) Initialize the fuzzy partitions using (2).

3) Increment and compute using (3) for all

clusters.

4) Update using (2). This is an FCM process.

5) For each pixel one needs to estimate the density

with anisotropic kernels and related color radius using

(18)–(21). For simplicity, can just apply variances at

the diagonal items with other zero components. Note that

mean shift is employed after the FCM stage.

6) Calculate the mean shift vector and then iterate until the

mean shift, , is less than 0.01 con-

sidering the previous position and a normalized position

change—see the equation shown at the bottom of the page.

with .

7) Merge pixels that possess less Mahalanobis distances than

the predefined thresholds.

8) Repeat Steps 3) to 7) until ( is a pre-set

threshold).

Fig. 2 illustrates how the segmentation evolves using the pro-

posed AMSFCM algorithm. In this example, the segmentation

optimally converges after six iterations.

B. Convergence Behaviors

1) Classical FCM: Classical FCM is one of the sub-optimal

segmentation algorithms, which sacrifices global optimality to

the improved numerical efficiency and flexibility of the segmen-

tation process. The computational cost of FCM heavily depends

on the number of image points that need to be processed in each

iteration.

To obtain a global minimal solution, we differentiate both

sides of (1) with respect to and then set them to zero

(23)

The right-hand side of (1) has an upper bound that leads to

(24)

where stands for the mean value of . Introducing (24) into

(23), one can observe that the derivative of with respect to

will be dominated by the sum of distance between and .

The faster this distance is reduced, the better asymptotic perfor-

mance the entire FCM holds.

2) Proposed AMSFCM: To find cluster centers we can utilize

the gradient of the density estimator. Let

(25)
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Fig. 3. Subset of the dermoscopic image set used in the evaluation.

Then we have

(26)

in which the constant is expressed as

(27)

and is the corresponding normalization constant [25]

(28)

(29)

The regulation term is

(30)

and the mean shift term is

(31)

Referring to [25], we can obtain the following expression:

(32)

where is a constant. According to the Capture Theorem [27],

the trajectories of the gradient method introduced here are at-

tracted by local maxima if they are unique stationary points

within a small neighborhood. In other words

(33)

In due convergence, we will have an optimal from (33),

where the magnitude of the mean shift vector approaches 0.

Let us revisit (24), (32), and (33). It has been proven that the

mean shift with a form as in (26) converges if the kernel

has a convex and monotonically decreasing profile [25]. While

the kernel function is approaching to its convergence, the mean

value of the cluster centers is available and can be a predic-

tion for next iteration of FCM segmentation. This helps reduce

computational efforts addressed in the FCM segmentation pro-

cedure afterwards. The convergence speed of the mean shift re-

lies on the , which normally is very fast due to

fast mean calculation.

IV. EXPERIMENTAL EVALUATION

The proposed segmentation algorithm was evaluated on a set

of 100 dermoscopy images (30 invasive malignant melanoma

and 70 benign) obtained from the EDRA Interactive Atlas

of Dermoscopy [2] and the dermatology practises of Dr. A.

Marghoob (New York, NY), Dr. H. Rabinovitz (Plantation, FL)

and Dr. S. Meznies (Sydney, Australia). The benign lesions

included nevocellular nevi and dysplastic nevi. A subset of the

images is shown in Fig. 3. Manual borders were obtained by

selecting a number of points on the lesion border, connecting

these with a 2nd-order B-spline and finally filling the resulting

closed curve. Three sets of manual borders were determined
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Fig. 4. Segmentation comparison of original image (upper left), ground truth (upper right), FCM (middle left), RSFCM (middle right), EnFCM (bottom left) and
AMSFCM (bottom right) for image 15.

by dermatologists Dr. W. Stoeckker, Dr. J. Malters, and Dr. J.

Grichnik using this method and serve as a ground truth for the

experiments.

For our experimental evaluation, we used a PC with Intel(R)

Core(TM)2 CPU (2.66 GHz) and 2 GB RAM. The algorithms

that we compared are conventional FCM [5], EnFCM [7],

RSFCM [6], and the proposed AMSFCM. In a final stage,

morphological processing is employed for smoothing the

segmentation outcomes, especially the image borders and

removing small isolated areas.

An example of the segmentations obtained by the various al-

gorithms is given in Fig. 4 which shows one of the ground truth

segmentations together with the results by all four methods. It

can be observed that the segmentations produced by classical

FCM and RSFCM are less smooth than those by EnFCM and

AMSFCM. This is due to: 1) RSFCM uses FCM in the second

phase so they both have approximate convergence characteris-

tics and 2) EnFCM and AMSFCM take into account weighted

image pixels so their outcomes are smoothed in the FCM stage.

Clearly, smoother borders are more realistic and also conform

better to the manual segmentations derived by the dermatolo-

gists. The second observation is also reflected in Fig. 5, where

original images are segmented using different FCM algorithms

and the lesion borders are then extracted. It is also noticed that

different algorithms generate similar results forigure 5, while

the proposed AMSFCM algorithm has clearly the best border

result for the third example.

For each image segmentation we record the number of True

Positives TP (the number of pixels that were classified both by

the algorithm and the expert as lesion pixels), True Negatives

TN (the number of pixels that were classified both by the algo-

rithm and the experts as non-lesion pixels), False Positives FP

(the number of instances where a non-lesion pixel was falsely

classified as part of a lesion by an algorithm) and False Nega-

tives FN (the number of instances where an lesion pixels was

falsely classified as non-lesion by an algorithm). From this we

can then calculate the sensitivity SE (or true positive rate) as

(34)

and the specificity SP (or true negative rate) as

(35)

In Table I we list the sensitivity and specificity obtained by all

algorithms over the entire database and compared to all three

ground truth segmentations (average SE and SP based on all

three manual segmentations are reported). It can be seen that the

proposed AMSFCM performs significantly better with a median

sensitivity of about 78% while the other algorithms achieve only

a sensitivity of about 74%. In addition, our algorithm provides

more consistent results as indicated by the lower variance of

SE. As specificity is fairly similar for all algorithms, we can

conclude that AMSFCM provides the best segmentation on the

given dataset.

As we have noted before, computational efficiency is a crucial

issue when considering FCM based segmentation. We record

the number of iteration required in each FCM approach for eval-

uation, which in turn enables us to make a comparison regarding

the relative efficiency of the different approaches. We normal-

ized them so that the classical FCM algorithm is assigned 1.00

while the other ones represent the relative fractions they take
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Fig. 5. Border detection of exemplar segmented images (row 1—original images; row 2—FCM results; row 3—RSFCM results; row 4—EnFCM results and row
5—AMSFCM results).

TABLE I
SEGMENTATION PERFORMANCE ON THE COMPLETE DATASET.

FOR EACH ALGORITHM THE MEDIAN SENSITIVITY AND

SPECIFICITY ARE GIVEN. THE VALUES IN BRACKETS INDICATE THE

STANDARD DEVIATIONS OF THE MEASURES

TABLE II
EFFICIENCY ANALYSIS OF THE DIFFERENT ALGORITHMS. REPORTED

IS THE RELATIVE EFFICIENCY COMPARED TO THE CONVENTIONAL

FCM ALGORITHM. THE VALUES IN BRACKETS INDICATE THE

STANDARD DEVIATIONS OF THE MEASURES

compared to this. The results are presented in Table II from

which it can be seen that the proposed AMSFCM takes com-

putation efforts of 37%, 4%, and 17% less than compared to

FCM, RSFCM and EnFCM respectively.

Overall, it is evident that the proposed approach provides a

very useful tool for the analysis of dermoscopic images. Not

only does it provide the best segmentation results among the

algorithms investigated, it also is the most efficient method.

V. CONCLUSION

Fuzzy c-means based algorithms are frequently used to seg-

ment medical images but are also computational intensive. In

this paper we have introduced a new mean shift based fuzzy

c-means segmentation algorithm. The proposed method incor-

porates a mean field term within the standard fuzzy c-means

objective function. Based on a large set of dermoscopic im-

ages, we have shown that the proposed segmentation technique

AMSFCM is not only more efficient than other fuzzy c-means

approaches but that it is also capable of providing superior seg-

mentation. The developed algorithm hence provides a useful

tool as a first stage in the automatic or semi-automatic analysis

of skin lesion images.
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