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Abstract. The quasistatic brittle fracture model proposed by G. Francfort and J.-J. Marigo can
be Γ-approximated at each time evolution step by the Ambrosio-Tortorelli functional. In this paper,
we focus on a modification of this functional which includes additional constraints via penalty terms
to enforce the irreversibility of the fracture as well as the applied displacement field. Secondly, we
build on this variational model an adapted discretization to numerically compute the time-evolving
minimizing solution. We present the derivation of a novel a posteriori error estimator driving the
anisotropic adaptive procedure. The main properties of these automatically generated meshes are
to be very fine and strongly anisotropic in a very thin neighborhood of the crack, but only far
away from the crack tip, while they show a highly isotropic behavior in a neighborhood of the crack
tip instead. As a consequence of these properties, the resulting discretizations follow very closely
the propagation of the fracture, which is not significantly influenced by the discretization itself,
delivering a physically sound prediction of the crack path, with a reasonable computational effort.
In fact, we provide numerical tests which assess the balance between accuracy and complexity of the
algorithm. We compare our results with isotropic mesh adaptation and we highlight the remarkable
improvements both in terms of accuracy and computational cost with respect to simulations in the
pertinent most recent literature.

1. Introduction and motivations. Mathematical models of the propagation
of brittle fractures based on variational principles have arisen a strong interest in the
past 15 years. On the one hand, they describe a mechanical problem which collects
the interest of different disciplines, from physics of solids to mechanical engineering.
On the other hand, they pose fascinating mathematical questions related to existence,
regularity, and numerical simulation of physically sound solutions.

One of the most advocated models for quasistatic brittle fracture evolution was
first presented by G. Francfort and J.-J. Marigo in [25]. This model is particularly
relevant because it is able to predict complex crack paths, without making a priori
assumptions on their possible propagation. The behavior of the fracture is defined by
the minimization of the energy of the system following Griffith’s principle of energy
balance of two main terms: the first is the elastic energy and the second is a fictitious
energy that represents the crack formation cost, typically assumed to be proportional
to the surface of the created crack [29]. While in the original model of G. Francfort
and J.-J. Marigo, the existence of the crack evolution is assumed, only with the works
of G. Francfort and C. J. Larsen [26] and G. Dal Maso and R. Toader [20] the existence
of a continuous time evolution of the quasistatic model was proved.

Despite the success of this model for its mathematical well-posedness and, at the
same time, its rather general framework, mechanical engineers and physicists of solids
tend to favor more realistic models, where a smoother process towards fracture is
considered and a minimal cohesion between the surfaces of the crack is not negligible.
From this perspective, the approximation made by L. Ambrosio and V. M. Tortorelli in
[2] of the energy functional driving the quasistatic evolution of the Francfort-Marigo
model is very interesting because the crack is identified by a smooth phase field
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v : Ω → [0, 1], instead of a sharp lower dimensional set. For this reason, we consider
exclusively a numerical analysis and simulation of a quasistatic evolution based on
the Ambrosio-Tortorelli functional. Although it can be defined in any dimension and
for any Lipschitz domain, for simplicity of presentation we assume that Ω ⊂ R

2 is a
polygonal domain, by denoting x = (x1, x2)

T the generic point in Ω.
Let us now introduce in more detail the model. We define a load which will drive

the evolution of the crack. This function, g : [0, T ]× Ω→ R, is such that

g(t) =





t on ΩD+

−t on ΩD−

0 elsewhere
, (1.1)

where ΩD± = ΩD+ ∪ΩD− is the subdomain where the load is applied and the depen-
dence on x is understood. We also define the space

A(g(t)) = {u ∈ H1(Ω) : u|Ω
D±

= g(t)|Ω
D±
}

of the admissible solutions. We define the functional: Iε : H
1(Ω)×H1(Ω; [0, 1])→ R

as

Iε(u, v) =

∫

Ω

(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx, (1.2)

where 0 < η ≪ ε≪ 1, κ > 0, u ∈ A(g(t)), and v ∈ H1(Ω; [0, 1]). The first integral of
(1.2) represents the elastic energy Ee of the body, while the second one is the fictitious
crack energy Ef . As proved in [9], this functional Γ-converges in L1(Ω) × L1(Ω) to
the energy functional driving the evolution of the Francfort-Marigo model, as ε→ 0.
This proof is built upon the original result of convergence made by L. Ambrosio and
V.M. Tortorelli in [1] for the approximation of the Mumford-Shah functional [37].
Moreover, in [2], the proof of the existence of minimizers for (1.2) is provided for all
ε, η > 0. Alternative Γ-approximations results are addressed, e.g., in [5, 22].

Our numerical approximation will be based on a discretization in both space and
time. Therefore, we introduce a time discretization 0 = t0 < t1 < . . . < tF = T . The
evolution is driven by a process of minimization of (1.2) at each discrete time, which,
for t = t0, is given by

(uε(t0), vε(t0)) ∈ argmin
u ∈ A(g(t0)),

v ∈ H1(Ω; [0, 1])

Iε(u, v),

whereas, for subsequent times t = tk, for k = 1, . . . , F , we seek a pair (uε(tk), vε(tk))
such that

(uε(tk), vε(tk)) ∈ argmin
u ∈ A(g(tk)),

v ∈ H1(Ω; [0, 1]), v ≤ vε(tk−1)

Iε(u, v). (1.3)

The two components of the solution to (1.3) represent the displacement of the body
and the phase field of the fracture. In particular, the fracture is identified by the
subset of the domain where vε(tk) is close to zero. The transition layer between the
two regions has a thickness of order ε and the condition v ≤ vε(tk−1) enforces the
irreversibility of the crack [28].
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While the existence of a continuous time evolution for the model evolving along
global minimizers, as defined in (1.3), has been shown in [26, 20], it is more delicate
to address the system development when it is evolving along local minimizers or
critical points of the energy. In this paper, we actually consider a reliable numerical
approximation of the evolution along critical points, as it would be more realistic
from a physical point of view [19]. So far, accurate numerical simulations of the
Francfort-Marigo model of fracture evolution are based on very fine ad hoc meshes,
with an enormous computational effort [9, 6]. After some attempts towards adaptive
discretization of free-discontinuity functionals of Mumford-Shah type [8, 10, 11, 14,
39], still we lack a reliable adaptive strategy which can successfully break the dilemma
“the grid follows the fracture or the fracture follows the grid”, with a proper balance
between accuracy and complexity. In this paper, we make a yet another attempt
to challenge this serious difficulty. We follow and combine both strategies suggested
in the papers [10, 8]; in particular, we merge the minimization of the Ambrosio-
Tortorelli model with an adaptive anisotropic discretization by exploiting the fact
that the considered model exhibits solutions with very steep features close to the
crack. Moreover, as the crack evolves along a specific direction, the choice of an
anisotropic adaptation can be really advantageous compared with a more standard
isotropic approach. In more detail, the proposed adaptation procedure is driven by
the residual associated with the gradient of the energy functional. To highlight the
contribution of the present paper, we describe below its relevance with respect to the
recent literature [8, 10].

The significant innovation with respect to [8], where adaptive anisotropic meshes
are also considered, is twofold. On the one-hand, we deal with the Ambrosio-Tortorelli
functional instead of the Mumford-Shah functional. On the other hand, while in [8] a
heuristic Hessian-based approach is employed to drive the mesh adaptation, we resort
to a metric-based procedure hinging on a sound error estimator.

The main improvements with respect to [10] are both in considering anisotropic
meshes, in contrast to exclusively isotropic refinement, and the fact that we adapt the
mesh at each minimization step. These apparently minor changes lead to considerable
improvements both in terms of accuracy and computational cost. In particular, the
proposed a posteriori error estimator has two main properties: the automatically
generated meshes are very fine and strongly anisotropic in a thin neighborhood of the
crack, whereas they show highly isotropic behavior in a neighborhood of the crack tip.
As a consequence, the resulting discretization follows very closely the propagation of
the fracture, which is not significantly influenced by the discretization, delivering a
physically sound prediction of the crack path, with a reasonable computational effort.

The content of the paper is organized as follows: in Section 2, we introduce a
mild modification of the Ambrosio-Tortorelli functional and we provide some results
on its regularity. In Section 3, we introduce the anisotropic setting and we derive the
anisotropic a posteriori error estimator. Then, two different adaptation algorithms
are furnished in Section 4 and numerically validated on two test cases in Section 5.

2. The modified Ambrosio-Tortorelli model. The minimization process
(1.3) requires minimizing a functional subject to constraints on both u and v. In par-
ticular, we propose a minimization process where the constraints are relaxed through
suitable penalty terms. This choice avoids us selecting special function spaces and
allows us to pose the problem in H1(Ω) for both u and v. Moreover, it simplifies
significantly the numerical implementation.
Before introducing the penalized functional, we properly rewrite the constraint on the
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function v. In fact, the condition

v ≤ vε(tk−1), (2.1)

enforcing the irreversibility of the crack, cannot be easily implemented. So we follow
an alternative criterion, first introduced by Bourdin in [6], where the irreversibility is
provided by an equality constraint. In particular, if at time t = tk−1 the set

CRk−1 = {x ∈ Ω̄ | vε(tk−1) < CRTOL} (2.2)

is nonempty for a small specified tolerance CRTOL, the irreversibility is enforced by

vε(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ F. (2.3)

Moving from this idea, we propose minimizing the following penalized functional

Ipenaltyε,k (u, v) =

∫

Ω

(v2 + η)|∇u|2 dx+ κ

∫

Ω

[
1

4ε
(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

Ω
D±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

(2.4)

where γA and γB are the two (small) penalty constants. Hence, the new optimization
problem is

(uε(tk), vε(tk)) ∈ argmin
u ∈ H1(Ω),

v ∈ H1(Ω; [0, 1])

Ipenaltyε,k (u, v), (2.5)

for k = 1, . . . , F . Notice that, even though we are explicitly taking into account
the constraint v ∈ H1(Ω; [0, 1]), hence assuming that v takes exclusively values in
[0, 1], shortly we shall prove that this boundedness is automatically fulfilled by the
unconstrained minimization and one need not implement it in practice. Differently
from the previous models [6, 10], we observe that for t = t0, we can still use (2.5) as a
starting minimization, as the last penalization term vanishes. Since the constraints are
clearly continuous, convex, and always non-negative, the proof of the convergence of
the minimizers of (2.5) to ones fulfilling (2.3) instead of (2.1) in (1.3) for γA, γB → 0,
follows from the Γ-convergence theory [18].
From now on, we refer only to functional (2.4), and we simplify the notation by setting
κ = 1 and by adopting the short-hand notation

I(u, v) =

∫

Ω

[
(v2 + η)|∇u|2 dx+ α(1− v)2 + ε|∇v|2

]
dx

+
1

γA

∫

Ω
D±

(g(tk)− u)2 dx+
1

γB

∫

CRk−1

v2 dx,

(2.6)

with α = (4ε)−1. Henceforth, we refer to (2.6) as to the modified Ambrosio-Tortorelli
functional. Throughout the remaining part of this section, we mimic the analysis in
Süli et al. [10] by suitably modifying it to deal with functional (2.6).

Using a truncation argument, it can be checked that any local minimizer (u, v)
of I(·, ·) in the H1(Ω)×H1(Ω) topology is such that 0 ≤ v ≤ 1 a.e. in Ω. Hence, we
allow ourself to restrict the trial space for v to L∞(Ω) ∩H1(Ω).
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Proposition 2.1. The functional I(·, ·) is Fréchet-differentiable in H1(Ω) ×
(H1(Ω) ∩ L∞(Ω)).

Proof. The proof follows directly from Proposition 1.1 in [10]. In particular, the
differentiability of the additional penalty terms is trivial and thus the penalty terms
does not change the regularity of the functional I(·, ·).

Let us introduce now the Fréchet derivative of I(w, z) in the direction (ϕ, ψ), i.e.,

I ′(w, z;ϕ, ψ) = 2

(∫

Ω

(z2 + η)∇w · ∇ϕdx+
1

γA

∫

Ω
D±

(w − g(tk))ϕdx
)

+2

(∫

Ω

[
zψ|∇w|2 + α(z − 1)ψ + ε∇z · ∇ψ

]
dx+

1

γB

∫

CRk−1

zψ dx

)

=: 2aγA(z;w,ϕ) + 2bγB (w; z, ψ),
(2.7)

where we have split the derivative in two parts; the first one, aγA , associated with
the derivative in the direction ϕ, and the second one, bγB , related to the direction ψ.
Accordingly, we define the notion of critical point for I(·, ·).

Definition 2.2. The pair (u, v) ∈ H1(Ω)× (H1(Ω) ∩L∞(Ω)) is a critical point
of I(·, ·) if I ′(u, v;ϕ, ψ) = 0 for all ϕ ∈ H1(Ω) and for all ψ ∈ (H1(Ω)∩L∞(Ω)). By
the following proposition, we can get rid of the constraint on v, as anticipated above.

Proposition 2.3. If (u, v) ∈ H1(Ω) × (H1(Ω) ∩ L∞(Ω)) is a critical point of
I(·, ·), then 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω.

Proof. Following the argument of Proposition 1.3 of [10], suppose that (u, v)
is a critical point of I(·, ·) and that Ω1 and Ω2 are the two subsets of Ω such that
Ω1 = {x ∈ Ω | v(x) > 1}, Ω2 = {x ∈ Ω | v(x) < 0}, and |Ω1 ∪ Ω2| > 0. Since (u, v) is
a critical point of I(·, ·), we have

bγB (u; v, ψ) = 0 ∀ψ ∈ H1(Ω) ∩ L∞(Ω).

Then, if we choose

ψ(x) =





1− v(x) x ∈ Ω1

−v(x) x ∈ Ω2

0 elsewhere,

we obtain

bγB (u; v, ψ) =

∫

Ω1

[
v(1− v)|∇u|2 − α(v − 1)2 − ε|∇v|2

]
dx

−
∫

Ω2

[
v2|∇u|2 + α(v − 1)v + ε|∇v|2

]
dx

− 1

γB

∫

CRk−1∩Ω2

v2 dx+
1

γB

∫

CRk−1∩Ω1

v(1− v) dx = 0.

(2.8)

The left-hand side of (2.8) consists of four negative terms, leading to a contradiction.

2.1. The finite element discretization. We introduce the discrete counter-
part of the minimization problem (2.5) in a finite element setting. Thus, we denote
by {Th}h>0 a family of meshes of the domain Ω, with Nh the index set of the vertices
of Th and Eh the skeleton of Th. Henceforth, we assume that the boundary of ΩD±
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coincides with the union of consecutive edges in Eh. With {Th}h>0 we associate the
space Xh of the continuous piecewise linear finite elements [15].

We denote by Ih(uh, vh) the discrete correspondent of I(u, v) in (2.6), given by

Ih(uh, vh) =

∫

Ω

[ (
Ph(v

2
h) + η

)
|∇uh|2 dx+ αPh((1− vh)2) + ε|∇vh|2

]
dx

+
1

γA

∫

Ω
D±

Ph
(
(gh(tk)− uh)2

)
dx+

1

γB

∫

CRk−1

Ph
(
v2h
)
dx,

(2.9)
where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto the space Xh, with
gh(tk) ∈ Xh a suitable discrete approximation of g(tk). In particular, we pick gh(tk)
such that

∫

Ω
D±

gh(tk)wh dx =

∫

Ω
D±

g(tk)wh dx ∀wh ∈ Xh, (2.10)

i.e., gh(tk) is the L2(ΩD±)-projection of g(tk) onto Xh. The action of the operator
Ph is equivalent to a mass lumping [41] and it allows us to extend Proposition 2.3 to
the critical points of Ih(·, ·) as well.

In the sequel, we assume that the off-diagonal entries of the stiffness matrix
K = [kij ] associated with the space Xh be non-positive, i.e.,

kij =

∫

Ω

∇ξi · ∇ξj dx ≤ 0 ∀i 6= j ∈ Nh, (2.11)

where {ξl}#Nh

l=1 denotes the finite element basis of Xh. This condition is related to
discrete maximum principle as discussed, for instance, in [16, 31, 40]. The discrete
analogue to (2.5) is

(uh(tk), vh(tk)) ∈ argmin
ûh ∈ Xh,

v̂h ∈ Xh

Ih(ûh, v̂h).

Analogously to Definition 2.2, we have the following
Definition 2.4. The pair (uh, vh) ∈ Xh × Xh is a critical point of Ih(·, ·) if

I ′h(uh, vh;ϕh, ψh) = 0 for all (ϕh, ψh) ∈ Xh ×Xh, where

I ′h(uh, vh;ϕh, ψh) = 2

(∫

Ω

(Ph(v
2
h) + η)∇uh ·∇ϕh dx+

1

γA

∫

Ω
D±

Ph((uh − gh(tk))ϕh) dx
)

+2

(∫

Ω

[
Ph(vhψh)|∇uh|2 + αPh((vh − 1)ψh) + ε∇vh · ∇ψh

]
dx

+
1

γB

∫

CRh
k−1

Ph (vhψh) dx

)
=: 2ahγA(vh;uh, ϕh) + 2bhγB (uh; vh, ψh).

Proposition 2.3 can be adapted to the discrete case, suitably relying on assumption
(2.11) and the properties of Ph as shown in the following

Proposition 2.5. Let (uh, vh) ∈ Xh × Xh be a critical point of Ih(·, ·), then
0 ≤ vh ≤ 1 for all x ∈ Ω.

Proof. The proof generalizes Proposition 2.2 in [10], by properly including the

term

∫

CRk−1

Ph(v
2
h) dx. By mimicking in a discrete setting the proof of Proposi-

tion 2.3, we suppose, by contradiction, that there exist two index sets J1, J2 ⊂ Nh

6



where vi > 1 for all i ∈ J1 and vj < 0 for all j ∈ J2, where we let vi = vh(xi, tk).
Consider j ∈ J2 such that vj ≤ vi, for all i ∈ Nh and let ∆j be the patch of elements
associated with xj with Mj = {i ∈ Nh : xi ∈ ∆j}.
Now, if we choose as a test function the hat function ξj associated with xj , from the
equality bhγB (uh; vh, ψh) = 0 we have

ε

∫

∆j

∇vh · ∇ξj dx = −
∫

∆j

[Ph(vhξj)|∇uh|2 − αPh((vh − 1)ξj)] dx

− 1

γB

∫

CRk−1∩∆j

Ph (vhξj) dx

> −vj
∑

K∈∆j

|∇uh|K |2
|K|
3
− α(vj − 1)

|∆j |
3

> 0,

(2.12)

where the last inequality is obtained considering that vj < 0 and that Ph (vhξj) is a

non-positive function on the set CRk−1 ∩ ∆j . Since vh =
∑

i∈Nh

viξi, and the sum of

the rows of the stiffness matrix is zero, we have

ε

∫

∆j

∇vh · ∇ξj dx = ε
∑

i∈Mj

kjivi = ε
∑

i∈Mj

kji(vi − vj)+ε
∑

i∈Mj

kjivj = ε
∑

i∈Mj

kji(vi − vj).

Thus, using assumption (2.11) and the hypothesis vj ≤ vi, we have that

ε

∫

∆j

∇vh · ∇ξj dx ≤ 0

in contradiction with (2.12).
Similarly, we can proceed to contradict the existence of nodes in J1. Consider j ∈ J1
such that vj ≥ vi for all i ∈ Nh and let ∆j be the patch of elements associated with
xj . Now, choosing again as a test function the hat function ξj associated with xj ,
from the equality bhγB (uh; vh, ψh) = 0 we have

ε

∫

∆j

∇vh · ∇ξj dx = −
∫

∆j

[Ph(vhξj)|∇uh|2 − αPh((vh − 1)ξj)] dx

− 1

γB

∫

CRk−1∩∆j

Ph (vhξj) dx

< −vj
∑

K∈∆j

|∇uh|K |2
|K|
3
− α(vj − 1)

|∆j |
3

< 0,

(2.13)

where the last inequality is obtained considering that vj > 1 and that Ph (vhξj) is a
positive function on the set CRk−1 ∩∆j . Following a similar reasoning as before and

thanks to the hypothesis vj ≥ vi, we have that ε
∫

∆j

∇vh · ∇ξj dx ≥ 0 in contradiction

with (2.13).

3. An anisotropic error estimator for the modified Ambrosio-Tortorelli

functional. Goal of this section is to provide a suitable optimization procedure for
minimizing functional (2.4) by successive minimizations of (2.9) on adapted anisotropic
meshes. For this purpose, we first lay down the anisotropic background and then we
derive an a posteriori estimator for |I ′(uh, vh;ϕ, ψ)|, by extending the analysis in [10].
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3.1. The anisotropic background. We refer to the setting in [21, 34], where
the anisotropic information is derived from the spectral properties of the standard
affine map TK : K̂ → K with

x = TK(x̂) =MK x̂+ tK

between the equilateral reference triangle K̂ inscribed in the unit circle and the generic
triangle K of the mesh Th, with MK ∈ R

2×2, tK ∈ R
2, x ∈ K, x̂ ∈ K̂.

We introduce the polar decomposition of the JacobianMK , i.e., MK = BKZK , where
BK , ZK ∈ R

2×2 are a symmetric positive definite and an orthogonal matrix, respec-
tively. The first matrix models the deformation of K, while ZK rotates it rigidly.
Then, we consider the eigenvalue factorization of BK as BK = RTKΛKRK , with
RTK = [r1,K , r2,K ] and ΛK = diag(λ1,K , λ2,K). In particular, the eigenvectors r1,K ,
r2,K give the directions of the semi-axes of the ellipse circumscribed to K, while the
eigevalues λ1,K , λ2,K measure the length of these semi-axes (see Figure 3.1). We also
define the aspect ratio of the element K by sK = λ1,K/λ2,K .

K
^

1

1,K
λ

λ

K

r

2,K

1,K

2,K
r

TK

Fig. 3.1. Geometric quantities associated with the map TK

With a view to an anisotropic control of the mesh, we introduce the quasi-
interpolant Clément operatorQh : L2(Ω)→ Xh [17]. We recall the following anisotropic
estimate for the interpolation error.

Lemma 3.1. Let w ∈ H1(Ω). If the cardinality #∆K ≤ N for some N ∈ N, and
diam(T−1

K (∆K)) ≤ C∆ ≃ O(1), where ∆K = {T ∈ Th : T ∩K 6= ∅}, then there exist
constants Cs = Cs(N , C∆), with s = 0, 1, 2, such that, for any K ∈ Th, it holds

‖w −Qh(w)‖Hs(K) ≤ Cs
(

1

λ2,K

)s [ 2∑

i=1

λ2i,K(rTi,KG∆K
(w)ri,K)

]1/2
, (3.1)

with s = 0, 1, and

‖w −Qh(w)‖L2(∂K) ≤ C2

(
hK

λ1,Kλ2,K

)1/2
[

2∑

i=1

λ2i,K(rTi,KG∆K
(w)ri,K)

]1/2
, (3.2)

where hK = diam(K),

G∆K
(w) =

∑

T∈∆K

GT (w) (3.3)
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is a symmetric positive semi-definite matrix with

GT (w) =




∫

T

(
∂w

∂x1

)2

dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

(
∂w

∂x2

)2

dx



, (3.4)

for any T ∈ Th.
Proof. See [23, 24] for the details.
Notice that the geometrical hypotheses in Lemma 3.1 do not limit explicitly the

anisotropic features (stretching factor and orientation) of each element, but rather
they ensure some smoothness in the variation of the anisotropic features [36].

We recall an equivalence result between the standard H1(∆K)-seminorm and its
anisotropic correspondent:

Lemma 3.2. Let w ∈ H1(Ω) and K ∈ Th. For any β1, β2 > 0, it holds

min{β1, β2} ≤
β1(r

T
1,KG∆K

(w)r1,K) + β2(r
T
2,KG∆K

(w)r2,K)

|w|2H1(∆K)

≤ max{β1, β2}, (3.5)

where G∆K
(·) is defined as in (3.3).

Proof. See [33] for the details.

3.2. An a posteriori error estimator. We can now state the main result of this
section which represents the anisotropic analogue of Proposition 3.1 in [10].

Proposition 3.3. Let (uh, vh) ∈ Xh×Xh be the critical point of Ih(·, ·) according
to Definition 2.4. Then, it holds

|I ′(uh, vh;ϕ, ψ)| ≤ C
∑

K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ, ψ ∈ H1(Ω),

(3.6)
where C = C(N , C∆), while

ρAK(vh, uh) =
1

2
‖[[∇uh]]‖L∞(∂K) ‖v2h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ‖2vh(∇vh · ∇uh)‖L2(K) +
δK,Ω±

D

γA

(
‖uh − gh(tk)‖L2(K)

+‖gh(tk)− g(tk)‖L2(K)

)
+

1

λ2,K

[
‖v2h − Ph(v2h)‖L∞(K) ‖∇uh‖L2(K)

+
|K|1/2 h2K

γA
|uh − gh(tk)|W 1,∞(K)

]

ρBK(uh, vh) = ‖(|∇uh|2 + α)vh − α‖L2(K) +
ε

2
‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K) +

h2K
λ2,K

[
‖ |∇uh|2 + α‖L2(K)

+
|K|1/2 δK,CRk−1

γB

]
|vh|W 1,∞(K)

ωK(w) =
[ 2∑

i=1

λ2i,K(rTi,KG∆K
(w)ri,K)

]1/2
∀w ∈ H1(Ω),

9



where

[[wh]] =

{ ∣∣[∇wh · ν]
∣∣ on Eh

∣∣∇wh · ν
∣∣ on Eh ∩ ∂Ω

(3.7)

denotes the absolute value of the jump of the normal derivative, with ν the unit normal
vector to the generic edge in Eh, gh is chosen as in (2.10) and δK,̟ is such that
δK,̟ = 1 if K ∩̟ 6= ∅ and δK,̟ = 0 otherwise.

Proof. Since (uh, vh) is a critical point of Ih(·, ·), we have

ahγA(vh;uh, ϕh) = 0 ∀ϕh ∈ Xh, bhγB (uh; vh, ψh) = 0 ∀ψh ∈ Xh. (3.8)

Moreover, from (2.7), for any pair (ϕ, ψ) ∈ H1(Ω)×H1(Ω), it holds

|I ′(uh, vh;ϕ, ψ)| ≤ 2|aγA(vh;uh, ϕ)|+ 2|bγB (uh; vh, ψ)|. (3.9)

Let us deal with the two terms above, separately. We start from |aγA(vh;uh, ϕ)|.
Thanks to (3.8), we have

|aγA(vh;uh, ϕ)| ≤ |aγA(vh;uh, ϕ− ϕh)|

+ |aγA(vh;uh, ϕh)− ahγA(vh;uh, ϕh)| ∀ϕ ∈ H1(Ω), ∀ϕh ∈ Xh.
(3.10)

Concerning the first term on the right-hand side of (3.10), we get

∣∣aγA(vh;uh, ϕ− ϕh)
∣∣

=
∣∣∣
∑

K∈Th

{∫

K

(v2h + η)∇uh · ∇(ϕ− ϕh) dx+
1

γA

∫

K

(uh − g(tk))(ϕ− ϕh)χΩ±

D
dx
}∣∣∣

=
∣∣∣
∑

K∈Th

{∫

K

−2vh(∇vh · ∇uh)(ϕ− ϕh) dx+

∫

∂K

(v2h + η)∇uh · ν(ϕ− ϕh)ds

+
1

γA

∫

K

[
(uh − gh(tk)) + (gh(tk)− g(tk))

]
(ϕ− ϕh)χΩ±

D
dx
}∣∣∣

≤
∑

K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K) ‖ϕ− ϕh‖L2(K) +

1

2

∫

∂K

[[∇uh]] |v2h + η| |ϕ− ϕh|ds

+
1

γA

(
‖(uh − gh(tk))χΩ±

D
‖L2(K)+‖(gh(tk)− g(tk))χΩ±

D
‖L2(K)

)
‖(ϕ− ϕh)χΩ±

D
‖L2(K)

}

≤
∑

K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K) ‖ϕ− ϕh‖L2(K)

+
1

2
‖[[∇uh]]‖L∞(∂K)‖v2h + η‖L2(∂K)‖ϕ− ϕh‖L2(∂K)+

1

γA

(
‖(uh − gh(tk))χΩ±

D
‖L2(K)

+‖(gh(tk)− g(tk))χΩ±

D
‖L2(K)

)
‖(ϕ− ϕh)χΩ±

D
‖L2(K)

}
,

(3.11)
after splitting the integrals on the mesh elements, exploiting integration by parts,
Hölder and Cauchy-Schwarz inequalities, and definition (3.7). Hereafter, χ̟ denotes
the characteristic function of the set̟. Picking ϕh = Qh(ϕ) and thanks to Lemma 3.1
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with s = 0, we obtain
∣∣aγA(vh;uh, ϕ− ϕh)

∣∣

≤ C
∑

K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K)+

1

2
‖[[∇uh]]‖L∞(∂K)‖v2h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+
δK,Ω±

D

γA

(
‖uh − gh(tk)‖L2(K)+ ‖gh(tk)− g(tk)‖L2(K)

)}[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ϕ)ri,K)

] 1
2

.

(3.12)
Let us now deal with the second term on the right-hand side of (3.10). We anticipate
the auxiliary result

|whϕh|H2(K) ≤ 4 |wh|W 1,∞(K) ‖∇ϕh‖L2(K) ∀wh, ϕh ∈ Xh, ∀K ∈ Th, (3.13)

which can be proved by straightforward calculus. Now, employing standard inequali-
ties (Hölder, Cauchy-Schwarz) together with the definition of gh(tk) and the standard
isotropic estimate for the L2-norm of the interpolation error associated with Ph, we
get

|aγA(vh;uh, ϕh)− ahγA(vh;uh, ϕh)| ≤
∣∣∣
∫

Ω

[
v2h − Ph(v2h)

]
∇uh · ∇ϕh dx

∣∣∣

+
1

γA

∣∣∣
∫

Ω±

D

[
(uh − gh(tk))ϕh − Ph((uh − gh(tk))ϕh)

]
dx
∣∣∣

+
1

γA

∣∣∣
∫

Ω±

D

(
gh(tk)ϕh − g(tk)ϕh

)
dx
∣∣∣

≤ C
∑

K∈Th

{
‖v2h − Ph(v2h)‖L∞(K) ‖∇uh‖L2(K) ‖∇ϕh‖L2(K)

+
|K|1/2 h2K

γA
|(uh − gh(tk))ϕh|H2(K)

}
,

(3.14)

where the constant C does not depend on the aspect ratio sK of K. Then, we employ
(3.13) together with estimate (3.1) with s = 1 and Lemma 3.2 with β1 = λ21,K ,

β2 = λ22,K , to obtain

|aγA(vh;uh, ϕh)− ahγA(vh;uh, ϕh)|

≤ C
∑

K∈Th

{
‖v2h − Ph(v2h)‖L∞(K) ‖∇uh‖L2(K) ‖∇ϕh‖L2(K)

+
|K|1/2 h2K

γA
|uh − gh(tk)|W 1,∞(K) ‖∇ϕh‖L2(K)

}

≤ C
∑

K∈Th

{(
‖v2h − Ph(v2h)‖L∞(K) ‖∇uh‖L2(K) +

|K|1/2 h2K
γA

|uh − gh(tk)|W 1,∞(K)

)

(
‖∇ϕh −∇ϕ‖L2(K) + ‖∇ϕ‖L2(K)

)}

≤ C
∑

K∈Th

{(
‖v2h − Ph(v2h)‖L∞(K) ‖∇uh‖L2(K) +

|K|1/2 h2K
γA

|uh − gh(tk)|W 1,∞(K)

)

1

λ2,K

[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ϕ)ri,K)

]1/2}
.

(3.15)
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Therefore, collecting (3.12) and (3.15), we are able to bound the first term on the
right-hand side of (3.9), as

|aγA(vh;uh, ϕ)| ≤ C
∑

K∈Th

ρAK(vh, uh)ω
A
K(ϕ).

Let us consider now the second term on the righ-hand side of (3.9). In the same way
as in (3.10) and thanks to (3.8), we have

|bγB (uh; vh, ψ)| ≤ |bγB (uh; vh, ψ − ψh)|

+|bγB (uh; vh, ψh)− bhγB (uh; vh, ψh)| ∀ψ ∈ H1(Ω), ∀ψh ∈ Xh.
(3.16)

We tackle the first term |bγB (uh; vh, ψ − ψh)|. Rewriting the integrals on Ω over the
mesh elements, integrating by parts, and thanks to the Cauchy-Schwarz inequality
and definition (3.7), we obtain

∣∣bγB (uh; vh, ψ − ψh)
∣∣

=

∣∣∣∣∣
∑

K∈Th

{∫

K

[(
(|∇uh|2 + α)vh − α

)
(ψ − ψh) + ε∇vh · ∇(ψ − ψh)

]
dx

+
1

γB

∫

K

vh(ψ − ψh)χCRk−1
dx

}∣∣∣∣∣

≤
∑

K∈Th

{
‖(|∇uh|2 + α)vh − α‖L2(K)‖ψ − ψh‖L2(K) +

∣∣∣ε
∫

∂K

(ψ − ψh)∇vh · ν ds
∣∣∣

+
1

γB
‖vh χCRk−1

‖L2(K) ‖(ψ − ψh)χCRk−1
‖L2(K)

}

≤
∑

K∈Th

{
‖(|∇uh|2+α)vh−α‖L2(K)‖ψ−ψh‖L2(K)+

ε

2
‖[[∇vh]]‖L2(∂K)‖ψ−ψh‖L2(∂K)

+
1

γB
‖vh χCRk−1

‖L2(K) ‖(ψ − ψh)χCRk−1
‖L2(K)

}
.

(3.17)
We now choose ψh = Qh(ψ) and use Lemma 3.1 to get

∣∣bγB (uh; vh, ψ − ψh)
∣∣

≤ C
∑

K∈Th

{
‖(|∇uh|2 + α)vh − α‖L2(K) +

ε

2
‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K)

}[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ψ)ri,K)

]1/2
.

(3.18)
We estimate now the second term on the right-hand side of (3.16). By mimicking the
arguments employed in (3.14)-(3.15), we obtain the following bound:

∣∣bγB (uh; vh, ψh)− bhγB (uh; vh, ψh)
∣∣

≤
∣∣∣
∫

Ω

(vhψh − Ph(vhψh))(|∇uh|2 + α) dx
∣∣∣+ 1

γB

∫

CRk−1

(vhψh − Ph(vhψh)) dx
∣∣∣
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≤ C
∑

K∈Th

{
‖vhψh − Ph(vhψh)‖L2(K)

[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]}

≤ C
∑

K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2K |vhψh|H2(K)

}

≤ C
∑

K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2K |vh|W 1,∞(K)‖∇ψh‖L2(K)

}

≤ C
∑

K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2K |vh|W 1,∞(K)

1

λ2,K

[ 2∑

i=1

λ2i,K(rTi,KG∆K
(ψ)ri,K)

]1/2}
.

(3.19)
Inequalities (3.18) and (3.19) allow us to control the second term on the right-hand
side of (3.9), i.e.,

|bγB (uh; vh, ψ)| ≤ C
∑

K∈Th

ρBK(uh, vh)ω
B
K(ψ).

Estimate (3.6) now follows in a straightforward way.
Estimate (3.6) holds for any choice of test functions (ϕ, ψ) ∈ H1(Ω)×H1(Ω). To

get rid of the particular test functions, following [10], we can bound the dual norm
‖I ′(uh, vh)‖(H1(Ω)×H1(Ω))∗ as

‖I ′(uh, vh)‖(H1(Ω)×H1(Ω))∗

≤ C
[( ∑

K∈Th

λ21,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑

K∈Th

λ21,K
(
ρBK(uh, vh)

)2)1/2]
,

(3.20)

where (H1(Ω) × H1(Ω))∗ is the dual space of H1(Ω) × H1(Ω) and C = C(N , C∆).
Indeed, thanks to Lemma 3.2 and the discrete Cauchy-Schwarz inequality, we have

‖I ′(uh, vh)‖(H1(Ω)×H1(Ω))∗ = sup
(ϕ,ψ)∈H1(Ω)×H1(Ω)

|I ′(uh, vh;ϕ, ψ)|[
‖ϕ‖2H1(Ω) + ‖ψ‖2H1(Ω)

]1/2

≤ C
[( ∑

K∈Th

λ21,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑

K∈Th

λ21,K
(
ρBK(uh, vh)

)2)1/2
]

[ (
‖ϕ‖H1(Ω) + ‖ψ‖H1(Ω)

)

(‖ϕ‖2H1(Ω) + ‖ψ‖2H1(Ω))
1/2

]
.

Nevertheless, the right-hand side of (3.20), despite being an explicitly computable
quantity, turns out to be a very poor error estimator in terms of driving efficient
anisotropic mesh adaptation. Thus, we cannot pursue the approach in [10]. Alterna-
tively, we make a specific choice for the test function pair in (3.6), namely ϕ = u and
ψ = v. This is mainly motivated by the fact that we weight the residual ρAK(vh, uh)
associated with the derivative of I(·, ·) with respect to u with the directional infor-
mation provided by u itself, and analogously for ρBK(uh, vh) weighted via v. As a
consequence, the error estimator that we propose is

η(uh, vh) =
∑

K∈Th

ηK(uh, vh), (3.21)
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with ηK(uh, vh) = ρAK(vh, uh)ω
R
K(uh) + ρBK(uh, vh)ω

R
K(vh), where

ωRK(zh) =
[ 2∑

i=1

λ2i,K(rTi,KG
R
∆K

(zh)ri,K)
]1/2

with zh = uh, vh,

with GR∆K
(zh) the matrix G∆K

defined as in Lemma 3.1 applied to the recovered
gradient from zh [42, 34, 35]. Notice that we have already replaced (ϕ, ψ) by the pair
(uh, vh) in (3.6) to make the estimator explicitly computable.

Remark 3.1. In the numerical computations of the next section, after [10], we
replace definition (2.2) by the discrete version

CRhk−1 =
⋃

e∈ECR
h

e, where ECRh = {e ∈ Eh : vh(x, tk−1) ≤ CRTOL, ∀x ∈ e},

which enjoys one-dimensional features. It is beyond the purpose of this paper to study
the error induced by this approximation.

4. The numerical procedure. The numerical minimization of the functional
(2.6) by successive minimizations of (2.9) is not a trivial task. In fact, the presence
of the term v2|∇u|2 makes it nonconvex. Therefore, it is not possible, in general, to
construct an algorithm with polynomial complexity guaranteeing convergence to the
global minimizers. The methods in the literature in general only ensure convergence
to local minima (see [4] and references therein).
In the first part of this section, we provide the algorithm employed for the minimiza-
tion of (2.6) in H1(Ω)×H1(Ω). The discrete version of this algorithm coupled with
the mesh adaptive procedure is introduced in Section 4.2.

4.1. The minimization algorithm. To minimize (2.6), we resort to the al-
ternate minimization algorithm proposed in [9]. This method exploits the convexity
of the functional with respect to the two separate variables. Thus, after fixing a
termination tolerance VTOL≪ 1, the algorithm is the following:

Algorithm 1.

1. Set k = 0;
2. If k = 0, set v1 = 1; else v1 = v(tk−1).
3. Set i = 1; err = 1;
while err ≥ VTOL do

4. ui = argmin
z∈H1(Ω)

I(z, vi);

5. vi+1 = argmin
z∈H1(Ω)

I(ui, z);

6. err = ‖vi+1 − vi‖L∞(Ω);
7. i← i+ 1;

end while

8. u(tk) = ui−1; v(tk) = vi;
9. k ← k + 1;
10. if k > F , stop; else goto 2.

Steps 4. and 5. involve the two separate convex minimizations.
In the literature, several examples of implementations of this algorithm are available
(see, e.g., [6, 7, 9, 10]) and a corresponding convergence proof can be obtained by
exploiting [6, Theorem 1] and [10, Theorems 4.1 and 4.2].
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With a view to the numerical implementation, we will consider the discrete coun-
terpart of Algorithm 1. Since, in general, we expect the crack propagation to be a
strongly anisotropic process, characterized by very steep gradients of both the fields
u and v, we will resort to a finite element discretization based on anisotropic adapted
meshes, driven by the a posteriori error estimator derived in Proposition 3.3. The
challenge is to properly merge the minimization algorithm with an anisotropic adap-
tive procedure, as shown in the next section.

4.2. The mesh adaptive procedure. Following [33, 34, 35], we use a metric-
based mesh adaptive approach (see, e.g., [27]). In particular, for a fixed accuracy
tolerance TOL, we “predict” the optimal mesh with the least number of elements.
A metric is a symmetric positive-definite tensor field M : Ω → R

2×2 which, for any
x ∈ Ω, provides the sizes that the optimal mesh should have along all the directions
around x. In practice, we approximateM via a piecewise constant metric on a given
mesh Th, i.e., M|K =MK = RTKL−2

K RK , for any K ∈ Th, where the matrices RK
and LK share the same structure as RK and ΛK in Section 3, respectively.
Actually, there exists a strict link between metrics and meshes. We can associate
with an assigned mesh Th, a corresponding piecewise-constant metric identified by
MK = RTKΛ−2

K RK , for any K ∈ Th, where matrices RK and ΛK are exactly the same
as in Section 3.1. Vice versa, for a given metric M, we can build a mesh, say TM,
such thatMK ≡ MK , for any K ∈ TM (for all the details, we refer, for instance, to
[33, 34]).

The procedure we follow is first to derive a metric moving from the a posteriori
error estimator (3.21) and then to generate the new mesh induced by this metric via
a metric-based mesh generator. In particular, we resort to the function adaptmesh in
FreeFem++ [30].
In the spirit of a standard predictive approach, the metric M is obtained via an
iterative procedure. At each iteration, say j, we deal with three quantities:

i) the actual mesh T (j)
h ;

ii) the new metricM(j+1) computed on T (j)
h ;

iii) the updated mesh T (j+1)
h induced byM(j+1).

The most tricky step is the prediction of the new metric out of the estimator η(uh, vh).
For this purpose, we suitably rewrite the local estimator ηK(uh, vh) as

ηK(uh, vh) = µK

{
ρAK(vh, uh)ω

R
K(uh) + ρBK(uh, vh)ω

R
K(vh)

}
, (4.1)

where µK = |K̂|
(
λ1,Kλ2,K

)3/2
gathers all the area |K| information,

ρAK(vh, uh) =
ρAK(vh, uh)(

|K̂|λ1,Kλ2,K
)1/2 , ρBK(vh, uh) =

ρBK(vh, uh)(
|K̂|λ1,Kλ2,K

)1/2 ,

are approximately pointwise values (at least for a sufficiently fine mesh), while the
new weights

ωRK(zh) =
[
sK rT1,K G

R

∆K
(zh) r1,K +

1

sK
rT2,K G

R

∆K
(zh) r2,K

]1/2
with zh = uh, vh,

collect the anisotropic information associated with K, with

G
R

∆K
(·) = GR∆K

(·)/(|K̂|λ1,Kλ2,K).
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Following Section 4 in [35], we properly merge the two terms in (4.1) to deal with a
single metric. This yields

ηK(uh, vh) = µKΥK

with

ΥK =
[
sK rT1,K ΓK r1,K +

1

sK
rT2,K ΓK r2,K

]1/2
, (4.2)

where the local matrix

ΓK =
[
ρAK(vh, uh)

]2
G
R

∆K
(uh) +

[
ρBK(vh, uh)

]2
G
R

∆K
(vh) (4.3)

merges the anisotropic information provided by u and v suitably weighted via the
local residuals. In this way, we are able to grasp all the directional features induced
by u and v, thus avoiding the metric intersection issue.

Now to minimize the number of mesh elements, we equivalently maximize the
area of each element K with the equidistribution constraint, i.e., for each element

K ∈ T (j+1)
h , ηK(uh, vh) = µK ΥK = TOL/#T (j)

h , where TOL and #T (j)
h are the

fixed global tolerance and the number of mesh elements in T (j)
h , respectively. The

maximization is achieved by minimizing the weight ΥK with respect to sK and r1,K ,
i.e., by solving elementwise the constrained minimization problem

min
sK≥1,ri,K ·rj,K=δij

ΥK(r1,K , sK), (4.4)

δij being the Kronecker symbol. Notice that all the quantities involved in (4.3) are

computed on the background grid T (j)
h . On the other hand, the aspect ratio sK and

the unit vectors ri,K in (4.2) represent our actual unknowns.
According to Proposition 4.2 in [35], we can state the desired minimization result

as
Proposition 4.1. Let {γi,K , gi,K} be the eigenvector-eigenvalue pair of ΓK with

g1,K ≥ g2,K > 0. Then the minimum (4.4) is obtained for the choices

r1,K = γ2,K and sK =

(
g1,K
g2,K

)1/2

, (4.5)

yielding the value
(
2
√
g1,Kg2,K

)1/2
for ΥK . Notice that the minimization problem

(4.4) is not a computational overhead, since it can be solved analytically via (4.5).
Moreover, we observe that the optimal weight ΥK does not depend any more on the
aspect ratio.

Finally, the optimal metricM(j+1) is obtained by exploiting the equidistribution
constraint, i.e., by solving the equations

|K̂|
(
λ1,Kλ2,K

)3/2 (
2
√
g1,Kg2,K

)1/2
=

TOL

#T (j)
h

and
λ1,K
λ2,K

= sK =

(
g1,K
g2,K

)1/2

.

(4.6)
System (4.6) provides us with the distinct values

λ1,K =

(
1

|K̂|
√
2

(
g1,K
g22,K

)1/2
TOL

#T (j)
h

)1/3

, λ2,K =

(
1

|K̂|
√
2

(
g2,K
g21,K

)1/2
TOL

#T (j)
h

)1/3

.

(4.7)
Eventually, the optimal metric M(j+1) is characterized by r1,K in (4.5), λ1,K and
λ2,K in (4.7), with r2,K ⊥ r1,K .
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4.3. The whole adaptive procedure. Now, we glue the discrete counterpart
of Algorithm 1 with the mesh adaptive procedure. In particular, we propose two
algorithms, which differ in the way the minimization and the mesh adaptivity are
interlaced. For both algorithms, we denote by Th the mesh used to start up the mesh
adaptive procedure.

The first algorithm, which is a variant of ALGORITHM 1 in [10], applies the mesh
adaptation after convergence of the minimization algorithm on both uh and vh. In
particular, after fixing a termination tolerance VTOL≪ 1 for the minimization algo-
rithm, a relative tolerance MESHTOL≪ 1 on the change of the mesh cardinality, and
REFTOL≪ 1 which fixes the accuracy on the functional (3.6), the algorithm is the
following:

Algorithm 2 (Optimize-then-Adapt).

1. Set k = 0, j = 0, T (0)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set j = 0; errmesh= 1;
while errmesh ≥ MESHTOL do

4. Set i = 1; err = 1;
while err ≥ VTOL do

5. uih = argmin
zh∈X

(j)
h

I(zh, v
i
h);

6. vi+1
h = argmin

zh∈X
(j)
h

I(uih, zh);

7. err = ‖vi+1
h − vih‖L∞(Ω);

8. i← i+ 1;
end while

9. Compute the new metricM(j+1) based on ui−1
h and vih with TOL = REFTOL;

10. Build the adapted mesh T (j+1)
h ;

11. errmesh = |#T (j+1)
h −#T (j)

h |/#T
(j)
h ;

12. Set v1h = Πj→j+1(v
i
h);

13. j ← j + 1;
end while

14. uh(tk) = Πj−1→j(u
i−1
h ); vh(tk) = Πj−1→j(v

i
h); T kh = T (j)

h ;

15. Set T (0)
h = T kh ;

16. k ← k + 1;
17. if k > F , stop; else goto 2.

The convergence of the mesh adaptivity is checked by monitoring the variation
of the number of elements during the adaptivity process. Although this check is not
rigorously sound, in practice it provides an effective stopping criterion.
An interpolation step between two successive adapted meshes is also employed before
restarting any new optimization or time loop. This is carried out by a suitable inter-
polation operator, Πn→n+1(wh), which maps a finite element function wh defined on
T nh onto the new mesh T n+1

h .
This algorithm performs well if the tip of the fracture moves sufficiently slow in

time. Indeed, since the coupling between optimization and adaptation is not so tight,
a time-adaptivity could be desirable to restrain a fast mesh evolution. Nevertheless,
time adaptivity is not able to contain the final evolution steps when the actual fracture
lead to a sudden breakdown of the material which splits into two separate parts. This
limit can be ascribed also to the deficiency of the employed quasistatic model, which
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clearly fails in describing very fast dynamics.
To dampen the crack propagation, we propose a second algorithm, which introduces
a tighter alternation of the optimization and mesh adaptation phases. The meaning
of all the involved parameters is the same as in Algorithm 2.

Algorithm 3 (Optimize-and-Adapt).

1. Set k = 0, T (1)
h = Th ;

2. If k = 0, set v1h = 1; else v1h = vh(tk−1);
3. Set i = 1; errmesh= 1; err= 1;
while errmesh ≥ MESHTOL & err ≥ VTOL do

4. uih = argmin
zh∈X

(i)
h

I(zh, v
i
h);

5. vi+1
h = argmin

zh∈X
(i)
h

I(uih, zh);

6. Compute the new metricM(i+1) based on uih and vi+1
h with TOL = REFTOL;

7. Build the adapted mesh T (i+1)
h ;

8. err = ‖vi+1
h − vih‖L∞(Ω);

9. errmesh = |#T (i+1)
h −#T (i)

h |/#T
(i)
h ;

10. Set v1h = Πi→i+1(v
i+1
h );

11. i← i+ 1;
end while

12. uh(tk) = Πi−1→i(u
i−1
h ); vh(tk) = v1h; T kh = T (i)

h ;

13. Set T (1)
h = T kh ;

14. k ← k + 1;
15. if k > F , stop; else goto 2.

Notice that in this algorithm a single while-loop is involved; the mesh adaptivity
is carried out at each iteration, as soon as both uh and vh are available.

5. Numerical experiments. Goal of this section is to assess the robustness of
the algorithms proposed in the previous section on some benchmark problems. In
particular, to have a comparison solution, we choose the test-cases proposed in [10].
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Fig. 5.1. Domain and initial mesh for the straight crack (left pair), and for the curved crack
(right pair)

5.1. The straight crack. Let us identify a brittle material of rectangular shape,
Ω = (0, 2)×(0, 2.2), containing a slit along {1}×[1.5, 2.2] (see Figure 5.1, left), that we
approximate with a very thin gap 2 ·10−5 thick. We apply the antiplane displacement
g(t) = −t on ΩD− = (0, 1) × (2, 2.2), g(t) = t on ΩD+ = (1, 2) × (2, 2.2). Due to the
perfect symmetry of this problem, we expect that the fracture does not bend but that
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it goes straight down starting from the tip of the slit.
As an initial grid, we pick the uniform unstructured mesh in Figure 5.1, left. We
consider a time window [0, 1.5] sufficiently wide to contain the whole phenomenon.
Concerning the parameters involved in both the algorithms, we choose the ones in
Table 5.1.

Table 5.1
The straight crack: parameters involved in Algorithms 2 and 3

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 REFTOL= 10−2

Figure 5.2 compares the crack path yielded by the two algorithms. Notice that
the final part of the crack delivered by Algorithm 3 is slightly straighter and more
regular. This is likely due to the fact that Algorithm 2 is more sensitive to the
possible coarseness of the mesh ahead of the tip. As a consequence, when the crack
reaches the final stage, it tries to enter a region where the mesh has not been modified
yet. Conversely, the tighter interplay between optimization and mesh adaptation in
Algorihm 3 lets the crack find an already properly adapted mesh. An additional
difference is the time when the breakdown is detected, i.e., t = 1.36 for Algorihm 2
and t = 1.33 in the case of Algorihm 3, compared with t = 1.24 in [10]. Indeed, since
in the first algorithm we do not update the mesh during the minimization process, it
can happen that the crack growing is slowed down in order to find a good compromise
between the actual mesh and the fracture evolution. We additionally observe that for
both Algorithms 2 and 3, the time of initiation of the fracture actually occurs later,
i.e., at time t = 0.35, than the experiments in [10], where t = 0.25. We ascribe this
discrepancy to the finite-width representation of the initial crack path via the vertical
slit, while in [10] this is modeled via an actual 1-dimensional manifold. Concerning
the computational effort, the run time of Algorithms 2 and 3 is 1541.30s and 1639.29s,
respectively.

Fig. 5.2. The straight crack: v-field at the final time yielded by Algorihm 2 (left) and Algorihm 3
(right)

Figure 5.3 shows the adatpted mesh T algo2h and T algo3h obtained by the two algo-
rithms at the final time. The meshes, consisting of 38299 and 33927 elements respec-
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Fig. 5.3. The straight crack: final anisotropic adapted mesh provided by Algorithm 2 (left);
final anisotropic adapted mesh (center) and zoom in (right) delivered by Algorithm 3

tively, exhibit really stretched elements which closely follow the crack path, whereas
the mesh is very coarse in the unfractured domain, i.e., where vh ≃ 1. The maximum
aspect ratio is sK = 2154.3 for T algo2h and sK = 1891.5 for T algo3h . The close up in
Figure 5.3 at time t = 1.21 highlights the strongly anisotropy of the mesh far from
the crack tip. We observe instead that the triangles closer to the tip are still rather
isotropic. This should guarantee that the next advancing step of the crack is not bi-
ased by the directionality of the elements. After [8, 14], there has been the perception
that anisotropic mesh adaptation may influence the propagation of the fracture, in
particular its initiation [13]. However, it seems that the numerical procedure that we
propose is in practice robust and stable thanks to its automatic capability of yielding
a rounded tip.
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Fig. 5.4. The straight crack: v-field (left), final adapted mesh (center), and zoom in (right) at
the final time in the case of the isotropic counterpart of Algorithm 2.

Figure 5.4 provides the v-field and the final adapted mesh for an isotropic adap-
tation, obtained by enforcing sK = 1 for all K ∈ Th in Algorithm 2. The crack is
detected also in this case even though the required number of elements is far larger,
i.e., 78025 triangles versus 38299. Moreover, a slightly wavier path is exhibited with
respect to Figure 5.2, left.

5.2. The curved crack. This second test case is meant to assess whether the
fracture changes direction if the domain exhibits a weak inset, such as a hole. The

20



computational domain is the same as in the previous test case with the additional
presence of a circular hole of radius 0.2, centered at (0.3, 0.3) (see Figure 5.1, right).
The presence of the hole introduces an element of weakness in the material. As a
consequence, due to energy arguments, we expect that the fracture bends its path
towards the hole instead of proceedings along a straight line. As observed in [10], this
test case is more challenging than the previous one. Therefore, we choose a tighter
tolerance, i.e., REFTOL = 10−3. The simulated crack path is very stable with respect
to the choice of the parameters, as long as they are not larger than those in Table 5.1
(see [3], where an extensive sensitivity analysis to the parameter tuning is carried
out).

Fig. 5.5. The curved crack: v-field at the final time provided by Algorithm 2 (left) and by
Algorithm 3 (center); zooms in around the hole for Algorithm 2 (top-right) and for Algorithm 3
(bottom-right)

In Figure 5.5, we show the v-field at the final time yielded by the two algorithms.
In both cases, the crack enters the hole. As already observed in the previous test case,
Algorithm 2 leads a more “bumpy” crack path ahead of the hole (compare Figure 5.5,
left with Figure 5.5, center, and the corresponding zooms in).

Fig. 5.6. The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43 (right)
provided by Algorithm 3

Figure 5.6 displays the u-field superposed to the adapted meshes at t = 1.37
(left) and at t = 1.43 (right) in the case of Algorithm 3. A very steep ridge is evident
where the tearing apart is exerted. The mesh in both cases follows very closely the

21



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

0.869 0.87 0.871 0.872 0.873 0.874 0.875 0.876

0.587

0.588

0.589

0.59

0.591

0.592

0.593

0.594

0.595

Fig. 5.7. The curved crack: final anisotropic adapted mesh provided by Algorithm 2 (left); final
anisotropic adapted mesh (center) and zoom in (right) delivered by Algorithm 3

crack propagation. A top view of the final adapted meshes generated via Algorithm
2 and 3 is provided in Figure 5.7, together with a detail of the second mesh. Notice
that the anisotropic adaptive procedure is able to detect the presence of a very fine
structure inside the crack in correspondence with the ridges. Moreover, the cardinality
of the two meshes is very different: Algorithm 2 employs 48599 elements in contrast
to Algorithm 3 which demands only 15987 triangles. The maximum aspect ratio is
sK = 1525.3 for T algo2h and sK = 1469.9 for T algo3h .

Fig. 5.8. The curved crack: successive iterations of Algorithm 2 (top) and Algorithm 3 (bottom)
in the breakdown phase

Figure 5.8 shows four snapshots close to the breakdown time by comparing four
successive iterations of Algorithm 2 (top) with Algorithm 3 (bottom). In the case of
Algorithm 2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterwards, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover,
before converging to the failure of the material, two possible paths, energetically
equivalent, pop out past the hole.

Figure 5.9, left provides the time evolution of the energy, Ee + Ef in (1.2). The
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Fig. 5.9. The curved crack: energy (left) and cardinality (right) evolution for the anisotropic
meshes yielded by the two Algorithms and for the isotropic counterpart of Algorithm 3

energy constantly increases. During the very first phase, when the crack has not
started yet, the dominant contribution to the energy is Ee. Successively, after the
onset of the crack propagation at t = 0.35, the fictitious energy Ef contributes to the
whole energy. After the breakdown of the material (t = 1.43), the energy decreases
suddenly since the elastic energy abruptly vanishes. On physical grounds, we would
expect the energy to go to zero after the breakdown. However, the fictitious energy
leaves a trace which never disappears. In Figure 5.9, right we compare the trend of
the cardinality of the anisotropic meshes associated with the two adaptive algorithms
along with the isotropic counterpart of Algorithm 3. It is evident the saving brought
by Algorithm 3 and the strong increase exhibited by Algorithm 2 in the very final
phase.
Moreover, the isotropic variant of Algorithm 3 generates a larger number of elements
throughout all the time evolution. In particular, at the final time the isotropic mesh
consists of 131367 triangles, i.e., about a factor 8 with respect to the best performing
Algorithm 3.
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Fig. 5.10. The curved crack: v-field (left) at the final time, final adapted mesh (center) and
zoom in (right) on the hole in the case of the isotropic counterpart of Algorithm 3

Finally, in Figure 5.10, we collect the results obtained through Algorithm 3 when
we enforce an isotropic mesh adaptation, i.e., sK = 1 for allK ∈ Th. We first recognize
the different path undertaken by the crack, namely, the crack leaves the hole on the
bottom instead on the left. However, this different path could be plausible from a
physical point of view since both the paths are energetically equivalent. On the other
hand, physical experiments select the one in Figure 5.5 as the most likely ([32, 38],
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see also their related works [9, 39]). The alternative path in Figure 5.10 suggests that
a more thorough numerical investigation should be carried out in order to properly
calibrate the algorithm parameters for isotropic meshes.

Future developments of the proposed approach concern the modeling of fractures
under plane-strain elasticity as well as more general mathematical models such as the
ones introduced in [12].
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