
Anisotropic Mesh Generation with ParticlesFrank BossenMay 13, 1996CMU-CS-96-134
School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213Email: bossen@cs.cmu.edubossen@ltssg7.epfl.chWWW: http://www.cs.cmu.edu/~bossenhttp://ltswww.epfl.ch/~bossen

This document is a revised version of the author's master's thesis (Ing�enieur EPF),Computer Science, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzer-land, March 1996.

Keywords: mesh generation, �nite element analysis, CFD, anisotropy, Riemanniangeometry, Delaunay triangulation, mesh smoothing, mesh relaxation

AbstractMany important real-world problems require meshing, that is the approximation of a givengeometry by a set of simpler elements such as triangles or quadrilaterals in two dimen-sions, and tetrahedra or hexahedra in three dimensions. Applications include �nite elementanalysis and computer graphics. This work focuses on the former.A physically-based model of interacting \particles" is introduced to uniformly spread pointsover a 2-dimensional polygonal domain. The set of points is triangulated to form a trianglemesh. Delaunay triangulation is used because it guarantees a low computational cost andreasonably well-shaped elements. Several particle interaction (repulsion and attraction)models are investigated ranging from Gaussian energy potentials to Laplacian smoothing.Particle population control mechanisms are introduced to make the size of the mesh elementsconverge to the desired size.In most applications spatial mesh adaptivity is desirable. Triangles should not only adapt insize but also in shape, to better �t the function to approximate. Computational uid dyna-mics simulations typically require triangles stretched in the direction of the ow. A metrictensor is introduced to quantify the stretching. The triangulation procedure is changed togenerate \Delaunay" meshes in the Riemannian space de�ned by the metric.This new approach to mesh generation appears quite promising.

3

4

Contents
1 Introduction 71.1 Previous Work : 81.2 Approach Overview : 91.2.1 Document Outline : 112 Delaunay Triangulations 132.1 The Quadedge Data Structure : 142.2 Topological Operators : 152.2.1 MakeEdge : 162.2.2 Splice : 162.2.3 Connect : 162.2.4 Disconnect : 172.2.5 Swap : 172.2.6 DeleteEdge : 182.3 Geometrical Operators : 182.3.1 OnRight, OnLeft and OnEdge : 182.3.2 InCircle : 182.4 Triangulation Algorithms : 212.4.1 The Edge Swapping Algorithm : 212.4.2 The Incremental Algorithm : 212.5 Dynamic Maintenance of a Triangulation : 222.5.1 Site Insertion : 222.5.2 Walking Method for Point Location : : : : : : : : : : : : : : : : : : : 232.5.3 Site Removal : 242.5.4 Triangulation of a Simple Polygon : 252.6 Constrained Delaunay Triangulations : 252.6.1 An Incremental CDT Algorithm : 263 A World of Particles 273.1 Interaction Model : 273.1.1 Boundary Conditions : 293.1.2 Numerical Resolution : 293.1.3 Asynchronous Updating : 293.1.4 Second Order Model : 303.2 Interaction Neighborhoods : 303.3 Potential Functions : 315

3.3.1 Requirements at Equilibrium : 313.3.2 Gaussian Potential : 323.3.3 Lennard-Jones Potential : 333.3.4 Laplacian Smoothing : 343.3.5 Error Potentials : 343.3.6 Which is best? : 363.4 Adaptive Population Control : 363.4.1 1-D Algorithm : 363.4.2 2-D Algorithm : 373.4.3 Combination of 1-D and 2-D rules : 373.4.4 Initial Population : 383.5 Speeding up the Process : 383.5.1 Ending the simulation : 383.6 Results : 384 Interlude: Delaunay Triangulations with Java 415 Anisotropic Meshes 435.1 Riemannian Geometry : 435.1.1 Computing Distances : 445.1.2 Computing Areas : 455.2 Anisotropic Triangulation : 455.3 Anisotropic Energy Potential : 465.4 Background Mesh : 475.5 Method Summary : 475.6 Function Interpolation : 485.6.1 Example: a Gaussian function : 485.7 Incremental Mesh Adaptation : 495.8 Running Time : 506 Conclusion 536.1 Future work : 546.2 Acknowledgements : 55

6

Chapter 1IntroductionMany important real-world problems require meshing, that is the approximation of a givengeometry by a set of simpler elements such as triangles or quadrilaterals in two dimen-sions, and tetrahedra or hexahedra in three dimensions. Applications include �nite elementanalysis [1] and computer graphics.Many engineering simulations require the solution of partial di�erential or integral equ-ations. Since most of these equations cannot be solved analytically, approximations must beused. If the domain has a simple shape, one can use �nite di�erence methods with structu-red grids. For more complex domains, �nite element methods are used on an unstructuredgrid, that is a mesh.Any mesh generator should address the following concerns:� functionality. Obviously it should work.� robustness. It should work all the time, with any input.� quality. The quality of the resulting mesh should be good, that is closely match thedesires of the user.� speed. The generation process should be fast.� minimal user interaction. Everything that can be automated should be.� controllability. The user should be able to inuence the result in predictable ways.In this work we limit ourselves to generate triangular meshes inside a two dimensionaldomain bounded by a polygon which may contain holes. The main application we focus onis �nite element analysis.A physically-based model of interacting \particles" is introduced to uniformly spreadpoints over the domain. The set of points is triangulated to form a triangle mesh. De-launay triangulation is used because it guarantees a low computational cost and reasonablywell-shaped elements. Several particle interaction (repulsion and attraction) models areinvestigated ranging from Gaussian energy potentials to Laplacian smoothing. Particle po-pulation control mechanisms are introduced to make the size of the mesh elements convergeto the desired size.In most applications spatial mesh adaptivity is desirable. Triangles should not onlyadapt in size but also in shape, to better �t the function to be approximated. Computational7

uid dynamics simulations typically require triangles stretched in the direction of the ow.A metric tensor is introduced to quantify the stretching. The triangulation procedure ischanged to generate \Delaunay" meshes in the Riemannian space de�ned by the metric.1.1 Previous WorkThere are several surveys available on mesh generation [2, 15].Most of present mesh generation algorithms are structured in the following way. First amesh is build with methods such as advancing front [19, 21, 23], quadtree decomposition [35],or by greedy point insertion [3, 32]. The quality of the mesh is further improved with theuse of smoothing. The most common method is Laplacian smoothing [8].Advancing front methods start meshing at the boundaries of the domain. A list of nodesto be expanded (referred to as the front) is maintained. At each iteration, the front advancesby expanding a node, and inserting a new node at the desired distance from the front. Badlyshaped elements can appear in the middle of the domain, where the fronts collide.Quadtree methods recursively split a square surrounding the domain into four smallersquares, until the desired size is reached. To obtain a triangular mesh, the squares arefurther divided into triangles.Greedy insertion methods localize poorly shaped, or poorly sized elements, and splitthem by inserting a new node on an edge [3], at the center of a triangle [32], or at the centerof the circle circumscribing a triangle [25]. Although the Delaunay criterion is the mostcommon, other triangle quality criteria have been used [31] to determine the topology ofthe mesh.Laplacian smoothing consists of moving each vertex to the centroid of its neighbors.This operation must generally be repeated several times for each node before the qualityof the mesh is improved. Although Laplacian smoothing generally improves the shape ofelements, it is not guaranteed to do so, especially if the domain is concave. Furthermore thedegrees of the nodes, which are often the reason of poorly shaped elements, are not a�ected.Relaxations methods that combine Laplacian smoothing with local topological optimizationhave been proposed to remedy to this problem [10, 11].Anisotropic mesh generation has not bene�ted from an extensive literature. One of themajor �elds of application for anisotropic meshes is computational uid dynamics (CFD),where stretched triangles oriented in the direction of the ow are desirable. Mavriplis [22]proposed to stretch the plane by lifting it on a surface in three dimensions. The deformationof space is represented at each point by two values: an angle giving the direction of thestretching, and a value larger than 1 quantifying the stretching. Before that, Peraire [23]was using a similar representation to quantify the desired element size as a function of itsposition and orientation.Later a metric tensor was introduced [3, 31]. The tensor representation has the advantageto be directly related to the Hessian of the function (speed, pressure, etc.) to be estimated [5].It is thus a more natural representation to create adapted meshes. Quite impressive resultshave been produced by Castro-Diaz, Hecht, and Mohammadi [3]. In their method, which isof the greedy insertion type, edges that are too long are split, and edges that are too shortare collapsed. When the desired number of elements is reached, the mesh is further relaxedto improve its quality.Mesh generation has also bene�ted from other kinds of approaches. The idea of usingphysically-based simulations for mesh generation has been investigated by Shimada [26] and8

his bubble packing method. The bubble interaction (attraction/repulsion) model, whichis inspired by the Lennard{Jones interaction model from molecular chemistry, generatestriangulations that imitate Nature in her way of producing regular arrangements of points,such as in crystals. The main advantages of this method are good point placement, andintrinsic remeshing capabilities.Physically-based models have also been used in computer graphics for sampling surfa-ces [29, 30, 33, 34]. In these models, particles spread over complex surfaces to form uniformsampling patterns. Szeliski [29] used attracting and repelling, oriented particles to intera-ctively sculpt surfaces. Turk [30] considered resampling polygonal surfaces using repellingparticles. Witkin and Heckbert [34] used repelling particles to sample implicit surfaces.Although many have thought of introducing anisotropy, and de�ning the sampling densitybased on surface curvature, few have done it [30]. Witkin and Heckbert [34] have noticedthat such schemes can produce very regular patterns of points. Their work has been thestarting point of the work presented in this document.1.2 Approach OverviewIn this work, we limit ourselves to generate triangular meshes over polygonal domains inthe plane. The domain can contain holes, and constraints such as line segments and points.Constrained points de�ne nodes that should appear in the mesh, and constrained line se-gments should not be crossed by any edge in the mesh. The domain can be represented bya planar straight line graph (PSLG), which is a set of points and non{crossing edges. Anexample of such a graph is given in Figure 1.1.

Figure 1.1: A planar straight line graphGiven such a domain, points are added inside it and triangulated to form a mesh suchthat the length of every edge matches as closely as possible a feature size function1. Thisfunction is given in input to the mesher, and is de�ned in terms of the position of the verticesof an edge. Di�erent classes of such functions generate di�erent kinds of meshes such as(see Figure 1.2):constrained where no feature size function is speci�ed1We also refer to the feature size function as the desired edge length9

CDT Uniform

Isotropic AnisotropicFigure 1.2: Di�erent kinds of meshesuniform where the feature size function is a constantisotropic2 where the desired edge length depends on the position of the edgeanisotropic where the desired edge length depends on the position and the orientation ofthe edgeTo distribute the nodes inside the domain, a physically-based model of interacting \par-ticles" is introduced. The functionality of the model can be expressed as:1. Input: polygonal domain and feature size function2. build an initial triangulation of the domain (constrained Delaunay), and create aparticle on each vertex of the domain3. create, move, and annihilate particles inside the domain until equilibrium is reached.The triangulation of the set of particles is maintained Delaunay at all times, that is2These kind of meshes are also referred to as graded meshes10

the topology of the mesh is locally optimized after each particle movement, creation,and annihilation.4. Output: a nice meshTo illustrate this algorithm, consider the domain depicted in Figure 1.3a. First itsconstrained Delaunay triangulation is built (Figure 1.3b).Then the physically-based process is started. At each step, a particle is randomly picked,and its position updated according to the positions of its neighbors. Then the local particledensity is estimated, and a particle is created/annihilated if the density is too low/high.Figure 1.3c{f shows the evolution of the mesh. In a �rst phase (approximatively �rst 1000steps in this case), particles are created until the population reaches the desired level whichdepends on the feature size function. The growth is regulated by an adaptive populationcontrol scheme. In a second phase, the mesh is regularized, that is node placement isimproved. For this example, after 8410 steps, equilibrium is reached and the algorithmhalts.During the whole simulation the triangulation is maintained Delaunay using proceduresfor point insertion, motion and removal.1.2.1 Document OutlineThe outline of this document is as follows. Chapter 2 introduces Delaunay triangulationsand related algorithms. Chapter 3 describes the physically-based model of interacting par-ticles. Chapter 4 is an interlude in which the use of Java for programming an interactiveDelaunay triangulator on the web is presented. Chapter 5 generalizes the model describedin Chapter 3 to the anisotropic case, and presents some results. Finally conclusions aredrawn in Chapter 6.

11

a) Input PSLG b) Initial triangulation (CDT)

c) After 30 iterations (64 particles) d) After 300 iterations (226 particles)

e) After 3000 iterations (295 particles) f) After 8410 iterations (295 particles)Figure 1.3: Mesh Evolution
12

Chapter 2Delaunay TriangulationsThe Voronoi diagram (VD) of a set S = fs1; s2; : : : ; sng of points in the plane, called sites,is a partition of the plane into n convex regions, one per site. Each Voronoi cell Vi containsall the points in the plane closer to si than to any other site. The planar dual of the Voronoidiagram, obtained by adding a line segment between each pair of sites of S whose Voronoiregions share an edge, is called the Delaunay triangulation (DT).More practical de�nitions of a Delaunay triangulation are (all of the following statementsare equivalent):� if a and b are input points, the DT contains the edge fa; bg if and only if there isa circle through a and b that intersects no other input points and contains no inputpoints in its interior� the circumscribing circle of each triangle contains no input points in its interior.There is also a nice relationship between Delaunay triangulations and 3-dimensionalconvex hulls. Lift each point of the input to a paraboloid by mapping the point (x; y) to(x; y; x2+ y2)1. It can be proved [7] that the DT of the input points is the projection of thelower convex hull onto the xy-plane.The Delaunay triangulation features other interesting properties. Indeed it maximizesof the minimum angle, minimizes the maximum circumcircle as many other measures.The outline of the chapter is as follows. Section 2.1 de�nes data structures for repre-senting triangulations. Associated topological and geometrical operators are de�ned in Se-ctions 2.2 and 2.3. Section 2.4 presents some methods for building Delaunay triangulations.Section 2.5 addresses the problem of dynamically maintaining a triangulation (incremen-tal site insertion and removal). Section 2.6 presents constrained Delaunay triangulations(CDT).1This property also holds for any paraboloid z = ���(x� a)2 + (y � b)2� where �, a, and b are constants.This trivially follows from the fact that a DT is invariant to translations of the input set of sites. The valueof � doesn't matter either since it neither a�ects the topology of the convex hull, nor its projection on theplane 13

2.1 The Quadedge Data StructureThe quadedge data structure [13] was designed for representing general subdivisions of orien-table manifolds. It simultaneously represents both the subdivision and its dual. Alternativesare the double-connected-edge-list (DCEL) [24] and the winged-edge data structures, whichdo not hold the dual. The quadedge structure has been preferred because an implementationwas readily available [20].
e

e.Syme.Rot

e.invRot

Figure 2.1: The four directed edges of a quadedgeEach quadedge record holds four directed edges corresponding to a single undirectededge in the subdivision and to its dual edge. Each directed edge has three references: Org,which points to the site at its origin, Rot, which points to its dual edge, and Onext, whichpoints to the counterclockwise next edge in the subdivision. All other topological operators(see Figures 2.1 and 2.2) can be de�ned in terms of these primitives, as summarized below.
e

e.Lnext
e.Dnext

e.Onext
e.Rnext

e.Sym

e.Lprev

e.Dprev
e.Rprev

e.Oprev

Figure 2.2: Edge navigation operatorsNavigation inside a quadedge is achieved with the use of the identity, Rot, Sym, and14

Rot�1 operators, all of which can be expressed in terms of Rot operations:e = ee:Rot = e:Rote:Sym = e:Rot2e:Rot�1 = e:Rot3 (2.1)where e:Rot means that operator Rot is applied to edge e, and e:Rotn that Rot is appliedn times.The position of each site in the quadedge can be retrieved with the Org operator:e:Org = e:Org = e:Orge:Left = e:Rot�1:Org = e:Rot3:Orge:Dest = e:Sym:Org = e:Rot2:Orge:Right = e:Rot:Org = e:Rot:Org (2.2)where the middle column represents the de�nition of the operator, and the right column itsexpression in terms of primitives.Onext allows navigation through the subdivision. Movements to neighboring edges arerepresented in �gure 2.2. They can be subdivided into two classes, namely counter-clockwiseones: e:Onext = e:Onext = e:Onexte:Lnext = e:Rot�1:Onext:Rot = e:Rot3:Onext:Rote:Rnext = e:Rot:Onext:Rot�1 = e:Rot:Onext:Rot3e:Dnext = e:Sym:Onext:Sym = e:Rot2:Onext:Rot2 (2.3)and clockwise ones:e:Oprev = e:Rot:Onext:Rot = e:Rot:Onext:Rote:Lprev = e:Onext:Sym = e:Onext:Rot2e:Rprev = e:Sym:Onext = e:Rot2:Onexte:Dprev = e:Rot�1:Onext:Rot�1 = e:Rot3:Onext:Rot3 (2.4)When assuming that the subdivision is a triangulation, it is possible to simplify some of theoperations: e:Dprev = e:Onext:Rot2:Onexte:Dnext = e:Rot:Onext2:Rot (2.5)The next section presents higher level operators.2.2 Topological OperatorsStarting with the operator set proposed by Guibas and Stol� [13], we have modi�ed it tomake it more symmetrical, and also to eliminate superuous edge navigation. The parame-ters of the Connect operator have been changed and its inverse operatorDisconnect is intro-duced. The latter accommodates some operations that were previously part of DeleteEdge.As a consequence DeleteEdge has also been changed. Each operator is described in thenext paragraphs. 15

2.2.1 MakeEdgeMakeEdge creates a new quadedge and initializes all of its four directed edges. It takes noargument and returns the �rst edge of the quadedge. The quadedge is a subdivision byitself, namely the one of a sphere [13]. The details of the procedure are described below.The Create operator creates a new directed edge and initializes all its pointers to nil.begin Edge:MakeEdgethis:Create, e2:Create, e3:Create, e4:Createthis:Onext this,e2:Onext e4, e3:Onext e3, e4:Onext e2this:Rot e2, e2:Rot e3, e3:Rot e4, e4:Rot thisend2.2.2 SpliceSplice is the basic operator used to attach and detach edges from each other (see �gure 2.3).It takes an edge b as parameter and returns no value. It is its own inverse. Its descriptionis given below.
b

e

e

b

e.Splice(b)

Figure 2.3: The e�ect of the Splice operatorbegin Edge:Splice(b)e1 this:Onext, e2 b:Onext� e1:Rot, � e2:Rote3 �:Onext, e4 �:Onextthis:Onext e2, b:Onext e1�:Onext e4, �:Onext e3end2.2.3 ConnectThe Connect operator connects the two vertices of an edge e to respectively two edges aand b. It takes as argument the two edges a and b, and returns no value. The Connect16

operator is basically a succession of two Splice operations followed by an update of the Org�elds. A description is given below.begin Edge:Connect(a; b)this:Splice(a)this:Org a:Orgthis:Sym:Splice(b)this:Dest b:OrgendThis new de�nition of the Connect operator changes in two ways from its original [13]form: it does not create a new edge any more, and the arguments represent di�erent edgesso that they can directly be applied to both of the Splice operations.2.2.4 DisconnectThe Disconnect operator is the inverse of the Connect operator. Thus2e:Connect(a; b):Disconnect(a; b) � eIts description is given below. Since the Splice operator is its own inverse the Disconnectoperator is quite the same as Connect. The di�erence lies in the update of the Org �elds(which are reset to nil by Disconnect).begin Edge:Disconnect(a this:Oprev; b this:Lnext)this:Splice(a)this:Org nilthis:Sym:Splice(b)this:Dest nilend2.2.5 SwapThe Swap operator is at the core of the edge swapping algorithm described in section 2.4.1.To swap an edge is to replace it by the other diagonal of the quadrilateral in which it isinscribed. Swap is its own inverse and thus e:Swap:Swap � e.begin Edge:Swapa this:Lprevb this:Sym:Lprevc a:Lprevd b:Lprevthis:Disconnect(d; c)this:Connect(b; a)end2The relation only holds if e:Org = e:Dest = nil 17

2.2.6 DeleteEdgeThe DeleteEdge operator undoes everything the MakeEdge operators does, as describedbelow.begin Edge:DeleteEdgee2 this:Rot, e3 e2:Rot, e4 e3:Rotthis:Rot nil, e2:Rot nil, e3:Rot nil, e4:Rot nilthis:Onext nil, e2:Onext nil, e3:Onext nil, e4:Onext nilthis:Destroy, e2:Destroy, e3:Destroy, e4:DestroyendPutting references to nil and then Destroy-ing edges clearly is redundant. The reasonboth appear in the pseudocode it that languages such as C++ require the latter, whereaslanguages featuring automatic garbage collection require the former.2.3 Geometrical OperatorsGeometrical operators are de�ned to test the relative positions of points and edges. There isalso an InCircle operator which tests whether a point lies inside the circle de�ned by threeother points, and which is one of the most important operators for constructing Delaunaytriangulations.2.3.1 OnRight, OnLeft and OnEdgeThe OnRight, OnLeft and OnEdge operators tell if a given point is respectively to theright of, to the left of, or on an edge. The decision is based on the sign of the signed areaof the triangle de�ned by the two vertices of the edge and the point to test.begin Edge:OnRight(p)return (p� this:Org)� (this:Dest� this:Org) > 0endbegin Edge:OnLeft(p)return (p� this:Org)� (this:Dest� this:Org) < 0endbegin Edge:OnEdge(p)return (p� this:Org)� (this:Dest� this:Org) = 0endwhere � is the cross product between two vectors.2.3.2 InCircleGiven an edge e and two points i and j, the InCircle operator returns true if and only ifthe circle de�ned by i and the two vertices of e includes j. It tells whether an edge shouldbe swapped or not. This test is at the heart of most Delaunay triangulation algorithms, andis oating point intensive. In practice it is important to optimize it. Three di�erent waysof performing the test are presented, and their speed is evaluated.18

Circle TestThe naive way is to compute the position of the center and the radius of the circle, and thencheck if the distance from its center to j is less than its radius. The center of the circle liesat the intersection of the two lines that respectively bisect e:Org and i, and e:Dest and i.These two lines can be expressed as n1 � x� c1 = 0n2 � x� c2 = 0where n1 = e:Org� i is a normal to the �rst line and c1 = 12 (e:Org+ i) �n1 is a constant.n2 and c2 are similarly de�ned for the second line. The two equations can be combined intoa single matrix equation Nx � c = 0. The solution of which is x = N�1c, where x is theintersection of the two lines, and thus the center of the circle.The InCircle test then summarizes tojx� jj < jx� ijTo compute the center of the circle, 11 multiplications, 13 additions, and 2 divisionsare required. The distance test requires additional 6 additions and 4 multiplications. Thetotal cost is thus 15 multiplications, 19 additions, and 2 divisions. It is possible to avoidthe divisions at the cost of four extra multiplications (by multiplying everything by thedeterminant of N).Convex Hull TestA better way might be to consider some other properties of Delaunay triangulations. Theconvex hull test is based on the nice relation between Delaunay triangulations and 3-dimensional convex hulls. The test is based on the sign of the signed volume of the tetra-hedron de�ned by the projection of the four points on a paraboloid:�������� x1 y1 x21 + y21 1x2 y2 x22 + y22 1x3 y3 x23 + y23 1x4 y4 x24 + y24 1 �������� > 0 (2.6)where (x1; y1) = e:Org, (x2; y2) = e:Dest, (x3; y3) = i, and (x4; y4) = j. When naivelycomputed, this determinant requires 48 multiplications and 27 additions. A good idea is toconsider that the last column is �lled with ones to reduce the cost to 20 multiplications and24 additions, as in the code proposed by Lischinski [20].It is possible to improve this result by translating all the points by a same amount, sothat one of the points lies at the origin (0; 0):�������� 0 0 0 1~x2 ~y2 ~x22 + ~y22 1~x3 ~y3 ~x23 + ~y23 1~x4 ~y4 ~x24 + ~y24 1 �������� > 0 (2.7)19

where ~xi = xi � x1, ~yi = yi� y1 and the paraboloid is ~zi = (xi �x1)2+ (yi� y1)2. The testis thus equivalent to: ������ ~x2 ~y2 ~x22 + ~y22~x3 ~y3 ~x23 + ~y23~x4 ~y4 ~x24 + ~y24 ������ > 0 (2.8)which requires only 15 multiplications and 14 additions.Angle testIt also possible to de�ne a test based on angles3: if the sum of angles � and � (see �gure 2.4)is smaller than 180 degrees, then the edge should be swapped. Another way to put it issin(�+ �) > 0? This expression can be simpli�ed in the following way:sin(�+ �) = sin� cos� + sin� cos�= a� bjaj � jbj � c � djcj � jdj + c� djcj � jdj � a � bjaj � jbj/ (a� b)(c � d) + (c� d)(a � b) (2.9)This test only requires 10 multiplications and 13 additions.
a

b

c
d

e

α

β

j

i

Figure 2.4: The InCircle testSummaryFrom the several ways of performing the InCircle test that have been examined, the angletest is fastest, followed by the convex hull test, and the circle test. The operator is thusde�ned using the angle test:3Thanks to Marshall Bern for pointing it out 20

begin Edge:InCircle(p e:Onext:Dest; q e:Oprev:Dest)a q � this:Orgb p� this:Orgc p� this:Destd q � this:Destreturn (a� b)(c � d) + (c� d)(a � b) > 0end2.4 Triangulation AlgorithmsSeveral methods are known for triangulating the convex hull of a set of points, namely the ipalgorithm, the incremental algorithm, the divide-and-conquer algorithm and the sweeplinealgorithm. The �rst two are the topic of the next sections. The divide-and-conquer andsweepline algorithms are only briey described because they haven't been used in the frameof this work.In the divide-and-conquer algorithm, the input site set is �rst sorted by x-coordinateand split vertically in two subsets of equal size. The Delaunay triangulation is computedrecursively for each subset. Subsets are then merged using a sweeping circle algorithm. Acomplete description is given in [13]. The time complexity of the algorithm is O(n logn).The sweepline algorithm is due to Fortune [9]. In a comparison with divide-and-conquer,Leach [18] has optimized both algorithms and measured execution speed. According toLeach, the sweepline algorithm is the fastest, but also appears to be the least robust.2.4.1 The Edge Swapping AlgorithmGiven an initial triangulation, the edge swapping algorithm maintains a queue of edges thatmight fail the circumcircle test. An edge e is said to pass the circumcircle test if the circlethrough fe:Org; e:Dest; e:Onext:Destg does not include the point e:Oprev:Dest. In theinitial triangulation, any edge might fail the test, so the queue initially contains all edges.Then, the �rst edge e is repeatedly removed from the queue. If e does pass the circumcircletest, the next edge is dequeued. But if e does fail the test, it is swapped. As this operationmight change the status of some of the four edges of the quadrilateral of which e is a diagonal,those edges are added into the queue if not already there. The algorithm stops when thequeue is empty.The algorithm always terminates after O(n2) ips. Combined with an O(n2) algorithmfor constructing the initial triangulation, the Delaunay triangulation of a set of points canbe found in O(n2) time with this method.2.4.2 The Incremental AlgorithmThe incremental algorithm was �rst proposed by Lawson [17]. It starts with a trianglelarge enough to contain all the points of the input set (ideally the three vertices are atin�nity). Points are added into the triangulation one by one, maintaining the invariant thatthe triangulation is Delaunay. First the triangle T containing the new point p is located.New edges are created to connect p to the vertices of T . The edges of T are inspected toverify that they still satisfy the circumscribing circle condition. If the condition is satis�edthe edge remains unchanged. If it is violated the o�ending edge is swapped. In this case21

two more edges become candidates for inspection. The process continues until no morecandidates remain.If the order of insertion is randomized, and with use of appropriate data structuresfor point-in-triangle location, it can be shown [14] that the expected running time of thealgorithm is O(n logn). However, without any additional data structure, jump-and-walkmethods can be used to reach an expected time of O(n4=3) [6].2.5 Dynamic Maintenance of a TriangulationThe problem of dynamically maintaining the triangulation can be divided into two sub-problems: insertion and removal of a site. Moving a site can be seen as a removal followedby an insertion.2.5.1 Site InsertionThe procedure for inserting a point i runs as follows:1. locate the triangle T in which i lies2. add an edge from i to each vertex of T3. put the three edges of T on a queue4. while the queue is non-empty, remove the �rst edge e from the queue. If e does pass thecircumcircle test, the next edge is dequeued. If e fails the test, swap it, and insert inthe queue the two edges a and b adjacent to e which do not contain i (see Figure 2.5).
e e

a b

i i
e.SwapFigure 2.5: Edge swapping during point insertionIt is usually assumed that points are in general position, that is that no three points arecollinear or four points cocircular. In practice however this is not the case. As a result theinsertion of a site i on an edge e (three colinear point) has to be treated in a special way.1. remove the edge e. i then lies inside a quadrilateral Q2. add an edge from the i to each vertex of Q which is the containing quadrilateral3. put the four edges of Q on a queueStep 4 is identical to the one for general position point insertion. A more detaileddescription of the point insertion routine is given in �gure 2.6.The number of edge ips is equal to the degree of i after its insertion. As the averagedegree of a vertex in a planar graph is less than six, the average cost of step 4 is O(1). Worst22

begin Insert(p)e Locate(p)if e:OnEdge(p) thene e:Opreve:Onext:DeleteEdgebase MakeEdgebase:Splice(e)base:Org pbase:Dest pb base:Symloopa base:Lprevif a = e thenexit loopbase MakeEdgebase:Connect(a; b)e basedoa e:Onextb a:Onextwhile a:InCircle(b:Dest; p) doa:Swapa bb a:Onexte e:Dprevwhile e 6= baseend Figure 2.6: Point insertion procedurecase is O(n) and happens, for example, when i is inserted at the center of n points lying ona circle.The point location cost (step 1) can be reduced to O(logn) time with appropriate O(n)-space data structures [14]. Without additional data structures a simple walking methodcan be used to achieve an expected O(pn) time performance. A fast walking method isdescribed in the next section.The total cost of an insertion is thus dominated by the cost of the point location proce-dure.2.5.2 Walking Method for Point LocationGuibas and Stol� [13] have proposed a simple walking method for point location, whichLischinski has implemented [20]. An improved version where redundant tests have been23

removed is described by a �nite state automaton in Figure 2.8. At any time the point tolocate is on the left of the current edge. Figure 2.7 shows the two possible movements ateach step. Performance is compared in Table 2.1 in terms of function calls. It turns outthat the new algorithm is more than twice as fast as the original one.10000 locations 100000 locationsProcedure Guibas Bossen ratio Guibas Bossen ratioEdge:RightOf 207.8 90.7 2.29 657 277 2.37Point: = 167.7 78.1 2.15 531 243 2.18Edge:Onext 126.1 44.1 2.86 403 137 2.94Edge:Dprev 80.1 43.6 1.84 251 137 1.83Edge:Org 83.9 39.1 2.15 265 122 2.17Edge:Dest 83.9 39.1 2.15 265 122 2.17Edge:Sym 0.52 0.62 0.84 0.40 0.62 0.65Total4 374.5 166.5 2.25 1183 519 2.27Table 2.1: Guibas versus Bossen point location performance (listing the number of calls toeach procedure, per insertion)
e

e.Onext

e.Dprev

Figure 2.7: The two possible walking directions2.5.3 Site RemovalUnfortunately removing a site i is not as easy as inserting one. Although it can be simplewhen using appropriate data structures and removing the last inserted point [16], the generalcase is more di�cult to handle. The procedure description is still very short:1. remove all the edges e such that e:Org = i2. delete i3. triangulate the simple polygon which contained i4Sum of all topological operations calls 24

begin Locate(p)s0: e some edge f such that :f:RightOf(p)goto if e:Org = p _ e:Dest = p then s7 else s1s1: f e:Onextgoto if f:RightOf(p) then s4 else s6s2: f e:Dprevgoto if f:RightOf(p) then s3 else s5s3: f e:Onextgoto if f:RightOf(p) then s7 else s6s4: f e:Dprevgoto if f:RightOf(p) then s7 else s5s5: e fgoto if e:Org = p then s7 else s1s6: e fgoto if e:Dest = p then s7 else s2s7: return eend Figure 2.8: Triangle location procedureThe cost of a deletion is O(n2) (see next section on simple polygon triangulation), wheren is the degree of site i. As the degree i is expected to be less than six on average, theasymptotic time is not relevant in practice.2.5.4 Triangulation of a Simple PolygonWe consider here the case of a hole (simple polygon) inside a triangulation that needs tobe retriangulated. Triangulating the simple polygon is not as easy as one would like itto be since the polygon cannot be assumed to be convex. A simple solution is to builda triangulation of the polygon by successively cutting o� ears5, and then run the edgeswapping algorithm.The time cost of the retriangulation is O(n2), where n is the number of sites of the hole.2.6 Constrained Delaunay TriangulationsA constrained Delaunay triangulation (CDT) is very similar to a Delaunay triangulation.The di�erence is that some edges are �xed (constrained). They cannot be swapped even ifthey do not pass the InCircle test.5An ear is a triangle which shares two edges with the polygon to be triangulated25

The methods for generating a constrained triangulation are quite similar to the ones usedfor unconstrained triangulations. The edge swapping algorithm for instance starts with atriangulation where all constrained edges are present, then runs as usual but a constrainededge is never swapped.There are also O(n logn) algorithms for generating constrained Delaunay triangulationsuch as divide-and-conquer [4], but they are usually di�cult to implement. The next sectionpresents an asymptotically slower incremental algorithm which is easier to implement.2.6.1 An Incremental CDT AlgorithmThe present algorithm for building constrained Delaunay triangulations can be split in twophases. In the �rst one, the constraints are ignored, and a triangulation is built using theincremental algorithm described in section 2.4.2. In the second phase, the constrained edgesare inserted one by one, if not already present. First all the edges crossing the constrainededge are removed, then the constrained edge is inserted, and �nally the simple polygonson each side of the constrained edge are retriangulated. The procedure for removing thecrossing edges and inserting the constrained edge is described in Figure 2.9.begin InsertConstraint(c)�nd an edge e such that e:Org = c:Orgwhile :(e:OnLeft(c:Dest) _ :e:Onext:OnLeft(c:Dest))e e:Onexte0 edof e:Lnextwhile c:OnLeft(f:Dest) dof:Removef e:Lnexte fwhile e:Dest 6= c:Deste e:Lnextc:Splice(e0)c:Sym:Splice(e)retriangulate the hole on the left of cretriangulate the hole on the right of cend Figure 2.9: The InsertConstraint procedure

26

Chapter 3A World of ParticlesThis chapter describes a system of interacting particles that is used to uniformly spreadpoints over a domain. At any time the set of points de�ned by the positions of the particlesis triangulated using the Delaunay criterion. The goal is to generate a particle distributionsuch that every edge in the mesh has a length equal to �̂, which is a constant. As thisoptimality criterion is usually not achievable because of constraints at the boundaries of thedomain, we try to get as close to it as possible. A particle interaction scheme is shapedaccording to following objectives:� Simplicity. The system should be governed by a small set of simple rules.� Speed. The computational cost for performing one time step should be low (O(1)).Interactions should be local, so that each particle directly interacts with only a smallneighborhood. This neighborhood can be de�ned based on the topology of the trian-gulation. Also the convergence should be fast. A minimal amounts of time stepsshould be taken before the system reaches equilibrium.� Robustness. The algorithm should always converge.� Quality. The resulting mesh should locally match the desired edge length. For nowwe will consider this length equal to �̂, which is de�ned by the user. In a moresophisticated scheme, the implicit geometric feature size [25] could also be considered.The chapter is structured as follows. Section 3.1 introduces the general dynamics of theinteraction model. Section 3.2 de�nes the interaction neighborhood. Section 3.3 presentsdi�erent potential functions. Section 3.4 de�nes a model for controlling the particle popu-lation. Section 3.5 presents some improvements regarding speed. Finally, results are shownin Section 3.6.3.1 Interaction ModelWhereas in Nature and in some previously implemented models [27, 29], the motion of theparticles is de�ned by a second order di�erential equation (m�x =Pi F i(x; _x)), we for nowconsider a simpler, �rst order model, as used in [34]. Although �rst order models are more27

likely to get stuck in local minima, they are generally numerically more stable. The motionof the particles can be expressed as dxdt = rxE + C (3.1)where x is the 2n-vector containing the 2-dimensional positions of all n particles, rxE thegradient of the potential energy �eld, and C the set of forces imposed by domain boundaryconditions.The behavior of the system highly depends on the choice of the energy potential functionE, which can be expressed as the sum of the potential energies between each pair of particles:E =Xi Xj Eij (3.2)where Eij is the potential energy of particle i due to particle j. Eij = �̂2�(dij=�̂), where� is the potential function, depends only on the distance dij between particles i and j, andthe desired edge length �̂, thusrxkEij � 0 if i 6= k and j 6= k (3.3)and rxiEij = � �̂dij �0�diĵ� � rij (3.4)where rij = xj�xi is de�ned as the displacement vector between particles i and j, xk beingthe position of particle k.Symmetry is also a desirable feature, thusEij = Eji (3.5)Finally, interactions are local. Particle i only interacts with a neighborhood N i, thusEij � 0 if j =2 N i (3.6)Now that the properties of the energy functions are better de�ned, it is possible to saymore about its gradient: rxiE = rxiXj Xk Ejk= Xj Xk rxiEjk= Xj rxiEji +Xk rxiEik= Xj (rxiEji +rxiEij)and since Eij = Eji: rxiE = 2 �Xj rxiEij (3.7)28

Also, particle i only interacts with particles within a neighborhood N i:rxiE = 2 � Xj2NirxiEij = �2 Xj2Ni �̂dij �0�diĵ� � rij (3.8)To simplify the above expression, we de�ne �ij = dij=�̂ as the \normalized" distancebetween particles i and j: rxiE = �2 Xj2Ni �0(�ij)�ij � rij (3.9)Several potential functions � are discussed in Section 3.3.3.1.1 Boundary ConditionsBoundary condition forces are necessary to make sure that no particle moves outside thedomain. When a particle i is on a constrained vertex, its motion should be zero, thusCi = �rxiE. If it lies on a domain boundary, motion should be constrained to the edge itlies on, thus Ci = �(n � rxiE) � n where n is a unit vector normal to the boundary. For allother particles Ci = 0.3.1.2 Numerical ResolutionTo solve the motion equation 3.1, numerical integration can be achieved with Euler's method:x(t+�t) = x(t) + �t � (rxE + C) (3.10)The notion of time can be eliminated and the process expressed in a more algorithmicfashion as x x+ � � (rxE + C) (3.11)Thus for each particle i we havexi xi + � � (rxiE + Ci) (3.12)3.1.3 Asynchronous UpdatingAlthough it is common usage to update the positions of the particles synchronously, weproceed in an asynchronous manner:looprandomly pick a particle icompute rxiE and Cixi xi + � � (rxiE + Ci)update the triangulationwhere the triangulation update step is performed by �rst removing site i and then reinsertingit at its new position (see Section 2.5 on moving sites). Most of the time the topology of themesh remains unchanged, sometimes the motion of the particle can result in the swappingof one or several edges in the triangulation.This asynchronous scheme has several advantages over a synchronous one, namely29

� it introduces some noise into the system and reduces the chances of reaching a localminimum� it opens the possibility of biasing the pick and accelerating the convergence (more onthis in Section 3.5)3.1.4 Second Order ModelAlthough �rst order integration is nice and simple, its performance can be poor, as thesystem often converges to a not so good local minimum. To overcome this problem, asecond order model is introduced. Its formulation is rather non-standard but it is easy toimplement, and doesn't seem to su�er from numerical instabilities.vi � � vi +rxE + Cxi xi + � � vi (3.13)The velocity vector vi can be seen as a bu�er which accumulates the forces, and whichdecays exponentially. The di�erential equation associated with this model is of the form�x+ k � _x = rxE + C3.2 Interaction NeighborhoodsIn previous work [34, 27, 30, 29] the interaction neighborhood of a particle i was de�nedbased on geometrical properties. The neighborhood was de�ned by a sphere with a radiusequal to some constant times the desired edge length. The set of particles N i interactingwith a particle i was expressed asN ic�̂ = �j j i 6= j; dij < c�̂	where dij is the distance between particles i and j, and c is a constant, typically between1.5 and 2. For fast location of the particles within N ic�̂, k � d trees [29], buckets or someother additional data structures are used. In the present case, however, a triangulation isalready provided, and it is thus easy to de�ne a neighborhood based on topology insteadof geometry. The distance between two particles i and j is then de�ned by the number ofedges in the shortest path between i and j in the triangulation. The set of particles N iinteracting with a particle i becomesN ik = fj j i 6= j; 9path between i and j of length � kgIn practice small neighborhoods are desirable, so only path lengths of k = 1; 2 areconsidered. Using the quadedge terminology from Chapter 2, these neighborhoods are (alsosee Figure 3.1):N i1 = fj j 9e : e:Org = i; e:Dest = jg (3.14)N i2 = fj j i 6= j; 9e; f : e:Org = i; e:Dest = f:Org; f:Dest = jg (3.15)The size of the neighborhoods are typically 6 for N1, and 18 for N2. Since they are bothO(1) in size, an update operation as described in Section 3.1.3 requires only O(1) time,whereas it would take O(n) if all particles interacted with all others.30

N1 N2Figure 3.1: Two di�erent sizes of neighborhoodsIt is of course also possible to de�ne a neighborhood based on geometrical and topologicalproperties.3.3 Potential FunctionsThis section presents several potential functions that have been used in the past, but alsointroduces new ones. All potential functions should ful�ll the following desirable properties:� C1 continuity. The function and its �rst derivative should be continuous functions� no singularities. The function should have �nite values for any �nite inter-particledistance.3.3.1 Requirements at EquilibriumThe optimal particle arrangement is a regular array of equilateral triangles with edge lengthof �̂. The forces between particles should be de�ned so that this pattern is an equilibrium.Moreover the equilibrium should be stable, that is, if the positions of the particles are slightlyaltered, they should move back to the optimum.These considerations should also hold for particles near or on the boundaries of thedomain. If particles on the boundaries are constrained to stay on it, no problem arises. Butparticles which are one edge length away from the boundary are not at equilibrium if theneighborhood is N2 or larger: if the particles repel each other at distances larger than �̂,they tend to drift towards the boundary, and in the reverse direction if the interaction isattractive. Thus, to guarantee optimality near the boundaries the interaction neighborhoodshould be N1.On the other hand N2 neighborhoods are more powerful at organizing particles awayfrom the boundaries. A tradeo� must thus be found between quality near the boundariesand elsewhere. As the e�ects depend a lot on the choice of the potential energy function,we empirically search for the best solution for each function.31

3.3.2 Gaussian PotentialWitkin and Heckbert [34] used a Gaussian potential function to spread particles on implicitsurfaces (Figure 3.2): �(�ij) = exp ��2(�ij)2�
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Potential �(�ij) Derivative �0(�ij)Figure 3.2: Gaussian potential functionThis model works well with N2 neighborhoods but fails to arrange particles into thedesired pattern with N1. Originally Witkin and Heckbert used N1:5�̂ neighborhoods.Instead of having the potential be a Gaussian function, it is possible to have it be thederivative of a Gaussian (Figure 3.3):�(�ij) = �ij exp�� (�ij)22 � (3.16)of which the derivative is �0(�ij) = (1� (�ij)2) exp�� (�ij)22 � (3.17)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3Potential �(�ij) Derivative �0(�ij)Figure 3.3: Gaussian derivative potential functionThis new scheme generates regular patterns for N1 and N2 neighborhoods.32

3.3.3 Lennard-Jones PotentialOne of the most widely used interaction model [29, 27] is based on the Lennard-Jonespotential, or van der Waals force which is inspired from molecular chemistry. The potentialis de�ned as (Figure 3.4) �(�ij) = 12(�ij)6 � 6(�ij)12 (3.18)
-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Potential �(�ij) Derivative �0(�ij)Figure 3.4: Lennard-Jones potential functionThe problem with such a model is the singularity at �ij = 0 (�0(0+) !1). Numericalintegration can thus be disastrous.Shimada [27] has de�ned a potential function with a similar shape but which overcomesthe singularity problem (Figure 3.5):�0(�ij) = 54 ��ij�3 � 198 ��ij�2 + 98 (3.19)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4Potential �(�ij) Derivative �0(�ij)Figure 3.5: Shimada's potential functionShimada used N1:5�̂ , but this scheme also works with N1 and N2.Other approximations of the Lennard-Jones potential function are possible, such as (Fi-gure 3.6) �0(�ij) = (1� (�ij)4) exp(�d(�ij)4) (3.20)33

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2Derivative �0(�ij)Figure 3.6: New Lennard-Jones approximation3.3.4 Laplacian SmoothingLaplacian smoothing [8] is a widely used technique for improving the shape of triangles ina mesh. In particle terminology, Laplacian smoothing consists of moving a particle i to thecentroid of its neighbors. Its displacement can be expressed as�xi = 0@ 1��N i1�� Xj2Ni1 xj1A� xi = 1��N i1�� Xj2Ni1(xj � xi) = 1��N i1�� Xj2Ni1 rijAs the displacement is proportional to the derivative of the potential, the latter can bede�ned as (Figure 3.7) �0(�ij) = �12 (3.21)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Potential �(�ij) Derivative �0(�ij)Figure 3.7: Laplacian potential function3.3.5 Error PotentialsAnother way of putting the problem is to de�ne a quality measure of the mesh and considerthe particle interaction as an optimization process by gradient descent.34

We here de�ne two quality measures. The �rst one is based on the di�erence betweenthe actual and the optimal distances between particles (Figure 3.8):�(�ij) = �12(�ij � 1)2 (3.22)of which the derivative is �0(�ij) = 1� �ij (3.23)
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Potential �(�ij) Derivative �0(�ij)Figure 3.8: Error potential functionThe second quality measure is based on the ratio of the distances (Figure 3.9):�(�ij) = �12 log2 �ij (3.24)Although this de�nition can seem obscure at �rst, one can easily verify that error is thesame for dij = � � �̂ and dij = 1� � �̂, that is, edges that are too long or too short by a factor� are equally penalized. The derivative of the potential is:�0(�ij) = log�ij�ij (3.25)
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Potential �(�ij) Derivative �0(�ij)Figure 3.9: Error potential functionThe natural interaction neighborhood of these potentials is N1.35

3.3.6 Which is best?Empirical testing has led to the following conclusions:� models that are attractive and repulsive perform better than the ones that are attra-ctive only or repulsive only� the N2 neighborhood does a better job at arranging particles to create equilateraltriangle away from the boundaries. . .� . . . but performs rather poorly near the boundariesIn practice a Lennard-Jones like scheme, such as the proposed approximations, seemsbest.3.4 Adaptive Population ControlGenerally it is not known a priori how many particles are needed for the edges to conformthe desired size. The number could be determined from the area of the domain, but thereare several disadvantages to this strategy:� when generalizing to surfaces in 3-D or to a non-uniform desired edge length, it isdi�cult to correctly estimate the area.� even if one knew how many particles are needed to optimally �t the domain, thequestion would remain of where to put them. If the initial con�guration is poor, itcan take a long time for the system to reach a reasonably good con�guration.An alternative strategy is an adaptive scheme where new particles are created wheretheir density is too low, and others are annihilated where too high. The problem thusbecomes to evaluate particle density. In a �rst step we will consider the 1-dimensional case,and then generalize to two dimensions.3.4.1 1-D AlgorithmLet S be a set of edges, and L(S) the sum of the normalized lengths1 of each segment in S.Ideally L(S) should be equal to L̂(S) = jSj.The particle density of S is de�ned as �(S) = L̂(S)=L(S). The density error measureassociated with S is de�ned to be"(S) = � �(S) if �(S) > 11=�(S) otherwise (3.26)Creation RuleLet S be composed of one edge e, and S0 the set of the two halves of e after a particle hasbeen inserted at its middle point. A particle is inserted if "(S0) < "(S). We know thatL(S) = L(S0) = jjejj, jSj = 1, and jS0j = 2. Thus a new particle should be inserted ifjjejj > p2, where jjejj is the normalized length of edge e.1the normalized length is de�ned to be the actual length divided by �̂36

Annihilation RuleLet S be the two edges e1 and e2 on each side of a particle p. Let S0 be a set containing theconcatenation e of e1 and e2 after removal of p. Particle p is annihilated if "(S0) < "(S).We know that L(S) = L(S0) = jje1jj + jje2jj, jSj = 2, jS0j = 1. Thus particle p should beannihilated if jje1jj+ jje2jj < p2, where jjeijj is the normalized length of edge ei.3.4.2 2-D AlgorithmLet T be a set of triangles, and A(T) the sum of the normalized areas2 of each triangle inT . Ideally A(T) should be equal to Â(T) = jT j4, where 4 = p3=4 is the area of a unitequilateral triangle.The particle density of T is de�ned as �(T) = Â(T)=A(T). The density error measureassociated with T is de�ned to be"(T) = � �(T) if �(T) > 11=�(T) otherwise (3.27)Creation RuleLet T be the set of the triangles on each side of an edge e, and T 0 the set of triangles incidentto the two halves of e after a particle has been inserted at its middlepoint. A particle isinserted if "(T 0) < "(T). We know that A(T) = A(T 0), jT j = 2, and jT 0j = 4. Thus a newparticle should be inserted on e if A(T) >p3=2.A more sophisticated rule takes into consideration the local optimization of the topology(Delaunay triangulation) after insertion. The average degree of a node inside a mesh is 6,and jT 0j should thus be 6. Since it would be costly to compute the areas of the trianglesafter the local optimization, we consider two virtual triangles which are a�ected by the edgeswapping. Let U be the set T augmented by two virtual triangles of ideal size, and U 0 theset U augmented by the two same virtual triangles. We know A(U) = A(U 0) = A(T) + 24,jU j = 4, and jU 0j = 6. Thus a new particle should be inserted on e if A(T) > 3=p2�p3=2.Annihilation RuleLet T be the set of triangles incident to a particle p. Let T 0 be set of triangles resultingfrom the retriangulation of the region covered by T . Clearly p should be annihilated if"(T 0) < "(T). We know that A(T 0) = A(T) and jT 0j = jT j � 2. Thus particle p should beannihilated if A(T) <p3jT j(jT j � 2)=4.3.4.3 Combination of 1-D and 2-D rulesThe rules that are actually used in our algorithm are a combination of 1-dimensional and2-dimensional rules. Let i be the particle that is picked at the given step.First, the annihilation rules are considered. If the particle i lies on a boundary, then the1-D rule in applied. Otherwise the 2-D rule is applied.If the particle is not annihilated, the creation rules are considered for all the edgesthat are connected to particle i. If several edges are candidates for insertion, the one thatmaximizes the improvement in particle density is selected for splitting.2the normalized area is de�ned to be the actual area divided by �̂237

3.4.4 Initial PopulationThe initial population corresponds to the sites of the PSLG de�ning the domain. Theseparticles are never moved or annihilated so that the triangulation always remains confor-ming.3.5 Speeding up the ProcessSince the particles are moved one by one, it is possible to de�ne a heuristic so that the onesthat \need" to be moved �rst are indeed moved �rst. The introduction of an alive ag foreach particle can lead to a simple heuristic:� all the particles are initially alive� when an alive particle p is picked and updated, if its normalized speed jvpj=�̂ is largerthan a threshold, all of its dead neighbors become alive. If the speed is too low, p ismarked dead.� when a particle p is annihilated, all of its dead neighbors become alive.� when a particle p is created, p and all of its dead neighbors become alive.� a dead particle is never picked. Consequently, particles don't move while they aredead.More complex schemes have been tested such as assigning picking probabilities to eachparticle proportional to their speed or their total energy (kinetic and potential). Preliminaryresults have shown no improvement over the simple scheme. Moreover the computationalcost of such a method is high (time cost for one step would be O(logn) instead of O(1)).3.5.1 Ending the simulationThe heuristic de�ned in the previous section allows a very simple test to end the simulation:end when no more particles are alive.3.6 ResultsIn this section we briey present results for a simple mesh. The domain that is meshed isa unit square, and the desired edge length is set to �̂ = 0:02. The mesh we have obtainedwith an approximated Lennard-Jones potential (Equation 3.20) is depicted in Figure 3.10.The angle and normalized edge length histograms show that the elements are close tooptimality (i.e. 60 degree angles, and unit normalized edge length).
38

0

200

400

600

800

1000

1200

0 50 100 150 200Angle histogram
0

50

100

150

200

250

300

350

400

450

500

550

600

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5Normalized edge length histogramFigure 3.10: A simple mesh

39

40

Chapter 4Interlude: DelaunayTriangulations with JavaMany people are unfamiliar with computational geometry and Delaunay triangulations. TheWorld Wide Web appears to be a good tool to familiarize those people with these concepts.And as learning is often easier when playing games, we have designed an interactive Delaunaytriangulator using the Java programming language developed by Sun [12]. It allows all peopleusing a Java enabled browser such as Netscape NavigatorTM 2.0 to build a triangulation byinteractively inserting and removing sites. The triangulator can be found at:http://www.cs.cmu.edu/~bossen/triangulator.htmlComplete user instructions are given on the web page.The algorithm that has been implemented is the incremental one. When the user addsa new point, it can simply be inserted into the triangulation. When a point is removed thewhole triangulation is rebuilt1. The quadedge data structure has been used to represent thetriangulation. This choice is justi�ed by the fact that the Voronoi diagram is also computedand displayed.

1Although not very e�cient, this solution was easier to implement41

42

Chapter 5Anisotropic MeshesIn this chapter we generalize the particle-based mesh generation method described in Cha-pter 3 to nonuniform, isotropic and anisotropic, meshes. The feature size is no longer aconstant �̂, but is position{dependent and direction{dependent.In strongly directional phenomena such as shocks and limit layers in uid ows, theelements should not only adapt in size but also in shape. They should be stretched in thedirection of the ow. The desired edge length depends on its orientation, hence the nameanisotropy. A metric tensor is introduced to quantify the stretching of the triangles at everypoint in the domain. It reects the curvature of the function that is approximated.Relatively little work has been done on anisotropic meshes. D'Azevedo [5] has proposedthe use of coordinate transformations to generate optimal triangulations. Although veryelegant, his method is limited to metric tensors that represent a at space (the Riemann-Christo�el tensor [28], that is the curvature of the space represented by the metric, shouldbe zero). Another weakness of his method is poor meshing at boundaries.Peraire et al. [23], and later Mavriplis [22] introduced stretching vectors to quantify theanisotropy, which really are eigenvectors of the metric tensor, but never formally introducedthe latter. Greedy insertion algorithms have been proposed by researchers at INRIA [3, 31].We believe that better node positioning can be achieved.This chapter is structured as follows. Section 5.1 introduces some concepts of Rieman-nian geometry. Section 5.2 exposes the changes made to the triangulation procedure dueto anisotropy. Section 5.3 presents an anisotropic version of the particle interaction mo-del described earlier. Section 5.5 summarizes the meshing algorithm. Section 5.4 presentsbackground meshes which are convenient for representing the metric. Section 5.6 shows howto derive the metric M for a given function f that the mesh should adapt to. Section 5.7shows how the mesh can incrementally be adapted to a function when no a priori knowledgeof the solution is available.5.1 Riemannian GeometryIn Euclidean geometry, the de�nition of distances is isotropic and very simple. Riemanniangeometry describes \warped" or curved spaces. In Riemannian geometry, the anisotropy ofdistance is de�ned by a metric tensor M . This tensor quanti�es the desired stretching ofthe triangles in the mesh. M is a symmetric 2 by 2 matrix, and both of its eigenvalues �1and �2 are positive: 43

M = � cos � sin �� sin � cos � �� �1 00 �2 �� cos � � sin �sin � cos � � (5.1)If both the eigenvalues are equal to 1, then M = I and the space is Euclidean. If M isconsidered locally constant, the unit ball is the ellipse pxTMx = 1. The �rst axis of theellipse has length r1 = 1=p�1, and makes an angle � with any horizontal line. The secondaxis has length r2 = 1=p�2 (Figure 5.1).
θ

r1
r2

Figure 5.1: Elliptic unit ballIn Riemannian geometry, the basic geometrical operators are rede�ned. The dot productbecomes aTM b (5.2)and the cross product pdetM(a� b) (5.3)where a� b = a1b2 � a2b1 is the 2-dimensional cross product.5.1.1 Computing DistancesIn Riemannian geometry, the length of a parametric curve �(t) between points i and j,where t 2 [0; 1], �(0) = xi, and �(1) = xj is de�ned as`(�) = Z 10 q _�(t)TM(�(t)) _�(t) dt (5.4)where _� = d�dt . The distance between two points is the length of the shortest parametriccurve �. Such a curve is called a geodesic. Computing the geodesic for an arbitrary metricis not trivial. It is simpler to approximate the distance by computing the length of a simple,non-guaranteed shortest, path. Integrating along the straight line �(t) = xi + t � (xj � xi)seems reasonable. If M varies linearly between i and j then the distance between the twopoints can be de�ned asdij = Z 10 qrijT (M i + t(M j �M i))rij dt= Z 10 q(diji)2 + t((dijj)2 � (diji)2) dt (5.5)44

where dijk = prijTMkrij is the distance as \seen" from point k. With appropriate variablechanges, the integral solves todij = 23 (diji)2 + diji dijj + (dijj)2diji + dijj (5.6)Assuming that particles i and j are close to each other, and that the metric is slowlychanging, cruder approximations of the distance are also possible, namely by simply avera-ging the distances as \seen" from i and jdij � diji + dijj2 (5.7)or by averaging the metrics asdij � prijTM ijrij , with M ij = M i +M j2 (5.8)From the three proposed approximations the last is the fastest to compute since it requiresonly one square root operation. Also �nding the squared distance doesn't require any squareroot operation at all.5.1.2 Computing AreasThe area of a domain
 is de�ned asA(
) = ZZ
pdetM(x) dx1dx2 (5.9)Again it would be possible to solve the integral for a triangle 4abc, knowing the metricat each vertex, and linearly interpolating it in between.We will not bother to do so, and simply give a cruder approximation:A(4abc) = 12sdet�Ma +M b +M c3 � � (b� a)� (c� a) (5.10)5.2 Anisotropic TriangulationAlthough it is possible to compute the Delaunay triangulation of an anisotropically distri-buted point set, it is reasonable to consider anisotropicity in the triangulation process. Ithas been shown by D'Azevedo [5] that it is better to Delaunay triangulate in a transformedspace to minimize errors for function interpolation.Only simple cases (for example when the metric tensor is constant) allow a global mapof the domain into a 2-dimensional Euclidean space by coordinate transformation. In thegeneral case, spaces of higher dimensions are needed. To solve this problem, a simpleapproximation is used. It is considered that the metric is locally constant when performingthe circumcircle test. This local constant metric is computed by averaging the metric at thefour points considered for the test: M = 14 � 4Xi=1M i (5.11)45

In Euclidean geometry the InCircle test is de�ned by equation 2.9. Its Riemannianequivalent is: pdetM(a� b)(cTM d) + (aTM b)pdetM(c� d) > 0 (5.12)and since pdetM is positive:(a� b)(cTM d) + (aTM b)(c� d) > 0 (5.13)5.3 Anisotropic Energy PotentialAll the energy potential functions de�ned in Chapter 3 are in the formEij = �̂2 �� ��ij�and the gradient of which is rxiEij = �0 ��ij��ij � rij (5.14)In an anisotropic context the normalized distance �ij is replaced by dij as de�ned inSection 5.1.1. Finding an equivalent for �̂2 is more di�cult. In Eij it could be replaced by1=pdetM i, but that would break the symmetry between Eij and Eji. To solve this, wecan average 1=pdetM i and 1=pdetM j to get pdetMi+pdetMj2pdetMi�pdetMj . As this expression is rathercomplex, in practice we will approximate it by � = 1=pdetM ij , where M ij is the averagebetween M i and M j .The potential energy function becomesEij = � ��(dij)of which the gradient isrxiEij = � � �0(dij) � rxidij +�(dij) � rxi�where rxidij is quite a complex expression, which depends on the derivative of the positionof particle i, but also on the derivatives ofM . For the sake of simplicity, we will consider thatdij = prijTM ijrij , as de�ned is equation 5.8, and that M ij is locally constant. Followingthis simpli�cation we have rxidij � M ijrijdijFurthermore rxi� is zero since M ij is considered locally constant. The gradient canthus be rewritten as rxiEij � � ��0(dij)dij �M ijrij (5.15)It is also possible to simplify the expression of the gradient in a more radical way, bysubstituting dij for �ij in the gradient expression 5.14:rxiEij � �0(dij)dij rij (5.16)46

Equations 5.15 and 5.16 are quite similar, but whereas in the latter the gradient of Eijis aligned with rij , it is usually not the case in the former, where rij is multiplied by thematrix �M ij . This multiplication has for consequence a precession movement that willtend to align rij with one of the eigenvectors of M ij . When rij is parallel to one of theeigenvectors of M ij then the gradient of Eij is aligned with rij .In practice, the simpler scheme (Equation 5.16) is used.5.4 Background MeshAlthough it is possible to explicitly de�ne the metric tensor as a set of functions, it is oftenpreferable to de�ne the metric at given points, and then interpolate in between. A backgro-und mesh is used to do so. At each node of the background mesh a metric matrix is de�ned.The metric at the other points of the domain can be computed by linear interpolation. IfMa, M b, and M c are the metric matrices at the vertices of a triangle 4abc in which a pointp lies, then the metric matrix at p is given by:Mp = wap �Ma + wbp �M b + wcp �M cwap + wbp + wcp (5.17)where wap = (xp � xb)� (xc � xb)wbp = (xp � xc)� (xa � xc)wcp = (xp � xa)� (xb � xa)The triangulation of the set of samples de�ning the metric can either be given by theuser or computed. In the latter case, Delaunay triangulation is used.To compute the metric at a given point, the triangle it lies in �rst has to be determined.To do so, it is possible to use data structures such as the history tree proposed in [14].Although the cost of one location is onlyO(logm), wherem is the number of samples de�ningthe metric, this method is suboptimal. Since the metric is only evaluated at positions whereparticles are located, and that particles rarely move across more than one triangle in thebackground mesh during one time step, it is better to cache the triangle a particle liesin. When a particle is moved, the eventually new triangle it moves into, can quickly bedetermined by a simple walking method. The metric evaluation cost can thus be reducedto O(1).A potential drawback of only piecewise linearly de�ning the metric is that the featuresize function only has C0 continuity. In the present scheme, however, this is not a problem.5.5 Method SummarySection 3.1.3 introduced the main loop of the mesh generator. We will now extend it to thegeneral, anisotropic case:build the constrained Delaunay triangulation of the domainlooprandomly pick a particle i that is marked alivecompute rxiE and Ci 47

xi xi + � � (rxiE + Ci)compute the areas of triangles incident to icreate/annihilate a particle if areas are too high/lowupdate the triangulationwhere equations 5.15 and 3.20 are used to compute rxiE, and equation 5.10 to computetriangle areas. For distances, either equation 5.8 or 5.6 can be used.This algorithm has been implemented in C++ on Silicon Graphics workstations. Thesource code spans over roughly 5000 lines. The OpenGL graphical library was used todisplay the mesh evolution in real time. All the meshes inserted in this document have beengenerated by the program, which can directly output encapsulated Postscript �les.5.6 Function InterpolationGiven a function f , the metric that generates a mesh for piecewise linear interpolation suchthat the RMS error is minimum, is given by the \curvature" of the function. This curvatureis equivalent to the Hessian matrix of the function de�ned asHf = � @2f=@x21 @2f=@x1@x2@2f=@x2@x1 @2f=@x22 � (5.18)Since Hf is symmetric, it can be represented asHf = RT � �1 00 �2 �R (5.19)where R is a rotation matrix. Given this decomposition, it is trivial to de�ne a matrix Mfsuch that both its eigenvalues are positive1:Mf = RT � j�1j 00 j�2j �R (5.20)In practice it is necessary to limit the values of the eigenvalues to a given range. Other-wise the mesh elements could get arbitrary small or large. It has also been proposed [3] toalign one of the eigenvectors of the metric matrix with the boundary, when close to one.5.6.1 Example: a Gaussian functionThe function we approximate isf(x; y) = exp��x2 + y22 �of which the Hessian is Hf = � x2 � 1 xyxy y2 � 1 � � fThe eigenvalues of Hf are �1 = �f and �2 = (x2 + y2 � 1) � f . The correspondingeigenvectors are e1 = � �y=r x=r �T and e2 = � x=r y=r �T , where r =px2 + y2.1The eigenvalues need to be positive to ensure that the squared distance between any two points is alwayspositive. 48

Following the rules previously described, we obtain the metric tensorMf = � y2 + cx2 (c� 1)xy(c� 1)xy x2 + cy2 � � jf jx2 + y2where c = jx2 + y2 � 1j.Figure 5.2 shows the mesh obtained with the Mf over the domain
 = [0; 3]� [0; 3].

Unadapted: 572 particles Adapted: 409 particlesFigure 5.2: Meshes for Gaussian function approximationExperiments have shown that, for an identical number of particles, the RMS error of thepiece-wise linear approximated function is about 8 times smaller for adapted meshes thanfor unadapted ones.5.7 Incremental Mesh AdaptationTo generate a good mesh for �nite element analysis, one has to have a good knowledgeof what the solution is. But what if one doesn't? A solution is to generate a metric bysuccessive re�nements. The incremental adaptation loop is1. start with a uniform feature size function2. build/update the mesh3. run the �nite element solver with the current mesh4. estimate the error. If the error is smaller than some amount, then exit, else adapt themetric according to the current solution, and go back to step 2While the initial mesh is uniform as in Figure 5.3, after several iterations, the metricbecomes better adapted to the problem and the quality of the mesh is improved, similarlyto Figure 5.42.2This �gure has been obtained with a hand-de�ned background mesh. No solver has been used.49

Figure 5.3: Without background mesh: uniform mesh with 2865 particles

Figure 5.4: With background mesh: anisotropic mesh with 229 particles5.8 Running TimeTo empirically determine the asymptotic running time of the algorithm, we have generatedmeshes for Gaussian function approximation with di�erent numbers of particles.Figure 5.6a shows the CPU time3 required to generate a mesh containing n particles.The running time increases slightly faster than linearly with the number of particles. To �ndout why this is, we have looked at the growth of the number of steps versus the number ofparticles. Figure 5.6b shows the number of steps grows less than linearly with the number ofparticles. On the other hand, the number of steps executed within a second decreases as thenumber of particles grows. This is in contradiction with the theory, which predicts that thetime complexity of one step is O(1). Our guess is that speed performance decreases becausethe number of cache misses grows. Using pro�ling, we have found that the subroutine whichgets more and more time consuming proportionally to the number of steps, is a quite simplesubroutine which does actually only scan through all the edges adjacent to a newly picked3On a 250Mhz Mips R4400 chip 50

Figure 5.5: Background mesh
a) 0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000 70000 80000

C
P

U
 ti

m
e

of particles b) 36

38

40

42

44

46

48

50

52

0 10000 20000 30000 40000 50000 60000 70000 80000

of

 s
te

ps
 /

of

 p
ar

tic
le

s

of particlesFigure 5.6: Running time resultsparticle i. The reason for apparent sup-linear time complexity is thus cache misses.Our conclusion is that the asymptotic time complexity of the algorithm is O(n).

51

52

Chapter 6ConclusionWe have presented a new method for generating triangular meshes in a 2-dimensional domainbounded by straight lines. The following considerations have led to the formulation we havegiven:� the particle approach seemed promising because it allowed good node placement.� whereas in previous methods the particle interaction neighborhood was de�ned bygeometrical distances, we have opted for topological distances. This allows for fasterneighborhood computation at zero data structure space cost.� although it is possible to de�ne particle interaction as purely attractive or repulsive,it turned out that mixed attractive/repulsive schemes work better.� �nally anisotropy has been introduced because the previously de�ned scheme seemedwell suited, and the generalization straightforward.A list of desirable features has been presented in the introduction. We now review it:� functionality. The new approach works, as the meshes in this document testify.� robustness. Unfortunately the scheme is not as robust as it could be. Problems canarise when constraints and the feature size function are \incompatible", that is ifthe distance between two constrained nodes is much shorter than the desired edgelength. The system oscillates as particles are continuously created and annihilated.The system can su�er from the same pathology when changes in the metric tensor aretoo abrupt.� quality. The quality of the results is good, as the angle and edge length histogramsshow. The presented approach can also be seen as a mesh postprocessing tool. In pra-ctice it has proven superior to Laplacian smoothing. The reasons seem to be twofold:Laplacian smoothing doesn't have any knowledge of what the inter-point distanceshould be, and maintenance of the Delaunay characteristics after point displacementimproves the shape of the mesh elements.� speed. It is probably not a strength of the presented approach, although the asym-ptotic running time seems to be O(n), where n is the number of nodes in the mesh.53

However, in applications where constant remeshing is required the new approach sho-uld perform well.� minimal user interaction. Several variables controlling the particle interaction modelneed to be set. Although an experienced user could decide on what values to use, itis possible to come up with a standard set of values, in which case no user input isneeded at this point.� controllability. The introduction of a background mesh seems to give the user su�cientcontrol. If he miscalculates the e�ect of the linear interpolation, he can always add anew sample to have the mesh better �t his desires.

Figure 6.1: A nice anisotropic mesh6.1 Future workDirections for future work are many:� apply the method to solve real problems. The meshes that have been presented herewere all generated with hand-made domains and hand-made background meshes. Theaddition of a �nite element solver would help to demonstrate the abilities of this newmeshing method to generate adapted meshes.� generalize to non-polygonal domains. Most objects in the real world cannot be descri-bed by a set of line segments. A more powerful scheme, which may include splines, isthus needed.� generalize to higher dimensions. 3-dimensional meshing is not as well understood as2-dimensional meshing. Maybe a physically{based approach could solve the sliverproblem1.� �nd even better particle interaction schemes. We believe that the proposed inte-raction scheme is good, but could still be improved, especially on the particle cre-ation/annihilation side. A scheme where particles are inserted at centers of circum-circles could maybe generate better meshes that need less smoothing. On the annihi-lation side, collapsing edges might be better than removing nodes.1A sliver an ill-shaped tetrahedron of which the four vertices are almost co-planar54

� introduce an a priori feature size function based on geometry when none is provi-ded. This would probably make the scheme more robust (see previous remark onrobustness).� �nd out how much remeshing from a previous solution is better (same mesh qualityat lower computational cost) than remeshing from scratch.6.2 AcknowledgementsI would like to thank Paul Heckbert for inviting me to Carnegie Mellon, and for being awonderful advisor to work with; Marshall Bern, Michael Garland, Michael Erdmann, AndyWitkin, Jim Winget, Scott Canann, and Paul Heckbert for their helpful comments andsuggestions; and my father who has been supporting me for more than 23 years now.

55

56

Bibliography[1] Eric B. Becker, Graham F. Cary, and J. Tinsley Oden. Finite Elements: An Introdu-ction, volume 1. Prentice-Hall, Englewood Cli�s, NJ, 1981.[2] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. Techni-cal Report P92-00047, Xerox PARC, 1992.[3] M.J. Castro-Diaz, F. Hecht, and B. Mohammadi. New progress in anisotropic gridadaptation for inviscid and viscous ows simulations. In 4th Annual InternationalMeshing Roundtable, 1995.[4] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4:97{108, 1989.[5] E.F. D'Azevedo. Optimal triangular mesh generation by coordinate transformation. J.Sci. Stat. Comput., 12(4):755{786, July 1991.[6] L. Devroye, E.P. M�ucke, and B. Zhu. A note on point location in Delaunay triangula-tions of random points. Submited for publication, 1995.[7] H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Disc. and Comp.Geom., 8(1):25{44, 1986.[8] D.A. Field. Laplacian smoothing and Delaunay triangulations. Comm. Appl. Num.Methods, 4:709{712, 1988.[9] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153{174,1987.[10] William H. Frey and David A. Field. Mesh relaxation: A new technique for improvingtriangulations. International Journal for Numerical Methods in Engineering, 31:1121{1133, 1991.[11] N.A. Golias and T.D. Tsiboukis. An approach to re�ning three-dimensional tetra-hedral meshes based on delaunay transformations. International Journal for NumericalMethods in Engineering, 37:793{812, 1994.[12] James Gosling and Henry McGilton. The Java Language Environment: a white paper.Sun Microsystems, October 1995.[13] Leonidas Guibas and Jorge Stol�. Primitives for the manipulation of general subdi-visions and the computation of Voronoi diagrams. ACM Transactions on Graphics,4(2):74{123, April 1985. 57

[14] L.J. Guibas, D.E. Knuth, and M. Sharir. Randomized incremental construction ofDelaunay and Voronoi diagrams. Technical Report STAN-CS-90-1300, Stanford Uni-versity, 1990.[15] K. Ho-Le. Finite element mesh generation methods: a review and classi�cation.Computer{Aided Design, 20(1):27{38, Jan/Feb 1988.[16] Thomas Kao and David M. Mount. Dynamic maintenance of Delaunay triangulations.Technical Report CS-TR-2585, University of Maryland, 1991.[17] C. L. Lawson. Software for c1 surface interpolation. In John R. Rice, editor, Mathe-matical Software III, pages 161{194. Academic Press, 1977.[18] Geo� Leach. Improving worst-case optimal Delaunay triangulation algorithms. In 4thCanadian Conference on Computational Geometry, 1992.[19] D.A. Lindholm. Automatic triangular mesh generation on surfaces of polyhedra. IEEETrans. Magnetics, 19:2539{2542, 1983.[20] Dani Lischinski. Incremental Delaunay triangulations. In Paul S. Heckbert, editor,Graphics Gems IV, pages 47{59. Academic Press, 1994.[21] S.H. Lo. A new mesh generation scheme for arbitrary planar domains. InternationalJounral for Numerical Methods in Engineering, 21:1403{1426, 1985.[22] Dimitri J. Mavriplis. Adaptive mesh generation for viscous ows using Delaunay trian-gulation. Journal of Computational Physics, 90(2):271{291, October 1990.[23] J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz. Adaptive remeshing forcompressible ow computations. Journal of Computational Physics, 72:449{466, 1987.[24] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: an Introdu-ction. Springer-Verlag, 1985.[25] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In4th ACM-SIAM Symp. on Disc. Algorithms, pages 83{92, 1993.[26] Kenji Shimada. Physically-Based Mesh Generation: Automated Triangulation of Sur-faces and Volumes via Bubble Packing. PhD thesis, MIT, 1993.[27] Kenji Shimada and David C. Gossard. Computational methods for physically-based femesh generation. In PROLAMAT. IFIP TC5/WG5.3, 1992.[28] I.S. Sokolniko�. Tensor Analysis, Theory and Applications to Geometry and Mechanicsof Continua. John Wiley, New York, 2nd edition, 1964.[29] Richard Szeliski and David Tonnesen. Surface modeling with oriented particle systems.In SIGGRAPH'92 Proceedings, pages 185{194, 1992.[30] Greg Turk. Generating textures on arbitrary surfaces using reaction-di�usion. InSIGGRAPH'91 Proceedings, pages 289{298, 1991.[31] Marie-Gabrielle Vallet. Generation de maillages anisotropes adaptes - application a lacapture de couches limites. Technical Report 1360, INRIA, 1990.58

[32] N.P. Weatherill and O. Hassan. E�cient three-dimensional Delaunay triangulation withautomatic point creation and imposed boundary constraints. International Journal forNumerical Methods in Engineering, 37:2005{2039, 1994.[33] William Welch. Serious Putty: Topological Design for Variational Curves and Surfaces.PhD thesis, Carnegie Mellon University, 1995.[34] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicitsurfaces. In SIGGRAPH'94 Proceedings, 1994.[35] M.A. Yerry and M.S. Shepard. A modi�ed quadtree approach to �nite element meshgeneration. IEEE Computer Graphics and Applications, 3:39{46, January/February1983.

59

