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Abstract In the present paper we obtain an anisotropic ana-

log of the Durgapal and Fuloria (Gen Relativ Gravit 17:671,

1985) perfect fluid solution. The methodology consists of

contraction of the anisotropic factor � with the help of both

metric potentials eν and eλ. Here we consider eλ the same

as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985)

did, whereas eν is as given by Lake (Phys Rev D 67:104015,

2003). The field equations are solved by the change of depen-

dent variable method. The solutions set mathematically thus

obtained are compared with the physical properties of some

of the compact stars, strange star as well as white dwarf. It is

observed that all the expected physical features are available

related to the stellar fluid distribution, which clearly indicates

the validity of the model.

1 Introduction

A few decades ago a new analytic relativistic model was

obtained by Durgapal and Fuloria [1] for superdense stars

in the framework of Einstein’s General Theory of Relativ-

ity. They showed that the model in connection to the neu-

tron star stands all physical tests with the maximum mass

4.17 M⊙ and the surface redshift 0.63. Very recently, Gupta

and Maurya [3] presented a class of charged analogs of the

superdense star model due to Durgapal and Fuloria [1] with

Einstein–Maxwell spacetimes. The members of this class

have been shown to satisfy various physical conditions and

exhibit these features: (a) a maximum mass 3.2860 M⊙
and a radius 18.3990 km for a particular interval of the

parameter: 1 < K ≤ 1.7300, and (b) a maximum mass

1.9672 M⊙ and a radius 15.9755 km for another interval of

the parameter: 1 < K ≤ 1.1021. Later on, a family of well
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behaved charged analogs of the Durgapal and Fuloria [1]

perfect fluid exact solution was also obtained by Murad and

Fatema [4] where they have studied the Crab pulsar with

radius 13.21 km.

In a similar way we have considered a generalization of

Durgapal and Fuloria [1] with an anisotropic fluid sphere such

that pr �= pt, where pr and pt, respectively, are the radial

and tangential pressures of the fluid distribution. The present

work is a sequel of the paper [5] where we have developed

a general algorithm in the form of the metric potential ν for

all spherically symmetric charged anisotropic solutions in

connection to compact stars. However, in the present study

without considering any anisotropic function we can develop

an algorithm with the help of the metric potentials only and

herein lies the beauty of the investigation. Another point we

would like to add here is that, till now, to the best of our

knowledge, no alternative anisotropic analog of Duragapal

and Fuloria [1] solution is available in the literature.

In connection to anisotropy we note that it was Rud-

erman [6] who argued that the nuclear matter may have

anisotropic features at least in certain very high density

ranges (>1015 gm/cm3), and thus the nuclear interaction can

be treated under relativistic background. Later on Bowers and

Liang [7] specifically investigated the non-negligible effects

of anisotropy on the maximum equilibrium mass and sur-

face redshift. There is an exhaustive review on the subject

of anisotropic fluids by Herrera and Santos [8] which pro-

vides almost all references until 1997, as well as a detailed

discussion of some of the issues analyzed in this article.

More recently, a comprehensive work on the influence of

local anisotropy on the structure and evolution of compact

object has been published by Herrera et al. [9]. In this regard

several recently performed anisotropic compact star models

may be consulted for further reference [10–18]. We also note

some particular work concerned with the anisotropic aspect

in physical systems like Globular Clusters, Galactic Bulges,

and Dark Halos in Refs. [19,20].
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As a special feature of anisotropy we note that for a small

radial increase the anisotropic parameter increases. However,

after reaching a maximum in the interior of the star it becomes

a decreasing function of the radial distance as shown by Mak

and Harko [21,22]. Obviously at the center of the fluid sphere

the anisotropy is expected to vanish.

We would like to mention that an algorithm for a perfect

fluid and an anisotropic uncharged fluid is already available in

the literature [2,23,24]. For example, we note that in his work

Lake [2,23] has considered an algorithm based on the choice

of a single monotone function, which generates all regular

static spherically symmetric perfect as well as anisotropic

fluid solutions for the Einstein spacetimes. It is also observed

that Herrera et al. [24] have extended the algorithm to the case

of locally anisotropic fluids. Thus we opt for an algorithm

applied to the more general case with an anisotropic fluid

distribution. However, in this context it is to be noted that in

Ref. [5] we developed an algorithm in the Einstein–Maxwell

spacetimes.

The outline of the present paper is as follows: in Sect. 2

the Einstein field equations for an anisotropic stellar source

are given, whereas the general solutions are shown in Sect.

3 along with the necessary matching condition. In Sect. 4

we represent interesting features of the physical parameters,

which include density, pressure, stability, charge, anisotropy,

and redshift. As a special study we provide several data sheets

in connection to compact stars. Section 5 is used as a platform

for some discussions and conclusions.

2 The Einstein field equations

In this work we intend to study a static and spherically sym-

metric matter distribution whose interior metric is given in

Schwarzschild coordinates, x i = (r, θ, φ, t) [25,26],

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2θdφ2) + eν(r)dt2. (1)

The functions ν and λ satisfy the Einstein field equations,

κT i
j = Ri

j −
1

2
Rgi

j , (2)

where κ = 8π is the Einstein constant with G = 1 = c

in relativistic geometrized units, G and c, respectively, being

the Newtonian gravitational constant and velocity of photons

in vacuum.

The matter within the star is assumed to be locally

anisotropic fluid in nature and consequently T i
j is the

energy-momentum tensor of the fluid distribution defined by

T i
j = [(ρ + pr)v

iv j − ptδ
i

j + (pr − pt)θ
iθ j ], (3)

where vi is the four-velocity with eλ(r)/2vi = δi
4, θ i is the

unit space-like vector in the direction of radial vector, θ i =
eλ(r)/2δi

1 is the energy density, pr is the pressure in direction

of θ i (normal pressure), and pt is the pressure orthogonal to

θi (transverse or tangential pressure).

For the spherically symmetric metric (1), the Einstein field

equations may be expressed as the following system of ordi-

nary differential equations [27]:

− κT 1
1 =

ν′

r
e−λ −

(1 − e−λ)

r2
= κpr, (4)

− κT 2
2 = −κT 3

3 =
[

ν′′

2
−

λ′ν′

4
+

ν′2

4
+

ν′ − λ′

2r

]

e−λ

= κpt, (5)

κT 4
4 =

λ′

r
e−λ +

(1 − e−λ)

r2
= κρ, (6)

where the prime denotes differentiation with respect to the

radial coordinate r .

The pressure anisotropy condition for the system can be

written

� = κ (pt − pr) =
[

ν′′

2
−

λ′ν′

4
+

ν′2

4
+

ν′ − λ′

2r

]

e−λ

−
ν′

r
e−λ +

(1 − e−λ)

r2
. (7)

Now let us consider the metric potentials [1] in the fol-

lowing forms:

e−λ =
7 − 10Cr2 − C2r4

7 + 14Cr2 + 7C2r4
, (8)

ν = 2 ln ψ, (9)

where C is a positive constant and ψ is a function which

depends on the radial coordinate r . The plots for these quan-

tities are shown in Fig. 1.

Fig. 1 Variations of the metric potentials with radial coordinate r/R.

(i) eν is plotted with dotted line for Her X-1 and short-dashed line for

white dwarf, (ii) eλ is plotted with a continuous line for Her X-1 and a

long-dashed line for a white dwarf
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Equation (7) together with Eqs. (8) and (9) becomes

� =
[

7 − 10Cr2 − C2r4

7(1 + Cr2)2

]

ψ ′′

ψ

+
[

C3r6 + 19C2r4 − 21Cr2 − 7

7r(1 + Cr2)3

]

ψ ′

ψ

+
[

8C2r2(Cr2 + 5)

7(1 + Cr2)3

]

. (10)

3 The solutions for the model

Here our initial aim is to find the pressure anisotropic function

�, which is zero at the center and monotonic increasing for

suitable choices of ψ . However, Lake [2] imposes the con-

dition that ψ should be a regular and monotonic increasing

function of the radial coordinate r .

Let us therefore take the form of ψ as follows:

ψ = (1 − α + Cr2)2, (11)

where α > 0.

Substituting the value of ψ from Eq. (11) in Eq. (10), we

get

� = −
8

7

α C2r2[2 C2r4 + (16 − α)Cr2 − 5 α − 2]
(1 + Cr2)3(1 − α + Cr2)2

.

(12)

For α > 0 and 0 < Cr2 <

√
α2+8α+272−(16−K )

4
, the

pressure anisotropy is finite as well as positive everywhere,

as can be seen in Fig. 2.

By inserting the above value of � in Eq. (12), we get

ψ ′′ +
[

C3r6 + 19C2r4 − 21Cr2 − 7

r(1 + Cr2)(7 − 10Cr2 − C2r4)

]

ψ ′

+
1

7 − 10Cr2 − C2r4

[

8C2r2(Cr2 + 5)

(1 + Cr2)

+
8αC2r2[2C2r4 + (16 − α)Cr2 − (5α + 2)]

(1 + Cr2)(1 − α + Cr2)2

]

ψ = 0.

(13)

Now our next task is to obtain the most general solution of

the differential equation (13). Here we shall use the change

of dependent variable method. We consider the differential

equation of the form

∆

Fig. 2 Variation of the anisotropy factor with radial coordinate r/R.

(i) � is plotted with a short-dashed line for Her X-1, (ii) � is plotted

with a continuous line for a white dwarf

y′′ + p(r)y′ + q(r)y = 0. (14)

Let y = y1 be the particular solution of the differential

equation (14). Then y = y1U will be complete solution of

the differential equation (14), where

U = a1 + b1

∫

exp

[

−
∫

(p(r) +
2y′

y1
)dr

]

dr,

where a1 and b1 are arbitrary constants.

Again let us assume here that ψ = (1−α+Cr2)2 = ψαr is

a particular solution of Eq. (13). So, the most general solution

of the differential equation (13) can be given by

ψ = (1 − α + Cr2)2

×
[

B̃+ Ã

∫

exp

{

−
∫ (

C3r6+19C2r4−21Cr2 − 7

r(1+Cr2)(7−10Cr2−C2r4)

+
8Cr2

r(1 − α + Cr2)

)

dr

}

dr

]

, (15)

where Ã and B̃ are arbitrary constants.

After integrating it, we get

ψ = ψαr

[

B − A

{

{ψα1 + ψα2(1 − α + Cr2) + ψα3ψαr }
√

(ψα5 − 2(4 + α)(1 − α + Cr2) − ψαr )

(1 − α + Cr2)3
+ W (r)

}]

, (16)

where

ψαr = (1 − α + Cr2)2, (17)
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ρ

Fig. 3 Variation of the density with radial coordinate r/R. (i) ρ is

plotted with a continuous line for Her X-1, (ii) ρ is plotted with a

dashed line for a white dwarf

W (r) =
ψα4√
ψα5

log

[

ψα5 − (4 + α)(1 − α + Cr2) +
√

ψα5

√

(ψα5 − 2(4 + α)(1 − α + Cr2) − ψαr )

(1 − α + Cr2)ψα5

]

, (18)

and A and B are arbitrary constants with

ψα1 = α

3(16−8α−α2)
,

ψα2 = 24−2α+α2

3(16−8α−α2)2 ,

ψα3 = 288+80α−10α2+α3

3(16−8α−α2)3 ,

ψα4 = 1536−384α+48α2−2α3

3(16−8α−α2)3 ,

ψα5 = (16 − 8α − α2).

Using Eqs. (8), (12), and (16) the expressions for the

energy-density and pressure read

κρ

C
=

8(9 + 2Cr2 + C2r4)

7(1 + Cr2)3
(19)

and

κpr

C
=

4(7 − 10Cr2−C2r4)

7(1 + Cr2)2

[

ψpr (1−α + Cr2)3 + 2ψ

ψ(1 − α + Cr2)

]

−
8(Cr2 + 3)

7(1 + Cr2)2
, (20)

where

ψpr =
A(1 + Cr2)

(1 − α + Cr2)4
√

(7 − 10Cr2 − Cr2)
. (21)

In Figs. 3, 4, and 5 we have plotted the nature of the above

physical quantities, which show the viability of the features

of the present model.

3.1 Matching condition

The above system of equations is to be solved subject to the

boundary condition that radial pressure pr = 0 at r = R

(where r = R is the outer boundary of the fluid sphere). It

is clear that m(r = R) = M is a constant and, in fact, the

interior metric (2.1) can be joined smoothly at the surface of

spheres (r = R) to an exterior Schwarzschild metric whose

mass is the same as above, i.e. m(r = R) = M [28].

The exterior spacetime of the star will be described by the

Schwarzschild metric given by

Fig. 4 Variation of the density

with radial coordinate. (i) pr is

plotted with a continuous line

for Her X-1 and a short-dashed

line for a white dwarf in the left

graph (left panel), (ii) pt is

plotted with a continuous line

for Her X-1 and a short-dashed

line for a white dwarf in the

right graph (right panel)
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Fig. 5 Variation of the density

with radial coordinate r/R. (i)

pr/ρ is plotted with a

short-dashed line for Her X-1

and a continuous line for a white

dwarf (left panel), (ii) pt/ρ is

plotted with a short-dashed line

for Her X-1 and a continuous

line for a white dwarf (right

panel)

ρ ρ

ds2 = −
(

1 −
2M

r

)−1

dr2 − r2(dθ2 + sin2θdφ2)

+
(

1 −
2M

r

)

dt2. (22)

The continuity of the metric coefficients gt t , grr across the

boundary surface r = R between the interior and the exterior

regions of the star yields the following conditions:

(

1 −
2M

r

)−1

= eλ(R), (23)

(

1 −
2M

r

)

= ψ2
R, (24)

where ψ(r = R) = ψR .

Equations (23) and (24), respectively, give

M =
R

2

[

8C R2(3 + C R2)

7(1 + C R2)2

]

, (25)

A =
√

7 − 10C R2 − C2 R4

√
7(1 + C R2)ψαR( B

A
− (R))

. (26)

That the radial pressure pr is zero at the boundary (r = R)

leads to

B

A
=

(1+C R2)
√

7 − 10C R2−C2 R2

2(1−α+C R2)3[(1−α+C R2)(3+C R2)−(7−10C R2−C2 R4)]
(R),

(27)

where

ψαR = (1 − α + C R2)2, (28)

(R) =
{ψα1 + ψα2(1 − α + C R2) + ψα3ψαR}

√

ψα5 − 2(4 + α)(1 − α + C R2) − ψαR

(1 − α + C R2)3
+ W (R), (29)

W (R) =
ψα4√
ψα5

log

[

ψα5 − (4 + α)(1 − α + C R2) +
√

ψα5

√

ψα5 − 2(4 + α)(1 − α + C R2) − ψαR

(1 − α + C R2)ψα5

]

. (30)

4 Some physical features of the model

4.1 Regularity at center

The density ρ, and the radial pressure pr and the tangential

pressure pt should be positive inside the star. The central

density at the center for the present model is

ρ0 = ρ(r = 0) =
72C

7
. (31)

The metric Eq. (22) implies that C = 7ρ0

72
is positive finite.

Again, from Eq. (20), we obtain

pr(r = 0)

C
=

4A
√

7(1 − α)2ψr=0

−
24

7
, (32)

where pr(r = 0) > 0.

This immediately implies that

B

A
<

√
7

6(1 − α)4

+
{ψα1 + ψα2(1 − α) + ψα3(1 − α)2}

√

ψα5 − 2(4 + α)(1 − α) − (1 − α)2

(1 − α)3

+
ψα4√
ψα5

× log

[

ψα5 − (4 + α)(1 − α)+
√

ψα5

√

ψα5−2(4 + α)(1 − α)−(1−α)2

(1 − α)ψα5

]

.

(33)

4.2 Causality conditions

Inside the fluid sphere the speed of sound should be less than

the speed of light i.e. 0 ≤ Vsr =
√

d pr

dρ
< 1 and 0 ≤ Vst =

√

d pt

dρ
< 1. Therefore

123
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V 2
sr = (1 + Cr2)

[

4(C2r4 + 10Cr2 − 7)(1 + Cr2)(ψr1 − ψr2 − ψr3) − 8(Cr2 + 5)

8(C2r4 + 2Cr2 + 25)

]

, (34)

V 2
st = (1 + Cr2)

[

4(C2r4 + 10Cr2 − 7)(1 + Cr2)(ψr1 − ψr2 − ψr3) − 8(Cr2 + 5) − ψr4

8(C2r4 + 2Cr2 + 25)

]

, (35)

where

ψpr =
A(1 + Cr2)

(1 − α + Cr2)4
√

(7 − 10Cr2 − Cr2)
, (36)

ψr1 =
[

2

(1 − α + Cr2)2
+

4(3 − Cr2)(1 − α + Cr2)2ψpr

ψ(1 + Cr2)(7 − 10Cr2 − C2r4)

]

,

(37)

ψr2 =
[

2K

(1 − α + Cr2)
+

(1 − α + Cr2)2ψpr

ψ

]2

, (38)

ψr3 =
8(3 − Cr2)

(7 − 10Cr2 − C2r4)(1 + Cr2)

[

2

(1 − α + Cr2)

+
(1 − α + Cr2)2ψpr

ψ

]

, (39)

ψr4

=
[

4α
(1 + Cr2)(1 − α + Cr2)ψr5 − Cr2ψr6(5 − 3α + 5Cr2)

(1 + Cr2)(1 − α + Cr2)3

]

,

(40)

ψr5 = [12C2r4 + 4(16 − α)Cr2 − (10α + 4)], (41)

ψr6 = [4C2r4 + 2(16 − α)Cr2 − (10α + 4)]. (42)

The physical quantities related to the above equations are

plotted in Figs. 6 and 7.

4.3 Well behaved condition

The velocity of sound is monotonically decreasing away from

the center and it is increasing with the increase of density, i.e.
d
dr

(
d pr

dρ
) < 0 or (

d2 pr

dρ2 ) > 0 and d
dr

(
d pt

dρ
) < 0 or (

d2 pt

dρ2 ) > 0

for 0 ≤ r ≤ R. In this context it is worth mentioning that the

equation of state at an ultra-high distribution has the property

that the sound speed is decreasing outward [29] as can be

observed from Fig. 6.

4.4 Energy conditions

The anisotropic fluid sphere composed of strange matter will

satisfy the null energy condition (NEC), the weak energy

condition (WEC), and the strong energy condition (SEC), if

the following inequalities hold simultaneously at all points

in the star:

NEC: ρ ≥ 0,

WEC: ρ + pr ≥ 0,

Fig. 6 Variation of the sound velocity with radial coordinate r/R. (i)

Vr is plotted with a dashed line for Her X-1, (ii) Vr is plotted with

a marker continuous line for a white dwarf, (iii) Vt is plotted with a

continuous line for Her X-1, (iv) Vt is plotted with a dotted line for a

white dwarf

Fig. 7 Variation of the sound velocity with radial coordinate r/R. (i)

V 2
sr is plotted with a dotted line for Her X-1, (ii) V 2

sr is plotted with a

dashed line for a white dwarf, (iii) V 2
st is plotted with a marker contin-

uous line for Her X-1, (iv) V 2
st is plotted with a continuous line for a

white dwarf

WEC: ρ + pt ≥ 0,

SEC: ρ + pr + 2pt ≥ 0.

We have shown the energy conditions in Fig. 8 for Her

X-1 in (i) and for a white dwarf in (ii).
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Fig. 8 Variation of the energy conditions with radial coordinate r/R.

(i) N EC is plotted with a marker long-dashed line, W ECr with a marker

short-dashed line, and SEC with a continuous line (for Her X-1), (ii)

N EC is plotted with a marker continuous line, W ECr with a long-

dashed line, and SEC with a short-dashed line (for a white dwarf)

γ

Fig. 9 Variation of the adiabatic index with radial coordinate r/R. (i)

γ is plotted with a continuous line for Her X-1, (ii) γ is plotted with a

dashed line for a white dwarf

4.5 Stability conditions

4.5.1 Case 1

In order to have an equilibrium configuration the matter must

be stable against the collapse of local regions. This requires

Le Chatelier’s principle, also known as the local or micro-

scopic stability condition: that the radial pressure pr must

be a monotonically non-decreasing function of r such that
d pr

dρ
≥ 0 [30]. Heintzmann and Hillebrandt [31] also pro-

posed that a neutron star with an anisotropic equation of

state is stable for γ > 4/3 as is observed from Fig. 9 and

also shown in Tables 1 and 2 for our model related to compact

stars.

4.5.2 Case 2

For a physically acceptable model, one expects that the

velocity of sound should be within the range 0 = V 2
si =

(d pi/dρ) ≤ 1 [32,33]. We plot the radial and transverse

velocity of sound in Fig. 7 and conclude that all parame-

ters satisfy the inequalities 0 = V 2
sr = (d pi/dρ) ≤ 1 and

0 = V 2
st = (d pi/dρ) ≤ 1 everywhere inside the star models.

Also 0 = V 2
st ≤ 1 and 0 = V 2

sr ≤ 1; therefore |V 2
st −V 2

sr| ≤ 1.

In order to examine the stability of local anisotropic fluid

distribution, we follow the cracking concept of Herrera [32]

which states that the region for which the radial speed of

sound is greater than the transverse speed of sound is a poten-

tially stable region.

To this aim, we calculate the difference of the velocities

as follows:

V 2
st − V 2

sr

= α

[

(1 + Cr2)(1 − α + Cr2)ψr5 − Cr2ψr6(5 − 3α + 5Cr2)

2(1 + Cr2)3(1 − α + Cr2)3(C2r4 + 2Cr2 + 25)

]

,

(43)

where

ψr5 = [12C2r4 + 4(16 − α)Cr2 − (10α + 4)], (44)

ψr6 = [4C2r4 + 2(16 − α)Cr2 − (10α + 4)]. (45)

It can be seen that |V 2
st − V 2

sr| at the center lies between

0 and 1 (see Fig. 10). This implies that we must have 0 ≤
α(10α+4)

50(1−α)2 ≤ 1. Then α should satisfy the following condition:

0 ≤ α ≤ 52−
√

704
40

.

4.6 Generalized TOV equation

The generalized Tolman–Oppenheimer–Volkoff (TOV)

equation is

−
MG (ρ + pr)

r2
e

λ−ν
2 −

d pr

dr
+

2

r
(pt − pr) = 0, (46)

where MG = MG(r) is the effective gravitational mass,

which is given by

MG(r) =
1

2
r2e

ν−λ
2 ν′. (47)

Substituting the value of MG(r) in Eq. (46), we get

−
1

2
ν′(ρ + pr) −

d pr

dr
+

2

r
(pt − pr) = 0. (48)

Equation (48) basically describes the equilibrium condi-

tion for an anisotropic fluid subject to gravitational (Fg),
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Table 1 Values of different

physical parameters of a white

dwarf star for

α = 0.10, C R2 = 0.068, M =
0.8882 M⊙, R = 12.5202 Km

r pr pt ρ Vr Vt � Z γ

0.0 0.6386 0.6386 10.2857 0.6135 0.6034 0.00000 0.2036 10.4949

0.1 0.6314 0.6316 10.2663 0.6133 0.6033 0.00024 0.2028 10.5863

0.2 0.6096 0.6106 10.2084 0.6127 0.6031 0.00093 0.2003 10.8718

0.3 0.5738 0.5758 10.1129 0.6116 0.6026 0.0020 0.1961 11.3897

0.4 0.5245 0.5278 9.9814 0.6100 0.6019 0.0034 0.1903 12.2191

0.5 0.4624 0.4673 9.8157 0.6079 0.6010 0.0049 0.1830 13.5139

0.6 0.3885 0.3949 9.6185 0.6053 0.5997 0.0064 0.1741 15.5930

0.7 0.3040 0.3118 9.3926 0.6022 0.5980 0.0078 0.1637 19.2098

0.8 0.2101 0.2190 9.1412 0.5985 0.5959 0.0089 0.1519 26.6355

0.9 0.1083 0.1178 8.8676 0.5942 0.5932 0.0095 0.1388 49.2412

1.0 0.0000 0.0096 8.5754 0.5893 0.5899 0.0096 0.1244 ∞

Table 2 Values of different

physical parameters of the

strange star Her X-1 for

α = 0.11, C R2 = 0.1178, M =
0.8804 M⊙, R = 7.7214 Km

r pr pt ρ Vr Vt � Z γ

0.0 1.2135 1.2135 10.2857 0.6730 0.6624 0.0000 0.4010 4.2917

0.1 1.1984 1.1988 10.2521 0.6726 0.6622 0.0004 0.3991 4.3223

0.2 1.1533 1.1551 10.1523 0.6713 0.6617 0.0018 0.3933 4.4180

0.3 1.0795 1.0833 9.9890 0.6692 0.6607 0.0038 0.3838 4.5919

0.4 0.9790 0.9851 9.7665 0.6662 0.6592 0.0061 0.3707 4.8710

0.5 0.8546 0.8630 9.4906 0.6622 0.6571 0.0084 0.3541 5.3078

0.6 0.7096 0.7197 9.1681 0.6572 0.6541 0.0101 0.3342 6.0116

0.7 0.5475 0.5586 8.8067 0.6510 0.6501 0.0111 0.3113 7.2403

0.8 0.3725 0.3835 8.4143 0.6436 0.6450 0.0110 0.2856 9.7716

0.9 0.1886 0.1982 7.9990 0.6350 0.6385 0.0095 0.2574 17.4995

1.0 0.0000 0.0068 7.5686 0.6249 0.6305 0.0068 0.2271 –

Fig. 10 Variation of the absolute value of square of sound velocity

with radial coordinate r/R. (i) |V 2
st − V 2

sr| is plotted with a short-dashed

line for Her X-1, (ii) |V 2
st − V 2

sr| is plotted with a continuous line for a

white dwarf

hydrostatic (Fh), and anisotropic stress (Fa), which can, in a

compact form, be expressed as

Fg + Fh + Fa = 0, (49)

where

Fg = −
1

2
ν′(ρ + pr), (50)

Fh = −
d pr

dr
, (51)

Fa =
2

r
(pt − pr) . (52)

The above forces can be expressed in the following explicit

forms:

Fg = −
1

2
ν′(ρ + pr)

=
C2r

8π

[

8(6 − 2Cr2)

7(1 + Cr2)3

[ψpr (1 − α + Cr2)3 + 2ψ]
ψ(1 − α + Cr2)

+
4(7 − C2r4 − 10Cr2)

7(1 + Cr2)2

(

ψpr (1 − α + Cr2)3 + 2ψ

ψ(1 − α + Cr2)

)2
]

,

(53)

Fh = −
d pr

dr
=

C2r

4π

[

4(C2r4 + 10Cr2 − 7)

7(1 + Cr2)2
(ψr1 − ψr2 − ψr3)

−
8(Cr2 + 5)

7(1 + Cr2)3

]

, (54)

123



Eur. Phys. J. C (2015) 75 :225 Page 9 of 11 225

Fig. 11 Variation of the forces with radial coordinate r/R. Fg is plotted

with a long-dashed line, Fh with a continuous line, and Fa with a short-

dashed line

Fa =
2

r
(pt − pr)

=
C2r

π

[

2α[(5α + 2) − (16 − α)Cr2 − 2C2r4]
7(1 + Cr2)3(1 − α + Cr2)2

]

.

(55)

The variation of different forces and the attainment of

equilibrium has been drawn in Fig. 11. At this point, however,

it is justified to note that the stability issues in Sects. 4.5 and

4.6 have also been analyzed in general and in full detail in

the case of anisotropic fluids by Chan et al. [34].

4.7 Effective mass–radius relation and surface redshift

Let us now turn our attention towards the effective mass-to-

radius relationship. For a static spherically symmetric perfect

fluid star, Buchdahl [35] has proposed an absolute constraint

on the maximally allowable mass-to-radius ratio (M/R) for

isotropic fluid spheres as 2M/R ≤ 8/9 (in the units c =
G = 1). This basically states that for a given radius a static

isotropic fluid sphere cannot be arbitrarily massive. However,

for a more generalized expression for the mass-to-radius ratio

one may refer to the paper by Mak and Harko [11].

For the present compact star model, the effective mass is

written as

Meff = 4π

∫ R

0

ρr2dr

=
1

2
R[1 − e−λ(R)] =

1

2
R

[

8C R2(3 + C R2)

7(1 + 2C R2 + C2 R4)

]

.

(56)

The compactness of the star is therefore given by

u =
Meff

R
=

1

2

[

8C R2(3 + C R2)

7(1 + 2C R2 + C2 R4)

]

. (57)

Therefore, the surface redshift (Z ) corresponding to the

above compactness factor (u) is obtained as

Z = [1 − 2u]−1/2 − 1

=
[

1 −
8C R2(3 + C R2)

7(1 + 2C R2 + C2 R4)

]−1/2

− 1. (58)

We have shown the variation of the physical quanti-

ties related to Buchdahl’s mass-to-radius ratio (2M/R) for

isotropic fluid spheres, and also surface redshift are plotted

in Figs. 12 and 13.

5 Model parameters and comparison with some

of the compact stars

In this section we prepare several data sheets for the model

parameters in Tables 1, 2, and 3 and compare those with

some of the compact stars, e.g. the strange star Her X-1 and

a white dwarf in Table 4. In our present investigation we

propose a stable compact star model with the parameters

R = 12.5202 Km and M = 0.8882 M⊙ (for a white dwarf)

and R = 7.7214 Km and M = 0.8804 M⊙ (for Her X-1).

The values of these data points have already been used for

plotting the graphs in all figures in Sects. 3 and 4.

What we have done in the tables is as follows: in Tables

1, 2, and 3 the values of different physical parameters of the

strange star Her X-1 and a white dwarf have been provided.

Under this data set, we calculate some physical parameters

of the compact star, say the central density, the surface den-

sity, the central pressure etc. in Table 4. It can be observed

that these data are quite satisfactory for the compact stars—

whether it is strange star with central density 1.0913 × 1015

gm/cm−3 or a white dwarf with central density 2.3961×1014

gm/cm−3. Likewise this feature of compact stars can be

explored for some other physical parameters also.

6 Discussion and conclusion

In the present work we have investigated an anisotropic ana-

log of the model due to Durgapal and Fuloria [1] and the

possibilities for there being interesting physical properties of

the proposed model. As a necessary step we have contracted

the anisotropic factor � with the help of both metric poten-

tials eν and eλ. However, eλ is considered as in Durgapal and

Fuloria [1], whereas eν is given by Lake [2].

The field equations are solved by the change of dependent

variable method, and under suitable boundary condition the
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Fig. 12 Variation of the mass

with radial coordinate r/R. (i)

2M/R is plotted with a

short-dashed line for Her X-1

and a long-dashed line for its

upper bound (left panel), (ii)

2M/R is plotted with a

short-dashed line for a white

dwarf and a long-dashed line for

its upper bound (right panel)

Fig. 13 Variation of the redshift index radial coordinate r/R. Z is

plotted with a continuous line for Her X-1 and a long-dashed line for a

white dwarf

interior metric (2.1) has been joined smoothly at the surface

of spheres (r = R), to an exterior Schwarzschild metric

whose mass is the same as m(r = R) = M [28]. The solution

set thus obtained is correlated with the physical properties of

some of the compact stars, which include strange stars as

well as white dwarfs. It is observed that the model is viable

in connection to several physical features, which are quite

interesting and acceptable as proposed by other researchers

within the framework of General Theory of Relativity.

As a detailed discussion we would like to put forward

here that several verification schemes of the model have been

performed and we extract expected results some of which are

as follows:

(1) Regularity at the center: the density ρ and radial pressure

pr and tangential pressure pt should be positive inside

the star. It is shown that the central density at the center

is ρ0 = ρ(r = 0) = 72C
7

and pr(r = 0) > 0. This

means that the density ρ as well as radial pressure pr

and tangential pressure pt all are positive inside the star.

(2) Causality conditions: it is shown that inside the fluid

sphere the speed of sound is less than the speed of light

i.e. 0 ≤ Vsr =
√

d pr

dρ
< 1, 0 ≤ Vst =

√

d pt

dρ
< 1.

(3) Well behaved condition: the velocity of sound is mono-

tonically decreasing away from the center and it is

increasing with the increase of density as can be

observed from Fig. 6.

(4) Energy conditions: from Fig. 9 we observe that the

anisotropic fluid sphere composed of strange matter sat-

isfy the null energy condition, the weak energy condi-

tion, and the strong energy condition simultaneously at

all points in the star.

(5) Stability conditions: Following Heintzmann and Hille-

brandt [31] we note that a neutron star with an anisotropic

equation of state is stable for γ > 4/3 as is observed

in Tables 1 and 2 for our model. Also, it is expected

that the velocity of sound should be within the range

Table 3 Values of the model parameters A, B, C , and α for different compact stars

Compact star candidates M (M⊙) R (Km) A B C α

White dwarf 0.8882 12.5202 −2.1463 0.5533 4.3380 × 10−13 0.10

Her X-1 0.8804 7.7214 −1.6255 0.5301 1.9758 × 10−13 0.11
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Table 4 Energy densities, central pressure, and Buchdahl condition for different compact star candidates for the above parameter values of Tables

1, 2, and 3

Compact star

candidates

Central Density

(gm/cm−3)

Surface density

(gm/cm−3)

Central pressure

(dyne/cm−2)

Buchdahl condition

(2M/R ≤ 8/9)

White dwarf 2.3961 × 1014 2.0 × 1014 1.3392 × 1034 0.1418

Her X-1 1.0913 × 1015 0.8031 × 1015 1.1591 × 1035 0.2280

0 = V 2
si = (d pi/dρ) ≤ 1 [32,33]. The plots for the

radial and transverse velocity of sound in Fig. 7 is every-

where inside the star models.

(6) Generalized TOV equation: the generalized Tolman–

Oppenheimer–Volkoff equation describes the equilib-

rium condition for the anisotropic fluid subject to grav-

itational (Fg), hydrostatic (Fh), and anisotropic stress

(Fa). Figure 8 shows that the gravitational force is bal-

anced by the joint action of hydrostatic and anisotropic

forces to attain the required stability of the model. How-

ever, the effect of an anisotropic force is very much less

than the hydrostatic force.

(7) Effective mass–radius relation and surface redshift: for

a static spherically symmetric perfect fluid star, the

Buchdahl [35] absolute constraint on the maximally

allowable mass-to-radius ratio (M/R) for isotropic fluid

spheres as 2M/R ≤ 8/9 = 0.8888 is seen to be main-

tained in the present model as can be observed from

Table 4.

In Sect. 5 we have made a comparative study by using

the model parameters and data of two of the compact stars

which are, in general, very satisfactory as compared to the

observational results. However, at this point we would like to

comment that the sample data used for verifying the present

model are to be increased to obtain more satisfactory and

exhaustive physical features.
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