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In this paper, we consider the Bianchi type-I space-time with perfect fluid as matter content of the
Universe in the framework of f (Q) gravity (where Q is the non-metricity scalar) recently proposed
by Jiménez et al. (Phys. Rev. D 98.4 (2018): 044048). We find exact solutions of the field equations
using the anisotropic property of space-time for volumetric hybrid expansion. The cosmological
parameters for the linear form of non-metricity scalar i.e. f (Q) = αQ + β (where α and β are free
model parameters) are discussed and compared with recent Hubble measurements. Also, we have
obtained the best fitting values of the model parameters k, n and H0 by constraining our model with
updated Hubble datasets consisting of 57 data points (31 (DA) and 26 (BAO+other)) along with also
examined the stability of the model and test its validity by energy conditions.
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I. INTRODUCION

The theory of general relativity (GR) is the most fa-
mous theory of gravity published by Albert Einstein in
1915 [1], for having been experimentally tested more
than once, and all the results are surprisingly consistent
with the theory’s predictions [2–4]. According to this
theory, gravity is just a curvature of space-time due to
the presence of a large mass, and therefore, this theory
linked the matter content of the Universe with the ge-
ometry of the fabric of the space-time. The geometry
of space-time is represented by the Einstein tensor Gµν,
and matter is represented by the energy-momentum
tensor Tµν, and thus we get the Einstein field equations
as Gµν = kTµν (in natural units k = 8πGc−4 = 1). These
equations can be derived by means of a mathematical
object called Einstein-Hilbert (EH) action which is given
as follows

SEH =
∫ [1

2
R + Lm

]
d4x
√
−g, (1)

where g = det
(

gµν

)
is the determinant of the metric

tensor gµν, R is the Ricci scalar and Lm is the matter La-
grangian density. GR is based on an important prop-
erty that the covariant derivative ∇γ of the metric is
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zero
(
∇γgµν = 0

)
[5]. Despite all the success of this

theory, there are major common questions, both theo-
retical and experimental, for which GR has not found
an explanation, such as the initial singularity, dark mat-
ter, dark energy (DE), etc. In this paper, we will discuss
the DE problem. The DE is an exotic form of energy with
negative pressure or negative equation of state (EoS) pa-
rameter, because ω = p

ρ , where ρ represents the energy
density of the Universe and p represents pressure, and
it behaves like a repulsive gravity. The presence of DE
in the Universe is supported by two of most important
modern cosmological observational facts. The first is the
composition of our Universe, this shows that dark en-
ergy contributes 68.3% of the total energy density (the
rest is dark matter and baryonic matter) [6]. The second
is strong evidence coming mainly from type-Ia super-
novae (SN-Ia) observations that the Universe is today
undergoing an accelerated expansion phase [7, 8]. In
order to obtain the accelerating expansion, the second
derivative of the scale factor must be positive (i.e.

..
a > 0)

or in an equivalent way the deceleration parameter is
negative ( i.e. q = − a

..
a

.
a2 < 0). The simplest candidate for

DE is the cosmological constant Λ, which is regarded to
be equivalent with the vacuum energy. But soon other
problems appeared, such as the coincidence and magni-
tude [9]. Therefore, many researchers have searched for
other interpretations about the origin of DE. In fact, two
distinct approaches have been proposed for treating the
DE problem. The first approach deals with GR where an
additional energy component is introduced to explain
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the cosmic acceleration phenomenon. In this context,
several alternative DE models have been suggested, but
so far no suitable candidate has been found. The other
approach is to modify the EH action. In this context, the
main idea was to replace the Ricci scalar by a function
of R, which is known as f (R) gravity [10, 11]. Other
modified theories have been proposed like f (T) gravity
(where T is the torsion), f (G) gravity (where G is the
Gauss-Bonnet), see these works in this regard [12–14].

Recently, Jiménez et al. [15] proposed a new modi-
fied theory of gravity called f (Q) gravity where Q is
the non-metricity scalar which attracted the attention
of many researchers. This theory is based on Weyl ge-
ometry, which is a generalization of Riemannian geom-
etry that is the mathematical basis of GR. In Weyl ge-
ometry, gravitational effects do not occur because of the
change in direction of a vector in parallel transport, but
because of the change in length of the vector itself [16].
Generally, we can categorize gravitational interactions
in the space-time variety into three types of geometri-
cal objects, specifically the curvature, torsion, and non-
metricity. In GR, gravitational interactions are caused by
the curvature of space-time. Accordingly, f (R) gravity
is a modification of GR based on curvature with zero tor-
sion and non-metricity. Likewise, f (T) gravity is a mod-
ification of torsion-based gravity (the teleparallel equiv-
alent of GR) with zero curvature and non-metricity. Fi-
nally, f (Q) gravity is a modification of the symmetric
teleparallel equivalent of GR with zero curvature and
torsion [17, 18]. In differential geometry and to be more
precise in Weyl-Cartan geometry, we need the symmet-
ric metric tensor gµν to define the length of a vector, and
an asymmetric connection Γ̃γ

µν in order to defines the
covariant derivatives and parallel transport. Thus, the
general affine connection can be decomposed into three
parts: the Christoffel symbol Γγ

µν, the contortion ten-
sor Cγ

µν, and the disformation tensor Lγ
µν, respectively,

which are written as [16]

Γ̃γ
µν = Γγ

µν + Cγ
µν + Lγ

µν, (2)

where the Levi-Civita connection of the metric gµν is
given by

Γγ
µν ≡

1
2

gγσ

(
∂gσν

∂xµ +
∂gσµ

∂xν
−

∂gµν

∂xσ

)
, (3)

the contorsion tensor Cγ
µν is

Cγ
µν ≡

1
2

Tγ
µν + T(µ

γ
ν), (4)

with Tγ
µν ≡ 2Γγ

[µν] in the above equation is the torsion
tensor. Lastly, the disformation tensor Lγ

µν is obtained
from the non-metricity tensor as

Lγ
µν ≡

1
2

gγσ
(

Qνµσ + Qµνσ −Qγµν

)
. (5)

In Eq. (5), the non-metricity tensor Qγµν is defined
as the (minus) covariant derivative of the metric ten-
sor with regard to the Weyl-Cartan connection Γ̃λ

µν, i.e.
Qγµν = ∇γgµν, and it can be gained

Qγµν = −
∂gµν

∂xγ
+ gνσΓ̃σ

µγ + gσµΓ̃σ
νγ. (6)

In the case of a flat and torsion-free connection, the
connection (2) can be parameterized as

Γ̃γ
µβ =

∂xγ

∂ξρ ∂µ∂βξρ. (7)

In Eq. (7), ξγ = ξγ (xµ) is an invertible relation. There-
fore, it is constantly potential to get a coordinate system
so that the connection Γ̃γ

µν disappears. This condition
is called coincident gauge and the covariant ∇γ deriva-
tive reduces to the partial derivative ∂γ [18]. Hence, in
the coincident gauge coordinate, we get

Qγµν = ∂γgµν. (8)

The symmetric teleparallel gravity is a geometric de-
scription of gravity equivalent to GR under coincident
gauge coordinates in which Γ̃γ

µν = 0 and Cγ
µν = 0,

and therefore from Eq. (2) we can conclude that Γγ
µν =

−Lγ
µν [16]. This theory has received great interest from

many authors because it gives good results for several
issues. The first cosmological solutions in f (Q) grav-
ity emerge in Ref. [19]. Next, Mandal et al. pre-
sented a complete test of energy conditions for f (Q)
gravity models and constraint families of f (Q) mod-
els compatible with the current accelerating expansion
of the Universe [20]. The cosmography in f (Q) grav-
ity is also discussed by Mandal et al. in another work
[21]. The growth index of matter perturbations has been
examined in the context of f (Q) gravity in [22]. The
geodesic deviation equation in f (Q) gravity has been
explored and some fundamental results were gained in
[23]. Harko et al. discussed the coupling matter in
modified f (Q) gravity [24]. Dimakis et al. investigated
quantum cosmology for a f (Q) polynomial model [25].
Holographic dark energy models in f (Q) gravity are
discussed by Shekh [26]. To study the early evolution
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of the Universe, A. De et al. obtained the Bianchi-I-type
field equations in f (Q) gravity and some cosmological
parameters are discussed in this context [27] and, sev-
eral other issues in f (Q) gravity are discussed in Refs.
[28–31]. Motivated from the studies outlined above, in
this paper, we have investigated the perfect fluid so-
lutions for Bianchi type-I space-time in f (Q) gravity.
Also, the modified Friedmann equations are obtained by
applying the anisotropic nature of space-time. Finally,
we have discussed some of the physical parameters of
the model and have compared with recent Hubble mea-
surements.

The current article is organized as follows: In Sec.
II, we present the basic formalism of f (Q) gravity and
field equations of the Bianchi type-I space-time. We
establish the solutions of the anisotropic cosmological
model with the choice of a linear f (Q) function i.e.
f (Q) = αQ + β, and examined some physical param-
eters in Sec. III. In Sec. IV, we consider the stability
analysis of the anisotropic model by means of the
squared sound speed, and we test the validity of the
model using energy conditions. We give some physical
parameters in terms of redshift in Sec. V. Finally, we
discuss the best fit values of model parameters from
observation in Sec. VII and in sec. ?? we presents the
conclusion and discussion.

II. FIELD EQUATIONS IN f (Q) GRAVITY

In modified symmetric teleparallel gravity or f (Q)
gravity, the action is given by [19]

S =
∫ [1

2
f (Q) + Lm

]
d4x
√
−g, (9)

where f (Q) is an arbitrary function of the non-metricity
scalar Q. The non-metricity tensor and its traces are ob-
tained as

Qγµν = ∇γgµν , (10)

Qγ = Qγ
µ

µ , Q̃γ = Qµ
γµ . (11)

Moreover, the superpotential tensor (non-metricity
conjugate) is given by

4Pγ
µν = −Qγ

µν + 2Q(µ
γ

ν) −Qγgµν − Q̃γgµν − δ
γ

(γ
Q

ν)
,

(12)
Next, the trace of the non-metricity tensor can be ob-

tained as

Q = −QγµνPγµν . (13)

Furthermore, the matter energy-momentum tensor is
of the form

Tµν = − 2√−g
δ(
√−gLm)

δgµν . (14)

The field equations in symmetric teleparallel gravity
corresponding to action (9) are

2√−g
∇γ

(√
−g fQPγ

µν

)
+

1
2

f gµν + fQ

(
PµγiQν

γi − 2QγiµPγi
ν

)
= −Tµν, (15)

where the subscript marks the derivative with respect to
Q. In addition, we can also take the variation of (9) with
respect to the connection, which gives

∇µ∇γ

(√
−g fQPγ

µν

)
= 0. (16)

We consider the matter content of the Universe as a
perfect fluid which energy-momentum tensor is

Tµν =
(
ρ + p

)
uµuν + pgµν, (17)

where ρ and p are the energy density and pressure of the

matter content. The four-velocity vector uµ is presumed
to satisfy uµuµ = −1.

The Bianchi type-I space-time is a single of the sim-
plest form of anisotropic space-time, which represents a
homogeneous and spatially flat space-time. Hence, In
this paper, we consider Bianchi type-I space-time which
is the direct generalization of the flat FLRW space-time
and has the form

ds2 = −dt2 + A2(t)dx2 + B2(t)
(

dy2 + dz2
)

,

where metric potentials A (t) and B (t) depend only on
cosmic time (t) and flat FLRW space-time can be at-
tained if we set A (t) = B (t) = a (t). For perfect fluid
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as matter contents, the corresponding field equations for Bianchi type-I space-time are derived as [27]

f
2
+ fQ

4

.
A
A

.
B
B
+ 2

 .
B
B

2
 = ρ, (18)

f
2
− fQ

−2

.
A
A

.
B
B
− 2

..
B
B
− 2

 .
B
B

2
+ 2

.
B
B

.
Q fQQ = −p, (19)

f
2
− fQ

−3

.
A
A

.
B
B
−

..
A
A
−

..
B
B
−

 .
B
B

2
+

 .
A
A

+

.
B
B

 .
Q fQQ = −p, (20)

where the dot (·) denotes the derivative with respect to
cosmic time (t). The corresponding non-metricity scalar
is given by [27]

Q = −2

 .
B
B

2

− 4

.
A
A

.
B
B

.

The field equations above (18)-(20) can be represented
in the form of mean Hubble and directional Hubble pa-
rameters as

f
2
−Q fQ = ρ, (21)

f
2
+ 2

∂

∂t

[
Hy fQ

]
+ 6H fQ Hy = −p, (22)

f
2
+

∂

∂t

[
fQ

(
Hx + Hy

)]
+ 3H fQ

(
Hx + Hy

)
= −p,

(23)

where, we used ∂
∂t

( .
A
A

)
=

..
A
A −

( .
A
A

)2
and Q = −2H2

y −

4Hx Hy. Here, H =
.
a
a = 1

3

(
Hx + 2Hy

)
is the Hubble

parameter and Hx =
.
A
A , Hy = Hz =

.
B
B represent the

directional Hubble parameters along x, y and z axes, re-
spectively.

III. SOLUTIONS FOR BIANCHI TYPE-I UNIVERSE

In this section, we investigate solutions of the field
equations for Bianchi type-I space-time in f (Q) gravity.

Subtracting Eq. (21) from Eq. (22) we get,

d
dt

[
fQ

(
Hx − Hy

)]
+ fQ

(
Hx − Hy

) .
V
V

= 0, (24)

where V = a3 = AB2 is the spatial volume of the Uni-
verse. By integrating Eq. (24), we find

Hx − Hy =
c1

V fQ
, (25)

where c1 is an integration constant. Afterward, we do
some manipulations, the field equations can be solved
to get the metric potentials of the form

A (t) = c
2
3
2 V

1
3 exp

[
2c1

3

∫ dt
V fQ

]
, (26)

B (t) = c
−1
3

2 V
1
3 exp

[
−c1

3

∫ dt
V fQ

]
. (27)

The scalar expansion θ (t), shear scalar σ2 (t) and the
mean anisotropy parameter ∆ for Bianchi type-I space-
time are given by

θ (t) = uµ
;µ = 3H, (28)

σ2 (t) =
1
2

σabσab =
1
3

(
Hx − Hy

)2
, (29)
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∆ =
1
3

3

∑
i=1

(
Hi − H

H

)2
= 6

(
σ

θ

)2
, (30)

where Hi , i = 1, 2, 3 are directional Hubble parameters.
Observations of the velocity redshift relation for ex-

tragalactic sources indicate that the Hubble expansion
of the Universe may reach isotropy when σ

θ is constant
[32]. Also, it has been proposed that normal congru-
ence to the homogeneous expansion for spatially homo-
geneous metric produce σ

θ ≈ 0.3 [33]. Bunn et al. [34]
performed a statistical analysis on the 4-year CMB data
and set a definitive upper bound on the amount of shear(

σ
H
)

for the primordial anisotropy to be less than 10−3

in the Planck era. As the Bianchi models constitute the
anisotropic space-time, one can choose that the ratio be-
tween the shear scalar and the expansion scalar is con-
stant (γ) i.e. σ

θ = γ. In this context, the condition was
used in various occasions in the papers [35–37].

From Eqs. (25) and (30), we have

σ

θ
=

c1√
3

.
V fQ

= γ, (31)

which implies that

fQ =
c1√
3γ

.
V

. (32)

To solve the field equations explicitly, we assume a
volumetric expansion law which is expressed as

V (t) = e3mtt3n. (33)

where n ≥ 0 and m ≥ 0 are constants. This volumet-
ric law gives the scale factor as a (t) = emttn, which is
called the hybrid expansion law (HEL). It is known in
cosmology as a generalization of the power and expo-
nential law. If m = 0 this leads to the power law i.e.
a (t) = tn. As for n = 0, this leads to the exponential
law i.e. a (t) = emt. This choice of scale factor produces
a time-dependent deceleration parameter, see [38].

For the hybrid expansion law with spatial volume
given by Eq. (33), one can get explicit relations of A (t)
and B (t) in the following form

A (t) = c
2
3
2 tn

(
1+2
√

3γ
)

exp
[

m
(

1 + 2
√

3γ
)

t
]

, (34)

B (t) = c
−1
3

2 tn
(

1−
√

3γ
)

exp
[

m
(

1−
√

3γ
)

t
]

. (35)

At the initial time, the metric potentials vanish. Thus,
the model obtains an initial singularity. As t → ∞, the
metric potentials diverge to infinity. Consequently, there
will be a big rip in the future, because the A (t) and B (t)
tends to infinity at t→ ∞.

Using Eqs. (34) and (35), we obtain H, Hx and Hy as

H (t) = m +
n
t

, (36)

Hx (t) =
(

1 + 2
√

3γ
)

H (t) , (37)

Hy (t) =
(

1−
√

3γ
)

H (t) . (38)

The non-metricity scalar Q in terms of the Hubble pa-
rameter for the hybrid law model is found as follows

Q = −6
(

1− 3γ2
)

H2 (t) . (39)

It is observed that the non-metricity of the Universe
for our model is time-dependent, because the Hubble
parameter H (t) is a function of cosmic time. As t → ∞,
the non-metricity scalar tends to a constant value, i.e.
−6m2

(
1− 3γ2

)
.

The model of the cosmological constant or ΛCDM
model in GR is the most successful model and the most
widely used to date. Motivated by the work of Solanki
et al. [39], we assume the linear form of the f (Q) func-
tion as

f (Q) = αQ + β, (40)

where α and β are free model parameters.
Using the values of Q and Hy (t) in Eqs. (21)-(23), we

obtain the energy density and pressure in terms of the
Hubble parameter as follows
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ρ (t) = 3α
(

1− 3γ2
)

H2 (t) +
β

2
. (41)

p (t) = −3α

1 + 3γ2

(
1− 2√

3γ

)H2 (t)− 2α
(

1−
√

3γ
) .

H (t)− β

2
, (42)

where,
.

H (t) = − n
t2 .

From above Eqs. (41) and (42), it is clear that ρ (t) and
p (t)→ ∞ as t → 0. 1 shows the behavior of the energy
density of the Universe in terms of redshift for different
values of γ. We can see that the variations of energy
density versus redshift z remains positive throughout
the evolution of the Universe and is an increasing
function of z, or, equivalently, a decreasing function of
cosmic time t. It is initiated with a positive value and
approaches to zero as t → ∞ (i.e. z → −1). As for
pressure, its behavior is shown in Fig. 2, and is shown

to be an increasing function of z, which starts from
a large positive value and tends to a negative value
in the present and future era. In reality, the negative
pressure represents the accelerating expansion of the
present Universe. Thus, the Bianchi type-I space-time
is consistent with recent observational data of the
Universe. Along with in this analysis, we fix the said
values of the model constants parameter throughout
the analysis: m = 0.5, n = 0.6, α = 0.1, and β = 1.5.

Using Eqs. (41) and (42), the EoS parameter of Bianchi
type-I space-time is obtained as

ω (t) =
p (t)
ρ (t)

= −
6α

[
1 + 3γ2

(
1− 2√

3γ

)]
H2 (t) + 4α

(
1−
√

3γ
) .

H (t) + β

6α
(
1− 3γ2

)
H2 (t) + β

. (43)

ω = 0 dust
ω = 1

3 radiation

ω ∈
(
− 1

3 ,−1
)

quintessence

ω = −1 cosmological constant
ω < −1 phantom matter

TABLE I. Various values of the EoS parameter.

The EoS parameter is a very effective tool to study the
evolutionary history of the Universe, and we can sum-
marize in the Tab. I the different values taken by the EoS
parameter and its corresponding region. From Eq. (43),
we have observed that the EoS parameter of Bianchi
type-I space-time is time-dependent. The graphical be-
havior of the EoS parameter versus redshift z is shown
in Fig; 3. From this figure, we see that the model starts in
radiation dominated region, after which it passes from
the matter region and varies in the quintessence region,
and finally, it achieves ΛCDM model for the values of
γ = 0.5, 0.55, 0.556. In standard model (ΛCDM), the
Universe evolves from the primordial phase dominated
by photons, ω ∼ 1

3 , followed by the period of the dom-

inance of dust matter with ω = 0. Finally, the cosmo-
logical constant dominates the Universe ω → −1 for
large values of time. Thus, the Bianchi type-I model cor-
responds to the ΛCDM model. Also, the current val-
ues of the EoS parameter for the three values of γ are
remarkably consistent with the most recent Planck mea-
surements (see Tab. II) [40].

γ ω (z = 0)

0.5 −0.7827
0.55 −0.9065

0.556 −0.9255

TABLE II. The current values of the EoS parameter for the three
values of γ.

IV. ANALYSIS OF STABILITY AND ENERGY
CONDITIONS

Analysis of stability through the squared sound
speed:
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FIG. 1. The energy density in terms of redshift for different
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FIG. 3. The EoS parameter in terms of redshift for different values of
γ.

The squared sound speed
(

v2
s

)
is exploited for exam-

ining the stability of the DE models which is given as
v2

s = dp(t)
dρ(t) . If v2

s > 0, we obtain a stable model and if

v2
s < 0, we obtain unstable model. For Bianchi type-I

model, we observed the squared speed of sound, v2
s of

the form

v2
s = −

6α

[
1 + 3γ2

(
1− 2√

3γ

)]
.

H (t) H (t) + 2α
(

1−
√

3γ
) ..

H (t)

6α
(
1− 3γ2

)
H (t)

.
H (t)

(44)

where
..
H (t) = 2n

t3 .

Fig. 4 shows the behavior of the squared speed of
sound v2

s in terms of redshift for different values of γ,
and it can be noted from this figure that the Bianchi

type-I model is unstable throughout the cosmic evolu-
tion.

Energy conditions:
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in terms of redshift for dif-

ferent values of γ.

The energy conditions are useful linear relationships
composed of energy density and pressure generated
from the Raychaudhuri’s equation. They are important
tools for validating dark energy models and are defined
as follows [20]:

• Weak energy conditions (WEC): ρ ≥ 0,

• Null energy condition (NEC): ρ + p ≥ 0,

• Dominant energy conditions (DEC): ρ− p ≥ 0,

• Strong energy conditions (SEC): ρ + 3p ≥ 0.

In Fig. 5 we can see the evolution of energy conditions
NEC, DEC, and SEC in terms of redshift. In order to
explicate the late-time cosmic acceleration with ω ' −1,
the SEC is necessary to violate i.e. ρ (1 + 3ω) ≤ 0. It
is clearly shown by Fig. 5 that this condition is being
violated in the present era and in the future.

V. COSMOLOGICAL PARAMETERS IN TERMS OF
REDSHIFT

In the previous sections we have plotted the behavior
of all physical parameters in terms of redshift z, in fact
we used here the relationship between the scale factor
and the redshift, which is expressed by

a (t) =
a (t0)

1 + z
, (45)

where a (t0) is the present scale factor.
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FIG. 5. The energy conditions in terms of redshift for γ = 0.5.

For our model, we find the time-redshift relation in
the form [38]

t (z) =

nW

m
(

1
1+z

) 1
n

n


m

, (46)

where W denotes the Lambert function (also known as
“product logarithm”).

The deceleration parameter is the quantity that de-
scribes the evolution of the expansion of the Universe.
This parameter is positive

(
q > 0

)
when the Universe

decelerates over time, and is negative
(
q < 0

)
in an ac-

celerated expanding Universe. This parameter is related

to the Hubble parameter as follows q = −1−
.

H
H2 . Thus,

the Hubble parameter and deceleration parameter of
our model in terms of redshift are respectively obtained
as

H (z) =
m

W

m
(

1
1+z

) 1
n

n


+ m. (47)

q (z) = −1 +
1

n

1 + W

m
(

1
1+z

) 1
n

n




2 . (48)

From (48), we observe that
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q < 0 i f t >
√

m−m
n

, (49)

q > 0 i f t <
√

m−m
n

.

Recent observations of SN-Ia revealed that the Uni-
verse in the current era is accelerating and that the de-
celeration parameter value is in the range −1 ≤ q < 0.
Figs. 6 and 7 show the variation of Hubble parameter
H (z) and deceleration parameter q (z) versus redshift
z. It can be seen from Fig. ?? that q (z) decreases from
positive to negative zone and finally tends to −1. Thus,
our model shows a transition from decelerated phase to
an accelerated phase. Also, the value of the deceleration
parameter is consistent with the observational data.

VI. BEST FIT VALUES OF MODEL PARAMETERS
FROM OBSERVATION (H(z) DATASETS)

As the cosmological principle on the large scale, uni-
verse is homogeneous and isotropic be the backbone of
modern cosmology which had been tested several times
by the researchers and supported by many cosmologi-
cal observations. In this study, the expansion scenario
of the universe be directly investigated by the Hubble
parameter as a function of redshift. To measure the
value of the Hubble parameter at some definite red-
shift generally two well-known methods such as the ex-
traction of H(z) from line-of-sight BAO data and the dif-
ferential age method are used [41]. In order to find the
best fit value of the model parameters of our obtained
model, we have used the technique of 57 points of Hub-
ble parameter values H(z) with σ2

µ errors of differen-
tial age method (31 points) and BAO and other meth-
ods (26 points). Through the scale factor proposed in
this model given in Eq. (33), we find its expression at
the present time as a0 = emt0 tn

0 where t0 represent the
present age of the Universe. Thus, after a simple calcu-
lation, we find the scale factor for our model as follows:

a(t) = a0ek
(

t
t0
−1
) (

t
t0

)n
where k = mt0. The Hubble

parameter in terms of redshift of our model with recent
modification reads as

H(z) =
H0k

k + n

[
W−1

(
k
n

e
k−ln(1+z)

n

)
+ 1

]
(50)

where H0 = k+n
t0

. We see from the above equation that
the model parameters consist of three parameters k, n
and H0 which will be constrained hereinafter by the last
observations of Hubble datasets. The corresponding χ-
square function to obtain the best adjustment value for

z H(z) σH z H (z) σH

0.070 69 19.6 0.4783 80 99
0.90 69 12 0.480 97 62
0.120 68.6 26.2 0.593 104 13
0.170 83 8 0.6797 92 8

0.1791 75 4 0.7812 105 12
0.1993 75 5 0.8754 125 17
0.200 72.9 29.6 0.880 90 40
0.270 77 14 0.900 117 23
0.280 88.8 36.6 1.037 154 20

0.3519 83 14 1.300 168 17
0.3802 83 13.5 1.363 160 33.6
0.400 95 17 1.430 177 18

0.4004 77 10.2 1.530 140 14
0.4247 87.1 11.2 1.750 202 40
0.4497 92.8 12.9 1.965 186.5 50.4
0.470 89 34

z H (z) σH z H (z) σH

0.24 79.69 2.99 0.52 94.35 2.64
0.30 81.7 6.22 0.56 93.34 2.3
0.31 78.18 4.74 0.57 87.6 7.8
0.34 83.8 3.66 0.57 96.8 3.4
0.35 82.7 9.1 0.59 98.48 3.18
0.36 79.94 3.38 0.60 87.9 6.1
0.38 81.5 1.9 0.61 97.3 2.1
0.40 82.04 2.03 0.64 98.82 2.98
0.43 86.45 3.97 0.73 97.3 7.0
0.44 82.6 7.8 2.30 224 8.6
0.44 84.81 1.83 2.33 224 8
0.48 87.90 2.03 2.34 222 8.5
0.51 90.4 1.9 2.36 226 9.3

TABLE III. 57 points of H(z) data: 31 (DA) and 26 (BAO+other)
[41].

the parameters k, n and H0 is determined by

χ2
OHD(k, n, H0) =

57

∑
µ=1

[
Hth(k, n, H0, zµ)− Hobs(zµ)

]2

σ2
µ

(51)
where Hth(k, n, H0, zµ) and Hobs(zµ) are theoretical and
observed values of Hubble parameter respectively, and
σ2

µ represents the standard error in the observed Hub-
ble parameter measurements. σ2

µ errors of differential
age method (31 points) and BAO and other methods (26
points) are represented in Tab. III.

Now, using 57 Hubble parameter measurements we
will try to find the best fit values for the parameters
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model k, n and H0 where the best fit curve for the Hub-
ble parameter versus redshift z is represented in Fig. ??.
Thus, The best fit values are gained as k = 0.2239 ±
0.3201, n = 0.6886 ± 0.2868 and H0 = 62.73 ± 8.43
km.s−1.Mpc−1.

VII. CONCLUSION AND DISCUSSION

In this analysis, we have investigated an anisotropic
Bianchi type-I space-time with perfect fluid in the frame-
work of f (Q) gravity, where Q is the non-metricity
scalar. Motivated by the work of Solanki et al. [31]
we choose the f (Q) function on the linear form, i.e.
f (Q) = αQ + β, where α and β are free model param-
eters. We have used the ratio between the shear scalar
and the expansion scalar is constant i.e. σ

θ = γ. Here,
we have examined the behavior of our model for three

different values of γ = 0.5, 0.55, 0.556.
It is observed that the metric potentials A (t) and B (t)

vanish at the initial time (at t = 0), and diverge at t→ ∞.
Thus, the model obtains the initial singularity and pre-
dicts a big rip in the future. From Fig. 1, we see that
the energy density of the Bianchi type-I Universe is a
positive and decreasing function of cosmic time. Also,
ρ → const as t → ∞, which leads the fact that the vol-
ume of the space increases because of the density of mat-
ter decreases as the Universe expands in our model. The
pressure in Fig. 2 takes negative values in the present
and future eras, and this produces the current phase of
the acceleration of the Universe, which is governed by
dark energy. In Fig. 3, we can see that the Universe is
dominated by radiation

(
ω ∼ 1

3

)
in the first epoch, and

later it passes from the matter-dominated dust epoch

(ω = 0) to the Quintessence region ω ∈
(
− 1

3 ,−1
)

and
finally reaches the cosmological constant Λ phase which
causes the acceleration cosmic i.e. ω = −1. We conclude
that the model behaves like the standard cosmological
model. To compare the current values of the EoS pa-
rameter obtained with this model with the recent Hub-
ble measurements, we mention that Aghanim et al. [39]
found constraint for the EoS parameter as follows:

• ω = −1.56+0.60
−0.84 (Planck + TT + lowE),

• ω = −1.58+0.52
−0.41 (Planck + TT, EE + lowE),

• ω = −1.57+0.50
−0.40 (Planck + TT, TE, EE + lowE +

lensing),

• ω = −1.04+0.10
−0.10 (Planck + TT, TE, EE + lowE +

lensing + BAO).
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In Tab. II we provided the observed values in the de-
rived model which are in excellent agreement with the
above values.

In Section 4 we have examined the behavior of energy
conditions in terms of the redshift of a Bianchi type-I
space-time and found that WEC and NEC are all satis-
fied but SEC is violated. This leads directly to the cre-
ation of an accelerating phase of the Universe because
ρ (1 + 3ω) < 0 results in that ω ' −1, which corre-
sponds to the observations. Further, for constraining
the model parameter we have used Hubble data data
sets (57 points of Hubble parameter values H(z) see Tab.
III). Hence, from the Hubble datasets, we have the best
fit ranges for the model parameters are k = 0.2239 ±
0.3201, n = 0.6886± 0.2868 and H0 = 62.73± 8.43.
Also, we have discussed the analysis of stability using
the squared sound speed

(
v2

s

)
and found that the model

is unstable throughout cosmic evolution i.e. v2
s < 0. In

Figs.s 6 and 7, we draw the evolution of the decelera-
tion parameter and the Hubble parameter in terms of
the redshift, and it appears that the model passes from

the deceleration phase to the current accelerated phase,
and in the latter, it yields to −1. This result is consistent
with the observational data of recent Planck measure-
ments.
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