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Abstract Dense nuclear matter is expected to be anis-
otropic due to effects such as solidification, superfluidity,
strong magnetic fields, hyperons, pion-condensation. There-
fore an anisotropic neutron star core seems more realistic
than an ideally isotropic one. We model anisotropic neutron
stars working in the Krori–Barua (KB) ansatz without pre-
assuming an equation of state. We show that the physics of
general KB solutions is encapsulated in the compactness.
Imposing physical and stability requirements yields a max-
imum allowed compactness 2G M/Rc2 < 0.71 for a KB-
spacetime. We further input observational data from numer-
ous pulsars and calculate the boundary density. We focus
especially on data from the LIGO/Virgo collaboration as
well as recent independent measurements of mass and radius
of miilisecond pulsars with white dwarf companions by the
Neutron Star Interior Composition Explorer (NICER). For
these data the KB-spacetime gives the same boundary den-
sity which surprisingly equals the nuclear saturation den-
sity within the data precision. Since this value designates
the boundary of a neutron core, the KB-spacetime applies
naturally to neutron stars. For this boundary condition we
calculate a maximum mass of 4.1 solar masses.

1 Introduction

Very early in the study of pulsars it was realized that
anisotropies inside the star can grow due to superfluidity
[1,2] (see [3] for a modern review) and solidification [4–
7]. An anisotropic core may also originate [8] from hyperons
[9], quarks [10] as well as pion and kaon condensates [11,12].
In addition, nuclear matter in a magnetic field becomes
anisotropic, with different pressures in directions along and
transverse to the field [13,14]. The electromagnetic energy–
momentum tensor is naturally anisotropic. Accounting for
all these theoretical predictions it seems more realistic that
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pulsars contain an anisotropic core, rather than an ideally
isotropic one.

The theory of anisotropic compact objects in General
Relativity has been developing for half a century. Bow-
ers and Liang [15] calculated the anisotropic generaliza-
tion of Tolman–Oppenheimer–Volkov equation and gener-
alized Bondi’s analysis [16]. An isotropic solution involves
the emergence of a tangential pressure pt = pθ = pφ

in the angular directions that is different than the radial
pressure pr �= pt . If the anisotropy parameter is positive
� ≡ pt − pr > 0 an additional repulsive anisotropic force
enhances stability, enabling more compact stable configura-
tions to appear in the anisotropic than in the isotropic case
[17]. It is in particular proposed [18,19] that anisotropic
compact stars may be arbitrarily compact up to compactness
C = 2G M/Rc2 equal to one. Heintzmann and Hillebrandt
[20] estimated the maximum mass of anisotropic compact
stars Mmax ∼ 4M⊙ by use of semi-realistic equations of
state. The Jeans stability criterion has been extended in the
anisotropic case by Herrera and Santos [21].

A lot of anisotropic solutions and anisotropic compact star
models have been proposed and studied [22–32]. Ivanov has
calculated general bounds on the redshift for any anisotropic
compact star in Ref. [33]. We will work here in a metric ansatz
introduced by Krori and Barua [34]. Anisotropic compact star
models in the Krori–Barua spacetime in General Relativity
have been studied in Refs. [35–40] and in modified theories
of gravity in Refs. [41–51].

We will perform a general analysis of physical viabil-
ity and stability of anisotropic solutions in KB-spacetime
without preassuming an equation of state. We introduce
dimensionless variables in which the KB-solutions can be
parametrized with respect to the compactness. We impose
general conditions for stability and physical consistency,
which imply constraints on the maximum allowed compact-
ness. We further use pulsars’ observational data of total mass
and radius to estimate the boundary density of the core within
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our model and calculate the predicted mass–radius curve
under a certain boundary condition.

To this end we have to use measurements of the mass and
radius of pulsars, which are independent and do not rely on
pre-assumptions regarding the equation of state in the core.
We shall use six pulsars, members of low-mass X-ray bina-
ries, which present thermonuclear bursts and therefore is pos-
sible to get correlated M–R constraints [52,53]. More impor-
tantly we shall use data from additional two rotation-powered
millisecond pulsars, PSR J0437-4715 and PSR J0030+0451,
for which there exist reliable measurements of their radius
independent from measurements of their mass and also not
depending on assumptions regarding the equation of state
[53–56]. These two pulsars are special in that such measure-
ments are as yet very rare. Both pulsars data are found to be
consistent with the same boundary density which amazingly
turns out to equal the nuclear saturation density that typically
designates the boundary of the neutron core.

In addition, we shall use data regarding the recent
gravitational-wave signals GW170817 [57,58] and GW-
190814 [59]. We will finally supplement our analysis with
data regarding quiescent low-mass X-ray binaries [60,61]
and pulsars presenting thermonuclear bursts [62].

In the next section we review KB-spacetime and intro-
duce our dimensionless variables. In Sect. 3 we perform the
physics and stability analysis. In Sect. 4 we discuss observa-
tional data and in the final section we discuss our conclusions.

2 Krori–Barua spacetime

A general spherically symmetric metric in General Relativity
may be written in the spherical coordinates (t, r, θ, φ) as

ds2 = −eα(r) c2dt2 + eβ(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

,

(1)

where α(r) and β(r) are unknown functions of r . The spher-
ically symmetric, anisotropic energy momentum tensor may
be written as

T μ
ν =

( pt

c2
+ ρ

)

uμuν + ptδa
μ + (pr − pt )ξ

μξν, (2)

where ρ, pr , pt denote the mass density, the radial pres-
sure and the tangential pressure, respectively. We denote
uμ the four-velocity and ξμ is the unit space-like vec-
tor in the radial direction. The energy–momentum ten-
sor can always be brought in the diagonal form T

μ
ν =

diag(ρc2,−pr ,−pt ,−pt ).
Einstein equations give

8πG

c2
ρ =

e−β

r2

(

eβ + β ′r − 1
)

, (3)

8πG

c4
pr =

e−β

r2

(

1 − eβ + rα′) , (4)

8πG

c4
pt = e−β

(

α′′

2
−

α′β ′

4
+

α′2

4
+

α′ − β ′

2r

)

, (5)

where prime denotes derivative w.r.t the radial coordinate r .
Following Krori and Barua [34] we assume the following

ansatz for the metric potentials

α(x) = a0x2 + a1, β(x) = a2x2, (6)

where however we use the dimensionless variable

x ≡
r

R
∈ [0, 1] (7)

and the star is assumed to be extended up to the radius r = R.
The parameters a0, a1, a2 in our ansatz are dimensionless
and will be determined from the matching conditions on the
boundary. The KB ansatz (6) ensures that the gravitational
potentials and their derivatives are finite at the center.

We further introduce the characteristic density

ρ⋆ ≡
c2

8πG R2
(8)

which we use to scale the density and pressures, getting the
dimensionless variables

ρ̃ =
ρ

ρ⋆

, p̃r =
pr

ρ⋆c2
, p̃t =

pt

ρ⋆c2
, �̃ =

�

ρ⋆c2
. (9)

Here �(r) = pt − pr is the anisotropic parameter of the star.
Note that for a typical radius of neutron stars R = 10km we
get ρ⋆ = 5.4×1014 g/cm3 that is twice the nuclear saturation
density ρsat = 2.7 × 1014 g/cm3. Using the dimensionless
variables (9) and substituting (6) in the system (3)–(5) we get

ρ̃ =
e−a2x2

x2

(

ea2x2 − 1 + 2a2x2
)

, (10)

p̃r =
e−a2x2

x2

(

1 − ea2x2 + 2a0x2
)

, (11)

p̃t = e−a2x2
(

2a0 − a2 + a0(a0 − a2)x2
)

, (12)

�̃ =
e−a2x2

x2

(

ea2x2 − 1 − a2x2 + a0(a0 − a2)x4
)

. (13)

The mass contained within a radius r of the sphere is
defined as

M(r) =
∫

0

r

4πρξ2dξ. (14)

Substituting the density we get

M(x) = M C−1x
(

1 − e−a2x2
)

. (15)
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where M denotes the total mass of the star and C is the
compactness

C =
2G M

Rc2
. (16)

We match the interior solution with the Schwartzschild
solution at the boundary of the star r = R. In addition we
assume that the radial pressure vanishes at the boundary. Our
boundary conditions are therefore

α(r = R) = ln

(

1 −
2G M

Rc2

)

,

β(r = R) = ln

(

1 −
2G M

Rc2

)−1

, pr (r = R) = 0. (17)

By use of Eqs. (6), (11), the boundary conditions (17) give
the dimensionless parameters a0, a1 and a2 with respect to
the compactness of the star as follows

a0(C) =
1

2

C

1 − C
, a1(C) = −(a0(C) + a2(C)),

a2(C) = ln (1 − C)−1 . (18)

Note also that since C < 1 we get

a0 > 0, a1 < 0, a2 > 0. (19)

Thus, we parametrized any neutron star model in KB-
spacetime with respect to the compactness of the star. The
quantities ρ̃(x; C), p̃r (x; C), p̃t (x; C) are the same for stars
with the same compactness C . In Fig. 1 is evident that the
equation of state pr = pr (ρ), pt = pt (ρ) is well fitted by
a linear fit. In Fig. 1c, d we plot the slope of the fit with
respect to compactness. It is evident that causality is violated
for sufficiently high compactness. We discuss in detail the
constraints imposed by requiring that the solution is stable
and physical in the next section.

3 Constraints imposed by physical and stability

conditions

We impose the following reasonable physical requirements
to a KB-spacetime (outlined in general very nicely in [63]).

(i) The gravitational potentials exp(α(r)), exp(β(r))

and the physical quantities ρ(r), pr (r), pt (r) should
be well defined in the center as well as regular and
singularity free throughout the interior of the star.
These properties are directly implied by Eqs. (6),
(10), (11), and (12).

(ii) The anisotropy parameter should be positive through-
out the whole interior of the star [64,65]. Indeed, we
have that

ea2x2 − 1 − a2x2 − a0(a2 − a0)x4

=
∞
∑

n=3

1

n!
(a2x2)n +

1

2
(a2 − a0)

2x4 +
1

2
a2

0 x4 > 0.

(20)

From Eq. (13) follows directly that � > 0 for all
a0, a2, r . It should also be vanishing in the center.
Indeed, we have

p̃r (0) = p̃t (0) = 2a0 − a2. (21)

(iii) The energy density, the radial and tangential pres-
sures should be positive at the center. The energy
density at the center is

ρ̃(0) = 3a2 > 0. (22)

It is positive also throughout the stellar interior.
Indeed

ea2r2 − 1 + 2a2r2 = 1 + a2r2 +
∞
∑

n=2

1

n!
(a2r2)n

−1 + 2a2r2

=
∞
∑

n=2

1

n!
(a2r2)n + 3a2r2 > 0 (23)

which, considering Eq. (10), implies ρ > 0. Regard-
ing the radial and tangential pressure from Eq. (18)
we get

a0 = a2 f (C), where f (C)

≡
1

2

C

(1 − C) ln(1 − C)−1
. (24)

Since C < 1 we have f (C) > 1/2. This is straight-
forward because f (0) = 1/2 and d f/dC > 0. Thus

a0 >
a2

2
. (25)

from which it follows pr (0) > 0, pt (0) > 0 where
the central pressures are given in (21). The radial
pressure is positive also throughout the whole inte-
rior of the star since

1 − ea2x2 + 2a0x2 =
(1 − C)x2 − (1 − C)

(1 − C)x2+1
> 0,

(26)

because C < 1 and x ≤ 1. Considering Eq. (11), it
follows that pr > 0. Since the anisotropy parameter
is positive, the tangential pressure is also positive
throughout the interior of a star.
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Fig. 1 In the upper panel is depicted the equation of state p = p(ρ) for the radial and tangential pressures. In the lower panel we draw the slope
of the linear fit of p = p(ρ) for the radial and tangential pressures with respect to the compactness of the star

(iv) The density and the pressures should be decreasing
functions of r . We have

ρ̃ ′ = 2
e−a2x2

x3

(

−ea2x2 + 1 + a2x2 − 2a2
2 x4

)

, (27)

p̃r
′ = 2

e−a2x2

x3

(

ea2x2 − 1 − a2x2 − 2a0a2x4
)

, (28)

p̃t
′ = 2xe−a2x2 (

a2
0 + a2

2 − 3a0a2 − a0a2(a0 − a2)x2) ,

(29)

where prime denotes derivative with respect to x .
We have

− ea2x2 + 1 + a2x2 − 2a2
2 x4 = −

∞
∑

n=2

1

n!
(a2x2)n − 2a2

2 x4 < 0,

(30)

which, considering Eq. (27), implies ρ′ < 0.
Regarding now p′

r , we have by use of (18) that on
the boundary the derivative is negative

ea2 − 1 − a2 − 2a0a2 =
C − ln(1 − C)−1

1 − C
< 0

⇒ p′
r (x = 1) < 0. (31)

Since we have proven that pr > 0, it is possible
for pr to be increasing somewhere in the interval
x ∈ (0, 1) if and only if there exists x0 such that

p̃′′
r (x0) = 0 ⇒ 1 − ea2x2

0 + 2a0x2
0 = −2a0x2

0 . (32)
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However we have that

p̃r > 0 ⇒ 1 − ea2x2 + 2a0x2 > 0, ∀x ∈ (0, 1)

(33)

and thus Eq. (32) is impossible. Since pr is positive
in the interval x ∈ [0, 1), vanishes in the bound-
ary x = 1, and has no inflection point in the inter-
val (0, 1) it follows that it is a decreasing function
in [0, 1]. The case of tangential pressure is more
involved because there do exist inflection points of
pt . This occurs at high compactness and at low dis-
tance from the center, as depicted in Fig. 2a. We
calculate numerically that for pt being a monoton-
ically decreasing function the compactness should
satisfy that

C < 0.94. (34)

(v) We require that causality holds, namely that the
speed of sound v2 = dp

dρ
is lower than the speed

of light

0 ≤ vr ≤ c, 0 ≤ vt ≤ c. (35)

The radial and transverse velocity of sound are

vr
2 =

dpr

dρ
= c2 1 + a2x2 + 2a0a2x4 − ea2 x2

ea2x2 − 1 − a2x2 + 2a2
2x4

, (36)

vt
2 =

dpt

dρ
= c2 x4(3a0a2 − a0a2

2x2 + a0
2a2x2 − a2

2 − a0
2)

ea2 x2 − 1 − a2x2 + 2a2
2x4

.

(37)

We find numerically that the inequalities (35) impose
constraints on maximum allowed compactness. The
radial velocity imposes that C < 0.86 and the tan-
gential velocity that C < 0.87, therefore causality
is satisfied if

C < 0.86. (38)

These results are also in accordance with the linear
fit of Fig. 1. The fact that causality is not satisfied for
sufficiently high compactness is depicted in Fig. 3.

(vi) We require stability against cracking which is satis-
fied if [66,67]

0 < vr
2 − vt

2 < c2. (39)

This condition imposes an additional constraint on
maximum allowed compactness

C < 0.78. (40)

The fact that cracking stability is violated for suffi-
ciently high compactness is depicted in Fig. 4.

(vii) We require that the strong energy condition (SEC)
[63,68] holds

ρc2 − pr − 2pt > 0. (41)

It places an additional constraint to the maximum
allowed compactness, which we calculate numeri-
cally to be

C ≤ 0.715. (42)

In Fig. 5 is depicted that indeed for sufficiently high
compactness, SEC is violated.

(viii) Our model satisfies the stability condition for the
adiabatic index [69,70]

Ŵ ≡
ρ + pr

pr

dpr

dρ
>

4

3
. (43)

The adiabatic index may be written as

Ŵ(x; C)

=
2x2(a0 + a2)(1 + a2x2 + 2a0a2x4 − ea2x2

)

(1 − ea2x2 + 2a0x2)(ea2x2 − 1 − a2x2 + 2a2
2x4)

.

(44)

From inequalities (26), (30) it follows that Ŵ > 0.
We verify numerically that Ŵ is a monotonically
increasing function for all C ∈ [0, 1] and x ∈ [0, 1],
with a0 = a0(C), a2 = a2(C) as in Eq. (18). This
is depicted in Fig. 6. We also have that

Ŵ(x = 0) =
4

5

( a0
a2

+ 1)(2 a0
a2

+ 1
2 )

2 a0
a2

− 1
>

7

5

(

1 +
2
√

6

7

)

,

(45)

where a0
a2

> 1
2 as in (25). The inequality (45) follows

from the monotonicity of the function

h(z) =
4

5

(z + 1)(2z + 1
2 )

2z − 1
(46)

in the interval z > 1
2 . The function h(z) presents

a minimum at zmin = 1
2 +

√
6

4 . It is h(zmin) =
7
5

(

1 + 2
√

6
7

)

. It follows that Ŵ > 4/3 for all x and

C in the interval [0, 1].

To conclude, we find that conditions (i), (ii), (iii), (viii)
are all satisfied by KB-spacetime for any compactness value.
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Fig. 2 a The derivative of pt with respect to compactness 2G M/Rc2 of a star and distance r/R from its center. It is evident that for high compactness
values, pt is not monotonically decreasing. b The tangential pressure pt with respect to the distance from the center of the star for two compactness
values

Fig. 3 For sufficiently high compactness, causality is violated

Conditions (iv), (v), (vi), (vii) impose constraints to compact-
ness given by (34), (38), (40), (42), respectively. Combining
these constraints we get that it should hold

C ≤ 0.715, (47)

for a stable, physical solution within a KB-spacetime.

4 Observational data

Independent mass measurements of neutron stars are rela-
tively easy. Their fast pulsation is ideal for timing measure-

ments and since the pulsar is often a member of a binary
system, this precise timing can be used to measure its orbital
motion with astonishing precision [53]. On the other hand the
independent radius measurement, depending on the thermal
emission of the stellar surface, is much more difficult.

Rotation-powered millisecond pulsars allow for the mea-
surement of radius based on thermal emmision in soft X-
rays [53,54]. The mass of the pulsar can be measured inde-
pendently by radio-timing measurements. There exist two
such pulsars, PSR J0437-4715 (we shall call J0437) and PSR
J0030+0451 (we shall call J0030), for which there exist very
recent independent and reliable measurements from NICER
[55,56].
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Fig. 4 For sufficiently high compactness, stability against cracking as in condition (39) is violated
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Fig. 5 For sufficiently high compactness, SEC as in condition (41) is violated

Fig. 6 The adiabatic index Ŵ with respect to compactness and distance
from the center

In addition to J0437 and J0030 we consider the gravit-
ational-wave signals GW170817[57,58] and GW190814
[59]. GW170817 was the first detection of coalescence of two
neutron stars [57]. The subsequent analysis of LIGO/Virgo
collaboration [58] constrained significantly the radii and

masses of the two neutron stars. GW190814 was the first
detection of an object within the mass-gap [59] with mass
M = 2.6M⊙. If this component is a neutron star and not a
black hole the equation of state is further constrained.

We supplement our analysis with data regarding two qui-
escent low-mass X-ray binaries [60,61] and six pulsars,
members of low-mass X-ray binaries, that present thermonu-
clear X-ray bursts. For such pulsars it is possible to get cor-
related M–R constraints [52,53] independent from assump-
tions regarding the equation of state.

In Table 1 we see that the boundary density of all pul-
sars within a KB-spacetime lies in the range (2.5–6.5)
×1014 g/cm3. These values are consistent with a neutron
core. All pulsars are consistent with a linear equation of
state as already shown in Fig. 1. The corresponding slope
is depicted in the last column of Table 1.

In Fig. 7 is plotted the mass–radius curve with a certain
boundary condition. It is evident that the most recent and reli-
able independent data from NICER and LIGO are consistent
with the same boundary density which amazingly turns out to
equal the nuclear saturation density ρsat = 2.7×1014 g/cm3.
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Table 1 The boundary density
ρR and slope of the pr (ρ) linear
fit within our model for several
observational data of mass M

and radius R of pulsars. The
“LIGO constraints” label refers
to the radius constraints on a
canonical mass neutron star
obtained from GW170817,
GW190814 in [59]

Pulsar M(M⊙) R(km) References ρR (1014 g/cm3)
dpr

dρ
(c2)

Millisecond pulsars with white dwarf companions

J0437-4715 1.44+0.07
−0.07 13.6+0.9

−0.8 [54,71] 2.4 0.27

J0030+0451 1.44+0.15
−0.16 13.02+1.24

−1.06 [56] 2.7 0.28

1.34+0.15
−0.16 12.71+1.14

−1.19 [72] 2.7 0.27

Gravitational-wave signals

LIGO constraints 1.4 12.9+0.8
−0.7 [59] 2.7 0.27

GW170817-1 1.45+0.09
−0.09 11.9+1.4

−1.4 [58] 3.5 0.29

GW170817-2 1.27+0.09
−0.09 11.9+1.4

−1.4 [58] 3.1 0.27

Quiescent low-mass X-ray binaries

X7 1.4 14.5+1.8
−1.6 [60] 2.0 0.26

M13 1.38+0.08
−0.23 9.95+0.24

−0.27 [61] 5.6 0.31

Pulsars presenting thermonuclear bursts

4U 1724-207 1.81+0.25
−0.37 12.2+1.4

−1.4 [62] 3.9 0.32

4U 1820-30 1.46+0.21
−0.21 11.1+1.8

−1.8 [62] 4.3 0.30

SAX J1748.9-2021 1.81+0.25
−0.37 11.7+1.7

−1.7 [62] 4.4 0.33

EXO 1745-268 1.65+0.21
−0.31 10.5+1.6

−1.6 [62] 5.5 0.33

4U 1608-52 1.57+0.30
−0.29 9.8+1.8

−1.8 [62] 6.4 0.34

KS 1731-260 1.61+0.35
−0.37 10.0+2.2

−2.2 [62] 6.2 0.34

4 6 8 10 12 14 16 18

0

1

2

3

4

5

Fig. 7 The mass–radius curve for three different boundary conditions
ρR along with (R, M) points of all pulsars of Table 1

This value perfectly describes a neutron core since typically
it designates core’s boundary. Furthermore, anisotropies can
grow down to this density. In Ref. [5] is argued that solidifica-
tion occurs at the nuclear density ρsolid = 2.8 × 1014 g/cm3,
and similar results are obtained in [73] which predict ρsolid =
3.7×1014 g/cm3. Even if solidification occurs at higher den-
sities as predicted by other studies [6,7], anisotropic super-
fluidity of nuclear matter appears at low densities such as
ρ = 1.5 × 1014 g/cm3 [2].

The mass–radius curve with the boundary condition ρR =
ρsat, which fits well NICER and LIGO data, is depicted in
Fig. 8). We have calculated in previous section the maximum

allowed compactness for a physical anisotropic core within a
KB-spacetime to be Cmax = 0.71. This limits the maximum
mass to Mmax = 4.1M⊙ at R = 16.8 km.

Our results does not exclude the possibility that the sec-
ondary component of GW190814 with mass M = 2.6M⊙
is an anisotropic neutron star. The condition C < 0.71
implies that it should have a radius R > 10.8 km. The cor-
responding boundary density should be lower than ρR <

6.6 × 1014 g/cm3.

5 Conclusions

We parametrized any neutron star model in KB-spacetime
with respect to the compactness of the star. This description
is given by Eqs. (10), (11), (12), and (18). Requiring that
any KB-spacetime model of neutron stars is physical and the
solution stable constraints the compactness to a maximum
value

2G M

Rc2
< 0.71. (48)

This is significantly more strict than the bound, 0.95, obtained
for general anisotropic stars in Ref. [33] and is in contrast to
suggestions that anisotropic compact stars can be arbitrarily
compact [18,19].

The equations of state in a general KB-spacetime, depicted
in Fig. 1, are well fitted by a linear fit. A KB-spacetime
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Fig. 8 The curve corresponds to equilibrium solutions with the same
boundary condition ρR = 2.7 × 1014 g/cm3. The solid branch corre-
sponds to stable, physical solutions and the dotted branch represents
unstable or nonphysical solutions. The maximum mass is 4.1M⊙ at

radius 16.8 km with corresponding compactness 0.71. On the right panel
we focus on the area including the most recent data from NICER and
LIGO. The “LIGO” label refers to the radius constraints on a canonical
mass neutron star obtained from GW170817, GW190814 in [59]

fits observational data obtained from numerous pulsars of
Table 1 with boundary density in the range ρR ∼ (2.5–6.5)
×1014 g/cm3 consistent with an anisotropic neutron core.
In Fig. 7 we have calculated the mass–radius curves. An
additional direct indication that KB-spacetime is realistic for
anisotropic neutron stars is that the most recent data from
NICER and LIGO are well fitted with boundary density
which equals precisely the nuclear saturation density!

The mass–radius curve with boundary density that equals
to the nuclear saturation density presents a mass maximum

M < 4.1M⊙ (49)

when the bound (48) to compactness is also taken into
account. This limits the maximum allowed mass for any con-
sistent compact star model in KB-spacetime. This result is
also in accordance with the estimated maximum mass in gen-
eral spacetimes by Heintzmann and Hillebrandt [20], who use
semi-realistic equations of state.

Our analysis predicts further that anisotropic neutron stars
may populate partially the mass gap (2.5–5) M⊙ regarding
compact objects. An observation of a neutron star with M >

2.5M⊙ will be an indication it is composed of an anisotropic
core. Especially, the possibility that the secondary compo-
nent of the gravitational-wave signal GW190814 is a neutron
star with an anisotropic core requires further investigation.
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