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Abstract We consider nonlinear Neumann problems driven by the p(z)-Laplacian
differential operator and with a p-superlinear reaction which does not satisfy the usual in
such cases Ambrosetti–Rabinowitz condition. Combining variational methods with Morse
theory, we show that the problem has at least three nontrivial smooth solutions, two of which
have constant sign (one positive, the other negative). In the process, we also prove two results
of independent interest. The first is about the L∞-boundedness of the weak solutions. The
second relates W 1,p(z) and C1 local minimizers.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study the

following nonlinear anisotropic Neumann problem:

{−�p(z)u(z) = f (z, u(z)) in �,
∂u

∂n
= 0 on ∂�.

(1.1)
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324 L. Gasiński, N. S. Papageorgiou

Here �p(z) denotes the p(z)-Laplacian differential operator, defined by

�p(z)u = div
(
‖∇u‖p(z)−2∇u

)
,

with p ∈ C1(�), pmin = min
z∈�

p(z) > 1 and f is a Carathéodory reaction, i.e., for all

ζ ∈ R, the function z �−→ f (z, ζ ) is measurable and for almost all z ∈ �, the function
ζ �−→ f (z, ζ ) is continuous.

The aim of this work is to prove a “three solutions theorem” for problem (1.1), when the
potential function

F(z, ζ ) =
ζ∫

0

f (z, s) ds

exhibits a p-superlinear growth at ±∞. This makes the energy (Euler) functional of the
problem (1.1) indefinite, in particular noncoercive. Recently there have been three solutions
theorems for Dirichlet problems driven by the p-Laplacian (p = constant). We mention
the works of Bartsch–Liu [6], Carl–Perera [8], Dancer–Perera [12], Filippakis–Kristaly–
Papageorgiou [20], Gasiński–Papageorgiou [23], Liu–Liu [30], Papageorgiou–Papageorgiou
[34,35] and Zhang–Chen–Li [38]. From the aforementioned works, the p-superlinear case
was investigated by Bartsch–Liu [6] and Filippakis–Kristaly–Papageorgiou [20]. To express
the p-superlinearity of the potential F(z, ·), they used the well known Ambrosetti–Rabino-
witz condition. The other works deal either with coercive or asymptotically p-linear prob-
lems. The study of the corresponding Neumann problem (for both the p-Laplacian and the
p(z)-Laplacian) is in some sense lagging behind. We mention the works of Aizicovici–Papa-
georgiou–Staicu [4], Fan–Deng [16], Mihăilescu [32]. In Aizicovici–Papageorgiou–Staicu
[4] the authors deal with an equation driven by the p-Laplacian and having a potential F(z, ·)
which is p-superlinear and satisfies the Ambrosetti–Rabinowitz condition. Fan–Deng [16]
consider parametric problems driven by the p(z)-Laplacian. More precisely, their differential
operator (left hand side), has the form

−�p(z)u(z)+ λ |u(z)|p(z)−2 u(z),

with λ > 0 being the parameter. Their reaction (right hand side) f (z, ζ ) is Carathéodory,
increasing in ζ ∈ R and satisfying the Ambrosetti–Rabinowitz condition (see Theorem 1.3
of Fan–Deng [16]). They prove certain bifurcation-type results with respect to the parameter
λ > 0. Finally Mihăilescu [32] considers a p(z)-Laplacian equation with inf

�
p > N (low

dimension case) and assumes a reaction with oscillatory behaviour. His approach is based
on an abstract three critical points theorem for oscillatory C1-functionals.

Partial differential equations involving variable exponents and nonstandard growth condi-
tions, arise in many physical phenomena and have been used in elasticity, in fluid mechanics,
in image restoration and in the calculus of variations. We mention the works of Acerbi–
Mingione [1,2], Cheng–Levine–Rao [10], Marcellini [31], Ruzička [36], Zhikov [39]. A
comprehensive survey of equations with nonstandard growth can be found in the recent
paper of Harjulehto–Hästö-Lê–Nuortio [26], which has also a detailed bibliography.

Our approach is variational based on critical point theory and Morse theory (critical
groups). In the process, we also produce two results of independent interest, which we pres-
ent in Sect. 3. The first one concerns the boundedness of the solutions of problem (1.1), which
is a prerequisite to have smoothness up to the boundary. The second result relates Sobolev and
Hölder local minimizers of a large class of C1-functionals. Our main result (three solutions
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Anisotropic nonlinear Neumann problems 325

theorem) is presented in Sect. 4 and produces three nontrivial smooth solutions for problem
(1.1), two of which have constant sign.

In the next chapter, for the convenience of the reader, we briefly present the main mathe-
matical tools that will be used in the analysis of the problem (1.1). We also present the main
properties of the variable exponent Sobolev and Lebesgue spaces.

2 Mathematical background and hypotheses

Let

L∞
1 (�) =

{
p ∈ L∞(�) : ess inf

�
p � 1

}
.

For p ∈ L∞
1 (�), we set

pmin = ess inf
�

p and pmax = ess sup
�

p.

By M(�) we denote the vector space of all functions u : � −→ R which are measurable.
As usual, we identify two measurable functions which differ on a Lebesgue-null set. For
p ∈ L∞

1 (�), we define

L p(z)(�) =
⎧⎨
⎩u ∈ M(�) :

∫
�

|u|p(z) dz < +∞
⎫⎬
⎭.

We furnish L p(z)(�) with the following norm (known as the Luxemburg norm):

‖u‖p(z) = inf

⎧⎨
⎩λ > 0 :

∫
�

( |u|
λ

)p(z)

dz � 1

⎫⎬
⎭.

Also we introduce the variable exponent Sobolev space

W 1,p(z)(�) =
{

u ∈ L p(z)(�) : ‖∇u‖ ∈ L p(z)(�)
}

and we equip it with the norm

‖u‖1,p(z) = ‖u‖p(z) + ‖∇u‖p(z).

An equivalent norm on W 1,p(z)(�) is given by

‖u‖ = inf

⎧⎨
⎩λ > 0 :

∫
�

((‖∇u‖
λ

)p(z)

+
( |u|
λ

)p(z)
)

dz � 1

⎫⎬
⎭.

In what follows, we set

p∗(z) =
⎧⎨
⎩

N p(z)

N − p(z)
if p(z) < N ,

+∞ if p(z) � N .

The properties of the variable exponent Sobolev and Lebesgue spaces can be found in the
papers of Kováčik–Rákosnik [27] and Fan–Zhao [18].
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326 L. Gasiński, N. S. Papageorgiou

Proposition 2.1 If p ∈ L∞
1 (�) and 1 < pmin � pmax < +∞, then

(a) the spaces L p(z)(�) and W 1,p(z)(�) are separable reflexive Banach spaces and
L p(z)(�) is also uniformly convex;

(b) if p, q ∈ C(�), pmax < N and 1 � q(z) � p∗(z) (respectively 1 � q(z) < p∗(z))
for all z ∈ �, then W 1,p(z)(�) is embedded continuously (respectively compactly) in
Lq(z)(�);

(c) L p(z)(�)∗ = L p′(z)(�), where 1
p(z) + 1

p′(z) = 1 and for all u ∈ L p(z)(�) and v ∈
L p′(z)(�), we have∫

�

|uv| dz �
(

1

pmin
+ 1

(p′)min

)
‖u‖p(z)‖v‖p′(z).

We introduce the following modular functions:

�(u) =
∫
�

|u|p(z) dz ∀u ∈ L p(z)(�),

I (u) =
∫
�

(
‖∇u‖p(z) + |u|p(z)

)
dz ∀u ∈ W 1,p(z)(�).

Proposition 2.2 (a) For u �= 0, we have

‖u‖p(z) = λ ⇐⇒ �
(u

λ

)
= 1.

(b) We have

‖u‖p(z) < 1 (respectively = 1,> 1) ⇐⇒ �(u) < 1 (respectively = 1,> 1).

(c) If ‖u‖p(z) > 1, then

‖u‖pmin
p(z) � �(u) � ‖u‖pmax

p(z) .

(d) If ‖u‖p(z) < 1 , then

‖u‖pmax
p(z) � �(u) � ‖u‖pmin

p(z) .

(e) We have

lim
n→+∞ ‖un‖p(z) = 0 ⇐⇒ lim

n→+∞ �(un) = 0.

(f) We have

lim
n→+∞ ‖un‖p(z) = +∞ ⇐⇒ lim

n→+∞ �(un) = +∞.

Similarly, we also have

Proposition 2.3 (a) For u �= 0, we have

‖u‖ = λ ⇐⇒ I
(u

λ

)
= 1.

(b) We have

‖u‖ < 1 (respectively = 1,> 1) ⇐⇒ I (u) < 1 (respectively = 1,> 1).
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Anisotropic nonlinear Neumann problems 327

(c) If ‖u‖ > 1, then

‖u‖pmin � I (u) � ‖u‖pmax .

(d) If ‖u‖ < 1 , then

‖u‖pmax � I (u) � ‖u‖pmin .

(e) We have

lim
n→+∞ ‖un‖ = 0 ⇐⇒ lim

n→+∞ I (un) = 0.

(f) We have

lim
n→+∞ ‖un‖ = +∞ ⇐⇒ lim

n→+∞ I (un) = +∞.

In the study of problem (1.1), we will use the following natural spaces:

C1
n (�) =

{
u ∈ C1(�) : ∂u

∂n
= 0 on �

}
and

W 1,p(z)
n (�) = C1

n (�)
‖·‖
,

with ‖ · ‖ being the norm of W 1,p(z)(�). Note that C1
n (�) is an ordered Banach space with

positive cone, defined by

C+ = {
u ∈ C1

n (�) : u(z) � 0 for all z ∈ �}.
This cone has a nonempty interior in C1(�), given by

int C+ = {
u ∈ C+ : u(z) > 0 for all z ∈ �}.

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X, X∗). Let ϕ ∈ C1(X). We say that ϕ satisfies the Cerami condition,
if the following holds:

“Every sequence {xn}n�1 ⊆ X , such that {ϕ(xn)}n�1 ⊆ R is bounded and

(1 + ‖xn‖) ϕ′(xn) −→ 0 in X∗ as n → +∞,

admits a strongly convergent subsequence.”

The condition is more general than the usual in critical point theory “Palais–Smale condi-
tion”. However, it can be shown (see e.g., Gasiński–Papageorgiou [22]) that the deformation
theorem and consequently the minimax theory of the critical values, remains valid if the
Palais–Smale condition is replaced by the weaker Cerami condition.

Theorem 2.4 If ϕ ∈ C1(X) and satisfies the Cerami condition, x0,x1 ∈ X, r > 0,
‖x0 − x1‖ > r ,

max {ϕ(x0), ϕ(x1)} < inf {ϕ(x) : ‖x − x0‖ = r} = ηr ,

c = inf
γ∈� max

0�t�1
ϕ (γ (t)),

where

� = {γ ∈ C ([0, 1]; X) : γ (0) = x0, γ (1) = x1},
then c � ηr and c is a critical value of ϕ.
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328 L. Gasiński, N. S. Papageorgiou

If ϕ ∈ C1(X) and c ∈ R, then we defined the following sets:

ϕc = {z ∈ X : ϕ(x) � c},
·
ϕ

c
= {z ∈ X : ϕ(x) < c},

K ϕ = {
x ∈ X : ϕ′(x) = 0

}
.

Also, if Y2 ⊆ Y1 ⊆ X , then for every integer k � 0, by Hk(Y1, Y2)we denote the k-th relative
singular homology group with integer coefficients. The critical groups of ϕ at an isolated
critical point x0 ∈ X with c = ϕ(x0) are defined by

Ck(ϕ,x0) = Hk
(
ϕc ∩ U, ϕc ∩ U \ {x0}

) ∀k � 0,

where U is a neighbourhood of x0, such that K ϕ ∩ ϕc ∩ U = {x0} (see Chang [9]). The
excision property of singular homology implies that the above definition of critical groups
is independent of the particular choice of the neighbourhood U .

Suppose that ϕ ∈ C1(X) satisfies the Cerami condition and

−∞ < inf ϕ(K ϕ).

For some c < inf ϕ(K ϕ), the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕ
c) ∀k � 0

(see Bartsch–Li [5]). The deformation theorem (see e.g., Gasiński–Papageorgiou [22, p. 626])
implies that the above definition is independent of the particular choice of the level c <
inf ϕ(K ϕ). In fact, if η < inf ϕ(K ϕ), then

Ck(ϕ,∞) = Hk(X,
·
ϕ
η

) ∀k � 0.

Indeed, if θ < η < inf ϕ(K ϕ), then ϕθ is a strong deformation retract of
·
ϕ
η

(see e.g.,
Granas–Dugundji [24, p. 407]) and so

Hk(X, ϕ
θ ) = Hk(X,

·
ϕ
η

) ∀k � 0.

Assuming that K ϕ is finite and defining

P(t,x) =
∑
k�0

rank Ck(ϕ,x)t
k ∀x ∈ K ϕ

P(t,∞) =
∑
k�0

rank Ck(ϕ,∞)tk,

we have the Morse relation:∑
x∈K ϕ

P(t,x) = P(t,∞)+ (1 + t)Q(t), (2.1)

where Q(t) is formal series in t ∈ R with integer coefficients (see Chang [9]).

In the sequel we will use the pair
(

W 1,p(z)
n (�),W 1,p(z)

n (�)∗
)

and by 〈·, ·〉 we will denote

the duality brackets for this pair. Let A : W 1,p(z)
n (�) −→ W 1,p(z)

n (�)∗ be the nonlinear map,
defined by

〈A(u), y〉 =
∫
�

‖∇u‖p(z)−2(∇u,∇y) dz ∀u, y ∈ W 1,p(z)
n (�).
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Anisotropic nonlinear Neumann problems 329

The following result concerning A is well known (see e.g., Fan [13] or Gasiński–Papageor-
giou [22]).

Proposition 2.5 The map A : W 1,p(z)
n (�) −→ W 1,p(z)

n (�)∗ defined above is continuous,
strictly monotone (hence maximal monotone) and of type (S)+, i.e., if un −→ u weakly in
W 1,p(z)

n (�) and

lim sup
n→+∞

〈A(un), un − u〉 � 0,

then

un −→ u in W 1,p(z)
n (�).

For every r ∈ R, we set r± = max{±r, 0}. The notation ‖ · ‖ will denote the norm of
the Sobolev space W 1,p(z)

n (�) and of R
N . It will always be clear from the context which

norm we use. By | · |N we denote the Lebesgue measure on R
N and for x, y ∈ R, we define

x ∧ y = min{x, y}.
The hypotheses on the data of (1.1) are the following:

H0: p ∈ C1(�) and 1 < pmin = min
�

p � pmax = max
�

p < N .

H1: f : �× R −→ R is a Carathéodory function, such that f (z, 0) = 0 for almost all z ∈ �
and

(i) | f (x, ζ )| � a(z)+c|ζ |r(z)−1 for almost all z ∈ �, all ζ ∈ R, with a ∈ L∞(�)+, c > 0
and r ∈ C(�), such that

pmax = max
�

p < rmax = max
�

r < p̂∗ = N pmin

N − pmin
;

(ii) if

F(z, ζ ) =
ζ∫

0

f (z, s) ds,

then

lim|ζ |→+∞
F(z, ζ )

|ζ |pmax
= +∞

uniformly for almost all z ∈ � and there exist τ ∈ C(�) with τ(z) ∈(
(rmax − pmin)

N
pmin

, p̂∗
)

for all z ∈ � and β0 > 0, such that

β0 � lim inf|ζ |→+∞
f (z, ζ )ζ − pmaxF(z, ζ )

|ζ |τ(z) (2.2)

uniformly for almost all z ∈ �;
(iii) there exist c0 > 0 and δ0 > 0, such that

f (z, ζ )ζ � −c0|ζ |p(z) for a.a. z ∈ �, all ζ ∈ R

and

F(z, ζ ) � 0 for a.a. z ∈ �, all |ζ | � δ0.
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330 L. Gasiński, N. S. Papageorgiou

Remark 2.6 Hypothesis H1(i i) implies that the potential function F(z, ·) is p-superlinear
near ±∞. However, we do not use the usual in such cases Ambrosetti–Rabinowitz condition.
Recall that the Ambrosetti–Rabinowitz condition says that there existμ > pmax and M > 0,
such that

0 < μF(z, ζ ) � f (z, ζ )ζ for a.a. z ∈ �, all |ζ | � M. (2.3)

Integrating (2.3), we obtain the weaker condition

ĉ0|ζ |μ � F(z, ζ ) for a.a. z ∈ �, all |ζ | � M, (2.4)

for some ĉ0 > 0. Evidently (2.4) dictates for F(z, ·) at leastμ-growth near ±∞. In particular
it implies the much weaker condition

lim|ζ |→+∞
F(z, ζ )

|ζ |pmax
= +∞ (2.5)

uniformly for almost all z ∈ �.
In this work we employ (2.4) and (2.2) (see hypothesis H1(i i)). Together they are weaker

than the Ambrosetti–Rabinowitz condition (2.3). We mention that Fan–Deng [16] use (2.3)
together with the restrictive hypothesis that f (z, ·) is increasing. Similar conditions can be
found in Costa–Magalhães [11] and Fei [19].

Example 2.7 The following function satisfies hypotheses H1 (for the sake of simplicity we
drop the z-dependence):

f (ζ ) = |ζ |p−2ζ

(
ln |ζ | + 1

p

)
,

where 1 < p < +∞. In this case

F(ζ ) = 1

p
|ζ |p ln |ζ |,

which does not satisfy Ambrosetti–Rabinowitz condition.

Finally we mention that the results that follow remain valid, if we use a more general
differential operator of the form

−diva (z,∇u(z)) ∀u ∈ W 1,p(z)
n (�),

where

a(z, ζ ) = h (z, ‖ζ‖) ζ ∀(z, ζ ) ∈ �× R
N ,

with h(z, t) > 0 for all z ∈ �, all t > 0 and

(i) a ∈ C0,α
(
�× R

N ; R
N
) ∩ C1

(
�× (RN \{0}); R

N
)
, 0 < α � 1;

(ii) there exists ĉ1 > 0, such that∥∥∇ξ a(z, ξ)
∥∥ � ĉ1‖ξ‖p(z)−2

for all (z, ξ) ∈ �× (RN \{0});
(iii) there exists ĉ0 > 0, such that(∇ξ a(z, ξ)y, y

)
RN � ĉ0‖ξ‖p(z)−2‖y‖2

for all (z, ξ) ∈ �× (RN \{0}) and all y ∈ R
N ;
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Anisotropic nonlinear Neumann problems 331

(iv) if the potential G(z, ξ) is determined by ∇ξ G(z, ξ) = a(z, ξ) with (z, ξ) ∈ �× R
N

and G(z, 0) = 0 for all z ∈ �, then

pmaxG(z, ξ)− (a(z, ξ), ξ)RN � η(z)

for almost all z ∈ �, all ξ ∈ R
N with η ∈ L1(�) (see Zhang [37]).

Clearly the p(z)-Laplacian is a particular case of such an operator. However, for simplicity
in the exposition, we have decided to present everything in terms of the p(z)-Laplacian.

3 Two auxiliary results

Let g : �× R −→ R be the Carathéodory function, such that

|g(z, ζ )| � â(z)+ ĉ|ζ |r(z)−1 for a.a. z ∈ �, all ζ ∈ R, (3.1)

with r ∈ C(�) being such that (p∗ − r)− > 0 and with â ∈ L∞(�), ĉ > 0. Also, with-
out any loss of generality, we may assume that (r − p)− > 0. We consider the following
nonlinear Neumann problem{−�p(z)u(z) = g (z, u(z)) in �,

∂u

∂n
= 0 on ∂�.

(3.2)

Any regularity result up to the boundary for the weak solutions of (3.2) (see Lieberman [29]
(p = constant) and Fan [14] (p being variable)), requires that the weak solution belongs
also in L∞(�). In the Dirichlet case, this can be deduced from Theorem 7.1 of Ladyz-
henskaya–Uraltseva [28] (problems with standard growth conditions) and Theorem 4.1 of
Fan–Zhao [17] (problems with nonstandard growth conditions). However, in the Neumann
case, the aforementioned theorems cannot be used since they require that u|∂� is bounded
(u being the weak solution). So, we need to show that a weak solution u of (3.2) belongs in
L∞(�). We do this using a suitable variation of the Moser iteration technique.

Proposition 3.1 If p ∈ C1(�) satisfies hypothesis H0, g : �× R −→ R is a Carathéodory
function satisfying the subcritical growth condition (3.1) and u ∈ W 1,p(z)

n (�) is a nontrivial
weak solution of (3.2), then u ∈ L∞(�)and‖u‖∞ < M0 = M0

(‖̂a‖∞, ĉ, N , pmax, ‖u‖ p̂∗
)
.

Proof Since u = u+ − u− and u± ∈ W 1,p(z)
n (�), we may assume without any loss of

generality that u � 0.
Let

p0 = p̂∗ = N pmin

N − pmin
� p∗(z) = N p(z)

N − p(z)

(recall that pmax < N ; see hypothesis H0) and recursively, define

pn+1 = p̂∗ + p̂∗

pmax
(pn − rmax) ∀n � 0.

Evidently the sequence {pn}n�0 ⊆ R+ is increasing. We set

θn = pn − rmax > 0 ∀n � 0.

We have

A(u) = Ng(u),
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332 L. Gasiński, N. S. Papageorgiou

where

Ng(y)(·) = g (·, y(·)) ∀y ∈ W 1,p(z)
n (�). (3.3)

For every integer k � 1, we set

uk = min{u, k} ∈ W 1,p(z)
n (�) ∩ L∞(�).

On (3.3) we act with uθn+1
k ∈ W 1,p(z)

n (�) and we obtain〈
A(u), uθn+1

k

〉
=
∫
�

g(z, u)uθn+1
k dz. (3.4)

From the definition of the map A, we have〈
A(u), uθn+1

k

〉
=
∫
�

‖∇u‖p(z)−2
(
∇u, ∇uθn+1

k

)
RN

dz

= (θn + 1)
∫
�

uθn
k ‖∇u‖p(z)−2 (∇u, ∇uk)RN dz

= (θn + 1)
∫
�

uθn
k ‖∇uk‖p(z) dz. (3.5)

Also, we have

∇u
θn+p(z)

p(z)
k = ∇u

θn
p(z)+1

k

=
(
θn

p(z)
+ 1

)
u

θn
p(z)

k ∇uk + u
θn

p(z)+1

k

(
− θn

p(z)2

)
(ln uk)∇ p(z),

so ∥∥∥∥∇u
θn+p(z)

p(z)
k

∥∥∥∥
p(z)

�
(
θn

p(z)
+ 1

)pmax

uθn
k ‖∇uk‖p(z) + c2u(θn+p(z))

k |ln uk |p(z) (3.6)

for some c2 = c2(θn) > 0 (see hypothesis H0). Note that

lim
ζ→0+ ζ

(θn+p(z)) |ln ζ |p(z) = 0.

Also, recall that for every ε > 0, we have

lim
ζ→+∞

ln ζ

ζ ε
= 0.

Therefore, for any ε ∈ (0, rmax − pmax), we can find c3 = c3(ε) > 0, such that

c2u(θn+p(z))
k |ln uk |p(z) � c3

(
1 + uθn+p(z)+ε

k

)
.

If we use this estimate in (3.6), we obtain∥∥∥∥∇u
θn+p(z)

p(z)
k

∥∥∥∥
p(z)

� (θn + 1)pmaxuθn
k ‖∇uk‖p(z) + c3

(
1 + uθn+p(z)+ε

k

)
� (θn + 1)pmaxuθn

k ‖∇uk‖p(z) + c4
(
1 + u pn

k

)
,
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for some c4 > 0 (since θn + p(z)+ ε < pn(z) for all z ∈ �), so, using also (3.4) and (3.5),
we have ∫

�

∥∥∥∥∇u
θn+p(z)

p(z)
k

∥∥∥∥
p(z)

dz

� c5
(
1 + ‖uk‖pn

pn

)+ (θn + 1)pmax

∫
�

uθn
k ‖∇uk‖p(z) dz

� c5
(
1 + ‖uk‖pn

pn

)+ (θn + 1)pmax−1
∫
�

g(z, u)uθn+1
k dz, (3.7)

for some c5 > 0. From the growth condition on g(z, ·) (see (3.1)), we have∫
�

g(z, u)uθn+1
k dz �

∫
�

(̂
a(z)uθn+1

k + ĉuθn+r(z)
k

)
dz

� c6

(
‖uk‖θn+1

θn+1 + ‖uk‖θn+rmax
θn+rmax

)
� c7

(
1 + ‖uk‖pn

pn

)
, (3.8)

for some c6, c7 > 0 (since θn + 1 < θn + rmax = pn). Using (3.8) in (3.7), we obtain

∫
�

∥∥∥∥∇u
θn+p(z)

p(z)
k

∥∥∥∥
p(z)

dz +
∫
�

∣∣∣∣u θn+p(z)
p(z)

k

∣∣∣∣
p(z)

dz � c8
(
1 + ‖uk‖pn

pn

)
,

for some c8 = c8(θn) > 0, so∥∥∥∥u
θn+p(z)

p(z)
k

∥∥∥∥
pmax

∧
∥∥∥∥u

θn+p(z)
p(z)

k

∥∥∥∥
pmin

� c8
(
1 + ‖uk‖pn

pn

)
(3.9)

(see Proposition 2.3(c) and (d)). Because θn pmax � θn p(z) for all z ∈ �, we have

θn + p(z)

p(z)
�
θn + pmax

pmax
.

Also, by definition pn+1 = p̂∗ + p̂∗
pmax

θn , hence

θn + pmax

pmax
= pn+1

p̂∗ .

Therefore,

uk(z)
θn+p(z)

p(z) � χ{uk�1}u
θn+pmax

pmax
k = χ{uk�1}u

pn+1
p̂∗

k for a.a. z ∈ � (3.10)

(recall that uk � 0). Note that u
pn+1

p̂∗
k ∈ L p̂∗

(�) and from the Sobolev embedding theorem for

variable exponent (see Proposition 2.1), we have that the embedding W 1,p(z)
n (�) ⊆ L p̂∗

(�)

is continuous. Since u
θn+p(z)

p(z)
k ∈ W 1,p(z)

n (�), we have

c9

∥∥∥∥u
θn+p(z)

p(z)
k

∥∥∥∥
pmax

p̂∗
�
∥∥∥∥u

θn+p(z)
p(z)

k

∥∥∥∥
pmax

,
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334 L. Gasiński, N. S. Papageorgiou

for some c9 > 0, so

‖uk‖
pn+1

p̂∗ pmax

pn+1 ∧ ‖uk‖
pn+1

p̂∗ pmin

pn+1 � c10
(
1 + ‖uk‖pn

pn

)
, (3.11)

for some c10 = c10(θn) > 0. Letting k → +∞ and using the monotone convergence
theorem, we obtain

‖u‖
pn+1

p̂∗ pmax

pn+1 ∧ ‖u‖
pn+1

p̂∗ pmin

pn+1 � c10
(
1 + ‖u‖pn

pn

)
. (3.12)

Since p0 = p̂∗ and the embedding W 1,p(z)
n (�) ⊆ L p̂∗

(�) is continuous (see Proposition
2.1), from (3.12), it follows that

u ∈ L pn (�) ∀n � 0. (3.13)

Note that pn −→ +∞ as n → +∞. To see this, suppose that the increasing sequence
{pn}n�0 ⊆ [ p̂∗,+∞) is bounded. Then we have pn −→ p̂ � p̂∗ as n → +∞. By definition,
we have

pn+1 = p̂∗ + p̂∗

pmax
(pn − rmax) ∀n � 0,

with p0 = p̂∗, so

p̂ = p̂∗ + p̂∗

pmax
( p̂ − rmax),

thus

p̂

(
p̂∗

pmax
− 1

)
= p̂∗

(
rmax

pmax
− 1

)
,

and so

p̂
(

p̂∗ − pmax

) = p̂∗ (rmax − pmax).

Since pmax � rmax < p̂∗ � p̂, we have

p̂∗ ( p̂∗ − pmax

)
� p̂∗ (rmax − pmax),

so

p̂∗ � rmax,

a contradiction.
But recall that for any measurable function u : � −→ R, the set

Su = {
p � 1 : ‖u‖p < +∞}

is an interval. Hence Su = [1,+∞) (see (3.13)) and so

u ∈ Ls(�) ∀s � 1. (3.14)

Now let σ0 = p̂∗ and recursively define

σn+1 = (σn + pmax − 1)
p̂∗

pmax
∀n � 0.
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We have that the sequence {σn}n�0 ⊆ [ p̂∗,+∞) is increasing and σn −→ +∞ as n → +∞.
Moreover as σn � p̂∗

(σn)
′ = σn

σn−1
� ( p̂∗)′ = p̂∗

p̂∗ − 1
.

Using (3.14), we have∫
�

g(z, u)u
σn
p̂∗ dz �

∫
�

(
c11(1 + urmax−1)

)
u
σn
p̂∗ dz � c12‖u‖

σn
p̂∗
σn ,

for some c11, c12 > 0.
Repeating the estimation conducted in the first part of the proof with θn = σn

p̂∗ − 1 � 0
for all n � 0, we obtain

‖u‖σn+1
σn+1 � c13σ

p
n+1‖u‖σn

σn
, (3.15)

for some c13 > 0.
Since σn+1 > σn for all n � 0 and σn −→ +∞, from (3.15), it follows that

‖u‖σn+1 � M0 ∀n � 0,

for some M0 = M0
(‖̂a‖∞, ĉ, N , pmax, ‖u‖ p̂∗

)
, so

‖u‖∞ � M0

(since σn −→ +∞) ��
Another auxiliary result which we will need in the study of problem (1.1), is the next

one which relates local C1
n -minimizers and local W 1

n -minimizers. This result too is of inde-
pendent interest. For constant exponent Dirichlet Sobolev spaces, the result was obtained
by Brezis–Nirenberg [7] (for p = 2), García Azorero–Manfredi–Peral Alonso [21] (for
p > 1) and Guo–Zhang [25] (for p � 2). For variable exponent Dirichlet Sobolev spaces,
the result is due to Fan [15], while for the constant exponent Neumann Sobolev spaces (i.e.,
for W 1,p

n (�), 1 < p < +∞), the result can be found in Motreanu–Motreanu–Papageorgiou
[33]. Here, we extend their result to the case of the variable exponent Neumann Sobolev
spaces. Moreover, our proof is simpler than those of [21,25,33], since it avoids the compli-
cated estimates that characterize the other proofs.

So, again p(·) satisfies H0, pmax < p̂∗ = N pmin
N−pmin

and g : � × R −→ R is the
Carathéodory function of problem (3.2). We set

G(z, ζ ) =
ζ∫

0

g(z, s) ds

and consider the C1-functional ψ : W 1,p(z)
n (�) −→ R, defined by

ψ(u) =
∫
�

1

p(z)
‖∇u‖p(z) dz −

∫
�

G(z, u) dz ∀u ∈ W 1,p(z)
n (�).

We start with the simple observation concerning an equivalent norm on W 1,p(z)
n (�).

Lemma 3.2 |u| = ‖∇u‖p(z) + ‖u‖q(z) with q ∈ C(�), (p∗ − q)− > 0 is an equivalent

norm on W 1,p(z)
n (�).
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Proof By virtue of Proposition 2.1(b), we can find c14 > 0, such that

‖u‖q(z) � c14‖u‖ ∀u ∈ W 1,p(z)
n (�),

so

|u| � (1 + c14)‖u‖ ∀u ∈ W 1,p(z)
n (�). (3.16)

On the other hand, if un
|·|−→ u in W 1,p(z)

n (�), then since pmin � p(z), qmin � q(z) for all
z ∈ �, we have

∇un −→ ∇u in L pmin (�; R
N )

and

un −→ u in Lqmin (�)

(see Kováčik–Rákosnik [27, Theorem 2.8]). Recall that

u �−→ ‖∇u‖pmin + ‖u‖qmin

is an equivalent norm on W 1,pmin
n (�) (as q− < p̂∗, see e.g., Gasiński–Papageorgiou [22,

Theorem 2.5.24(b), p. 227]). So, we have

un −→ u in W 1,pmin
n (�)

and thus

un −→ u in Lθ (�)

for all θ < p̂∗ (Sobolev embedding theorem).
In particular since pmax < p̂∗, we have

un −→ u in L pmax(�)

and so

un −→ u in L p(z)(�).

We also have

∇un −→ ∇u in L p(z)(�; R
N ),

hence we infer that

un −→ u in W 1,p(z)
n (�).

This fact and (3.16) imply that ‖ · ‖ and | · | are equivalent norms in W 1,p(z)
n (�). ��

Proposition 3.3 If u0 ∈ W 1,p(z)
n (�) is a local C1

n (�)-minimizer of ψ , i.e., there exists
r0 > 0, such that

ψ(u0) � ψ(u0 + h) ∀h ∈ C1
n (�), ‖h‖C1

n (�)
� r0,

then u0 ∈ C1
n(�) and it is a local W 1,p(z)

n (�)-minimizer of ψ , i.e., there exists r1 > 0, such
that

ψ(u0) � ψ(u0 + h) ∀h ∈ W 1,p(z)
n (�), ‖h‖ � r1.
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Proof Let h ∈ C1
n (�) and let λ > 0 be small. Then by hypothesis, we have

ψ(u0) � ψ(u0 + λh),

so

0 � 〈ψ ′(u0), h〉 ∀h ∈ C1
n (�). (3.17)

But C1
n(�) is dense in W 1,p(z)

n (�). So, from (3.17), we have

0 � 〈ψ ′(u0), h〉 ∀h ∈ W 1,p(z)
n (�),

thus

ψ ′(u0) = 0

and

A(u0) = Ng(u0)

so {−�p(z)u(z) = g (z, u(z)) in �,
∂u

∂n
= 0 on ∂�.

(3.18)

From Proposition 3.1, we have that u0 ∈ L∞(�) and then invoking Theorem 1.3 of Fan [14],
we infer that

u0 ∈ C1,α
n (�) ⊆ C1

n(�)

for some α ∈ (0, 1).
Next we show that u0 is a local W 1,p(z)

n (�)-minimizer of ψ . We argue indirectly. So,
suppose that u0 is not a local W 1,p(z)

n (�)-minimizer of ψ . Exploiting the compactness of
the embedding W 1,p(z)

n (�) ⊆ Lr(z)(�) (see Proposition 2.1 and recall that by hypothesis
(p∗ − r)− > 0), we can easily check that ψ is sequentially weakly lower semicontinuous.
For ε > 0, let

B
r(z)
ε =

{
u ∈ W 1,p(z)

n (�) : ‖u‖r(z) � ε
}
.

We will show that we can find hε ∈ B
r(z)
ε , such that

ψ(u0 + hε) = inf
{
ψ(u0 + h) : h ∈ B

r(z)
ε

}
= mε < ψ(u0).

To this end, let {hn}n�1 ⊆ B
r(z)
ε be a minimizing sequence. It is clear then that the sequence

{∇hn}n�1 ⊆ L p(z)(�; R
N ) is bounded. Invoking Lemma 3.2, we have that the sequence

{un}n�1 ⊆ W 1,p(z)
n (�) is bounded. So, we assume that

hn −→ hε weakly in W 1,p(z)
n (�), (3.19)

hn −→ hε in Lr(z)(�) (3.20)

(see Proposition 2.1). From (3.19), it follows that

ψ(u0 + hε) � lim inf
n→+∞ ψ(u0 + hn) = mε and hε ∈ B

r(z)
ε ,
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so

ψ(u0 + hε) = mε.

Invoking the Lagrange multiplier rule (see e.g., Gasiński–Papageorgiou [22, p. 700]), we can
find λε � 0, such that

ψ ′(u0 + hε) = A(u0 + hε)− Ng(u0 + hε) = λε|hε|r(z)−2hε,

so ⎧⎨
⎩

−�p(z)(u0 + hε)(z) = g (z, (u0 + hε)(z))+ λε |hε(z)|r(z)−2 hε(z) in �,
∂hε
∂n

= 0 on ∂�.
(3.21)

From (3.18) and (3.21), it follows that

−div
(
‖∇(u0 + hε)(z)‖p(z)−2 ∇(u0 + hε)(z)− ‖∇u0(z)‖p(z)−2 ∇u0(z)

)
= g (z, (u0 + hε)(z))− g (z, u0(z))+ λε |hε(z)|r(z)−2 hε(z) in �. (3.22)

We consider two distinct cases.

Case 1: λε ∈ [−1, 0] for all ε ∈ (0, 1].
Let yε = u0 + hε and let us set

Vε(z, ξ) = ‖ξ‖p(z)−2ξ − ‖∇u0(z)‖p(z)−2 ∇u0(z).

Form (3.22), we have that

−div Vε (z,∇yε(z))

= g (z, yε(z))− g (z, u0(z))+ λε |(yε − u0)(z)|p(z)−2 (yε − u0)(z) in �.

By virtue of Theorem 1.3 of Fan [14], we can find β ∈ (0, 1) and M1 > 0, such that

yε ∈ C1,β
n (�) and ‖yε‖C1,β

n (�)
� M1 ∀ε ∈ (0, 1]. (3.23)

Case 2. λεn < −1 along a sequence εn ↘ 0.
In this case, we set

V̂εn (z, ξ) = 1

|λεn |
∣∣∣‖∇u0(z)+ ξ‖p(z)−2 (∇u0(z)+ ξ)− ‖∇u0(z)‖p(z)−2 ∇u0(z)

∣∣∣ .
Form (3.22), we have

−div V̂εn

(
z,∇hεn (z)

)
= 1

|λεn |
(
g
(
z, (u0 + hεn )(z)

)− g (z, u0(z))− ∣∣hεn (z)
∣∣r(z)−2

hεn (z)
)

in �.

Once again, via Theorem 1.3 of Fan [14], we produce β ∈ (0, 1) and M1 > 0, such that

hεn ∈ C1,β
n (�) and ‖hε‖C1,β

n (�)
� M1 ∀n � 1. (3.24)

From (3.23) and (3.24) and recalling that the embedding C1,β
n (�) ⊆ C1

n (�) is compact, we
have

u0 + hεn −→ u0 in C1
n (�)
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(recall that hεn −→ 0 in Lr(z)(�)), so

ψ(u0) � ψ(u0 + hεn ) ∀n � n0 � 1,

a contradiction to the choice of the sequence {hεn }n�1. This prove the proposition. ��

4 Three nontrivial smooth solutions

In this section, using a combination of variational and Morse theoretic arguments, together
with the results from Sect. 3, we establish the existence of three nontrivial smooth solutions
for problem (1.1) under hypotheses H0 and H1.

So, forλ > 0, we introduce the following truncations-perturbations of the reaction f (z, ζ ):

f λ+(z, ζ ) =
{

0 if ζ � 0,
f (z, ζ )+ λζ p(z)−1 if ζ > 0,

(4.1)

f λ−(z, ζ ) =
{

f (z, ζ )+ λ|ζ |p(z)−2ζ if ζ < 0,
0 if ζ � 0.

(4.2)

Both are Carathéodory functions. We set

Fλ±(z, ζ ) =
ζ∫

0

f λ±(z, s) ds

and consider the C1-functionals ϕλ± : W 1,p(z)
n (�) −→ R, defined by

ϕλ±(u) =
∫
�

1

p(z)
‖∇u‖p(z) dz + λ

∫
�

1

p(z)
|u|p(z) dz

−
∫
�

Fλ±(z, u) dz ∀u ∈ W 1,p(z)
n (�).

Also, we consider energy (Euler) functional ϕ : W 1,p(z)
n (�) −→ R for problem (1.1),

defined by

ϕ(u) =
∫
�

1

p(z)
‖∇u‖p(z) dz −

∫
�

F(z, u) dz ∀u ∈ W 1,p(z)
n (�).

Proposition 4.1 If hypotheses H0 and H1 hold, then the functionals ϕ and ϕλ± satisfy the
Cerami condition.

Proof First we check that ϕ satisfies the Cerami condition. So, let {un}n�1 ⊆ W 1,p(z)
n (�)

be a sequence, such that ∣∣ϕ(un)
∣∣ � M2 ∀n � 1, (4.3)

for some M2 > 0 and

(1 + ‖un‖)ϕ′(un) −→ 0 in W 1,p(z)
n (�)∗. (4.4)
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From (4.4), we have∣∣∣∣〈A(un), h
〉− ∫

�

f (z, un)h dz

∣∣∣∣ �
εn‖h‖

1 + ‖un‖ ∀h ∈ W 1,p(z)
n (�), (4.5)

with εn ↘ 0. In (4.5), we choose h = un ∈ W 1,p(z)
n (�). Then

−
∫
�

‖∇un‖p(z) dz +
∫
�

f (z, un)un dz � εn ∀n � 1. (4.6)

On the other hand from (4.3), we have∫
�

pmax

p(z)
‖∇un‖p(z) dz −

∫
�

pmaxF(z, un) dz � pmaxM2 ∀n � 1,

so ∫
�

‖∇un‖p(z) dz −
∫
�

pmaxF(z, un) dz � pmaxM2 ∀n � 1 (4.7)

(since p(z) � pmax for all z ∈ �). We add (4.6) and (4.7) and obtain∫
�

( f (z, un)un − pmaxF(z, un)) dz � M3 ∀n � 1, (4.8)

for some M3 > 0. By virtue of hypotheses H1(i) and (i i), we can find β1 ∈ (0, β0) and
c15 > 0, such that

β1|ζ |τ(z) − c15 � f (z, ζ )ζ − pmaxF(z, ζ ) for a.a. z ∈ �, all ζ ∈ R. (4.9)

We use (4.9) in (4.8) and obtain

β1

∫
�

|un |τ(z) dz � M4 ∀n � 1, (4.10)

for some M4 > 0, so

the sequence {un}n�1 ⊆ Lτ(z)(�) is bounded (4.11)

(see Proposition 2.2(c) and (d)).
Let θ0 ∈ (rmax, p̂∗) (see hypothesis H1(i)). Also, it is clear from hypothesis H1(i i), that

we can always assume without any loss of generality that τmin < rmax < θ0. So, we can find
t ∈ (0, 1), such that

1

rmax
= 1 − t

τmin
+ t

θ0
.

Invoking the interpolation inequality (see e.g., Gasiński–Papageorgiou [22, p. 905]), we have

‖un‖rmax � ‖un‖1−t
τmin

‖un‖t
θ0

∀n � 1,

so

‖un‖rmax
rmax

� ‖un‖(1−t)rmax
τmin

‖un‖trmax
θ0

∀n � 1,
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thus

‖un‖rmax
rmax

� M5‖un‖trmax
θ0

∀n � 1, (4.12)

for some M5 > 0 (see (4.10)). By virtue of hypothesis H1(i), we have

f (z, ζ )ζ � c16
(|ζ | + |ζ |rmax

)
for a.a. z ∈ �, all ζ ∈ R, ∀n � 1, (4.13)

for some c16 > 0. In (4.5) we choose h = un ∈ W 1,p(z)
n (�). Then we have∫

�

‖∇un‖p(z) dz �
∫
�

f (z, un)un dz + c17

� c18
(
1 + ‖un‖ + ‖un‖trmax

) ∀n � 1,

for some c17, c18 > 0 (see (4.12)) and (4.13) and recall that θ0 < p̂∗). Thus∫
�

‖∇un‖p(z) dz +
∫
�

|un |τ(z) dz � c19
(
1 + ‖un‖ + ‖un‖trmax

) ∀n � 1,

for some c19 > 0 (see (4.10)) and so

‖un‖pmin � c20
(
1 + ‖un‖ + ‖un‖trmax

) ∀n � 1, (4.14)

for some c20 > 0 (see Lemma 3.2). Note that

trmax = θ0(rmax − τmin)

θ0 − τmin
< pmin .

So, from (4.14), it follows that the sequence {un}n�1 ⊆ W 1,p(z)
n (�) is bounded. Hence,

passing to a subsequence if necessary, we may assume that

un −→ u weakly in W 1,p(z)
n (�), (4.15)

un −→ u in Lr(z)(�) (4.16)

(recall that rmax < p̂∗). In (4.5) we choose h = un − u ∈ W 1,p(z)
n (�). Then∣∣∣∣〈A(un), un − u

〉− ∫
�

f (z, un)(un − u) dz

∣∣∣∣ � ε′n,

with ε′n ↘ 0, so, using (4.15) and Proposition 2.1(c), we have

lim
n→+∞

〈
A(un), un − u〉 = 0,

so, from Proposition 2.5, we have

un −→ u in W 1,p(z)
n (�).

This proves that ϕ satisfies the Cerami condition.
Next we show that ϕλ+ satisfies the Cerami condition. So, as before we consider a sequence

{un}n�1 ⊆ W 1,p(z)
n (�), such that∣∣ϕλ+(un)

∣∣ � M6 ∀n � 1, (4.17)

for some M6 > 0 and

(1 + ‖un‖)(ϕλ+)′(un) −→ 0 in W 1,p(z)
n (�). (4.18)
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From (4.18), we have∣∣∣∣〈A(un), h
〉+ λ

∫
�

|un |p(z)−2unh dz −
∫
�

f λ+(z, un)h dz

∣∣∣∣
�

εn‖h‖
1 + ‖un‖ ∀h ∈ W 1,p(z)

n (�), (4.19)

with εn ↘ 0. In (4.19), we choose h = −u−
n ∈ W 1,p(z)

n (�). Then∣∣∣∣
∫
�

‖∇u−
n ‖p(z) dz +

∫
�

(u−
n )

p(z) dz

∣∣∣∣ � εn,

so

u−
n −→ 0 in W 1,p(z)

n (�) (4.20)

(see Proposition 2.3(e)). Next, in (4.19), we choose h = u+
n ∈ W 1,p(z)

n (�). Then

−
∫
�

‖∇u+
n ‖p(z) dz +

∫
�

f (z, u+
n )u

+
n dz � εn ∀n � 1. (4.21)

On the other hand, from (4.17) and (4.20), Proposition 2.3 and (4.1), we have∫
�

‖∇u+
n ‖p(z) dz −

∫
�

pmaxF(z, u+
n ) dz � M7 ∀n � 1 (4.22)

for some M7 > 0. Adding (4.21) and (4.22), we obtain∫
�

(
f (z, u+

n )u
+
n − pmaxF(z, u+

n )
)

dz � M8 ∀n � 1,

for some M8 > 0. Then we proceed as in the first part of the proof (see the argument after
(4.8)). So, we obtain that the sequence {u+

n }n�1 ⊆ Lτ(z)(�) is bounded and then as before, via

the interpolation inequality, we show that the sequence {u+
n }n�1 ⊆ W 1,p(z)

n (�) is bounded.
Finally, using Proposition 2.5, we conclude that ϕλ+ satisfies the Cerami condition.

Similarly we show that ϕλ− satisfies the Cerami condition, using this time (4.2). ��
Proposition 4.2 If hypotheses H0 and H1 hold, then u = 0 is a local minimizer of ϕ and
of ϕλ±.

Proof We do the proof for ϕλ+, the proofs for ϕ, ϕλ− being similar.
Let δ0 > 0 be as postulated by hypothesis H1(i i i) and let u ∈ C1

n (�) be such that
‖u‖C1

n (�)
� δ0. Then, using hypothesis H1(i i i) and (4.1), we have

ϕλ+(u) =
∫
�

1

p(z)
‖∇u‖p(z) dz + λ

∫
�

1

p(z)
|u|p(z) dz −

∫
�

Fλ+(z, u) dz

�
∫
�

1

p(z)
‖∇u‖p(z) dz � 0,

so

u = 0 is a local C1
n (�)-minimizer of ϕλ+,
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thus, using Proposition 3.3, we have that

u = 0 is a local W 1,p(z)
n (�)-minimizer of ϕλ+.

The proof is similar for ϕλ− and ϕ. ��
An immediate consequence of the p-superlinearity of F(z, ·) (see hypothesis H1(i i)), is

the following result.

Proposition 4.3 If hypotheses H0 and H1 hold, then

ϕλ±(ξ) −→ −∞ as ξ → ±∞ for every u ∈ W 1,p(x)
n (�), u �= 0.

As we already mentioned earlier, our method of proof uses also Morse theory, This requires
the computation of certain critical groups of ϕ and ϕλ±. In what follows, we assume without
any loss off generality, that the critical sets of these functions are finite (otherwise we already
have an infinity of solutions and so we are done).

Proposition 4.4 If hypotheses H0 and H1 hold, then

Ck(ϕ,∞) = 0 ∀k � 0.

Proof By virtue of hypothesis H1(i i), for a given ξ > 0, we can find M9 = M9(ξ) > 0,
such that

F(z, ζ ) �
ξ

pmin
|ζ |p+ − M9 for a.a. z ∈ �, all ζ ∈ R. (4.23)

Let u ∈ ∂B1 =
{

u ∈ W 1,p(z)
n (�) : ‖u‖ = 1

}
and θ > 0. Then

ϕ(θu) =
∫
�

θ p(z)

p(z)
‖∇u‖p(z) dz −

∫
�

F(z, θu) dz

� θ p̃
∫
�

1

p(z)
‖∇u‖p(z) dz −

∫
�

F(z, θu) dz

� θ p̃
∫
�

1

p(z)
‖∇u‖p(z) dz − θ pmaxξ

pmin
‖u‖pmax

pmax + M9|�|N

�
θ p̃

pmin

(
c21 − ξ‖u‖pmax

pmax

)+ M9|�|N , (4.24)

for some c21 > 0, where

p̃ =
{

pmax if θ � 1,
pmin if θ < 1.

Since ξ > 0 was arbitrary, from (4.24), we infer that

ϕ(θu) −→ −∞ as θ → +∞, with u ∈ ∂B1. (4.25)

By virtue of (2.2) (see hypothesis H1(i i)), we can find β1 ∈ (0, β0) and c22 > 0, such that

f (z, ζ )ζ − pmaxF(z, ζ ) � β1|ζ |τ(z) − c22 for a.a. z ∈ �, all ζ ∈ R. (4.26)
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Then for every u ∈ W 1,p(z)
n (�), we have∫

�

(pmaxF(z, u)− f (z, u)u) dz �
∫
�

(
−β1|u|τ(z) + c22

)
dz

= −β1

∫
�

|u|τ(z) dz + c22|�|N . (4.27)

Let c23 = c22|�|N + 1 > 0 and choose η < − c23
pmax

< 0. By virtue of (4.25), we see that for
u ∈ ∂B1 and θ � 0 large enough, we have

ϕ(θu) � η,

so ∫
�

θ p(z)

p(z)
‖∇u‖p(z) dz −

∫
�

F(z, θu) dz � η

and thus

1

pmax

⎛
⎝∫
�

θ p(z) pmax

p(z)
‖∇u‖p(z) dz −

∫
�

pmaxF(z, θu) dz

⎞
⎠ � η. (4.28)

Since ϕ(0) = 0, from (4.25) and (4.28), we infer that there exists θ∗ > 0, such that

ϕ(θ∗u) = η and ϕ(θu) � η ∀θ � θ∗. (4.29)

Using (4.27) and (4.28), we have

d

dt
ϕ(θu) = 〈ϕ′(θu), u〉

=
∫
�

θ p(z)−1‖∇u‖p(z) dz −
∫
�

f (z, θu)u dz

= 1

θ

⎛
⎝∫
�

∥∥∇(θu)
∥∥p(z)

dz −
∫
�

f (z, θu)θu dz

⎞
⎠

�
1

θ

⎛
⎝∫
�

∥∥∇(θu)
∥∥p(z)

dz −
∫
�

pmaxF(z, θu) dz + c22|�|N

⎞
⎠

�
1

θ

⎛
⎝∫
�

pmax

p(z)

∥∥∇(θu)
∥∥p(z)

dz −
∫
�

pmaxF(z, θu) dz + c22|�|N

⎞
⎠

�
1

θ
(pmaxη + c22|�|N ) < 0,

for θ � 1 large and since η < − c23
pmax

. So, there is a unique θ∗(u) > 0, such that

ϕ
(
θ∗(u)u

) = η, u ∈ ∂B1
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(see (4.29)). By virtue of the implicit function theorem, we have θ∗ ∈ C(∂B1). For u ∈
W 1,p(z)

n (�)\{0}, we set

θ̂∗(u) = 1

‖u‖θ
∗
(

u

‖u‖
)
.

Then θ̂∗ ∈ C(W 1,p(z)
n (�)\{0}) and we have

ϕ(θ̂∗(u)u) = η ∀u ∈ W 1,p(z)
n (�) \ {0}. (4.30)

Note that, if ϕ(u) = η, then θ̂∗(u) = 1. We set

θ̂∗
0 (u) =

{
1 if ϕ(u) � η,

θ̂∗(u)u if ϕ(u) > η.
(4.31)

Evidently θ̂∗
0 ∈ C(W 1,p(z)

n (�) \ {0}). We consider the homotopy

h : [0, 1] × (W 1,p(z)
n (�) \ {0}) −→ W 1,p(z)

n (�) \ {0},
defined by

h(t, u) = (1 − t)u + t θ̂∗
0 (u)u.

Note that

h(0, u) = u ∀u ∈ W 1,p(z)
n (�) \ {0},

h(1, u) ∈ ϕη ∀u ∈ W 1,p(z)
n (�) \ {0}

(see (4.30)) and (4.31) and

h(t, ·)|
ϕη

= id|
ϕη

∀t ∈ [0, 1]
(see (4.31)). It follows that ϕη is a strong deformation retract of W 1,p(z)

n (�) \ {0}. Therefore

ϕη and W 1,p(z)
n (�) \ {0} are homotopy equivalent. (4.32)

On the other hand, if we consider homotopy

h1 : [0, 1] × (W 1,p(z)
n (�) \ {0}) −→ W 1,p(z)

n (�) \ {0},
defined by

h1(t, u) = (1 − t)u + t
u

‖u‖ ,

we see that

h1(0, u) = u ∀u ∈ W 1,p(z)
n (�) \ {0},

h1(1, u) ∈ ∂B1 ∀u ∈ W 1,p(z)
n (�) \ {0}

and

h1(t, ·)|∂B1
= id|

∂B1
∀t ∈ [0, 1].

Hence ∂B1 is a strong deformation retract of W 1,p(z)
n (�) \ {0}. So, we have that

∂B1 and W 1,p(z)
n (�) \ {0} are homotopy equivalent. (4.33)
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From (4.32) and (4.33), it follows that

ϕη and ∂B1 are homotopy equivalent,

so

Hk

(
W 1,p(z)

n (�), ϕη
)

= Hk

(
W 1,p(z)

n (�), ∂B1

)
∀k � 0

and thus

Ck(ϕ,∞) = Hk

(
W 1,p(z)

n (�), ∂B1

)
∀k � 0 (4.34)

(choosing η < inf ϕ(K ϕ)). Because W 1,p(z)
n (�) is infinite dimensional, then ∂B1 is con-

tractible (see e.g., Gasiński–Papageorgiou [22, p. 693]). Hence

Hk

(
W 1,p(z)

n (�), ∂B1

)
= 0 ∀k � 0 (4.35)

(see Granas–Dugundji [24, p. 389]) Combining (4.34) and (4.35), we conclude that

Ck(ϕ,∞) = 0 ∀k � 0. ��
A suitable modification of the above proof, leads to a similar result for the functionals ϕλ±.

Proposition 4.5 If hypotheses H0 and H1 hold, then

Ck(ϕ
λ±,∞) = 0 ∀k � 0.

Proof We do the proof for ϕλ+, the proof for ϕλ− being similar.
By virtue of hypothesis H1(i i), for a given ξ > 0, we can find c24 = c24(ξ) > 0, such

that

Fλ+(z, ζ ) �
λ

p(z)
(ζ+)p(z) + ξ

pmin
(ζ+)pmax − c24 for a.a. z ∈ �, all ζ ∈ R. (4.36)

Let

D+ = {
u ∈ ∂B1 : u+ �= 0

}
.

Using (4.36), for u ∈ D+ and θ > 0, we have

ϕλ+(θu) =
∫
�

θ p(z)

p(z)
‖∇u‖p(z) dz + λ

∫
�

θ p(z)

p(z)
|u|p(z) dz −

∫
�

Fλ+(z, θu) dz

� θ p̃

⎛
⎝∫
�

1

p(z)
‖∇u‖p(z) dz + λ

∫
�

1

p(z)
(u−)p(z) dz − ξ

pmin
‖u+‖pmax

pmax

⎞
⎠

+c24|�|N

� θ p̃
(
�p(u)− ξ

pmin
‖u+‖pmax

pmax

)
+ c24|�|N , (4.37)

where

p̃ =
{

pmax if θ � 1,
pmin if θ < 1
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and with �p being the modular function, defined by

�p(u) =
∫
�

(
‖∇u‖p(z) + λ|u|p(z)

)
dz ∀u ∈ W 1,p(z)

n (�).

Since ξ > 0 is arbitrary, we choose it large such that

�p(u) <
ξ

pmin
‖u+‖pmax

pmax ∀u ∈ D+,

so

ϕλ+(θu) −→ −∞ as θ → +∞, u ∈ D+ (4.38)

(see (4.37)).
Hypothesis H1(i i) implies that we can find β1 ∈ (0, β0) and c25 > 0, such that

f (z, ζ+)ζ+ − pmaxF(z, ζ+) � β1(ζ
+)τ(z) − c25 for a.a. z ∈ �, all ζ ∈ R. (4.39)

Therefore for every u ∈ W 1,p(z)
n (�), we have∫

�

(
pmaxF(z, u+)− f (z, u+)u+) dz � −β1

∫
�

(u+)τ(z) dz + c25|�|N (4.40)

(see (4.39)). Let c26 = c25|�|N + 1 and choose η < − c26
pmax

. Then because of (4.38), for all
u ∈ D+ and for θ > 0 large enough, we have

ϕλ+(θu) � η

so ∫
�

θ p(z)

p(z)
‖∇u‖p(z) dz + λ

∫
�

θ p(z)

p(z)
|u|p(z) dz −

∫
�

Fλ+(z, θu) dz � η,

thus, using (4.1), we have∫
�

θ p(z)

p(z)
‖∇u‖p(z) dz + λ

∫
�

θ p(z)

p(z)
(u−)p(z) dz −

∫
�

F(z, θu+) dz � η

and so

1

pmax

⎛
⎝∫
�

θ p(z) pmax

p(z)
‖∇u‖p(z) dz

+λ
∫
�

θ p(z) pmax

p(z)
(u−)p(z) dz −

∫
�

pmaxF(z, θu+) dz

⎞
⎠ � η. (4.41)

Since ϕλ+(0) = 0, we can find θ̂ > 0, such that

ϕ̂λ+(θ̂u) = 0 with u ∈ D+
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(see (4.38)). We have

d

dθ
ϕλ+(θu)

= 〈
(ϕλ+)′(θu), u

〉 = 1

θ

〈
(ϕλ+)′(θu), θu

〉

= 1

θ

⎛
⎝∫
�

θ p(z)‖∇u‖p(z) dz + λ

∫
�

θ p(z)(u−)p(z) dz −
∫
�

f (z, θu+)θu+ dz

⎞
⎠

�
1

θ

⎛
⎝∫
�

θ p(z) pmax

p(z)
‖∇u‖p(z) dz + λ

∫
�

θ p(z) pmax

p(z)
(u−)p(z) dz

−
∫
�

f (z, θu+)θu+ dz

⎞
⎠

�
1

θ

⎛
⎝∫
�

θ p(z) pmax

p(z)
‖∇u‖p(z) dz + λ

∫
�

θ p(z) pmax

p(z)
(u−)p(z) dz

−
∫
�

pmaxF(z, θu+) dz + c25|�|N

⎞
⎠

�
1

θ
(pmaxη + c26) < 0

(see (4.40), (4.41) and recall that η < − c26
pmax

). So, as in the proof of Proposition 4.4, we can

find a unique θ+ ∈ C(D+), such that

ϕλ+
(
θ+(u)u

) = η ∀u ∈ D+.

Let

E+ =
{

u ∈ W 1,p(z)
n (�) : u+ �= 0

}
and set

θ̂+(u) = 1

‖u‖θ
+
(

u

‖u‖
)
.

Then

θ̂+ ∈ C(E+) and ϕλ+
(
θ̂+(u)u

) = η ∀u ∈ E+.

Note that, if ϕλ+(u) = η, then θ̂+(u) = 1. So, if we define θ̂+
0 : E+ −→ R, by

θ̂+
0 (u) =

{
1 if ϕλ+(u) � η,

θ̂+(u) if ϕλ+(u) > η,
∀u ∈ E+, (4.42)

then θ̂+
0 ∈ C(E+). Consider the homotopy

h+ : [0, 1] × E+ −→ E+,

defined by

h+(t, u) = (1 − t)u + t θ̂+
0 (u)u.
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We have

h+(0, u) = u ∀u ∈ E+,

h+(1, u) ∈ (ϕλ+)η ∀u ∈ E+

and

h+(t, ·)|
(ϕλ+)η

= id|
(ϕλ+)η

∀t ∈ [0, 1]

(see (4.42)). It follows that (ϕλ+)η is a strong deformation retract of E+. Therefore

E+ and (ϕλ+)η are homotopy equivalent. (4.43)

Also consider the homotopy

h1+ : [0, 1] × E+ −→ E+,

defined by

h1+(t, u) = (1 − t)u + t
u

‖u‖ .

Evidently, we have

h1+(0, u) = u ∀u ∈ E+,
h1+(1, u) ∈ D+ ∀u ∈ E+

and

h+(t, ·)|D+ = id|D+ ∀t ∈ [0, 1],
so D+ is a strong deformation retract of E+. Therefore

E+ and D+ are homotopy equivalent. (4.44)

Form (4.43) and (4.44), it follows that

(ϕλ+)η and D+ are homotopy equivalent,

so

Hk

(
W 1,p(z)

n (�), (ϕλ+)η
)

= Hk

(
W 1,p(z)

n (�), D+
)

∀k � 0

and thus

Ck(ϕ
λ+,∞) = Hk

(
W 1,p(z)

n (�), D+
)

∀k � 0 (4.45)

(choosing η < inf ϕλ+(K ϕλ+)). Consider the homotopy

ĥ+ : [0, 1] × D+ −→ D+,

defined by

ĥ+(t, u) = (1 − t)u + tξ

‖(1 − t)u + tξ‖ ,
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with ξ ∈ R, ξ > 0, ‖ξ‖ = 1. Note that [(1 − t)u + tξ ]+ �= 0 and so the homotopy is well
defined. We infer that the set D+ is contractible in itself. Therefore

Hk

(
W 1,p(z)

n (�), D+
)

= 0 ∀k � 0

(see Granas–Dugundji [24, p. 389]), so

Ck(ϕ
λ+,∞) = 0 ∀k � 0

(see (4.45)). Similarly we show that

Ck(ϕ
λ−,∞) = 0 ∀k � 0. ��

Now we are ready for the three solutions theorem.

Theorem 4.6 If hypotheses H0 and H1 hold, then problem (1.1) has at least three nontrivial
smooth solutions

u0 ∈ int C+, v0 ∈ −int C+, ŷ ∈ C1
n(�) \ {0}.

Proof From Proposition 4.2, we know that u = 0 is a local minimizer of ϕλ+. Reasoning
as in the proof of Proposition 29 of Aizicovici–Papageorgiou–Staicu [3], we can find small
� ∈ (0, 1), such that

0 = ϕλ+(0) < inf
{
ϕλ+(u) : ‖u‖ = �

} = ηλ+. (4.46)

Then (4.46) together with Propositions 4.1 and 4.3, permit the use of the mountain pass
theorem (see Theorem 2.4). So, we obtain u0 ∈ W 1,p(z)

n (�), such that

0 = ϕλ+(0) < ηλ+ � ϕλ+(u0) and (ϕλ+)′(u0) = 0. (4.47)

From the inequality in (4.47), we infer that u0 �= 0. From the equality, it follows that

A(u0)+ λ|u0|p(·)−2u0 = Nλ+(u0), (4.48)

where

Nλ+(u)(·) = f λ+ (·, u(·)) ∀u ∈ W 1,p(z)
n (�).

On (4.48) we act with −u−
0 ∈ W 1,p(z)

n (�) and obtain∫
�

‖∇u−
0 ‖p(z) dz + λ

∫
�

|u−
0 |p(z) dz = 0

(see (4.1)), so u−
0 = 0 (see Proposition 2.3) and so

u0 � 0, u0 �= 0.

Then using Proposition 3.1 and Theorem 1.3 of Fan [14], we have that u0 ∈ C+ \ {0} solves
problem (1.1). By virtue of hypothesis H1(i i i), we have

�p(z)u0 � c0u p(z)−1
0 in W 1,p(z)

n (�)∗,

so

u0 ∈ int C+
(see Theorem 1.2 of Zhang [37]).
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Similarly, working with ϕλ− and using this time (4.2), we obtain another constant sign
smooth solution

v0 ∈ − int C+.

Clearly both u0 and v0 are critical points of ϕ (see (4.1) and (4.2)).
Suppose that {0, u0, v0} are the only critical points of ϕ.

Claim 1 Ck(ϕ
λ+, u0) = Ck(ϕ

λ−, v0) = δk,1Z for all k � 0.

We do the proof for the pair {ϕλ+, u0}, the proof for {ϕλ−, v0} being similar.
As above, we can check that every critical point u of ϕλ+ satisfies u � 0 and so (4.1)

implies that u ∈ K ϕ . Since by hypothesis K ϕ = {0, u0, v0}, we infer that

K ϕλ+ = {0, u0}.
Let η, θ ∈ R be such that

θ < 0 = ϕλ+(0) < η < ϕλ+(u0)

(see (4.47)). We consider the following triple of sets

(ϕλ+)θ ⊆ (ϕλ+)η ⊆ W = W 1,p(z)
n (�).

We introduce the long exact sequence of homological groups corresponding to the above
triple of sets

. . . −→ Hk
(
W, (ϕλ+)θ

) i∗−→ Hk
(
W, (ϕλ+)η

) ∂∗−→ Hk−1
(
(ϕλ+)η, (ϕλ+)θ

) −→ . . . .

(4.49)

Here i∗ is the group homomorphism induced by the inclusion(
W, (ϕλ+)θ

) i−→ (
W, (ϕλ+)η

)
and ∂∗ is the boundary homomorphism. Recall that K ϕλ+ = {0, u0}, from the choice of the
levels θ and η, we have

Hk
(
W, (ϕλ+)θ

) = Ck(ϕ
λ+,∞) = 0 ∀k � 0 (4.50)

(see Proposition 4.5),

Hk
(
W, (ϕλ+)η

) = Ck(ϕ
λ+, u0) ∀k � 0 (4.51)

and

Hk−1
(
(ϕλ+)η, (ϕλ+)θ

) = Ck−1(ϕ
λ+, 0) = δk−1,0 Z = δk,1Z ∀k � 0 (4.52)

(see Proposition 4.2). From the exactness of the sequence (4.49) and using (4.52), we have

Hk
(
W, (ϕλ+)η

) ∼= Hk−1
(
(ϕλ+)η, (ϕλ+)θ

) = δk,1Z ∀k � 0,

so

Ck(ϕ
λ+, u0) = δk,1Z ∀k � 0.

Similarly we show that

Ck(ϕ
λ−, v0) = δk,1Z ∀k � 0.

123
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Claim 2 Ck(ϕ, u0) = Ck(ϕ
λ+, u0) and Ck(ϕ, v0) = Ck(ϕ

λ−, v0) for all k � 0.
We do the proof for the triple {ϕ, ϕλ+, u0}, the proof for {ϕ, ϕλ−, v0} being similar.
We consider the homotopy

h(t, u) = tϕλ+(u)+ (1 − t)ϕ(u) ∀(t, u) ∈ [0, 1] × W 1,p(z)
n (�).

Evidently u0 is a critical point of h(t, ·) for all t ∈ [0, 1]. We will show that u0 is isolated
uniformly in t ∈ [0, 1]. Indeed, if this is not the case, then we can find two sequences
{tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ W 1,p(z)

n (�), such that

tn −→ t ∈ [0, 1] and un −→ u0 in W 1,p(z)
n (�) (4.53)

and

h
′
u(tn, un) = 0 ∀n � 1. (4.54)

From (4.53), we have

A(un)+ tnλ|un |p(·)−2un = tn Nλ+(un)+ (1 − tn)N (un),

where

N (u)(·) = f (·, u(·)) ∀u ∈ W 1,p(z)
n (�),

so⎧⎨
⎩

−�p(z)u(z) = tn f
(
z, u+

n (z)
)+ tn

(
u−

n (z)
)p(z)−1 + (1 − tn) f (z, un(z)) in �,

∂un

∂n
= 0 on ∂�.

Proposition 3.1 implies that we can find M10 > 0, such that

‖un‖∞ � M10 ∀n � 1.

Then using the regularity result of Fan [14], we can find M11 > 0 and η ∈ (0, 1), such that

un ∈ C1,η
n (�) and ‖un‖

C1,η
n (�)

� M11 ∀n � 1. (4.55)

From (4.55) and since the embedding C1,η
n (�) ⊆ C1

n (�) is compact, we may also assume
that

un −→ u0 in C1
n (�)

(see (4.54)). But recall that u0 ∈ int C+. So, it follows that

un ∈ C+ \ {0} ∀n � n0,

so {un}n�n0 ⊆ C+ \ {0} are all distinct solutions of (1.1) (see (4.1)).
This contradicts the assumption that {0, u0, v0} are the only critical points of ϕ. So, indeed

u0 is an isolated critical point h(t, ·) uniformly in t ∈ [0, 1]. Moreover, as in Proposition 4.1,
we can check that for all t ∈ [0, 1], h(t, ·) satisfies the Cerami condition. This enables us to
exploit the homotopy invariance of the critical groups (see Chang [9, p. 336]) and obtain

Ck
(
h(0, ·), u0

) = Ck
(
h(1, ·), u0

) ∀k � 0,

so

Ck(ϕ, u0) = Ck(ϕ
λ+, u0) ∀k � 0.
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Similarly, we show that

Ck(ϕ, v0) = Ck(ϕ
λ−, v0) ∀k � 0.

This proves Claim 2.

From Claims 1 and 2, it follows that

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z ∀k � 0. (4.56)

From Proposition 2.1, we have

Ck(ϕ, 0) = δk,0 Z ∀k � 0. (4.57)

Finally, from Proposition 4.4, we know that

Ck(ϕ,∞) = 0 ∀k � 0. (4.58)

Recall that by hypothesis {0, u0, v0} are the only critical points of ϕ. So, from (4.56), (4.57),
(4.58) and the Morse relation (2.1) with t = −1, we have

2(−1)1 + (−1)0 = (−1)1 �= 0,

a contradiction. This means thatϕ has one more critical point ŷ �∈ {0, u0, v0}. Then ŷ ∈ C1
n (�)

(see Proposition 3.1 and Fan [14]) and solves (1.1). ��
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12. Dancer, N., Perera, K.: Some remarks on the Fučik spectrum of the p-Laplacian and critical groups.
J. Math. Anal. Appl. 254, 164–177 (2001)

13. Fan, X.L.: Eigenvalues of the p(x)-Laplacian Neumann equations. Nonlinear Anal. 67, 2982–2992 (2007)

123
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27. Kováčik, O., Rákosnik, J.: On Spaces L p(x) and W 1,p(x). Czechoslovak Math. J. 41, 592–618 (1991)
28. Ladyzhenskaya, O.A., Uraltseva, N.: Linear and Quasilinear Elliptic Equations, Mathematics in Science

and Engineering, vol. 46. Academic Press, New York (1968)
29. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear

Anal. 12, 1203–1219 (1988)
30. Liu, J.-Q., Liu, S.-B.: The existence of multiple solutions to quasilinear elliptic equations. Bull. London

Math. Soc. 37, 592–600 (2005)
31. Marcellini, P.: Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions.

J. Differ. Equ. 90, 1–30 (1991)
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