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Anisotropic Nonstationary Image Estimation and Its
Applications: Part I—Restoration of Noisy Images

HANS E. KNUTSSON, ROLAND WILSON, anp GOESTA H. GRANLUND, MEMBER, IEEE

Abstract—A new form of image estimator, which takes account of
linear features, is derived using a signal equivalent formulation. The
estimator is shown to be a nonstationary linear combination of three
stationary estimators. The relation of the estimator to human visual
physiology is discussed. A method for estimating the nonstationary
control information is described and shown to be effective when the
estimation is made from noisy data. A suboptimal approach which is
computationally less demanding is presented and used in the restora-
tion of a variety of images corrupted by additive white noise. The
results show that the method can improve the quality of noisy images
even when the signal-to-noise ratio is very low.

[. INTRODUCTION

HE estimation of images is a fundamental problem which

lies at the heart of two related areas of image processing:
restoration and coding.

The restoration problem is essentially one of optimal fil-
tering with respect to some error criterion. The most tractable
criterion—mean squared error—has formed the basis for most
of the published work in the area [1]-[3]. The classical
stationary solution to the problem, the Wiener filter, has
been used with limited success because of its low-pass charac-
ter, which gives rise to unacceptable blurring of lines and
edges in the scene. Recently, a number of attempts to over-
come this problem have adopted a nonstationary approach,
which exploits the lower noise visibility in the vicinity of edges
[4], [5] (the so-called “masking effect™). Unfortunately, the
resulting filter structures are often rather cumbersome, re-
quiring solution of the optimization equation at each point in
the image.

A new approach with considerable appeal, because of its
simplicity, is that of Abramatic and Silverman [6]. By ex-
pressing the masking effect in terms of the signal to be esti-
mated, they were able to represent the nonstationary filter
as a linear combination of two stationary filters, one of which
was simply the identity mapping (i.e., a 6-function). Using a
similar approach, but one derived primarily from considera-
tion of the physiological properties of the human visual sys-

Paper approved by the Editor for Signal Processing and Communi-
cation Electronics of the IEEE Communications Society for publica-
tion without oral presentation. Manuscript received August 7, 1981;
revised May 18, 1982, This work was supported by the Swedish Na-
tional Board for Technical Development and by SERC of the United
Kingdom.

H. E. Knutsson and G. H. Granlund are with the Picture Processing
Laboratory, Linkoeping University, S-581 83 Linkoeping, Sweden.

R. Wilson is with the Department of Electrical and Electronic Engi-
neering, University of Aston, Birmingham B4 7PB, England, on leave
at the Picture Processing Laboratory, Linkoeping University, S-581 83
Linkoeping, Sweden.

tem, the authors of the present paper obtained satisfactory
results in the enhancement of noisy images [7].

Over the same period of time, the development of predic-
tive image coding methods has seen a similar shift from sta-
tionary DPCM systems [8], [9] to more complex, nonstation-
ary and hybrid systems [10]-[14]. It is clear that a similar
motivation to that described above lies behind this trend: the
recognition that lines and edges constitute a substantive non-
stationarity in the image model, that they introduce local
anisotropy, and that, above all, they are significant to the
human viewer. That this should be so is not surprising when
one considers the importance attached to edge and line detec-
tion in image analysis and pattern recognition [17]-[19].
Such a view is strengthened by the accumulation of psycho-
physical and physiological data confirming linear feature
detection as a primary function of the lower levels of the
visual system [20]-[34]. A study of these aspects of the
problem led Granlund to propose a “‘general-operator” theory
for image processing [19]. The principles outlined by Gran-
lund—the importance of locally “linear” features and of direc-
tionality in images—underlie several recent papers on image
analysis [35], [36] as well as the work described in [7] and
below. Moreover, a processor based on the “general operator”
principle [37] has been the vehicle for all of the experimental
work described herein.

This paper contains a generalization of the results of [7]
into a nonstationary, anisotropic solution to the image estima-
tion problem. Its relation to the work of Abramatic and
Silverman and to human visual physiology will be discussed.
A suboptimal approach will be presented and the results of
experiments in image restoration will be discussed. In the
concluding section, the general applicability of the method
and its possible extensions will be considered. In the accom-
panying paper, a solution to the related problem of predictive
coding is described.

II. NONSTATIONARY ESTIMATION AND ITS RELATION
TO THE VISUAL SYSTEM

The most general statement of the estimation problem is:
given a set of data g(x, y), find the estimate f(x, y) of an image
f(x, ) which minimizes some distance ||f(x, ¥) —f(x,y)li
between original and estimate. The most commonly used
distance is mean squared error. It is then possible to derive
the estimate by using the orthogonality principle [38]

E{[f(x,y) —f(x, )]g(x',»")} = 0. (1)

In terms of the correlation functions Rg,(+, *, +, ) and Rg(+,
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.+, *), (1) can be expressed as

Rey(x, X', 7.9 =Rpe(x,x', y,¥"). ()
In the classical case of linear, stationary estimation,f(-, +) can
be written as

fx, ¥) = hx, y)rg(x, ¥)

:f_z [:; h(a, v)g(x — 0,y —v)do dv 3)

giving for (1)
(4)

In the case of restoration, a noncausal model of the image is
permitted, while in prediction, it is necessary to specify a time
direction. It will be assumed that the y-coordinate represents
the vertical direction and that, in prediction, only lines above
the current line are available. Thus, A(x, y) = 0,y <0, for the
predictor and in that case (4) is satisfied only for y > 0. In the
unconstrained case, (4) may be expressed in terms of the
power spectra, giving the familiar Wiener filter

Rpe(x, ¥) = h(x, ¥)*R g (x, ¥).

S_fg(wl » Wg)‘

H ; =
W)= s )

(%)
A similar derivation, via the Wiener-Hopf equation [38],
is possible for the predictor.

When the data is the sum of the image and stationary white
noise of variance o,,2

gCx,y) = fx, y) + n(x,y) (6)
Rnﬂ(xa }’) = onzﬁ(x)ﬁ(y)
the Wiener solution becomes
Serwy, w
H(wl,w2)=-———ff(—l——2)—- (7)

Seewy, wa) + 0,2

The modification made to this solution is the introduction of
a visibility function a(x,y),0 < a(x, ¥) < 1, which depends on
the magnitude of the luminance gradient [6]. Having chosen
the function a(+, +), the key issue remains of determining how
it should affect the estimation. Abramatic and Silverman
showed that the “generalized Backus and Gilbert” criterion
yields a solution

Sff(wlswz) ‘
Spr(wy, wy) + alx, )a,?

H'(wy, wy) = (8)

This approach has the undesirable feature that the filter
changes from point to point in a way which is generally
burdensome computationally. They proposed a “‘signal equiva-
lent” approach, defining a modified signal

HE =%,y =) =ax, ))f' —x,3' —)

H1—alx,»)]el' —x,¥'—y)  9)
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yielding a filter (¢, +,.*,.*)

Hy(wy, Wy, x,p)

Ser(wy, wy)
Sff(wlawz) + 0,

= o(x, ) s+ [1—a@ ). (10)

This solution has the advantage that the modified filter is
simply a linear combination of the stationary Wiener filter and
the identity mapping

hy(x',x,y', y) = olx, ph(x' —x,y" —»)

+[1—a(x, M —x)8(y' —»). (A1)
[t is interesting to note that (9) can be rewritten as
HE =%y =) =fx'—x,5' —y)
+ B0, In(x’ —x,y" =) (12)

with

Blx,¥»)=1—a(x,y)
giving for (11)
Ay, %y, )= h(x'—x,y' —y) + f(x,y)
“[8G' —x)(y —») —h(x' —x,y" —)].
(13)

Thus, their model can be seen as a linear combination of
a stationary low-pass image and a nonstationary high-pass
component. It therefore has a direct relation to various two-
component image source models currently being used in image
coding [12]-[14] and also to the earlier work of Schreiber
[15] and Graham [16].

Its relationship to the structure of the visual system is
equally direct. A large body of evidence now exists on the
physiology of the retina [20]-[22], supporting the hypothesis
that gradient detection plays an important part in the early
stages of vision. This work is complemented by a number of
psychophysical studies [23]-[25] showing a bandpass charac-
teristic that can be explained in terms of spatial differentiation,
or lateral inhibition [25]. Since this is a major function of the
lower levels of the visual system, it is no surprise to find that
conventional Wiener filters do not produce acceptable results.
On the other hand, noise in “flat” regions of the image will
excite these retinal detectors, giving rise to spurious features
or textures. In regions where the gradient is large, however,
the noise will have little effect, provided its variance is not
sufficient to cause errors in detection. Thus, the weighting
function B(x, y) provides a compromise between resolution of
genuine features and removal of those induced by the noise.

In seeking to improve this scheme, it is natural to examine
the processing carried out by the higher levels of the visual
system. The first important change in processing occurs in the
visual cortex: cells are found which are selectively excited by
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lines and edges of specific orientations. The studies of Hubel
and Wiesel [26]-[28] have shown that an area in the primary
cortex, area 17, consists of a regular array of linear feature
detectors, each tuned to a line or edge of one orientation in a
particular subfield of the field of vision. Daugman has dis-
cussed the Fourier domain properties such detectors are likely
to have [34] and has shown the advantage of choosing func-
tions which are separable in polar coordinates. The psycho-
physical studies of Kulikowski and King-Smith [29], [33] and
Mostafavi and Sakrison [32] provide further evidence for the
presence of anisotropic detectors. The latter work also suggests
that detection may be incoherent, a hypothesis which some
authors have advanced to explain the contradictory results
which have been obtained on the bandwidth of the detectors
[30], [31], [33]. These properties of the system lead to the
conclusion that noise in the vicinity of a linear feature has an
effect which depends on its orientation relative to the feature:
noise in the same orientation may enhance detectability, but
noise in the perpendicular direction will reduce it. This is
confirmed by comparison of the images in Fig. 2. Both images
were produced by anisotropic filtering of white noise in direc-
tions which depend on those of the linear features in the image
of the face in Fig. 1. In the image on the left, the filter was
aligned in the same direction as the lines and edges of Fig. 1;
the image on the right was produced by aligning it at 90° to
those directions. The structure of a face is clearly visible in the
left image, but not in the right. Thus, local anisotropy is an
important property of images, which should be incorporated
into the estimator of (10) and (13).

Suppose, therefore, that o(x, y) defines at the point (x, y)
the orientation in the Fourier domain of a local anisotropy.
Then, expressing the spectra in polar Fourier coordinates p
and @

Sr1£1(0) =Spr(p) + B(x, ¥)Spn(p) (14)
the weighting function f(x, ) should be modified by introduc-
ing a function of @ which is a maximum in the direction o(x,
») and falls to zero at ¢(x, y) + (7/2). An obvious choice of
function which also has ideal interpolation properties (cf. Sec-
tion IV) is cos? (+), giving in place of (14)

St£2(0,0) = Sgr(p) + Blx, ) cos® [p(x,7) — 018, (p).

(15)
This results in an anisotropic filter H,(+, +, », *)
Syr(0)
Hy(p,6,x,y) = — 1=
Ser(p) + 0y
cos? [p(x, ¥) —0]o,2
+ o 2 o) )
Str(p) + 0,
=Hi(p) + B(x, ¥)H,(p, 0, (x, ¥)). (16)

The filter of (15) represents an optimal solution for an
image composed of a stationary isotropic component and a
nonstationary, linear component. However, natural objects
are curved: the “linearity” assumption is valid only locally
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Fig. 1,

90 DEG.

FILTERED NOISE. O DEG.

Fig. 2. White noise filtered at 0° (left) and 90° (right) to directions of
edges in Fig. 1.

and only if the curvature of objects is low. In other words,
(15) applies only if the local rate of change of ¢(x, y) is small.
If the average rate of change in an area is large, the effect of
applying the filter Hy(-, +, =, ») is similar to low-pass filtering,
due to its low angular bandwidth.

This problem can be solved if a function y(x, ), which
provides a measure of local rate of change of angle, is available.
In that case, it is possible to control the extent to which the
local “‘equivalent signal” is isotropic and of high bandwidth,
giving for (15)

Star3(0.0) =Spr(p) + B(x. Y[ 1 — (x, ¥)]
= cos? [(x, ¥) — 0]S,,(p)
+BC ¥)r(X, ¥)S i (p).
The result is a filter H3(+, «, *, *)
Hy(p,0,x,y) =Hy(p) + Blx, »)[1 — v(x, )]
“Hy(p, 0, 9(x, )
+B(x, ¥)vCe ) (p)

(17)

(18)
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where Hy(+) and H,(+) are as in (16) and

2
Oy

et (19)
Sir(p) + 0,*

H{(p) =

The optimal filter thus consists of three parts, the first and
third of which resemble the original solution of Abramatic
and Silverman, with a middle term which is anisotropic. The
information controlling the filters H,(+, +, *) and H;'(+) of
(18) defines two images, known respectively as the first and
second bias images.

III. ESTIMATION OF THE BIAS IMAGE

In the above derivation, it was assumed that the weighting
functions f(x, y) and y(x, ) and direction ¢(x, y) were known
for each point in the image. It is of prime importance, there-
fore, to have an effective means for their estimation from the
data g(x, ¥). Note that the first bias image is complex (magni-
tude and direction) while the second is scalar.

At present, no truly optimal estimators are known for the
bias images. Those that have been used experimentally are
based on heuristic arguments and on ease of computation.
What is required is to translate the rather vague title of “linear
feature detectors” into an operational definition. An apprecia-
tion of the problem can be gained by considering the trans-
forms of the ideal line I(x, y) and edge e(x, y)

I, ) =6(x)/2r e(x,y)=U)/2r

1
L(wy, wy) = 6(wy) E(w;,wy)= (ﬁﬁ(w1)+;)§(w2}
1

(20)

Thus, in the ideal case, energy in the transform domain is
concentrated in an angle perpendicular to that in the spatial
domain. This suggests a set of detectors whose bandwidths are
high radially and low in angle. In order to encompass both
types of feature, symmetric and antisymmetric functions are
required.

Lines and edges are characterized by high gradient; the two-
dimensional isotropic differential operator is the Laplacian
[17]. A stationary, isotropic estimate of the image gradient
with minimum mse is therefore found by convolving the
Laplacian with the isotropic filter of (18), giving in the fre-
quency domain

Hyy(p) = p>H{(p). (21a)

A directional estimate may be formed by weighting Hy(+)
with a suitable angular function w(+), say. To remove phase
dependence from the estimate, a pair of quadrature filters
must be used, giving a line filter H,(-, +) and edge filters
H,(+,*)

(21b)
(21c)

H(p, 6) = w(0)Hy(p)
He(p, 8) =] sgn (cos 0 )H,(p, ).
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The filters oriented in the kth of NV directions are then

H¥(p, 0)=H(p.0 —6,)

H, (0,0)=Ho(p,0 — by). (22)

The direction and magnitude of the bias are not, however,
simply related to the outputs of these filters. Since computa-
tional limitations dictate a small value of N, typically 4, some
form of interpolation is required in estimation of the angle.
Measurement of the magnitude also poses a problem, since
when the local field is wide-band and isotropic, all the outputs
will be large.

For N = 4, both problems can be solved by appropriate
choice of the weighting function w()

w(@) = cos? 0. (23)
Then define £y (¢, *) by

Er(x,») = V82 (x,¥) + C2(x, ) 24
with

Sk(x. ¥) = he*(x, y)rglx, »)

Cilx, ) = b/ (x y)=g(x, y)
and

4

Vix,y) = J‘cz=:1 Ex(e, 0V, . (25)
Define D(x, y) by

D(x, y)

=VIE 1 (x,»)—E3(x. 012 +[E2(x,) —Ea(x, )] /Dy
(26)

V,n and D,, are normalizing constants. The angle ¢(x, ) is
found from

sin 2p(x, ) = [E5(x, ¥) — E4(x, »)] /D(x, »)

cos 20(x, ) = [E} (v, ¥) — Ex(x, )] /D(x, ). @7),

The estimate of (x, y) is expressed in the form of (27) to
avoid the degeneracy associated with the inverse trigonometric
functions. It is simple to show that when the neighborhood of
the point (x, y) contains a one-dimensional field (e.g., straight
line or edge) at an angle 6, these formulas give the correct
value of # (see Fig. 3).

Averaging of V(x, y) with an isotropic smoothing function
hg(+, +) produces a measure By (x, ) of the local high-pass
energy

By(x,y) = hy(x; y)*V(x, ¥).

Smoothing of the vector field defined by D(x, y) and ¢(x,

(28a)
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[3 + l - [‘
£

q

Fig. 3. Bias direction produced by vector addition of outputs from

four directional filters.

¥) gives a measure B,(x, y) of local one-dimensional energy

B,(x, ) = Il hy(x, y)=D(x, y)) Il.

The control information B(x, y) and y(x, y) can then be
written as

3(x=}’) = hBh(xay) fe
v(x,») =1—B,(x,y)/By(x, ).

Thus, f(x, y) is a direction insensitive estimate of the rela-
tive nonstationarity in the neighborhood of (x, y) and y(x, »)
measures the variability in angle. The exponent e controls the
extent to which the estimate depends on relative or absolute
magnitude. In the coding experiments, a thresholded version
of y(x, y) was used, with little obvious degradation in perform-
ance.

(28b)

0<se<l

(29)

IV. A SUBOPTIMAL IMPLEMENTATION

The major problem with the estimators described above is
the computational one. Even when a dedicated, high-speed
processor of the type described in [37] is available, the sheer
volume of computation on a (512)* image imposes a con-
straint on the size of the filter masks which can be employed.

For this reason, the filters are spatially limited to a square
array of (15)? elements. This imposes certain restrictions on
the allowable shape of the filters: they must be of smooth
variation in the frequency domain if a reasonable finite impulse
response approximation is to be obtained. In order to over-
come this problem, filter functions with the desired properties
have been selected and a least-squares optimization procedure
used to derive the spatial masks [36] .

The isotropic filter H,(+) of (16) is given by

T
ca] o p <09
Hy(p)= 1.8

(30)
0 p>0.9.
The anisotropic filter H,(-, -, *) is
Hy(p, 0, ¢) = Hy(p)H, (6, ¢) GD
with
1 —H{p) p<0.9
1 09<p<n—09
Hy(p) =
m
cos? = (p—7+09) 7—09<p<m  (32)
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H,(0,¢)= %[l + cos ol (0) + sin @H(6)]
H.(0)=cosf
H(0)=sin 6.

Note that because of the ideal interpolation properties of the
trigonometric functions, the anisotropic filter in any direction
can be obtained by interpolation from only three fixed filters.

In (32) = radians corresponds to the maximum image fre-
quency (0.5 cycle/pixel). These functions are illustrated in
Fig. 4. Once again, the choice of (33) for the angular depend-
ence of H,(+) was dictated by the need for interpolation. The
same considerations led to the following choice of line and
edge detectors H,.(-, ) and Hy(+, *)

He(p,0) = H(p)H,(0) (34)

Hy(p, 6) = H.(p)H,(0) (35)

He(p)=exp— [4 lll 2 12 (p/pc)} (36)
In“ B

Hy(0) = cos? § (37)

H(0) = jH,(0) sgn (cos 6). (38)

Unlike the optimal filters, these functions are not depend-
ent on signal-to-noise ratio. In order to provide some measure
of adaptability in this respect, it has been found useful to
reduce the bandwidth of the isotropic filter, i (+) [see (28)],
when the signal-to-noise ratio is low, Similarly, it has proved
advantageous in such circumstances to perform several itera-
tions of the enhancement process. This can be represented by

f‘"(x, PN=F"1 —x,y —yyhsx’' —x,y' —y) n>1

f16x, ) = gx, y). (39)

This has the effect of increasing the rolloff rate of the
filters in a way similar to that which would be obtained in the
optimal solution (18).

V. APPLICATION TO IMAGE RESTORATION

Experiments have been performed to test the utility of the
estimator in the restoration of images corrupted by additive
white Gaussian noise. It has also been used in the pre- and
postprocessing of images coded by the predictive coder de-
scribed in Part II of the paper (cf. Part 11, Section V).

The first experiment was designed to test the filters on a
“noise-free” image. The results of this test are shown in Figs.
5-8. The original image is shown in Fig. 5§ and its associated
control images in Figs. 7 and 8. Examination of Figs. 7 and 8
show how the control information 8(x, ), ¢(x, ¥), and y(x, ¥)
affects the estimate. Note that y(x, y) is nonzero only in highly
curved regions (e.g., around the eyes) and in complex areas,
such as the feathers on the hat. In these regions, therefore,
the estimate is isotropic. In Fig. 6, the effects of two itera-
tions of the filtering algorithm can be seen. Two properties
of the filtered image ar¢ immediately apparent: in areas of
smooth variation it appears less noisy than the original; its
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Fig. 4. Filters used in restoration: isotropic (right); (anisotropic +
isotropic) (left).

Fig. 5. Original image of face.

L 0N
3] £
NCEMENT <2 ITER.)

Fig. 6.

Enhancement of Fig. § (two iterations).
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Fig. 7. First bias image from Fig. 5.

Fig. 8.

Second bias image from Fig. 5.

edges have been enhanced. A closer study reveals the presence
of Mach bands at the edges. The overall result is an image
which many observers prefer to the original. The observed
effects have an obvious relation to the structure of the filter:
low-pass isotropic filtering of areas of smooth variation in-
creases the signal-to-noise ratio therein; directional filtering
in the anisotropic regions removes the more visible noise
components and can (with appropriate weighting functions)
emphasize both edges and lines. That the result should be
pleasing to human viewers is confirmation of the importance
they attach to these features.

When noise is added to the image, similar results are obtain-
able, provided the signal-to-noise ratio is not too low. Figs.
9-11 show the effect of filtering an image containing white
noise with a variance which was 10 percent of the signal
variance. The bias image of Fig. 10 was estimated from the
noisy data (Fig. 9) and two iterations of filtering performed to
give the image of Fig. 11. Under these conditions, there is
virtually no difference between the enhanced image and that
obtained before (Fig. 6). When the signal-to-noise ratio is
reduced still further, a degradation in performance is inevita-
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Fig. 9. Image of Fig. § plus white noise (10 dB S/N).

Fig. 10. Bias image taken from Fig. 9.

L

ATION 4 ITER.

Fig. 11.

Restoration of Fig. 9 (four iterations).

Fig. 12. Image of Fig, 1 plus white noise (-2 dB §/N).

82161-11:2

Fig. 13. Bias image taken from Fig. 1.

ble. Figs. 12-16 show that this is largely due to the difficulty
in estimating the bias image. Fig. 12 shows the image of Fig.
1 corrupted by noise whose variance is approximately equal
to that of the signal (—2 dB S/N ratio). Figs. 15 and 16 show
the effect of four iterations with the filter using bias images
taken from the original (Fig. 13) and noisy pictures (Fig. 14),
respectively. Note that in this case, the complexity measure
Y(x, p) is of no utility because there is too much noise present.
The estimate in this case is obtained by setting y(x, ¥) = 0
everywhere. The loss of resolution in the bias and noise
introduced in low-pass areas of the image show their effects
clearly in this case: genuine features are weakened and spurious
ones introduced. In spite of this, there is still a definite im-
provement in image quality.

While images such as those above constitute an important
class of image, they can hardly be described as representative
of images in general. In particular, neither image contains
much texture. In order to investigate its effect on textures,
the algorithm has been used on two quite different images—a
fingerprint (Fig. 17) and a landscape containing trees and a
lake (Figs. 18-21). Fig. 17 demonstrates the utility of the
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Fig. 17. Restoration of fingerprint: original (left); result of 2 itera-
tions (right).

Fig. 14, Bias image taken from Fig. 12.

Fig. 18. Original landscape.

ORATION 4 ITER.

Fig. 15. Restoration of Fig. 12 using bias of Fig. 13.

Fig. 19. Effect of enhancement operations on Fig. 18.

ORATION 4 ITER. <(“NOISY B

Fig. 16. Restoration of Fig. 12 using bias of Fig. 14.
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Fig. 20. First bias image from Fig. 18.

Fig. 21.

Second bias image from Fig. 18.

algorithm in the “‘cleaning-up” of a fingerprint, the original
of which was very noisy. Thus, in cases where the texture is
coarse relative to the filter dimensions, the algorithms works
well. In the converse case, such a result could hardly be ex-
pected. The fine structure of the foliage in the landscape image
is almost completely removed by filtering, as is apparent from
a comparison of Figs. 18 and 19. The control images (Figs.
20 and 21) give the reason for this: the filters used in estima-
tion of the bias have too low a bandwidth to provide an ade-
quate representation of fine structure. While this effect is
noticeable, it does not seem as objectionable as that produced
by simple low-pass filtering of the image. This suggests that
fine textures are of relatively minor importance in vision.

Taken together, the results show precisely those qualities
of the estimator which could be anticipated from its structure:
smoothing of low-pass regions, enhancement of edges, and
some loss of fine texture. More important, their combined ef-
fect is images which are more acceptable than those obtained
using conventional techniques.
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VI. CONCLUSIONS

An anisotropic nonstationary estimator, based on the “sig-
nal equivalent” approach, has been shown to be optimal for
the class of images which contain significant line and edge
features. The relation of this model to the behavior of the
visual system has been described. It has been shown that a
computationally feasible suboptimal approach is capable of
producing acceptable results from images corrupted by white
noise. A method of estimating the nonstationary control
information has been described and was shown to be effective
except when the noise level is high,

While these results are encouraging, it is evident that to gain
a more general applicability, certain problems must be resolved.
In particular, the procedure used to estimate the bias image
is capable of refinement. A scheme which is more nearly opti-
mal is required when the signal-to-noise ratio in the data is
low. Furthermore, some means of incorporating a fine texture
description into the scheme must be found. It is unfortunate
that these two requirements are to a certain extent contra-
dictory, since fine textures are more than a little “noise-like”
in appearance. In general, there seems no simple way of
recognizing, for a given image, when fine texture is due to
noise and when it is a genuine image property. Only by a
recourse to a more global description of the image can such a
question be answered. However, one of the features of the
“general operator” approach is precisely that it leads to a
hierarchical processing structure [19], [35]. Investigations
are currently under way to see if these ideas can provide the
means for solution of this problem.

With the incorporation of such improvements, the esti-
mator should have wide applicability. As it is at present, it
should prove useful in a number of areas, not simply for
enhancement, but also as a preprocessor for coding and
pattern recognition tasks, since the methods employed are
often particularly sensitive to noise. Furthermore, the methods
described in Section II suggest a new form of distortion
measure [39]. It is hoped to present results in this area soon.
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