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Anisotropic Pseudodifferential Operators o5 Type 1, 1 (*). 

G. GARELLO 

Abstract .  - The author studies boundedness and microlocal properties for a general class of 
pseudodifferential operators of type 1, 1 in the frame of the anisotropic Sobolev spaces. 

I n t r o d u c t i o n .  

Moving from an essentially formal point of view, we say pseudodifferential operator 
on R ~ the linear map from 8(R ~) to 8' (R~), defined by 

(0.0.1) a(x, D) u(x)  = ( 2 z ) - ~ f e  i(x' ~) a(x, ~]) u(~7) dy , 

where ~ represents the Fourier transform of u e 8(R ~) and a(x, ~) ~ 8' (R ~) is the oper- 
ator symbol. 

In the literature of the last 25 years, many general classes of symbols have been in- 
troduced and the problem of their boundedness on suitable weighted Sobolev spaces 
widely studied. 

Particularly in his doctoral thesis [3] and in more recent works [4], [5] G. BOURDAUD 
shows that the pseudodifferential operators in (OpS~176  are 

bounded from Hc~omp(Q) to Hl~(t~), s e R ,  Y2 open subset of R ~. 
For better arguing the pathologies of the pseudodifferential operators of type 1, 1 

H(~RMANDER [11], 1988, points out that 

(o.o.2) 
F 

~* (~, ~]) = ~ o T(~ ,  ~/), T (~ ,  ~]) = ( - ~ ,  ~ + y), 

where the Fourier transform acts only on the x variable and a*(x,  D) is the adjoint of 
the operator a(x, D). After observing that the map T changes the horizontal space 
{(~, 0); ~ e R  ~} into the twisted diagonal {(~, -~ ) ;  ~eR~}, HORMANDER [11] identi- 
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fies the class of all operators in Op S ~ 1 ( ~ )  which are H~-bounded for every s ~R,  the 
set (OpS ~ ~(tg)) A (OpS ~ 1(t9))* and OpS ~ 1(~). This last operator class is given by 
all the pseudodifferential operators in OpS ~ t(t9) whose symbol a(x, ~]) ,~vanishes- in 
a suitable way in a neighborhood of the twisted diagonal. 

In addition, under more restrictive conditions on the symbols, H()RMANDER [11] 
gives a suitable symbolic calculus for adjoint and composition. 

In a recent work [8], starting from the results described above, I introduce a new 
selfadjoint operator algebra contained in OpS~,l(t2) where I consider a somewhat 
more precise symbolic calculus, which leads me to study suitable microlocal properties 
for Sobolev singularities. 

Always suggested by the arguments in H~RMANDER [11], the aim of this paper is to 
investigate the properties of the anisotropic pseudodifferential operators of type 1,1, 
whose symbol is a function in G ~ (t2 • RS), which satisfies, for some anisotropic weight 
function [~]M, M = (M1, ..., Ms) e N  s, Mj >I 1: 

(0.0.3) sup 1~3~a(x,  ~])[ ~< C~,Z,K(1 + [~]M) "~+(M'~-"), 
x e K  

where K is any compact subset of ~ ,  a,  fi are multi-indeces in Z~ and (M, a} = 

= M l a l  + ... + M s a n .  

More precisely using some properties of the anisotropic Littlewood-Paley decompo- 
sition, introduced in w 1, in w 2 I consider some restrictive conditions on the symbols, 
which are necessary and sufficient for the continuity of the respective operators, in the 
frame of the anisotropic Sobolev spaces. In w 3 I set up a suitable symbolic calculus 
which leads me to show in w 4 a microlocal property for anisotropic Sobolev singulari- 
ties. In the second part of this last section, in the more general framework of the inho- 
mogeneous pseudodifferential calculus, I perform a counter-example, which shows as 
the previous result is in some sense optimal. 

Following closely the arguments in HORMANDER [11, w 7], in the last part of w 3 I 
state an inequality of ,,sharp G~rding, type. This result generalizes in some way the 
classic ,,sharp G~rding- inequality, see [10], and its anisotropic version as stated in 
SEGhLA[16]; it may be useful, I hope, in future studies on the propagation of 
singularities. 

At the end let me notice that boundedness and microlocal properties for anisotropic 
paradifferential operators, which are widely studied, in the more general frame of 
quasi-homogeneous Triebel spaces in the works of YAMAZAKI [18], [19], are someway 
confirmed in the present paper. 

1. - An i so trop ic  L i t t l e w o o d - P a l e y  d e c o m p o s i t i o n .  

Let M = (M1, ..., Ms) be an n-tuple of integer positive numbers, each one greater 
or equal than one, and define, for ~ R  s, [~] = [~]M the unique positive root of the 
equation t - 2 M ~  + .~ + t -2M~2 n ~--- 1, [0] = 0. 

The quasi-homogeneous (anisotropic) weight function [~] satisfies the following 
properties, which are widely proved in literature, see for example LASCAR [13]. 
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With standard vectorial notation: 

(1.0.1) [~ + ~] < [~] + [~];  

(1.0.2) min{ l~ l ,  I~I1/M~ ~< [~] ~< I~l, where M0= m axM~; 

(1.0.3) [tM~] = [ ( t M ~ ,  . . . ,  tM~n)] = t[~],  for t > 0 ; 

(1.0.4) [ -  ~] = [~]; 

(1.0.5) [~ - ~] /> I[~] - [~] I ; 

(1.0.6) [~] e e ~ (R ~ \0) and a~[~] = ~ a ( [ ~ 0 ] ) [ ~ ]  1 -(M, a) ,  

where ~o = [~]-M~= ( [ ~ ] - l ) M ~ e z n - 1  and Z~, is a continuous function of TeR+.  
Generally speaking we shall say that a function A(O) is M-homogeneous of degree 

)[ e Z  if A(tMo) = t ' ~ A ( 0 ) ,  for every t > 0. We can easily see that the derivatives of or- 

der a e Z ~  of A(O) are M-homogeneous of degree ~ - (M, a / and moreover A(O) <~ 
c[0] ~, for some constant c > 0. 

Lastly we shall say that WcR~ is M-conic if for every t > 0 ,  tM~ew when 

~eW. 

Let  us consider now c; ~ C ~ (R), 0 ~< of(t) ~< 1, such that, for some K i> 1, supp cp c 

c { t~R;  Itl < K } , ~ ( t )  = 1when Itl < 1/2K, anddefine, forp >10: Fp(~)  = cpp§ 

- q~(~), where c;p(~) = c;([~]/2P). 

Since 

(11 ) 

we can easily Verify that, for every q e N :  ~ q(~) + ~ ~op(~) = 1 and, setting ~o -1(~) = 
p > q  

=~Oo(~), ~ ~Op(~) = 1 .  If  we define now, for every ueS'(R~), up(x) = ~ o p ( D ) u =  
p = - i  

= (2~)-n~ei(X'~)~p(~)g(~)g~, we can introduce the anisotropic Littlewood-Paley 

decomposition: 

(1.1.2) u =  ~ up. 
p = - i  

In the following we will usually assume K = 1. 

Let  us say now that  u ~ 8' (R n) belongs to the Sobolev space H ~  = H~(Rn), s ~R,  if 

the norm 

(1.1.3) IlulIM, = I1(1 + [D]2)~/2ultL~ 

is bounded. 

The properties of the spaces H ~  are similar to those of the usual Sobolev spaces; 

particularly, if we define in the standard way H~.loc(tg), we can show that: 

[J H~, loc(Q)= 0~(Q) ,  ~RH~,loc(Q)= e~(Q) ,  also in the topological sense. 
s ~ R  s 
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PROPERTY !.1. - F o r  every s � 9  u �9 8' (R~% we have u e H~ i f  and only if: 

(1.1.4) Ilup[IL2<~Cp2 -sp , w h e r e  {cp} e/~;  

moreover, for suitable positive constants c, C greater than zero: 

(1.1.5)  llult ,  Z tfu li  2 CIlull , . 
p = - I  

We can also verify that u = ~ v~ �9 H ~  when, for every p = - 1, ..., we have: v~ 
p = - I  

e~, supp ~ c  C~ and (1.1.4) is verified. 

For the proof of the previous Property and more details on the quasi-homogeneous 

Littlewood-Paley decomposition, the reader can see for example Y~M~Z~ [18], where 

H ~  is considered as a special case of Triebel space, and GARELL0 [9], where more gen- 

eral weight functions are introduced. 

Let us now denote briefly S~(Q) ,  instead of Slml, M(~?), the set of symbols a(x, ~7) �9 
�9 r (t9 • R"), which satisfy (0.0.3) ~nd Op S ~ ( ~ )  the respective class of pseudodiffer- 

ential operators defined by (0.0.1). 
For every m �9 R,  S~(t~) are all Fr~chet spaces, with topology defined by taking 

the best constants c~, z, K in (0.0.3) as semi-norms. 
Without any restriction, in what follows, we always consider compactly supported 

pseudodifferential operators, so that they extend to linear operators from (~' ($~) to it- 

self and the Fourier transform ~ can act on the x variable of the respective 

symbols. 
We can now give a first application of the Littlewood-Paley decomposition. 

LEMMA 1.2. - Le$ us consider a(x, ~]) �9 S~(  t~) such that a(x, ~]) = 0 when [~]] < 1/2 

and define, for p >i -1." 

(1.2.1) ~ (~ ,  ~]) = ~p([yl]-M~) ~(~, r]). 

Then: 

(1.2.2) a(x, ~7) = ~ bp(x, ~]), 
p=-I 

where 2 pN bp(x, ~t) is bounded, for each N ~ N, in the topology of S~($~) and the seines 

converges in the same space. 

PROOF. - Let us notice that, for the M-homogeneity of [~], ~ ( ~ )  = F0((2P)-M~), 
p I> 0. If we set now t = 2:[~]] and W�9  8(R ~) the inverse Fourier transform of ~0, we 

have: 

(1.2.3) bp(x, ~]) = 5~1[Fp([Tl]-M~) ~(~, ~)](X, ~]) = 

[ r e(" 5} ~o(t-M~ ) d~*a( . ,  ~l)](x, ~])=t  IM' ~ ( t M ' )  * a(', ~])(x, ~7). 
[J J 
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By using now the Taylor expansion of a(. ,  ~]), centered at x, for a suitable No > 0, we 

have: 

(1.2.4) bp(x,~])= ~, (a!)-t t iMl~(tM')*9~a(x,~])( '--X)a+ 
l~t <No 

+ 
1 

tiM, ~(tM.) . ~(1-- T) 3~a(x + T(. - x ) ,  ~)(. - x ) " d T .  
laB =No 

0 

Since for a �9 z ~  : 

(1.2.5) ftJMJT(tMy) yady= f ~ (  -M a y)(t y) dy = 

= t -(M, all ~g(y) yady = t -<M, a>( _ D)~F o(0) = 0,  

each term in the sum in the first line of (1.2.4) identically vanishes. 

In order to estimate the remainder notice that, for every a e ~+ 

(1.2.6) t<M, at f tlMt iT(t My) i ]y~idy = f [T(y)] [y]4~ldy <<.Cl~ .. 

Since [3~a(x + Ty, ~) [ <~ c~(1 + [~])m+ (M, a> and ~] is far from the origin, for every in- 
teger N > 0 we may estimate: 

(1.2.7) ]bp(x,r]) I <~ ~, Ca2-pIM'~>(I+[~I])m<~CN2-PN(I+[~?]) "~. 
I~1 =N 

In order to evaluate the derivatives let us notice that differentiation with respect to 

the x variables only involves the symbol a(x, ~). By regards to the derivatives with re- 
spect to the ~ variables we can observe that 

(1.2.8) ~ (G(t)) = ~,G(q)(t) J l t . . .  J q t  ; 
q 

q 

with 1 ~< q ~< t7] and ~ • j  : ~'. Then 
j = l  

(1.2.9) 3~(G(t)) = [~]-<M, ~/~Zq([~o] ) tqG(q)(t), 
q 

with •q defined by (1.0.6) and ~ o ~ S  n - 1  

Let us observe now that: 

(1.2.10) ' 

\ tit! 
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thus 

(1.2.11) [~ ](M, y)2~ (t IMI T ( tMy) )  = ~?~Z q([~o]) t IMI ~ Ch t w(tMy) = 

= ~CkXk([~o]) t IMI ~k ( tMy) ;  
k 

with Tk ( tMy )  = (t(d/dt) ) k T( tMy) .  

Now 

Let us observe that: 

(1.2.13) ~t]k(tMy)(~)=t-IMl~k(t-M~)=t -IMI t - ~  

Setting now ~= t-M~ and ~ = ( - M I ~ I ,  . . . ,  - M n ~ n )  we have: 

(1.2.14) Tk(~) = t - =  t - M ~ ) =  t - - -  ~ ) =  ~, ~(~) ,  
at ar 

since t ( a ~ j / 3 t ) =  - t M j t - M ~ - I ~ j  = _ MN~j. Finally supp Tkc W o, then arguing as in 
the proof of (1.2.7), we obtain: 

(1.2.15) 19~bp(x, rl) l << CN2-PN(1 + [~/]),~-(M, a), 

which conclude ~he proof. 

Following closely the proof in HORMANDER [11, Proposition 2.2] and keeeping in 
mind (1.0.2) and (1.0.6), we can state: 

LEMMA 1.3. - Let us suppose that a(x, r]) has bounded derivatives of  each order 
which are rapidly decreasing as r] tends to infinitive, then a(x, D) is continuous f r o m  
H ~ ~, loc ( Y2 ) to L2,1o~ ( Q ) for  each positive s . Moreover its norm in 2( H ~ ~ , L2) is bound- 
ed by 

, E sup I la~a~a(x ,  ~7) 1( 1+  [~7]Yd~]. (1.3.1) C~ tl~i ~<~+ 1 
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I f  a*(x, ~) is the symbol of the adjoint operator of a(x, D), for arbitrary positive 
integers L, N: 

[~]])L [ a*(x, ~l)-- ~ (a!) -1D~ 8aa(x, ~) ] <~ (1.3.2) s u p ( l +  
X, ~l ] a < N  I 

<~ CL, M Y-, sup ]~]r g~8~a(x, ~1)]. 
[a] + lfi] + ]~/] <~2N + L + 2n  + l ,  ]fl] >~ N x,  y 

Setting now c(x, D) = b(x, D) a(x, D), with b(x, ~l) satisfying the same properties 
of a(x, ~/), we have: 

(1.3.3) sup(l~,, + [~I])L ] c(x, ~]) -- (a!)-l S~b(x, ~l) D~a(x, ~/)] ~< 
lal < N  

<~ CN, L ~ sup 1~17 8~ b(x, ~7) D~ a(x, ~l). 
] a ] + I f l ] + ] y ] < ~ 2 N + L + 2 n + l ,  Ifl]>~N x,~l 

THEOREM 1.4. - Let a(x, ~]) be in CN(R 2n) and assume that 

(1.4.1) 18 a a(x, ~/) I <~ 1 when l al = N x, r ]  

I f  the norm H of a(x, D) as operator in L2 is less than one, then: 

(1.4.2) ]a~,va(x, ~/)] <<.eN H(N-IaI)/(N+~), ]a] < N .  

For  the proof see HORMANDER [11, Theorem A.1] 

REMARK. - (1.4.1) applies to b(x, ~1) = (AB)-M~ (B/A)M~]) where A, B 

are chosen greater  or equal than one, M0 = m.axMj, a(x, ~1)eCN(R 2~) and satis- 
lies: J 

(1.4.3) ]8~$~a(x, r])] <~A(M'a)B (M'fi), ]a +fi]  = N .  

Moreover, for every p(x, ~1)~ 8'(R 2~) and T > 0, we have: 

(1.4.4) p(T-Mx, TM D) u(x) = [p( . ,  D) u(TM.)](T-M.); 

then, if p(x, D) is bounded as operator in Lz, 

(1.4.5) liP( T - i x ,  TM D) Ul]L2 <~ liP(X, D)]]z(L2)]]U]]L~. 

If we suppose now that the norm H of a(x, D) as operator in L2 is bounded by (AB) M~ 
using (1.4.2) we can conclude: 

(1.4.6) ]8 7 8~a(x, ~l) ] <~ (A/B) (M' ~ ~>(AB) M~ + 1~1 +~)/(N+~))H(N-I~1- I~I)/(N+~), 

where for great  N the right hand side reads (AB) Mo((M' ~+~I+~)(A/B) (M' a-~IH. 

At the end of this section let us quote a technical lemma which is essentially shown 
in HORMANDER [11, proof of Lemma 3.2]. 
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LEMMA 1.5. - Let us set, for arbitrary s E R and ~ e Rn: 

(1.5.1) F(~) = (1 + Q(~)2)~E(22p + Q(~)2)-~, 
P 

where the sum is extended to p >I 0 such that ( Q( ~ ) ) / (2( 2A + 1)) < 2 p < 2B(Q(~) + 1), 

A I> 1, B t> 1. We can then verify, for every ~ e R ~: 

(1.5.1) F ( ~ )  ~< 81~, ( l o g 2 ( 8 A  + 4 )  + (1 - (8B)-2~)/s). 

2. - Continuity. 

LEMMA 2.1. - Let a(x, 7) be in S~(P.) and satisfy: 

(2.1.1) a(~, 7) = O when [~] >A([7]  + 1) or [~ + 7] + 1 < [7 ] /B ,  

then a(x, D) is continuous from ~+'~ H~, lot(Q) to H~. loe(~), for every s e R .  

PROOF. - Since a(x, D) u = a(x, D)(1 + [D]2)-'~/2(1 + [D]2) ~/2 let us suppose that 

m = 0. By means of the Littlewood-Paley decomposition we can write 

(2.1.2) u =  ~ up and a(x ,D)  u :  ~ a(x ,D)  u p :  ~ h r. 
p =  - 1  p =  - 1  p =  - 1  

Since 

(2.1.3) 

using the hypotesis (2.1.1) we can assure that a ( ~ - 7 ,  7) identically vanishes if 
[~ - 7] >A([7] + 1) or [~] + 1 < [7]lB. Recalling that 2 p+I < [7] < 2p+1 in the sup- 

port of ~pp, using also (1.0.5) we can conclude: 

(2.1.4) h p ( ~ ) c I ~ e R  n" 2 P - I - B  supp 
' B [ 

Thus for a suitable constant N > 0 : 

< [~] < (2A + 1)2P+1]. 

i hq+j 2L2 (2.1.5) livq(D) a(x, D) utt2L2 = ~ ~fq(D) < 2N ~, Ilhq+jll2L2. 
-N<j<N -N<j<N 

By obse~-~ing now that hp = ~ a(x, D) ~ §  up, we can easily conclude that 
l ~ < k ~ l  

the symbol bp(x, 7) = ~, a((2P)-MX,(2P)M7)Fp+k((2P)M 7) has bounded support 
- ! ~ < k ~ < l  

by respect to ~]. Using then (1.3.1) and restoring the former variables we obtain 

(2.1.6) II hq ilL2 <~ C~ 11Uq IIL~, 

which, in view of Property 1.1, ends the proof. 
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REMARK 2.2. - In order to better investigate the norm of a(x, D) as bounded linear 

operator, let us first notice that, in view of (1.3.1), bp(x, D) defined above is continuous 

from H~ to L2, with norm bounded by c~(a), for every s ~R.  Then by a change of vari- 

able we obtain: 

(2.2.1) 11(2 ~ + [D]2)~/2hp]lL~ ~ c~(a)2P~]IUpl]L~. 

Moreover by the Cauchy Schwarz inequality we have: 

(1 + [~]2)~ ~< (1 + [~]2)~ ~ (22P + [~]2)-s ~ (22p + 
= - p = - 1  p =  - 1  

where the first factor in the right-hand side is bounded by (1.5.1). We can then con- 

clude, using also Property 1.1 and the remark which follows, that the norm of a(x, D) in 

2 (H~ +~, H~) is bounded by 

(2.2.2) c~(a)4Ol~l/2(log2(8A + 4) + (1 - (8B)-2~)/s) U2 , 

where c~(a) is a seminorm in S~(Q) .  

THEOREM 2.3. - Let a(x, ~1) be in S~(Q)  and satisfy 

(2.3.1) ~(~, ~1) = 0 when [~ + ~l] + 1 < [rl]/B, B >I 1, 

then a( x , D) is bounded from H~+, I~ ( Q ) to H~, lor ( f2 ) for every s E R .  Moreover its op- 
erator norm in ~r + ~, H~) is bounded by 

(2.3.2) c~(a) ((1 - ( 8 B ) - 2 ~ ) / s )  ~/2 , 

where c~( a ) is a seminorm in S~  ( t~ ) such that c~(a)40-1~1/2 is an increasing function 

o fs .  

PROOF. - Let us decompose: 

(2.3.3) a(x, D) = a(x, D) ~o(D) + a(x, D)(1 - cf 0(D)),  

where the first term in the right-hand side is in 2(H~,  H~), for every t, s ~ R ; we can 
then suppose that a(x, t]) identically vanishes for [y] < 1/2 and apply Property 1.2; 

then a(x, ~l) = ~ bp(x, t]), with 2PNbp(x, ~l) bounded in S~(tg).  The hypotesis (2.3.1) 
p = - I  

is inherited by any term in the sum and moreover each of them identically vanishes 
when [~] > 2P+l[r]]. Applying now term by term Lemma 2.1 and Remark 2.2 we can 

conclude that the operator norm of a(x, D) in 2(H~ +'~, H~) is bounded by 

(2.3.4) C~(a)(1 + (1 - 8B)-2~/s) l/2 + ~ ( (2p)  1/2 + ((1 - (8B)-e~)/s)~/2)2-P, 
p = - I  

then by 

(2.3.5) c~' (a)(1 + (1 - (8B)-2S)/s)l/2. 
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Changing the constant c.~ again we can drop the first term since the convexity of the ex- 
ponential function assures that ( 1 -  (SB)-e~/2s)  is greater  than 

(2.3.6) 
(1 -8-2~)/2s >t 8 -2*log8, 

log (8B) i> log 8 ,  s ~< 0 .  

s > 0 ,  

LEMMA 2.4. - For s e R,  s < O, let a(x, D) e O p S ~  be bounded in H~, ~o~( Q ). I f  
we set now 

(2.4.1) ~ ( ~ ,  77) = ~ cf0((B/2~)M(~+ ~]))F~(~7) 5(~, ~7), B ~>1 , 
2P>B 

we obtain the r estimates for the symbol c(x, ~7): 

(2.4.2) [~3~c~(x ,  ~])1 <Ca,~,s BM~176 ~- [~]])(M, fl a} 

PROOF. - For  R ~  > 1 let us introduce the symbol aR(X, ~7)=a(x, ~]) w0(R-M~]). 
Since in the support  of F o ( R  M~) we have (1 + [y]2)~/2 > R/2,  a(x, D) has norm L as 

operator on H ~  and s is negative, we can easily conclude: 

(2.4.3) 

(R)s 
]taR(x, D)~iI~,. IlultL . 

In view of (1.4.4) and (1.4.5) we have then: 

L 
(2.4.4) ]i(1 + [RMD]2)~/2aR(R MX, RMD) UlIL2 <<- 2-- ~ R ~ IlU[]L2. 

Since ~0(~)  ~< 1 and, in supp~0(BM~) ,  [~] < B  ~, we have: ( R - 2 +  [~]2)-~/2< 
~< (R -2 + B -2) .~/2, for s < 0. 

Then if we denote by bRB(X, D) the product to the left of aR(R -Mx, RMD) by 
q~o(BMD) and we suppose also R > B :  

(2.4.5) libRa(X, D) UlIL2 <~ (R -2 + B -z)-~/2 li(R -2 + [D]2)~/2aR(R MX, RMD) U[IL~ <~ 

<<. (R -2 + B -2)-~/2R -~11(1 + [RMD]2)'~/2aR(R MX, RMD)]]L~ <~ L2-(3/2)~B~NUHL2, 

then bRB(X, D) is L2 bounded with norm less than L2-(3/2)~B ~. 
Moreover, if ~ is the inverse Fourier  transform of cp 0, we have: 

(2.4.6) bR~(~, ~]) = R IMI q~o(BM(~ + ~])) ~R(RM~, RM~]), 

(2.4.7) bRB(x, ~7) =B -IMI fe-~(~,,)cp(B-My) aR(R M(X-- y), RU~l) dy.  

The derivatives of bRB(X, ~7) with respect  to x are uniformly bounded, but  differenti- 

ation by ~] produces factors y. The best  estimate we can give is so: 

(2.4.8) ] 3~ a~bRB(X, ~])[ <~ c~,~B (M' a). 
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Using then Theorem 1.4 and the remark which follows it, we have: 

( 2 . 4 . 9 )  ]3~3~bRB(X, Y) l <~ C~,~, ~B M~ ~+Z)+(M, ~ Z)+io~+~, 

which is obviously significative only for great negative s. 
Returning now to the original variables we have: 

(2.4.10) R I/I bnB(R - i ~ ,  R - i ~  l) = cfo((B/R)M(~ + ~1)) ~(RM~, 0) ~fo(R -My). 

Then, for R = 2P: 

(2.4.11) CB(~, 0) = ~ (2p) IMIb2~B((2P)-M~,(2P)-MY), 
2P>B 

(2.4.12) CB(X, 0) = ~ b2PB((2P)Mx,(2P)-MY) , 
2P>B 

since 1 + [ 0 ] -  2P in s u p p  b2PB((2P)-M~, (2P)-My), we plainly obtain (2.4.2). 

Let us consider now the cutoff function X �9 C~ (R2~) such that: 

(2.5.1) supp~/c {(~, 0) �9 [~] ~< [Y], [0] I> 1}; 

(2.5.2) X(~, 0) =1 in {(~, y) �9 2[~] ~< [y], [0] t>2}; 

(2.5.3) ~/(~, 0) is M-homogeneous of degree 0 for [0]/> 2. 

THEOREM 2.5. - Let us define for a(x, 0) eS~  and 0 < E < 1: 

(2.5.4) ~x(~, 0) =)/(~ + 0, eMY) a(~, 0), 

with X(~, 0) defined above; then a( x, D) is bounded from H~, loc(t9) to itself for every 
s �9 R if  and only if  the estimate 

(2.5.5) 19~9~a~x( x, 0) 1 <~ Ca,~,N~N( 1 + [y])(M,~-a), 

is satisfied for every N �9 N. 

PROOF. - Let us notice that, for e < 1/4B, 

(2.5.6) ~, Cfo((B/2P)M o)~f p(y) = 1 when X(0, eMy) ~ O, 
2P>~B 

since in supp~/(0, s i y )  we have e[y] >11, that is [y] ~>4B; then using the prop- 
erties of the Littlewood-Paley decomposition we have ~ ~Vp(y)= 1. Moreover 

2P>~B 

[0] ~< ~[y], then in supp ~f p(y) we have [(B/2P) M 0] ~< Be[N]/2 p ~< 2Be ~< 1/2 that ira- 
plies c; o ((B/2P) M 0) = 1. 

We can then show: 

1 
(2.5.7) a~x(~, 0) =X(~ + Y, �9 CB(~, Y) when B e <  - ; 

4 
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with CB(~, ~]) defined in (2.4.1). Consequentely if we define ~(x, ~]) the inverse Fourier 
transform of X(~, ~]), we have: 

(2.5.8) a~z(x, ~]) = ~ 1  (X(~ + ~, ~M~]) CB(~, ~]))= 

= e -~ '  ~)-~(', ~M~]). CB(', ~]) = ]E(y ,  sM~ 7) e -i(y. '~)CB(X -- y, ~7) dy .  

Using now (2.4.2), the derivatives " 3, a~a~x(x, ~]), a, f i e Z S ,  may be estimated by: 

(2.5.9) E Cj 3M~ -a-fl+J}+(M'fi-a+J)-M~ ~(1 + [~]])(M,Z-~§ lU/Y ' ~)idy ' 
j<.a 

where Uj(y, ~7) = 3J ( e -~(~,')F.(y, eMil)). Now: 

(2.5.10) y~2J -~z (Y ,  sM~7) = 5 : ~ ( ( ~ 2 { - ~ I ( ~ ,  zM~?))= 

Since Z(~, ~) is M-homogeneous of degree O, for large ~, then the L~-norm of 
5:-~((~8~-~/(~,  ~))(y,  ~), with respect to the y variable, is M-homogeneous of de- 

gree - ( M ,  j), hence it is bounded by c[~/] (M,j); we can thus conclude: 

]]y~aJ-~Z(y, sM~7)HL~(~) <~ e-tM'~)(1 + [~]]) (M,j)<~ s-(M,J)(1 + [y]) (i,j>. (2.5.11) 

Then: 

(2.5.12) 37 $xa,z(x, ~1) [ <<- c~, 8, ~ -M~ a+fi>- <M, a--fi}-Mon-*(1 + [?]]){M, B-a} 

In order to prove the if part, let us decompose: 

(2.5.13) a(x, D) = a(x, D) - alx(x, D) + ~ as-pz(x, D) - a2-p-~x(x, D). 
p=0 

From (2.5.2) we have: 

(2.5.14) X ( ~ + q , 2 - P ~ ] ) - ~ / ( ~ + q , 2  P - l y ) = 0 ,  when [ ~ ] + ~ ] ~ < 2 - P - 2 [ r ] ] .  

We can then apply Theorem 2.3 to every term in the right-hand side of of (2.5.13); using 
also (2.5.5) we can end that each one has norm in 2(H s) bounded by C~2-pY, for every 
N e N ,  which assures that a(x, D)e2(HS) .  

REMARK. - (2.5.5) reads as a necessary and sufficient condition in order to have con- 
tinuity for every s e R .  On the other hand (2.5.12) shows that, for fLxed suitably large 
negative order s, a great gap exists between such necessary and sufficient conditions. 
For deeply arguing on this arguments the reader can see HORMANDER [11, Theorem 

3.6], [12]. 

REMARK. - In the following we will always denote by S~(Ig) the set of all the sym- 
bols in S~(YI), m e R ,  which satisfy (2.5.4), that is which maps continuously H~, 1or 

into H~:1o'~(Y2), for every s e R .  
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3. - S y m b o l i c  c a l c u l u s .  

LEMMA 3.1. - Let us consider a( x, ~] ) e S~ ( $2 ) such that, for some N e N, r e R + ,  
~xa(X, ~])ezm+(M'~)-r(~), when Ifil =N,  and moreover ~(~, y) satisfies (2.3.1). 
Then: 

(3.1.1) ~*(~, ~]) = 0 when [~ + y] >B([~]] + 1), 

and we have the following estimates: 

(3.1.2) 
8~8~(a*(x,  ~])-~1.~1 <N(2!)-i I 

<~ c,,z(a) B(B m+(M'z-")-*" + 1)(1 + [~]])'~+ (M, fl-a)-r 

where c~,~(a) are sum of seminorms of 9~a(x, ~]) in S~+(M'Y)-~(Y$), I~1 =N. 

PROOF. - Let us decompose a(x, ~]) = ~ %(x, ~) and notice that, for p > 0 the 
symbol p = - 1 

(3.1.3) Ap(x, ~7) =ap((2B)-Mx,(2P)M~])2-~P=a((2P)-Mx,(2P)M~7)~O(~])2-mP 

identically vanishes for [~]] > 1. We can then estimate: 

(3.1.4) la~3~Ap( x, ~)1 ~<c~,z(a) 2 - ~  for 1,81 >~N; 

where c~,z(a) are semi-norms of a(x, ~7) i n  S~I+(M'y}-r(~), 171 =N. Let us denote 
now A~(x,  D) and a~(x, D) the adjoints of the operators Ap(x, D) and %(x, D) re- 
spectively. Applying then (1.3.2) we obtain, for L positive integer: 

(3.~.5) (l  ,alE<N(a!)-I~DaAp(X'~]) I ~CL'N2-vP 

Since a~(x, ~]) = 2~PAp * ((2P)Mx, (2P)-My) we have: 

(3.1.6) I o,*(x, ,,)- ,,)1 c~ N2(~-~')P(1 + [ (2P) -Mr ] ] )  -L .  
I lal < m  I 

For ~*(~, ~])= 7 ( - ~ ,  ~+~]), (3.1.1) immediately follows. Moreover, since we have 
2 ~-1 ~< [~]] ~<2 p+i in supp ~p(~, ~]), 

(3.1.7) 2P-1 ~< [~7] + ~<2P+1 in supp ~ ( ~ ,  ~]) ; 

(3.1.8) B([y] + 1) I> 2 p-1 

Then, for [~]] ~< 1, the series 

(3.1.9) B(x, r]) = ~ (x, r])- 
0 . 

in supp gp* (~, ~]). 

(a!) -13~ a~ap(x, -~) 
lal<N 

has at most log2(8B) terms different from 0 and applying (3.1.6), with L = 0, each term 
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may be estimated by B ~ - ~  + 1. For  [~]] > 1 let us consider in (3.1.6) the smallest con- 

stant L I> 0 such that  L + m - r 1> 1. Observing that  now the terms different from 0 are 

at most log22B([~]] + 1), we obtain: 

(3.1.10) IB( x, ~]) t <~ CL ~ 2('~-~+L)P[~]] -L ~< 
p=O 

<~ 2CL (2B([~7] + 1) )~-~+ L[~7]-L <~ c[.B~-~ + L(1 + [~]])m-~, 

which shows (3.1.2) when a = fi = 0. The general statement follows immediately if, ar- 

guing as in HORMANDER [11, Lemma 4.1], we observe that: 

(3.1.11) ( 8~D~ a)*(x, ~]) = 8~D~ a*(x,  ~7). 

LEMMA 3.2. - For m, r e R ,  r>~0, let us consider a(x, ~])eS~(Y2) such that 
9~a(x, ~]) eZ~I+{M'Z>-r($~) when ]fil = N, N positive integer, moreover let ~(~, ~]) sat- 
isfy (2.1.1). 

I f  we set now c(x, D) = b(x, D) a(x, D) with b(x, 71) e S~(Y2) we have: 

(3.2.1) (~!)-lS~b(x, y) D~a(x, 77)) <~ 
1~1 <N 

~ Ca, fl(AB)K(a, fl, N,n,r,#)(1 ~_ [~]])m+ff+(M, f l -a)-r  

PROOF. - First  let us recall that: 

(3.2.2) c(x, ~/) = (2z)-~ie~<X' ~ 0 + r]) ~(0, 7 )dO.  

Differentiation with respect to ~]j acts simmetrically on a(x, ~]), b(x, ~]), lowering the 

degree, (in [~]]) by Mj. Since 0j~(0, ~7) is the Fourier transform of Dxja(x, ~]), also the 

derivatives with respect to x act on a(x, ~7), b(x, ~]) raising the degree by My. It  sufficies 

then to consider a = fi = 0. Since (2.1.1) holds, when 0 belongs to supp ~(. ,  ~]) we 

have: 

(3.2.3) [0] ~< A(1 + [~]]), [~]] ~< B(1 + [0 + ~]]); 

(3.2.4) [0 + 7] ~<A(1 + [7]) + [~]]. 

Let  us suppose first that  [~7] ~< 2B. Then [0 + ~]] ~< 2AB + A + 2B. Thus, introduc- 
ing a factor ~ 0((10AB)-M(0 + ~])) in (3.2.2), c(x, 7) does not change. Now [7] is bound- 

ed in the support of the symbols 

[A(x ,  7) =a(x,  ~]) ~0((4B)-M~7) and 
(3.2.5) J 

t B(x, 7) = b(x, ~7) q~o((lOAB)-Mr]) �9 

We can then apply (1.3.3) with L = N = 0, pointing out that, when [7] < 2B,  the symbol 
of B(x, D)A(x ,  D) is equal to that  of b(x, D) a(x, D), the lemma is so proved in this 

case. 
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Let now [r]] be greater than 2B and set T =  [r]]; from (3.2.3) we easily obtain 

T<~2B[O+~]], [O+~]<~(2A+I)T.  We can then change a(x,~7), b(x,~]) into 

aT(X, ~]), bT(X, r]), defined by: 

(3.2.6) 

bT(X, ~) = b(x, ~) C~o((2T(2A + 1))-M~)--  ~o - ~  ~ , 

without changing c(x, ~7) when [~]] = T. 

All the derivatives of the functions 

(3.2.7) 8~AT(X, ~)= 8~(aT(T-Mx, TM~))T-~+~= 

=~fo(~)a(T-Mx, TM~) T-re+r, I Y [ = N ;  

(3.2.8) BT(X, ~) = bT(T-Mx, TM~) T -~ = 

= b(T-Mx, TM~)[Cfo((4A + 2)M~) -- rf 0((4B)M~)] T - " ;  

are bounded by a power of AB and a seminorm of 8~a(x, ~) in S~+(M'r>-~(~) and 

b(x, ~) in S~(tg). Moreover [~] ~< 4A + 2 in their supports. 
Since c(T-Mx, TM~]) is equal to the symbol of Tm+Z-~BT(X, D)AT(x, D), for 

[~]] = 1, we obtain the result applying (1.3.3) with L = 0 and a suitable N. 

REMARK. - The hypotesis (2.1.1) may be weakened dropping down the first assump- 

tion, by means of Lemma 1.2; we argue essentially as in the first part of the proof of 

Theorem 2.3. 

DEFINITION 3.3.-  For m, r e R ,  r > O, we define S~, ~($~) the set of all the symbols 
a(x, ~7) ~ [;~( Q) such that, for N suitable positive integer: 

(3.3.1) 8~a(x, ~])eS~+(M'Z):r(tg) when ]fl] = N .  

THEOREM 3.4. - Let a(x, ~7)eS~.r(Q), b(x, ~])eS~(Q), m, z e R ;  then if  we set 
c(x, D) = b(x, D) a(x, D), we have, for a suitable large integer N: 

(3.4.1) ~)(x, ~]) = a * ( x ,  ~?)- ~ (a!)-~8~D~a(x, ~7)eS~ r (Q);  
lal<N 

(3.4.2) R(x, ~]) =c(x, 71)- ~ (a!)-lS~b(x, ~l)Dxa(X , ~] )eS~+ ' - r (g2) .  
lal <N 

PROOF. - For 0 < s < 1 let a~x(x, ~) be defined as in (2.5.4) and consider: 

(3.4.3) ~)~x(x, ~]) = (a~x(x, ~7))* - E (a!)-l S~D~a~x(x, ~]). 
lal<N 
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Decomposing now a(x, ,7) and e(x, ,7) as in (2.5.13) we immediately obtain: 

(3.4.4) a*(x ,  ~) = (a(x, ~) - a~(x, ~))* + ~ (c~ ~z(x, ,7) - a~ ~-~(x, ,7))* ; 
p=O 

(3.4.5) ~(x, ,7) =~(x,  ,7)-  e ~ ( x ,  ,7)+ ~ ~e-,~(x, ~]) - ~e-~-~z(x, ,7). 
p=O 

Since $~a~z(x , ,7) follows from (2.5.4) starting from ~a(x ,  ,7), we can show, for suitable 
N and lYl = N  

~ ~ for every J > 0 .  (3.4.6) 13~ ~ ( 3 ~ a ~  (x, ,7))I ~<C~,z.~ ~](1+ [r]]) r~+li'~+~-~) ~, 

Arguing as in the last part of the proof of Theorem 2.5, applying now Lemma 3.1 and 
(3.4.3), we can state that each summand in the right-hand side of (3.4.5) is bounded in 
S ~ - ~ ( ~ )  by e~2-~N; then ~(x, ,7)eS~-~(Q) .  

In order to show (3.4.2) we argue as above using now Lemma 3.2, and the proof is so 
concluded. 

Let a(x, ,7) e S~(~)  satisfy only the hypotesis (2.3.1); applying then (3.1.3) we can 
say that ( 1 + [~]j)L tAp, (x, ,7) l ~< CL. We may then argue as in the last part of the proof 
of Lemma 3.1; we obtain so (3.1.1) and moreover: 

(3.5.1) 13~3~a*(x, r])] <~c~,z(a)B(B'~+(M,~-~)+ I)(1 + [?]])m+(M, fl-a), 

with c~,z(a) seminorms in S~(tg).  
Again, for a(x, 7) eS~(t~) which satisfies (2.1.1) and b(x, ,7) eS~(F2), let us refer 

to the proof of Lemma 3.2. When we apply (1.3.3) we clearly loose the gain of order - r 
in the estimates of the derivatives of order {fl[ ~> N with respect to the x variable; how- 
ever we can still verify that: 

(3.5.2) t ~ ~ c(x, ,7) 1 <" c~,z( AB)k(~'z' m'~)(1 + [~]]),~+ <M. ~- ~>, 

with c~,z product of seminorms of a(x, '7)eS~(Q) and b(x, ,7)eS/~(Q). 
Arguing now as in the proof of Theorem 3.4, with particular attention to (3.4.4) we 

can assure that, for a(x, ,7) e SD(~9) and b(x, 7) eS~(Y2), we have: 

(3.5.3) a*(x ,  ,7) e S~(Y2) and c(x, ~) e S ~ + ~ ( Q ) .  

Let us consider now a(x, ,7)eS~(~)  such that a*(x, D)= (a(x, D))* belongs to 
Op S~(t~). We can then decompose the symbol of the adjoint operator: a*(x, D) = 
= Bl(x, D) + B2(x, D) where the first term in the right-hand side is in 2(Hb, H~) for 
every t, s e R  and B2(x, ,7) identically vanishes when [,7] < 1/2. 

We can set now B2(x, ,7) = ~ bp(x, ,7), where in the notation of the anisotropic 
p ~  - 1  

Littlewood-Paley decomposition, bp(~, ~])= cfp([~]]-M~)B2(~, ~)- 
In view of Lemma 1.2, 2plVbp(x, 17) is bounded in S~(tg), for any N > 0. Since [~] >1 

>t 2 p - 1 [y], we argue, for p i> 2, [~ ] + ,7 I> [,7] in supp b~ (x, ,7), which, in view of Lemma 
3.1, implies that, for every N e N ,  2PN%(x, '7) = 2 pNb *(x, ,7) is bounded in S~(tg)  by 
an estimate like (3.1.2), for every B >I 1. Moreover [~] <~ [~ + ,7] in supp ~ (~ ,  ~), then, 
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when 9/(~+r], t~M7]) ;~0, we have [~+7]  ~<~[~]] ~<~([~+~]]+ [~]]), hence [~+~]] ~< 
~< ~[~]/1 - e. So X(~ + Y, eM~?) %(~, ~]) = 0 if 2~+~S/1 -- e ~< 1; then: 

(3.5.4) ~x(~ + ~]) = ~ ~(~ + r], eM~]) ~ (~ ,  ~]) +9~(~ + ~], ~M~]) ~1(~, ~]), 
2 p > (1 - s)/2~ 

where at any rate p I> - 1. Arguing now as in the proof of (2.5.12), we obtain, for every 

N > 0 :  

(3.5.5) ]3~3~5~x(x, ~7) I <<-C,,z, NeN(I + [~]]) m+(M'~-~) , 

which, jointly with Theorem 2.5, shows: 

0<~<1, 

THEOREM 3.5. - For a(x, ~7) �9 S~(f2), m � 9  the following statements are equiva- 

lent: 

(3.5.6) a(x, D) � 9  H~-m), for every s e R  ; 

(3.5.7) a(x, ~7) �9 S~(Q)  ; 

(3.5.8) (a(x, D) )* �9 0pS~( tg ) .  

Let us observe again that for a(x, ~7) �9 S~(t~), b(x, 77) �9 S~(T~), by means of (3.5.3) 
and the previous Theorem, since (b(x, D) a(x, D))* = a(x, D)*b(x, D)* is in 
OpS~+~(Q) we obtain: 

(3.5.9) a(x, D)b(x, D) e 0p S~+Z(tg). 

We can then conclude that the operator space: 

Op S~  = OpSM~ (t~) n (OpS~ * 

is a selfadjoint operator algebra. 
Applying now all the arguments in GARELLO [8,  w 1] we can state the follow- 

ing 

THEOREM 3.6. - For every r > O, the operator space OpS ~ r(f l)  is a selfadjoint op- 
erator algebra; moreover the remainder ~(x, ~7) and the expansion in the right-hand 
side of (3.4.1) are respectively in the symbol spaces SMr(f2) and S ~ ~(F2). 

Following closely H()RMANDER [11, Theorem 7.1] we shall prove an inequality of 

,,sharp G~rding, type, which may be useful in the application of operators in 
Op S~, r(f l )  to the study of propagation of singularities. The theorem we will prove now 
includes both the classical ,<sharp G~rding, inequality, as stated in H{)RMANDER [10, 
Theorem 18.1.4] and its extension to anisotropic pseudodifferential operators, showed 
in SEGhLA [16, Theorem 4.8]. 

THEOREM 3 . 7 . -  For m e R ,  O < r < 2 ,  Mo=maxMj ,  let us consider a(x, ~])e 
2 

~ m  + (M, fl} e S~(Q) ,  such that ~ a ( x ,  ~]) e S 1 ,  1 -2M~ when Ifil = 2. I f ~ a ( x ,  ~]) >t 0 then 
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for  some C > 0: 

(3.7.1) 9~(a(x,  D) u ,  u) >f - Cltull~.,_.r)/~o 

PROOF. - Following the proof  in [11, T h e o r e m  7.1], we obtain r ight ly  f rom the  

hypotesis ,  

(3.7.2) $~a(x,  ~]) ~S~1-r~M'fi)-M~ +(~ r)(M, f l)(~),  Ifil ~<2, 

and we can set, for  p = 0, 1, ... : 

(3.7.3) b~(x, ~]) = I f F(qM(x - y) '  q~M(y _ O))a~(y, 0) dydO = 

: ] / v ( q : y ,  y, , -  e) dy e, 

where  % = 2 p(~-~/2) and ~ ( ~ -  ~])~ 8(R 2~) is an even function such that:  

(3.7.4) f i F ( x ,  ~7) d x d r ] = l ,  (F(x ,  D) u,  u)>~O, u e 8 ( R ' ) .  

Since the opera to r  ~ ( q y ( x  - y), qgM(D - 0))  is positive and 9lap(y,  0) >I O, it follows 

tha t  bp(x, D) + bp(x, D)* >I O. L e t  us split n o w % ( x ,  ~]) = bp(x, ~7) + cp(x, ~]), the  p roof  

~m--r 
will be comple ted  if we show tha t  c( x , ~] ) = ~,cp ( x , ~] ) e S M ( t~ ). 

At f i rs t  let  us show that ,  for  any N > 0, 0 

(3.7.5) Icp(x,~l) l~<CN(2P+[y])  -N,  when [ y ] < 2  p 2 or [ ~ ] ] > 2  p+~ 

Infact  in the suppor t  of the first  in tegrand  in (3.7.3) we have 2 ~ - ~  < [0] ~<2  p + I .  I f  

[~]] < 2 ~-~,  then  [0 - ~]] > 2 ~-e ,  hence 2 ~ + [~]] ~< 5[0 - ~]]; on the o ther  hand  if [~]] > 

> 2 ~+e then  [ 0 -  ~]] >i [~7]/2, hence 2 ~ + [~] ~<310-  ~]]. In  bo th  cases we can con- 

clude: 

(2 p + [~]]) [~ - 0] 
(3.7.6) (2P + [r]]) r/2 ~ < 5 - -  ~ 5[qpM(r] - 0)], 

2p(~ - r/2) qp 

for  r /2  < 1. Since ~ e 8(R 2~) and moreove r  ap(x, ~) - 0  when  the  hypotes is  in (3.7.5) 

are  satisfied, this last  is proved.  

By  means  of the  Tay lo r  expansion and (3.7.2) we have 

aTfi T 8 ~ a ( x ,  ~ 7 ) ( - y ) Z ( -  O) ~ j (3.7.7) ap(x - y ,  ~] - 0) - Ia+Z, <2 

t 
<~c ~ 2 p(m-~(M,z)+(M'z-a)) lyz0" i <~ 

~< 2 p('~- ~) E p(M, Z ,) = 2 p('~- ~) E Ia+~1=z q lY~Oai I~+~l =2 

since r - r{M, fi) + (M, fi - a) - (1 - r / 2 ) ( M ,  fi - a )  = r(2 - (M,  fi + a} ) /2  <~ 0. F is 

I(qMy)Z(q7 M 0)~1, 
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even, hence the first order terms drop down from the second integral in (3.7.3); since 

is also rapidly decreasing, we have: 

(3.7.8) I Cp(X, r/) I ~< 2P('~ r), when 2 p- ~ ~< [7/] <~ 2 ~ + 1, 

which jointly with (3.7.5) shows us that c(x, t/) � 9  ~(f2), for ~ - ~ ~bp(x ,  tl) follows by 

differentiation of %(x, tl). Following now the arguments in [11, Theorem 7.1] we obtain 
also c*(x, D ) � 9  thus the proof is concluded. 

4. - M i c r o l o c a l  p r o p e r t i e s .  

DEFINITION 4.1. - F o r  u �9 0~' (Q), s �9 R we shall say that (Xo, ~0) �9 T* ( ~ ) \ 0  = ~2 • 

• (R ~ \{ 0 } ) does not belong to WF~, M U i f  and only i f  we can f ind g �9 ~ ( ~ ) ,  g(xo) ~ 0 
and F M, ~o open M-conic neighborhood of ~o such that 

(4.1.1) f (l+[~])2~lg-u( ~ ) 1 2 d ~ < ~ c < ~ .  

FM, ~o 

For every u �9 (~' (Q), the anisotropic Sobolev wave front set WF~, M u is a closed 
M-conic subset of T* (Q) \0  (M-conic with respect to the ~ variable). 

Since an open M-conic subset of R ~ may be identified by means of its intersection 
with the unit sphere, using well known arguments, see for example TR]~VES [17], we can 
say that (xo, ~0) ~t WF.~, MU ff and only if g(D) ~u �9 H~, loe(t~) for some c; �9 ~ (tg), g �9 
�9 ~ (R~), such that cp(Xo) ~ 0, g(~) is M-homogeneous of degree 0 for large ~, suppgc 

CFM,~o and g(x)= 1 in F~/,$oCFM,~0. 
Moreover the projection on Q of WF~, M(U) is exactly sing-supp~, MU, that is the set 

of all the points x � 9  such that uctH~,lor for any open neighborhood V~0 of 

X 0 �9 

Since a(x, D ) � 9  S~}(tg) maps continuously H~, lor into H ~ : ~ ( Q )  we can 
show in standard way, see for example TRI~VES [17], the pseudolocal property: 

(4.1.2) sing suppM, 8 - m a(x, D) u c sing suppM,, u ,  

for eve1:7 u e 0~' (•). 
Since the composition of two operators, respectively in Op SM(Q)m, Op S~(t~), is 

in OpS~+~(Q) and moreover S~,(1,0)(~)cS~(~2), we can state the following 
property: 

(4.1.3) a(x, ~]) ~(~]) e S~+~(Y2), 

for every a(x, ~7) e S~(Y2) and g(~]) eS~/,(1, 0)(Q), m, # e R .  

THEOREM 4.2 (Microlocal property). - Let ~, s, m,  r belong to R ,  r strictly positive. 
Then for u E H ~  and a(x, ~l) in S~,r(S2) we have: 

( 4 . 2 . 1 )  WFM,~_ma(x,D) ucWFM, sU when s < . a + r .  
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PROOF. - For xo e sing-suppM, ~ U, let us consider (xo, ~o) ~ WFM, s u. We can then 

find c; e C~(~) ,  cp(x) = 1 in V~o open neighborhood of Xo and g(~) smooth, M-homoge- 

neous of degree 0 for large $, supported in FM and identically 1 in F'M, F'Mr FM M-con- 

ic neighborhood of ~o, in such a way that g(D)c;uEH.~,loc(Q). 
We can easily see that  a(x, D ) ( 1 -  cp) ueC~(V~o), then the restriction to V~0 of 

WFM, s V and WFM, s <fly coincides. Since a(x, D)g(D) 9u is in H~:lo~c(Q) we have only 
to consider a(x,D)(1-g(D))c;u. Let  us consider then the operator c(x,D)= 
=;dD) a(x, D)(1 - g(D)), with ~/(~]) e r (R ~) real valued, M-homogeneous of degree 0 

for large ~, supported in F ~  and identically equal to 1 in F ~ c  F ~ .  

Since the operator a(x, D ) ( 1 - g ( D ) )  has symbol b(x, ~])=a(x, ~] ) (1 -g (x ) )  in 

S~ ~, r($~), we can write: 

(4.2.2) c(x, ~7) = ~ (a!) 'l$~Z(~7) D~b(x, ~7)+ R(x, ~]), 
lal <N 

where the sum in the right-hand side identically vanishes and R(x, ~)eS~-~'(~). 
Let us observe now that R*(x, D) = c*(x, D) = b*(x ,  D) ~(D); we can then write 

by means of (3.4.1): 

(4.2.3) R * ( x ,  rl) = b*(x,  ~)~/(~) = ~ (a! ) -~D:b(x ,  y ) ~ / ( y ) + e ( x ,  ~]) ~/(~]). 
I~/<Y 

Also in this case the sum in the right-hand side identically vanishes; then we have 
R*(x, r]) = 0(x, r l ) ~ ( r ] ) e S ~ - ~ ( ~ ) .  This is enough for concluding: 

(4.2.4) :~(D) a(x, D) q~u ~ H inf(s- m' ~ -  m + ~ ) ( V ~ o )  . 

In view of the pseudolocal property, letting x0 range all over sing-suppM, ~ U, we 

have concluded the proof. 

In order to construct an example of pseudodifferential operator in Op S~($2) which 

does not satisfy the microlocal property,  let us argue in the more general framework of 

inhomogeneous pseudodifferential calculus. Namely let us introduce the basic weight 

vector ~ f ( ~ ) = ( ~ f l ( ~ ) , - . . ,  ~vn(~)), whose components ~fj(~) are in C~(R"), j =  

= 1, ... ,  n and satisfy, for C, c positive constants: 

(4.3.1) c(1 + <  <c(1 + 

n 

(4.3.2) c<<.~j(~+O)~,~(~)-l<C, when ~ 10k[Fk(~) - l~<c .  
k=l 

For  more details on the basic weight vectors see [1], [14], [15]. 
Consider now ~ e C a (R) as in w 1, we can then introduce the functions: ~/3~ = ~ + 1 - 

- cp~, •J-1 = ~oJ0, where for j = 1, ..., n:  

(4.3.3) q~(~) = ~ ~ e (Rn), t = 0, 1, 2, . . . .  

Since supp cp~c { ~ e R ~ ;  7)j(~) < 2 t} and c;~(~) = I when F j (~ )  < 2 t - l ,  we can easi- 
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ly see that: 

(4.3.4) s u p p x ~ r  2t-~ < ~pj(~) <2t+~},  j = l ,  ..., n .  

Moreover we obtain Ct J N Cu j = 0, j = 1, ..., n, when t, u e N,  ] t - u I > N,  for suit- 

able constant N e N. It  then follows: 

(4.3.5) ~ X~(~) = ~o(~fj(~)) + ~ / ~ ( ~ )  : 1,  j : 1, ..., n .  
t= -1 t=O 

For P =  (Pl, ..., Pn)~n= (NU { -1} )  n, let us introduce the vector Xp(~)= 
= (XI~(~), ... ,  X~,~(~)). We can then define, for ue  8'(Rn): 

(4.3.6) Up(X)=Xp(D)u (2z ) -~  I ei<~' ~>X~(~) . . . .  ~/p~(~)u(~)~ ~ d~. 

n 

The symbol o(Xp(D))(~)=X~(~).. .X~(~) has support in j~=lCJj and in view of 

(4.3.5): 

(4 .3 .7)  E Xp(~) = ( 1 ,  . . . ,  1 ) ,  E o((Xp(D))(~) = 1. 
p ~ n  pe~Cn 

We can then decompose u e 8' (R ~) as follows: 

(4.3.8) u= ~ Up= ~, Xp(D) u .  
p ~ n  pe~,~ 

We shall say inhomogeneous Littlewood-Paley partition of unity the vector family 

{Xp (~) }p ~ ~ ,  and inhomogeneous Littlewood-Paley decomposition the corresponding 

one defined by (4.3.8). 
Arguing now as in w 1 we can verify that, for u~8 ' (R  n) and veR~: 

(4.3.9) ueH(~(R~)<=> • + ~ .  
p e n  n 

Where, with standard vectorial notation: 

(4.3.10) II ll , = [lY)(D)~(u) 

and H~ is the respective Sobolev space, defined in standard way. 

Let  us introduce the symbol class $10, 1, ~(Rn) of all a(x, ~ ) � 9  e ~ (R2n), whose ele- 

ments a(x, ~) satisfy, for every K compact subset of R n and a,  fi multiindices: 

(4.4.1) ID~ ~ a(x, ~])1 ~< Ca, Z, KV(~]) -~+~" 

Consider, for every Y e R  ~, s > 0: 

Y ~ = { ~ e R ~ ;  ] ~ j - ~ ~ 1 7 6  , for some ~ ~  
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For xoeR% u e (~' (R~), ~ e R  ~ we can then define the Sobolev ~f-filter of microloeal 

smoothness: 

(4.4.2) [-J u ~ ~ (Rn), q~(Xo) ;~ 0" 
X0 ~ ---- , 

where for every v e Z' (R~): 

(4.4.3) 2;~v = for some E > O .  

Both Z~, ~0u and X~,v are ~f filter in the sense that, for all XeY.~,xou (resp. Z~v), 
there exists e > 0 such that: R n \(R n \X)~ e ~ ,  xoU (resp. 2:~v). 

For  more details on the inhomogeneous pseudodifferential operators and the 

Sobolev ~f-filter of microlocal smoothness, see [7] and the references given there. 

Let  us consider now the vectors (ok = (2 k, 0, ..., O)eR ~, k ~ N  and the test  func- 

tion 0~  C~(R), O(t)~< 1, s u p p 0 c  { t e R ;  Itl < 1/4},  O(t)= 1 for It I < 1/8.  Following 

RODIN0 [14] we can so define, for k e N :  

(4.4.4) ( ) ~k(~]) 0 ~ 1 - 2 k  ~J = 0 e C ~ (R  ~) ; 
~ ~(~o~) j=2 ~ ( o k )  

whose supports are clearly contained, for k e N ,  in 

_ 2  k ~ 1((:O k) I 
(4.4.5) Ik--  1,7  I < - - ,  t sI < 

4 4 ' 

j = 2 ,  . . . , n .  

In view of (4.3.1), (4.3.2), ~f 1(co k) < 2 k and ~j(co k) > c2 ~k, for some c > 0, e > 0. Then 
supp ~k N supp ~t~ = 0 for h ~ k and ~ k ( ~ ) =  1 when t] belongs to the set: 

(4.4.6) 
2 ~k 2~k 

7k=l~ /eR '~"  I t / 1 - 2 k l < c - - 8  - '  i~lJl <c 8 - '  ~ i=2 , . . . , n  

Moreover we can find an integer Mk and a positive constant v independent from k 

such that: 

(4.4.7) 3~f~(wk) <~Mk <~ v ~ ( w k ) ,  for every k e N .  

We define now the symbol 

(4.4.8) a(x, ~7)= ~ e~kX~k(~7). 
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Observing that y~j-~(~o~) < C~j-I(~) when ~] �9 s u p p ~ ,  we can say that: 

(4.4.9) 

which jointly with (4.4.7) assures that  a(x, ~]) �9 S~ ~ 1, ~ ( R n )  �9 

For every u �9 ~' (R ~) we obtain: 

(4.4.10) a(x, D)~--u(~) = ~ ( ~ ) ( ~ ' ,  ~ - M~), 
k=l  

~ '  = (~1, " " ,  ~ n - 1 ) "  

We can see now that, for ~k = ( 2k, 0, . . . ,  0, Mk) � 9  ~, supp ~k(~',  ~n - M k )  is con- 

tained in 

(4.4.11) Jk = {~k}~/4 = ~ � 9  

I ~ 1 - 2 k l  < ~ l(cok____~) 1 
4 [ 

I : -Mkl < - -  

4 l I jl < --~fJ(Wk) 3 : 2, ..., n - 1  
4 ' 

which satisfies 

(4.4.12) Jk N J~ = 0,  when h ~ k .  

For  every k �9 N there exists P = (pl,  . . . ,  P~) �9 such that  w k belongs to supp Xp, 
that  is a(Xp(D))(wk) ~ O, where Xp is an element of the Littlewood-Paley partition of 

unity as defined in (4.3.6). In view of (4.4.7) and (4.3.2), wk belongs in its turn to suppXp 

and moreover, using also (4.4.5) and (4.4.11), we can show that  there exist some positive 

constants c, C such that, for j = 1, . . . ,  n:  

(4.4.13) c2Pj-l< ~f l j (~ )<  C2 pj+I, for every ~ � 9  or ~ � 9  

that  is both Ik and Jk are contained in [J suppXQ, for suitable N c N. 
]PJ-qJl < N  

Then, for P �9 ~ n ,  notice that I F -- [.J Ik c [J supp XQ and let us estimate 
for u �9 ~'(R~): ~k~uppXp Ip~-~l <N 

(4.4.14) l l ( a ( x , D ) u ) P l 1 2 2 <  Z I(xll( ) n 2 A ,  _ �9 ..Xp~(~)) I~ku(~ , ~n Mk)21d~ <~ 
wk e suppXp j~ 

w k �9 suppXPI" k IF 

which in view of (4.3.9) shows that the operator a(x, D) defined by (4.4.8) maps continu- 
v V n osly H~, comp (R ~) into H~. loc ( R ) .  
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Let  v(x) belong to ~ (R ~) and introduce, for T > O, the function: 

(4.4.15) u(x) = v(x) ~ 2 -~/T e ~% e L ~ (R  n) ]OC 
k = l  

Observe now that for every C e~0~(Rn), u e R  n which satisfy 

_~"= ( ~ ,  ..., ~n): 

~ui~>0 and 
i = 1  

(4.4.16) I~Pe~(~ + 2~, ~")i ~u ~> 

>I I l~-v(~)l 2(1 + I~1 +2k)  ec('~§ +~')d~>lconst.2 ~(v~+ +~) 

~ > 0  

Let  us set  for ~ e Co ~ (R~): 

(4.4.17) ~(~)=  E 2-(h+k)/T~(~ -- 2k, ~") ~ ( ~ 1  --  2h, ~"). 
h ~ k  

h, k e n  

Since 12 h _ 2 k i ~> 2 k/2,  h, k ~ N, h ;~ k, when ~ 1 t> 0 we can estimate for every H > 0 

and suitable t e N,  0 ~< ~. < 1, CH > 0 : 

(4.4.18) Z 2 -(h+k)/Ti~(2t -- 2 k + 2)~, ~")I t ~ -~(2t -- 2h + 22, ~")1 ~< 
h:~k 

h, k e N  

/ ) -H( E 2 -(h+z)/T <~CH]~[ -H <C~]$"]-HI( 2 t - 2 2 ,  ~")I k~h 

k, h e n  

Moreover r  is clearly rapidly decreasing when ~1 < 0. Since 

(4.4.19) ~-~(~)2 = ~ 2 - 2 ( k / T ) ~ ( ~ l  --  2 k, ~,,)2 + (/)(~), 
k = l  

by means of (4.4.16), (4.4.17), (4.4.18) we can realize that for any v e R  ~ such that vl  + 

+ ... + v ~ >  1/Tc, sing s u p p v , ~ u = s u p p v ,  where s ingsupp . ,~u  is the complement 

in R ~ of the set of points which admit some neighborhood U such that u eH(oloc(U). 
Let  us introduce now for every xoeR n and ue6~'(R n) the ~f filter of microlocal 

smoothness 2:~,x0u defined by means of (4.4.2) and (4.4.3), where ~(~) is rapidly 
decreasing in (R~\X)~.  For  every t t e R  ~, f e O ) ' ( R ' ) ,  we can easily verify that 

sing supp,, ~ f c  sing s u p p f  and 2: ~, ~o f c  2:~, ~0f" Now, following the last part  of the proof 
in RODINO [14, Theorem 3.9] and observing that T may grow all over R + ,  we can 

state: 

THEOREM 4.4. - There exists a(x, ~])eS ~ 1, v(R ~) which satisfy: 

i) a(x, D) maps H~, comp into ~H ~, loc,/~ ~R~;  

ii) for any u e R  ~ such that ~ vj> 0 there exists YeX~,xou which is not in 
j=l 

X~,xoa(x, D) u, for some ueL2(R~). 
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REMARK. - If  we set ~(~)=([~]M~,  ...,[~]Mg, # = ( m / M 1 ,  . . . ,miMe),  v= 

= (s/M1, ..., s/Mn), the symbol class S~(Y2) and the anisotropic Sobolev space H ~  can 

be identified respectively as S~' 1,~(Q) and H~; see for example RODINO [14], [15]. 

Let  us consider now, for s e R ,  x~t~ ,  u~Og'( tg):  

(4.4.20) nXk 2:~,~u = , X k e X ~ ( ~ ) , ~ u ,  

then WF~, M u and the closed conic set: 

(4.4.21) {(x, ~ ) ~ f t  •  ~Z,~M,~U}; 

differ only for a bounded part, see [7]. 

Let  us consider now for r > 0 

(4.4.22) 0 n b(x, ~) = a(x, ~])(1 + [~]])-~ e S J ( R  ~) CSM, ~(R ), 

with a(x, ~) defined by (4.4.8), where ~f(~) = ~(~). If  we take u eL2 as in (4.4.15), we 
obtain b(x, D)ueH~(Rn) ;  then WFs, Mb(X , D ) u  is empty when s ~<r. On the other 

hand Theorem 4.4 shows that WF~, MU does not contain WF~_ m, M b(x, D) u when s > 
> r. We can then easily end that WF~, M U, U E H~, ]oc (~r~), is preserved under the action of 

b(x, D)eS~ ,  1,~(Q) if and only if s belongs to the interval (a, a + r ] .  
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