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Anisotropic Pseudodifferential Operators of Type 1,1(*).

G. GARELLO

Abstract. — The author studies boundedness and microlocal properties for a general class of
pseudodifferential operators of type 1,1 in the frame of the anisotropic Sobolev spaces.

Introduction.

Moving from an essentially formal point of view, we say pseudodifferential operator
on R™ the linear map from S(R™ to $'(R™), defined by

(0.0.1) a(x, D) u(x) = (2m) ™" j e’ Ma(x, n) uly) dn

where % represents the Fourier transform of » e S(R™) and a(x, ) € §'(R™) is the oper-
ator symbol.

In the literature of the last 25 years, many general classes of symbols have been in-
troduced and the problem of their boundedness on suitable weighted Sobolev spaces
widely studied.

Particularly in his doctoral thesis [3] and in more recent works [4], [5] G. BOURDAUD
shows that the pseudodifferential operators in (OpS{ ;(£2))N(OpS? ((2))* are
bounded from H g, (£2) to H5.(L2), seR, £ open subset of R™.

For better arguing the pathologies of the pseudodifferential operators of type 1,1
HORMANDER [11], 1988, points out that

(00'2) a*(gy 77) = EOT(E) 77)7 T(&J 77) = (—'57 §+ 77)7

where the Fourier transform acts only on the « variable and a * (%, D) is the adjoint of
the operator a(x, D). After observing that the map T changes the horizontal space
{(&,0); €eR"} into the twisted diagonal {(§, —&); £e R"}, HORMANDER [11] identi-

(*) Entrata in Redazione il 6 maggio 1996.
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fies the class of all operators in Op Sﬂ 1(82) which are H *-bounded for every se R, the
set (OpS? 1(2))N(OpS? (2))* and Op SY ;(R2). This last operator class is given by
all the pseudodifferential operators in Op S? ;(£2) whose symbol a(x, 77) «vanishes» in
a suitable way in a neighborhood of the twisted diagonal.

In addition, under more restrictive conditions on the symbols, HORMANDER [11]
gives a suitable symbolic calculus for adjoint and composition.

In a recent work [8], starting from the results described above, I introduce a new
selfadjoint operator algebra contained in OpS;";(£2) where I consider a somewhat
more precise symbolic calculus, which leads me to study suitable microlocal properties
for Sobolev singularities.

Always suggested by the arguments in HORMANDER [11], the aim of this paper is to
investigate the properties of the anisotropic pseudodifferential operators of type 1,1,
whose symbol is a function in C¢” (£ x R"), which satisfies, for some anisotropic weight
function [§]y, M= (M, ..., M,)eN", M;=1:

0.0.3) sup |35 85a(x, n) | S cu, g, g(1+ [El)™ TP,
reK

where K is any compact subset of 2, a, S are multi-indeces in Z% and (M, a) =
=M1a1+ +Mnan.

More precisely using some properties of the anisotropic Littlewood-Paley decompo-
sition, introduced in § 1, in § 2 I consider some restrictive conditions on the symbols,
which are necessary and sufficient for the continuity of the respective operators, in the
frame of the anisotropic Sobolev spaces. In §3 I set up a suitable symbolic caleulus
which leads me to show in § 4 a microlocal property for anisotropic Sobolev singulari-
ties. In the second part of this last section, in the more general framework of the inho-
mogeneous pseudodifferential caleulus, I perform a counter-example, which shows as
the previous result is in some sense optimal.

Following closely the arguments in HORMANDER [11, § 7], in the last part of §3 I
state an inequality of «sharp Gérding» type. This result generalizes in some way the
classic «sharp Gérding» inequality, see[10], and its anisotropic version as stated in
SEGALA [16]; it may be useful, 1T hope, in future studies on the propagation of
singularities.

At the end let me notice that boundedness and microlocal properties for anisotropic
paradifferentiol operators, which are widely studied, in the more general frame of
quasi-homogeneous Triebel spaces in the works of YAaMaZAk1[18],{19], are someway
confirmed in the present paper.

1. — Anisotropic Littlewood-Paley decomposition.

Let M = (M., ..., M,) be an n-tuple of integer positive numbers, each one greater
or equal than one, and define, for £e R", [£] =[£];, the unique positive root of the
equation ¢ “2M g2 4+ ¢ 2MegEZ =1 [0]=0.

The quasi-homogeneous (anisotropic) weight function [£] satisfies the following
properties, which are widely proved in literature, see for example LASCAR [13].
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With standard vectorial notation:

(1.0.1) [E+n]<[E]+ [n];

(1.0.2) min{|£|, |§]'"} S[E]1<|§|,  where M,=maxM,;
(1.03) Y] =[(t"E,, ..., t"ME )1 =tE], for t>0;
(1.0.4) [-&1=[&];

(1.0.5) [E—nl=|[§]1-1[n]|;

(1.0.6) [Elec™(R"\0) and &¢[£] =y, ([EDIET 09,

where £,=[E1ME=([E] WM EeS™ ! and y,, is a continuous function of TeR, .
Generally speaking we shall say that a function A(8) is M-homogeneous of degree
reZif AtM6) =t*A(0), for every t > 0. We can easily see that the derivatives of or-
der aeZ” of A(#) are M-homogeneous of degree A — (M, a) and moreover A(f) <
< c[6Y, for some constant ¢ > 0.
Lastly we shall say that WcR" is M-conic if for every t>0, t¥£eW when
EeW.

Let us consider now ¢ € C*(R), 0 < @(t) <1, such that, for some K=1, suppgcC
c{teR; |t| <K}, ¢(t) = 1when |t| <1/2K,and define,forp = 0: (&) = ¢, 1(&) —
— @,(&), where @, (&) = @([§]1/27).

Since
1
1.1.D) suppy ,cC, = E2”‘1< [E] < K2rt1Y

we can easﬂy verify that, for every ge N: ¢ (&) + 2 ¥ ,(&) =1and, setting v _,(&§) =
=g@y(&), _Z Y ,(&) =1. If we define now, for every ue S (R"), u,(x) =y ,(D)u=

=(2m)" J’ gl §>zpp(£ Yu(E) dE, we can introduce the anisotropic Littlewood-Paley

decomposition:

(1.1.2) . -3 Uy .
p=-1
In the following we will usually assume K=1.
Let us say now that u e S’ (R™) belongs to the Sobolev space Hy = Hi;(R"), seR, if
the norm

(1.1.3) [ulla, s = (1 + [DPBul,,

is bounded.

The properties of the spaces Hjy are similar to those of the usual Sobolev spaces;
particularly, if we define in the standard way Hj 1,.(£2), we can show that:
U HM 10c(82) = @p(£), ﬂ HM 10c(2) = C* (), also in the topological sense.
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PROPERTY 1.1. — For every seR, ue S (R"), we hove ue Hyy if and only ift
(1.1.4) lupll, <e,27F,  where {c,} el?;

moreover, for suitable positive constants ¢, C greater than zero:

(1.15) cllullie.s = 2 2,27 < Clluls, .

We can also verify that u = E v, € Hjy when, for every p= —1, ..., we have: v, e
-1

eC”, supp v,c C, and (1.1.4) 1s verified.

For the proof of the previous Property and more details on the guasi-homogeneous
Littlewood-Paley decomposition, the reader can see for example YAMAZAKI [18], where
Hj; is considered as a special case of Triebel space, and GARELLO [9], where more gen-
eral weight functions are introduced.

Let us now denote briefly S ( .Q) instead of S7*; 3 (£2), the set of symbols a(z, ) €
e @* (2 x R™), which satisfy (0.0.3) 4nd Op S (2) the respective class of pseudodiffer-
ential operators defined by (0.0.1).

For every meR, Sj}(82) are all Fréchet spaces, with topology defined by taking
the best constants ¢, 4 x in (0.0.3) as semi-norms.

Without any restriction, in what follows, we always consider compactly supported
pseudodifferential operators, so that they extend to linear operators from @' (£2) to it-
self and the Fourier transform & can act on the x variable of the respective
symbols.

We can now give a first application of the Littlewood-Paley decomposition.

LEMMA 1.2. — Let us consider a(x, 1) € Sj7(£2) such that a(x, 7) = 0 when [} <1 /2
and define, for p= —1:

12.1 b (&, m) =y, (n1"™E) a&, n).
Then:
(122 alx, ) = p;_lbp(x, ),

where 27N by, (1, 1) is bounded, for each N e N, in the topology of Sj; (£2) and the series
converges in the same spuoce.

PROOF. — Let us notice that, for the M-homogeneity of [£], v ,(&§) = po((2P)ME),
p=0. If we set now ¢t =27[5] and ¥e S(R™) the inverse Fourier transform of y, we
have:

123) by, n) =y, (Iy) ™M &) aE, mix, n) =

= U el Byt ME)dExal-, n)](w, n) = tMPEM.y w al-, n)e, 7).



G. GARELLO: Anisotropic pseudodifferential operators, etc. 139

By using now the Taylor expansion of a(-, ), centered at z, for a suitable Ny > 0, we
have:

124) by, m = 2 () tMWEM) x dZale, m(- — ) +

la} <Ny

1
+ 3 tIMltp(tM-)*J(l—T)aga(w+T(-—x),77)('*x)adT-
0

la| =Ny
Since for aeZ”:

wes)  [e ety yedy = [ Wiy Myrdy =

=009 [w(y) ydy =100 (= Dy y,(0) =0,

each term in the sum in the first line of (1.2.4) identically vanishes.
In order to estimate the remainder notice that, for every aeZ”

(12.6) £00 ) [ e My) ||y |dy = [ | %) | |y] ' dy <y

Sinee [3%a(w + Ty, n) | < ¢ (1 + [y])™* ¥ and  is far from the origin, for every in-
teger N >0 we may estimate:

127 by (2, ) | < | rZ:NC,IZ M a)(1 + [])™ < Cy2 PV (1 + [7])™.

In order to evaluate the derivatives let us notice that differentiation with respect to
the x variables only involves the symbol a(x, ). By regards to the derivatives with re-
spect to the # variables we can observe that

(1.2.8) 37(G(t)) = 2GO(t) 3P1¢... 8%t ;

q
q
with 1 ¢ < |y| and Zlﬂj=y. Then
i=

(1.2.9) 3;(G(t)) = &1 7>§xq([§o]) t1G9(t),

with y, defined by (1.0.6) and £,eS™~".
Let us observe now that:

h k
(1.2.10) 1 4 thqu(tMy)=thlcht-‘il— (M y),
dt E<h dt
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thus
1.211)  [ETN a7 (M WM y)) = Dy (£ })t'M'Zch( )‘I’(t”’y)=
q

gcm( [Eo]) ¢ 1M1 W, (1M y);

with ¥, (t"y) = (t(d/dt) ) Pt M y).
Now

l7] < al

(1212) by, ) = 2, ( )jay[t’M‘ My 9t Y alw —y, n) dy .

Let us observe that:

(1.2.13) WtV y)(E) =t M Byt M E) = ¢ -1l (t—d%) WM.
Setting now E=¢t Y& and T =(-M;&y, ..., =M, E,) we have:

A 3 3 3 N
1.2.14 v,(C) = Pt ME) =t = — = [
( ) () ( at) ") = ( = ag) Y() = <C, 8(§> @),

since #(3g; /at) = —tht_Mf“lé‘j = — M;{,. Finally supp Y, cy,, then arguing as in
the proof of (1.2.7), we obtain:

(1.2.15) |35 b, (, ) | S w2 7PN (L + [ 00,
which conclude the proof.

Following closely the proof in HORMANDER [11, Proposition 2.2] and keeeping in
mind (1.0.2) and (1.0.6), we can state:

LEMMA 1.3. — Let us suppose that alx, v) has bounded derivatives of each order
which are rapidly decreasing as n tends to infinitive, then a(x, D) is continuous from
Hz%10.(£2) t0 Ly 1,.(£2) for each positive s. Moreover its norm in L(Hy®, Lg) is bound-
ed by

1.3.1) Cov 3 supj|a§aga(x,n)[(1+[n])“"dn-

el €n+1 oz
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If a*(x, n) is the symbol of the adjoint operator of alx, D), for arbitrary positive
integers L, N:

(1.3.2)  sup(1+[gD*|a*(x, n) - ZN(a!)*lD,;‘aza(x, R
X, n a<
< Cp,m > sup |n” 888%a(x, 1) | .
la| + 8] + 7| €2N+L+2n+1, || 2N x,7

Setting now c(x, D) = b(x, D) a(x, D), with b(x, n) satisfying the same properties
of alx, 1), we have:

(1.3.3) sup(l+ [n])*
z,n

c(x, n) — l |2<N(al)“18§b(ac, n) D&alx, n) ’ <

<O > sup |7 9y (=, n) Dy alz, n).
la| + 8]+ |y| <2N+L+2n+1, |8 2N a, 9

THEOREM 1.4. — Let a(x, n) be in CY(R®") and assume that
(14.1) 102 ,a(e, n)| <1 when |a| =N.
If the norm H of olx, D) as operator in Ly is less than one, then:
(14.2) |82 a(@, n)| S ey HW - 1aD/Wtm =g <N .

For the proof see HORMANDER [11, Theorem A.1]

REMARK. - (1.4.1) applies to b(x, ) = (AB) ¥ o((4/BY" 2, (B/A)™ ) where A, B
are chosen greater or equal than one, M,=maxM;, a(zx, 7 e CN(R*™ and satis-
fies: !

(1.4.3) |0288a(w, n)| SAW@BMP g+ B|=N.
Moreover, for every p(x, ) € $'(R*) and T >0, we have:

144 p(T M, TYD) u(x) = [p(-, D) w(T ¥ )T M-);
then, if p(x, D) is bounded as operator in Ls,

(1.4.5) lp(T =¥, T¥ D) w1, < |lp, D) | ez ], -

If we suppose now that the norm H of a(x, D) as operator in L, is bounded by (AB)*oV,
using (1.4.2) we can conclude:

(146) |aga;§a(w, 77) | < (A/B)<M, a*ﬂ)(AB)MoN((M[ + 18] +n)/(N+n))H(N— |a] = |ﬁ|)/(N+n)’
where for great N the right hand side reads (AB)Mo{.e+f+m4 /ByM.a=A F

At the end of this section let us quote a technical lemma which is essentially shown
in HORMANDER [11, proof of Lemma 3.2].
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LeMmMa 1.5, —~ Let us set, for arbitrary seR and EeR™:
(1.5.1) Ry =0+ Q(E)Z)S%:(Zz” +QEN ™,

where the sum is extended to p = 0 such that (Q(£))/(2(2A + 1)) <2P <2B(Q(&) + 1),
Az1, B=1., We can then verify, for every EcR™:

(1.5.1) F(&) <81 (logy(8A +4) + (1 - (8B) %) /s) .

2. — Continuity.
LemMa 2.1. - Let alx, 1) be in Sjj(82) and satisfy:
@211 W&, =0 when [E1>A(nl+1) or [E+nl+1<[y]/B,

then a{x, D) is continuous from Hjf . (82) to Hyp 1(R2), for every seR.

PRrooOF. — Since a(x, D) u = alx, D)1+ [DP)""2(1 + [DP)™"* let us suppose that
m = 0. By means of the Littlewood-Paley decomposition we can write

2.1.2) w= 2, u, and ale,D)u= ) (@, D) u, = 5 hy .
p=-1 p=-1 p=-1

Since

@.13) hp(®) = @) [E— 7, m) v p(n) Wn) iy,

using the hypotesis (2.1.1) we can assure that a(& -7, ) identically vanishes if
[E~n]>A(n]+1) or [E]+1 < [y]/B. Recalling that 27"’ <[] <2?*! in the sup-
port of v, using also (1.0.5) we can conclude:

. 2
(2.14) supp h,(€)C [EER”; 7

<[§]l< (2A+1)2”“].

Thus for a suitable constant N >0 :

! 2
@.15) |y, (D) alx, D) uli,= U _N<2j<qu(D> g, < 2N AN§3<Nlihq+jll%z-

By observing now that 4, = > ox, D) Y 5(D) u,, we can easily conclude that

-1<k<1

the symbol b,(z, 7) = Ek a((27) M, (22 ) v+ (27" ) has bounded support
1

isks

by respect to 5. Using then (1.3.1) and restoring the former variables we obtain
(216> “thLz = Cs lluq ||L2 ’

which, in view of Property 1.1, ends the proof.
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REMARK 2.2. — In order to better investigate the norm of a(x, D) as bounded linear
operator, let us first notice that, in view of (1.3.1), b,(x, D) defined above is continuous
from Hj; to Lo, with norm bounded by ¢,(a), for every s e R. Then by a change of vari-
able we obtain:

2.2.1) 122 + [P oy 1, < (@) 2% 14y | 1, -

Moreover by the Cauchy Schwarz inequality we have:

(1+[EPY

o 2 ol el —~
Zlhp(5)| <(1+[EP 21(22p+[E]z)'sp21(22”+[E]Z)Slhp(é)lz,
= - p=— = -

where the first factor in the right-hand side is bounded by (1.5.1). We can then con-
clude, using also Property 1.1 and the remark which follows, that the norm of a(», D) in
LH3™, Hip) is bounded by

(2.2.2) ¢, () 4015172 (log,(8A + 4) + (1 — (8B) %) /s)'/2,
where c¢,(a) is a seminorm in S;7(£2).

THEOREM 2.3. — Let a(x, n7) be in Si; () and salisfy
(2.3.1) a,m) =0 when [E+yl+1<yl/B, B=1,

then a(x, D) is bounded from Hjy 0. (2) to Hjy, 10.(R2) for every s e R. Moreover its op-
erator norm in L(Hi™, Hiy) is bounded by

2.3.2) ¢;(a)((1 — (8B) %) /s)' /%,

where c,(a) is a seminorm in S{H(R) such that c,(a) 40512 is an increasing function

of s.
ProOF. — Let us decompose:
2.3.3) a(%, D) = a(x, D) ¢4(D) + oz, D)(1 — ¢(D)),

where the first term in the right-hand side is in £(H};, H3p), for every t, se R; we can
then suppose that a(x, #) identically vanishes for [#] <1/2 and apply Property 1.2;

then a(x, 1) = > 1bi(,(sc, ), with 9PN b,(x, n) bounded in S37 (£2). The hypotesis (2.3.1)
[end

is inherited by any term in the sum and moreover each of them identically vanishes
when [£] > 2P*1[y]. Applying now term by term Lemma 2.1 and Remark 2.2 we can
conclude that the operator norm of a(x, D) in £L(H} ™, Hjp) is bounded by

234)  Cya)(1+ (1~8B) "% /s)!/2 + S ((2p)' 2+ ((1 - (8B)™*)/s)' /%)2 77,
p=-1

then by
(2.3.5) ¢s (a)(L+ (1 — (8B)72)/s)'/2.
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Changing the constant ¢, again we can drop the first term since the convexity of the ex-
ponential function assures that (1 — (8B) % /2s) is greater than

((1-872)/2528%log8, s>0,

(2.3.6) ;
| log(8B) =log8, s<0.

LEMMA 24. - For seR, s <0, let a(x, D) € OpSy(R2) be bounded in Hjp 0. (£2). If
we set now

24.1) ep(&, M) = 2;B¢o((3/2p)‘w(§ )y, a,m), B21,

we obtain the following estimates for the symbol c(x, n):
242) 8900 cq(w, )| S cq 5, BUM 0 h)+ (M amp)+Monts(] 4 [y 8-,
PRrROOF. — For R =1 let us introduce the symbol az(z, ) =alz, 1) ¥ (R Mn).

Since in the support of (R ~*#) we have (1 + [n])'/2> R/2, a(x, D) has norm L as
operator on Hj; and s is negative, we can easily conclude: .

( , RY
(2.4.3) lag(x, D>u||s,MsL<-2—) ez, -
In view of (1.4.4) and (1.4.5) we have then:
. e L
(2.4.4) [(1+ [RYDP*2ag(R Mx, RYD) ul,, < —Z—SRSHuHLz.

Since ¢o(E) <1 and, in suppgo(BME), [E1<B !, we have: (R 2+ [EP) /<
<SR 2+B 22, for s<0.

Then if we denote by bgg(x, D) the product to the left of agp(R M, R¥D) by
@ o(BY D) and we suppose also R > B:

24.5)  |bge(x, D) ul, <R 2+B 2 2|(R2+ [DP*ag(R Mz, RYD) ul, <
<R+ BR[|+ [RYDPFPar(R Me, RMD) ||, <L2" B |ul,,,

then bgg(x, D) is Ly bounded with norm less than L2 @/2sBs,
Moreover, if @ is the inverse Fourier transform of ¢,, we have:

(2.4.6)  bpg(E, 7) =R M @ (BM(E+n))an(RME, RMy),
A7) bpglx, n) =B M je @B My) ap (R M(x—vy), RYn)dy .

The derivatives of bgrg(x, ) With respect to & are uniformly bounded, but differenti-
ation by # produces factors . The best estimate we can give is so:

(2.4.8) |8¢ 08 brp(w, 1) | < Cq g B
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Using then Theorem 1.4 and the remark which follows it, we have:
(2.4.9) |82 88 brg(x, ) | S ¢, 5, BYMIV AT AIT M 0y Myt

which is obviously significative only for great negative s.
Returning now to the original variables we have:

(24.10) R Mbgp(R™ME R™Mny) = o (B/RM(E+n) ARME, n) yo(R Mn).
Then, for R =2P;

2.4.11) G5, m = pz;zz’)* Ml boop (27 ME,(20) M),
(2.4.12) gz, n) = 2 ;Bbgpg((zp)’”x,(zp)“Mﬂ) ,

since 1+ [7] ~ 27 in supp barp ((27) "M E£,(2P)"My), we plainly obtain (2.4.2).

Let us consider now the cutoff function y € @* (R?") such that:

(2.5.1) suppxc {(§, n) e R*; [E] <[], [n]=1};
(2.5.2) 2E m) =1 in {(§, n) eR™; 2] < (7], [n]=2};
(2.5.3) %(&, n) is M-homogeneous of degree 0 for [#]=2.

THEOREM 2.5. — Let us define for a(x, n) e Sy(2) and 0 <e<1:

(2.5.4) Uy (&, 1) = 2(E+ 1, M) G(&, ),

with x(&, n) defined above; then a(x, D) is bounded from Hj 1,.(82) to itself for every
seR if and only if the estimate

(2.5.5) |95 0f g, (x, 1) | S g, p,we¥(1+ [P P-4,
1s satisfied for every NeN.
PROOF. — Let us notice that, for ¢ <1 /4B,

(2.5.6) zng%((B/zp)M 0)y,(m) =1 when x(6, e¥n) =0,

since in suppy(@, e”n) we have e[n]=1, that is [y] =4B; then using the prop-
erties of the Littlewood-Paley decomposition we have 2 »(n) =1. Moreover
P=R

=

[0] < e[n], then in suppy () we have [(B/27’)M6] < Beln] /2P <2Be<1/2 that im-
plies @o((B/27Y"6) =1.
We can then show:

@5.7) oy ) =&+ 1, M) S5(8, 1) when Be< o ;
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with ¢g(&, ) defined in (2.4.1). Consequentely if we define Z(x, 1) the inverse Fourier
transform of (&, ), we have:

@258)  ayw, ) =T (WE+7, ey ip(E, M) =
=e " MEC, M) wep(, ) = fE(?/, eMn)ye XM eg(e~y, p) dy .
Using now (2.4.2), the derivatives 8%85 a,(x, n), a, BeZ", may be estimated by:

259) X cjeMotms ma=friy+ M poai-Myn=s(q o [nDW’ﬁ‘“”’)f Uiy, m) |dy,

j€a
where U(y, n) = &,{e "“v"5(y, e¥n)). Now:
2510)  y 3 *E(y, eMy) = F (348 (€, M) =
=eMU-BN(F1okal  y(E, 0)),  t=eM7.

Since y(&, &) is M-homogeneous of degree 0, for large £, then the L;-norm of
F LB x(&, )y, §), with respect to the y variable, is M-homogeneous of de-
gree — (M, 7), hence it is bounded by c{n] *7; we can thus conclude:

@511 |ly* &, E(y, eM il se MR+ [p]) D < g =M1 4[]y M),
Then:
2512) 82380, (x, n) | Scy,p 8 M@ et B amf=Mon-s(q 4 [ E-a),

In order to prove the if part, let us decompose:
2513)  a(x, D) =alx, D) —ay,(x, D)+ 2 ag-», (%, D) — az-»-1,(x, D).
p=0

From (2.5.2) we have:
25.14) x(5+n, 27y —x(E+mn, 2P lyy=0, when [E] 4+ < 2‘1”_2[77].

We can then apply Theorem 2.3 to every term in the right-hand side of of (2.5.13); using
also (2.5.5) we can end that each one has norm in £(H*) bounded by C,2 PV, for every
N eN, which assures that a(x, D) e £(H?®).

REMARK. — (2.5.5) reads as a necessary and sufficient condition in order to have con-
tinuity for every seR. On the other hand (2.5.12) shows that, for fixed suitably large
negative order s, a great gap exists between such necessary and sufficient conditions.
For deeply arguing on this arguments the reader can see HORMANDER (11, Theorem
3.61,[12].

REMARK. — In the following we will always denote by ST (£2) the set of all the sym-
bols in SH(£2), m e R, which satisfy (2.5.4), that is which maps continuously Hj; 1,.(£2)
into Hjy 1. ($2), for every seR.
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3. - Symbolic calculus.

LEMMA 3.1. — Let us consider a(z, n) € S{t(R) such that, for some NeN, reR._,
talx, m) eS™T MA-(Q), when |B| =N, and moreover a(&, n) satisfies (2.3.1).
Then:

@.1.1) a*(&,m)=0 when [E+n]>B(n]+1),

and we have the following estimates:
(3.1.2) ‘ agaﬁ(a*(x, n) — WEN(M)—Ia;Dga(x, 77)) l <

< ¢g, 4(@) BB™ M P=a)=r L 1)(1 4 [p]ynt M B-a)=r,

where ¢, z(a) are sum of seminorms of dLa(x, n) in StV ""(R), |y| =N.

PRrOOF. — Let us decompose a(x, ) = 2, a,(x, 17) and notice that, for p >0 the
symbol =-1

B13)  Ayx, n) =a,(2") M, 227" = a((2") M, (2" ) ()2~
identically vanishes for [#]>1. We can then estimate:
(3.14) |0205A, (2, 1) | Scq 5(@27  for |B| ZN;

where ¢, g(a) are semi-norms of a(x, n) in Sjp* M7 ="(R), |y| =N. Let us denote
now Aj(x, D) and o/ (x, D) the adjoints of the operators 4,(x, D) and a,(x, D) re-
spectively. Applying then (1.3.2) we obtain, for L positive integer:

(8.1.5) (1+ [yDF

A (e, ) — laEN(a!)‘laszAp"(_x_, 7) | <S¢y ¥277.
Since af (x, 7) =2 A} (27" 2,(27) "M 5) we have:

(3.1.6) Sep, y2™ P (L +[(27) My L.

af(x,m)— | |2<N(a1)*1 9D a,(x, )

For a*(&, n) = a(—&, £+ 7), (3.1.1) immediately follows. Moreover, since we have
2Pt <[yl <277 in supp a,(&, n),

3.1.7) 2P < [p]l+ E<2P*Y in supp (&, n);

3.1.8) B([p1+1)=2F"1 in supp a; (&, n).

Then, for [#] <1, the series

3.1.9) Blx,m) = > (ap*(x, mn- > (a!)-la; Oz ay,(x, )
p=0 R |a| <N

has at most logy (8 B) terms different from 0 and applying (3.1.6), with L = 0, each term
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may be estimated by B™ "+ 1. For [5] > 1 let us consider in (3.1.6) the smallest con-
stant L = 0 such that L + m — r 2 1. Observing that now the terms different from 0 are
at most log, 2B([n]-+ 1), we obtain:

(8.110) |B(w,m)|s¢, 2 2m 7 Dr[yp] <
p=0

< 2¢,@B([nl+ V)" T gl E < e BRI+ [y,

which shows (3.1.2) when a = = 0. The general statement follows immediately if, ar-
guing as in HORMANDER [11, Lemma 4.1], we observe that:

(3.1.11) (82DFay*(x, n) =32DFa*(x, 7).

LEMMA 3.2. - For m,reR, =0, let us consider a(x, n) € Sjp(£2) such that
Fafx, n) e ST MA-T(Q) when |B| =N, N positive integer, moreover let a(&, n) sat-
isfy (2.1.1).

If we set now c(x, D) =b(x, D) a(x, D) with b(x, ) € Sy (2) we have:

i
<

@21 | & ag(c(x, n) - WEN(M)Alaf,b(ac, n) D} a(x, n))

H

< Ca,/;(AB)K(a"B’ N,n, ’r,,u)(l + [n])mﬂwr(M,ﬁ—a)—r‘

ProoF. — First let us recall that:
3.2.2) e(a, 1) = (Zn)"”'(e’(“‘ bz, @+ 1) @6, ) do .

Differentiation with respect to #; acts simmetrically on a(x, #), b(x, n), lowering the
degree, (in [#7]) by M;. Since §;a(8, ) is the Fourier transform of D, a(x, 1), also the
derivatives with respect to x act on a(x, #), b(x, ) raising the degree by M;. It sufficies
then to consider a = =0. Since (2.1.1) holds, when 6 belongs to supp a(-, #) we
have:

(3.2.3) [0l<A(L+nD), [y]<B(1+[0+nD;
8.2.4) [6+n]1<A+{n)+ (5]

Let us suppose first that [#] <2B. Then [# + 7] <2AB + A + 2B. Thus, introduc-
ing a factor ¢, ((104B) (0 + x)) in (3.2.2), c(x, 1) does not change. Now [#] is bound-
ed in the support of the symbols

[ ACx, n) = alx, n) @ (4B)™y) and
| Ble, 1) =bx, 1) o (104B) 7).
We can then apply (1.3.3) with L = N = 0, pointing out that, when [5] < 2B, the symbol

of B(x, D) A(x, D) is equal to that of b(x, D) a(x, D), the lemma is so proved in this
case.

(3.2.5)
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Let now [5] be greater than 2B and set T = [7]; from (3.2.3) we easily obtain
T<2B[6+7], [0+n]<(2A+1)T. We can then change a(zx,#), b(x,7n) into
ar(x, n), br(x, 1), defined by:

(326) G/T(OE, C) = CL(.’X/', C) wO(T_MC)y

T \~M
br(x, ) =bx, £)| @ ((CT(2A + 1))~ Me) - ¢0((4B) @):|;

without changing c(x, n) when {y] =
All the derivatives of the functions

827  81Ar(x, §) =% (ap(T Me, THL)T ™ "=
=poQ) (T Mo, T T ™7, |y|=
(82.8) Bp(x, &) =bp(T Ma, TY) T *=
=b(T M, TY o (44+2)M) — ¢ (UBM DI T,
are bounded by a power of AB and a seminorm of 8% a(x, #) in Si™™:"~"(R2) and
b(x, n) in Si(£2). Moreover [{]<4A +2 in their supports.

Since (T Mx, T¥y) is equal to the symbol of T™*# "B(x, D) Ar(x, D), for
(7] =1, we obtain the result applying (1.3.3) with L =0 and a suitable N.

REMARK. — The hypotesis (2.1.1) may be weakened dropping down the first assump-
tion, by means of Lemma 1.2; we argue essentially as in the first part of the proof of
Theorem 2.3.

DEFINITION 3.3. - For m, reR, r >0, we define Sy ,(82) the set of all the symbols
oz, n) e ST(R) such that, for N smtable positive integer:

(3.3.1) Fale, ) eSpTMA-T(R)  when |B| =

THEOREM 3.4. — Let a(x, ) e Sif (), b(x, ) e Sy (2), m, ueR; then if we set
c(x, D) =b(x, D) alx, D), we have, for a suitable large integer N:

@41 o, ) =a*@,n)— > (a)"'3eDfalx, ) e Sy T(R);

ja| <N

(34.2) R, n) =clx,n) — | |EEN(OL!)*a;b(x, n) D&a(x, n) e ST~ "(R).

Proor. — For 0 <e<1 let a,(x, n) be defined as in (2.5.4) and consider:

(3.4.3) 05, 1) = (e, (2, ))* = | |2<N(a!)-159;17,3%6(90, 7.
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Decomposing now alx, #) and o(x, ») as in (2.5.13) we immediately obtain:

B844)  a*(x, n) =(alx, 1)~ ay,(x, n)* +p§0(ae—p,((x, n) — Gg-p-1, (%, 7))*;

B45) o, ) =0, n) — o1, (x, n) + gﬂQz-Px(ﬁc, n) =021, 7).

Since 970, ex\x n) follows from (2.5.4) starting from 3% a(x, 5), we can show, for suitable
N and |y| =

(8.4.6)  [3208(3%ag (, m))|<Cy g ke’ (L+ [yt v+b=a=r = for every J>0.

Arguing as in the last part of the proof of Theorem 2.5, applying now Lemma 3.1 and
(8.4.3), we can state that each summand in the right-hand side of (3.4.5) is bounded in
SE-T(2) by cy2 PV then o(x, n) e S~ "(R2).

In order to show (3.4.2) we argue as above using now Lemma 8.2, and the proof is so
concluded.

Let olx, n) e S;7(82) satisfy only the hypotesis (2.3.1); applying then (3.1.3) we can
say that (1 + [9])*|A}(x, )| < C;. We may then argue as in the last part of the proof
of Lemma 3.1; we obtain so (3.1.1) and moreover:

(351 [88ba*(z, m)| <eu p(@) BB™ OL8-a) 4 1)(1 + [plyn+ M 8-

with ¢, g(a) seminorms in S;7 (£2).

Again, for a(z, 7) € SJ#(2) which satisfies (2.1.1) and b(x, 1) € Sji;(82), let us refer
to the proof of Lemma 3.2. When we apply (1.3.8) we clearly loose the gain of order —
in the estimates of the derivatives of order |8| = N with respect to the « variable; how-
ever we can still verify that:

(8.5.2) |82 88c(w, 1) | S cq g(ABYAS B0 (1 4 [yt OB

with ¢, ; product of seminorms of a(x, n) e Sj7(£2) and b(x, 7) e Sj(£2).
Arguing now as in the proof of Theorem 3.4, with particular attention to (3.4.4) we
can assure that, for a(z, ) e S%(2) and b(x, ) e Si(2), we have:

(3.5.3) a*(x,n)eSH(R2) and colx, n) eSS (R2).

Let us consider now a(x, 1) e Sir(2) such that a*(x, D) = (alx, D))* belongs to
Op Si7(£2). We can then decompose the symbol of the adjoint operator: a*(x, D) =
= By{x, D) + By(x, D) where the first term in the right-hand side is in £(H};, Hjy) for
every t, se R and By(wx, 1) identically vanishes when [5] <1 /2.

We can set now By(x, ) = E b (x, 77), where in the notation of the anisotropic

Littlewood-Paley decompos1t10n b (§, =g ,,([77]“”5) By (&, ).

In view of Lemma 1.2, 27°¥ b, (ac 77) is bounded in S;}(€2), for any N > 0. Since {£] =
= 27~ n], we argue, for p =2, [E]+ n = [#] in supp b*(w ), which, in view of Lemma
3.1, implies that, for every NeN, ZPNap(x 7) = 2””1)*(9& ) is bounded in S} (£2) by
an estimate like (3.1.2), for every B = 1. Moreover [£] < [& + n]in supp @,(&, ), then,
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when y(&E+7n, e¥n) %0, we have [£+n] <eln] <e(&+yl+[y]), hence [E+7y]<
<el&]/1—¢. So y(§+1, eMn) a,(&, n) =0 if 27’”8/1 —¢<1; then:

3.54) a,E+m) = . (122 . x(E+7, €M) (&, m) + &+, M) BiE, n),

where at any rate p = —1. Arguing now as in the proof of (2.5.12), we obtain, for every
N>0:

(8.5.5) |8§3§&€x(9¢, )| Sca,ﬁ,NeN(lnL[17])”‘*(M’ﬁ‘“>, O<e<l,
which, jointly with Theorem 2.5, shows:

THEOREM 3.5. — For a(x, n) e Sj(2), meR, the following statements are equiva-
lent:

(3.5.6) olx, Dye 2(Hy, Hi ™),  for every seR;
(3.5.7) alx, n) e S5(R);
(8.5.8) (a(zx, D))* e 0pSi(R).

Let us observe again that for a(x, 7) € S2(R), b(x, 7) € §4(£2), by means of (3.5.3)
and the previous Theorem, since (b(x, D) alx, D))* = a(x, D)*b(x, D)* is in
Op Si*#(£2) we obtain:

(3.5.9) a(ic, D)b(x, D) e Op SL#(R2).

We can then conclude that the operator space:
Op S3/(£2) = Op 85 (£2) N (Op SH(£2))*

is a selfadjoint operator algebra.
Applying now all the arguments in GARELLO[8, § 1] we can state the follow-
ing

THEOREM 3.6. — For every r > 0, the operator space Op Sy () is a selfadjoint op-
erator algebra; moreover the remainder o(x, n) and the expansion in the vight-hand
side of (3.4.1) are respectively in the symbol spaces Siy () and Siy ,(£2).

Following closely HORMANDER [11, Theorem 7.1] we shall prove an inequality of
«gsharp Gérding» type, which may be useful in the application of operators in
Op S;7, (£2) to the study of propagation of singularities. The theorem we will prove now
includes both the classical «sharp Gérding» inequality, as stated in HORMANDER [10,
Theorem 18.1.4] and its extension to anisotropic pseudodifferential operators, showed
in SEGALA [16, Theorem 4.8].

THEOREM 3.7. — For meR, 0 <r<2, My,=maxM;, let us consider a(x, n)e
J

e S7(R), such that Fa(x, n) e ST P =247 (Q) when |B| =2. If Ra(x, ) =0 then
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Jor some C>0:

3.7.1) Ralz, D) u, u) = — Cllulftn_r .

Proor, — Following the proof in{11, Theorem 7.1}, we obtain rightly from the
hypotesis,
(372) aﬁa{x, 77)ES%-r(M,[i)—Morlﬂ{(Q)CS?]{}+(17V)(M,;3)(Q)’ }ﬁi $2,

and we can set, for p=0,1, ...

G13) by, m = [ [p@d@—y), ¢~ Oay(y, 0) dydo =

= [ [v@y, ;" m (@ ~y, 1~ 0) dyds,
where q,=2"1""2 and y(& - ) e S(R®™) is an even function such that:

8.74) “1/1(90, M dedyp=1, (¢, D)u,u)=0, weSR™.
Since the operator ¥ (g (x — y), ¢, (D — 9)) is positive and Ra,(y, 6) =0, it follows
that b,(x, D) + b,(x, D)* = 0. Let us split now a,(x, 7) = b,(x, n) + ¢, (x, n), the proof

will be completed if we show that c(x, ) = Zcp(ac, ) e8n"(R).
At first let us show that, for any N >0, °

375 e(m, )| <Cy@P+ D) Y,  when [y} <27 % or [y]>27"2.

Infact in the support of the first integrand in (3.7.3) we have 27 '<[f] <27*! If
[7] <2772, then [0 — ] > 27 "%, hence 27 + [n] < 5[0 — 5]; on the other hand if [n] >
>2P*2 then [0 —n)=[y]/2, hence 27 + [#] <3[6 — n]. In both cases we can con-
clude:

27+ [ <& [y — 0]
2p(1 -7/2) qp

(3.7.6) (27 + [g))7* < <5lg, M(n -0,

for r/2 <1. Since y e S(R?*™) and moreover a,(x, 7) =0 when the hypotesis in (3.7.5)
are satisfied, this last is proved.
By means of the Taylor expansion and (3.7.2) we have

. 1 |
3.7.7) ax—y,n—0~ 2 —=3rdhalx, M(—yP(-0)y| <
l fa+pl <z alf!
<e 2 227(’”“”‘<M7/5>+<M’ﬁ*a>) |yﬂ0a‘ <
la+p|=2
$2p(m~r) E (M, B—a) ﬂga =2p(m~r) Z ( M )ﬁ<q—M0)a ,
i % ly" 67| i @ V@07

since ¥ — M, B+ (M, B—a)— (1 —r/2)XM,B—ay=r2— (M, B+a))/2<0. p is
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even, hence the first order terms drop down from the second integral in (3.7.3); since y
is also rapidly decreasing, we have:

3.1.8) |ep (e, 1) | <2P™m-m  when 2P <[] <2P*1

which jointly with (3.7.5) shows us that c(x, #) e Si7 " "(R), for 95 38 by(x, 1) follows by
differentiation of a,(x, #). Following now the arguments in [11, Theorem 7.1] we obtain
also ¢*(x, D) e OpSj;~"(R), thus the proof is concluded.

4, — Microlocal properties.

DEFINITION 4.1. — For we @' (), s € R we shall say that (xy, % e T*(2)\0 = Q x
X (R"\{0}) does not belong to WF y,u if and only if we can find g e Cf (8), g(xo) = 0
and Ty, o open, M-conic neighborhood of &° such that

(4.1.1) [ a+iepmgue)Pdise< o

Iy, g0

For every ue®' (£2), the anisotropic Sobolev wave front set WF, ,u is a closed
M-conic subset of T*(2)\0 (M-conic with respect to the & variable).

Since an open M-conic subset of B™ may be identified by means of its intersection
with the unit sphere, using well known arguments, see for example TREVES [17], we can
say that (wy, £% ¢ WF, yu if and only if (D) gu € Hj; 1,.(£2) for some e CX(R2), ge
e C” (R™), such that ¢(xy) = 0, g(&) is M-homogeneous of degree 0 for large &, suppgc
Cly g, and g(x) =1in Ty CT gy .

Moreover the projection on £ of WF, j(u) is exactly sing-supp;, %, that is the set
of all the points xe £ such that u¢ Hjy 1,.(V,,) for any open neighborhood V, of
900.

Since a(x, D) e Op S§(2) maps continuously H 31, 10:(82) into Hjy 15.(82) we can
show in standard way, see for example TREVES [17], the pseudolocal property:

(4.1.2) sing suppy, s — (2, D) uC sing suppy ;% ,

for every ue ®' (£2).

Since the composition of two operators, respectively in Op Su(2)m, Op 845,/(R), is
in OpS%™#(2) and moreover Sj i (2)cSH(R), we can state the following
property:

(4.1.3) alx, n) x(n) e SHH4(2),
for every a(x, ) e S5 () and x(y) eSira,0(82), m, ucR.

THEOREM 4.2 (Microlocal property). — Let o, s, m, r belong to R, r strictly positive.
Then for we Hy and alx, 17) in Sif (£2) we have:

4.2.1) WFy ooz, DYucWFy ;4 when s<o+r.
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PROOF. — For xye sing-suppy, %, let us consider (xg, £°) ¢ WFy, ;u. We can then
find ¢ € & (82), @(x) =1 in V,, open neighborhood of %, and g(§) smooth, M-homoge-
neous of degree 0 for large &, supported in I'; and identically 1in Iy, I'jyC Iy M-con-
ic neighborhood of &,, in such a way that g(D) gu e Hjy 1,.(£2).

We can easily see that a(x, D)1 - ¢)ueC”(V,), then the restriction to V, of
WEy, ,v and WF, v coincides. Since a(x, D) g(D) @u is in Hy 1o.(£2) we have only
to consider oz, D)(1 —g(D))gu. Let us consider then the operator c(z, D)=
=x(D) alz, D)1 — g(D)), with x(n) € C* (R") real valued, M-homogeneous of degree 0
for large &, supported in I'j, and identically equal to 1 in I'yyC 'y.

Since the operator a(x, D)(1 —¢(D)) has symbol b(x, 1) = a(x, 7)1~ g(x)) in
Siz »(82), we can write:

(422) C(ac, 77) = | ]%V(a')_lagX(n) D;g b(ﬂU, 7]) +R(w5 77)’

where the sum in the right-hand side identically vanishes and R(x, #) € Sif ~"(£2).
Let us observe now that R*(x, D) = c¢*(x, D) = b*(x, D) y(D); we can then write
by means of (3.4.1):

(4.28) R*Qx,m) =b*, p)x(n) = [ EN(a!)‘lazD;‘b(x, m %) + o, 1) x(n).

Also in this case the sum in the right-hand side identically vanishes; then we have
R*(x, n) =0z, n) x(n) € Sjz~"(£2). This is enough for concluding:

(4.2.4) ¥(D) a(z, D) pu e H™MEm =m0y 5,

In view of the pseudolocal property, letting x, range all over sing-suppy, s%, we
have concluded the proof.

In order to construet an example of pseudodifferential operator in Op S7.(82) which
does not satisfy the microlocal property, let us argue in the more general framework of
inhomogeneous pseudodifferential calculus. Namely let us introduce the basic welght
veetor w(&) =(y,(&), ..., p,(£)), whose components v ;(§) are in C*(R"), j=

=1, ..., n and satisfy, for C, ¢ positive constants:
(4.3.1) e+ |&])<y;(&) <CA+ |&])°,
4.3.2) c<y(E+y;(E)'<C, when kglwklw(s)-%c.

For more details on the basic weight vectors see [1],{14],{15].
Consider now ¢ € C”(R) as in § 1, we can then introduce the functions: ¥} = ¢%, | —
—@h, ¥y =@, where for j=1, ..., n:

(4.3.3) gofg(@:qp(w;(f))eewm), t=0,1,2,....

Since supp ¢c {EeR™; v;(§) <2'} and @}(§) = 1 when y;(§) < 2t~1 we can easi-
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ly see that:
4.34) suppricCi={EeR™; 207 <y () <21}, j=1,..,m.

Moreover we obtain C! N Ci=@,j=1, ..., n,whent,ueN, |t —u| >N, for suit-
able constant N e N. It then follows:

oa

«35) 3 A =g @)+ TA@ =1, =1, ..

For P=(pi, ..., p)eN*=(®U {-1})", let us introduce the vector Xp(&)=
= (L, (&), ..., 1% (£)). We can then define, for ue 8" (R"):

(4.3.6) up(x) = Xp(D) u = (2n)—”jei<% Dyl (€)...x% (E)UE) dE .
The symbol o(Xp(D))E) =y}, (&) ...x5, (&) has support in ]_Ilegj and in view of
4.3.5): -

(4.3.7) 2 X&) =(1,..,1), 2 o((Xp(D))(E)=1.

PeN™ PeN®
We can then decompose e S’ (R™) as follows:

(4.3.8) u= 2 up= 2 Xp(D)u.

PeN™ PeN"

We shall say inhomogeneous Littlewood-Paley partition of unity the vector family
{Xp(&)}penn, and inhomogeneous Littlewood-Paley decomposition the corresponding
one defined by (4.3.8).

Arguing now as in § 1 we can verify that, for u e 8'(R"™) and veR™:

(4.3.9) weHy (R« 3 |ul},2% "< + o .
PeAN™

Where, with standard vectorial notation:
(4.3.10) ey, =l DY @)L,

and Hy is the respective Sobolev space, defined in standard way.

Let us introduce the symbol class Sy ; ,(R™ of all a(z, £) e C*(R*"), whose ele-
ments a(x, n) satisfy, for every K compact subset of R” and «, § multiindices:

(4.4.1) |Dg Salx, n) | < Cy g k() *F.
Consider, for every YeR", ¢ > 0:

Y., ={EeR"; |&;— &) | <ey;(E"), for some £°eY},
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For apeR", ue @ (BR™), veR" we can then define the Sobolev y-filter of microlocal
smoothness:

(4.4.2) T qu=USyou,  9eCTRY, ¢l #0;

where for every ve 8§ (R™):

¢

(443) Syu=|XcR™ [ p@P|¥E)[PdE< + =,  for some £>0.
(B"\X)ey

Both =%, , % and 2% are v filter in the sense that, for all X e 7, , u (resp. 273, v),
there exists ¢ >0 such that: R"\(R"\X),, € 2", , u (resp. 23, v).

For more details on the inhomogeneous pseudodifferential operators and the
Sobolev -filter of microlocal smoothness, see[7] and the references given there.

Let us consider now the vectors w, = (2%, 0, ..., 0) e R", ke N and the test func-
tion e Cy (R), 6(t) <1, suppbc {teR; |t] <1/4}, 6(t) =1 for |{| <1/8. Following
Robino [14] we can so define, for keN:

\
_Zk n ,
(44.4) euim =0 = | ] | —2— |ec@®™;
Yi(wy) Ji=2 \ y(oy)
whose supports are clearly contained, for keN, in
T ¥ (@) (@)
(4.4.5) I,C:{wk}wf{ﬁezz s -2k < 14 B )< ’4 ,

j=2,...,n.

In view of (4.3.1), (4.3.2), ¥ 1{w ) <2* and Y () > 2% for some ¢ >0, £ > 0. Then
supp &, Nsupp&, =@ for k= k and §,(n) =1 when 7 belongs to the set:

_ { zsk zek
(4.4.6) Ik:iWER”; I, - 2% <c Pl i’?;‘i<c—§‘, j=2,...,n}.

Moreover we can find an integer M, and a positive constant r independent from &
such that:

4.4.7) 3y lw) sM s, (wy, for every keN.

We define now the symbol

(4.4.8) ale, ) = gle“””ﬂf@k(m-
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Observing that y; (@) < Cy ;'(n) when nesuppl;, we can say that:

(4.4.9) DG | <ey(n)™®,  neR™,

which jointly with (4.4.7) assures that a(x, 7) € S{ 1, ,(R™).
For every u e & (R™) we obtain:

(4.4.10) a(x, D) w(&) = é(@,ﬁ)(&’, En M), & =0 ...,8.,-9).

We can see now that, for @, = (2%, 0, ..., 0, M) e R", supp § (&', &, — M,) is con-
tained in

( |§1_2k|< Yi(wy) A
4.4.11) Jp = {wk}w/zi: lEeR™; |§7L_M]g| < Ql)niwk) L
(o) i
|§j|< ]4 , J=2,...,n—1
which satisfies
(4.4.12) J,NJ,=6, when h=k.

For every ke N there exists P = (py, ..., p,) € N* such that o belongs to supp Xp,
that is o(Xp(D))w ) #= 0, where Xp is an element of the Littlewood-Paley partition of
unity as defined in (4.3.6). In view of (4.4.7) and (4.3.2), @, belongs in its turn to supp X
and moreover, using also (4.4.5) and (4.4.11), we can show that there exist some positive
constants ¢, C such that, for j=1, ..., n:

(4.4.13) 2k <y (E) < 2Pt for every Eel, or £,
J

that is both I, and J;, are contained in U NsuprQ, for suitable NeN.

Ip-gl <
Then, for Pe N, notice that [,= U _I,c U suppXg and let us estimate
for ue &' (R™): wpesuppXp [P gl <N

@419 @@, Dy uplt < 3 {06 - pE)EAE &, — MpP|dE <
Iy

w e suppXp

A

> [ |2de < [#(8) d& < costllupl,,
lk IP

e suppXp

which in view of (4.3.9) shows that the operator a(x, D) defined by (4.4.8) maps continu-
osly Hj comp(R™) into Hy 1, (R™).
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Let o(x) belong to &5 (R™) and introduce, for T > 0, the function:
(4.4.15) w(x) = 7(x) 2 2 HTg2m e L2 (R™),

Observe now that for every ¢eCy(R"™), veR"™ which satisfy 2 v;20 and
(527 cees gn)

(4416) [ (& +25, £ | FEE) [2dE =

> j‘ ia(§)|2(1+ Ig’ +2k)2c(v1+...+vn)d§Bconst'zzkc(v1+m+vn).

5120

Let us set for pe & (R™):

(4.4.17) ®(E) = X 270 RITguE, -2k, &) grE, - 28, &),

h=k
h,keN

Since |2h —2k§ 22]“/2, h,keN, h=k, when &£, =0 we can estimate for every H >0
and suitable te NV, 0<i<1,cy>0:

4418) X 27T G2 -2k 427, ) || FE21 - 2" + 24, §)| <

hek
h,keN

<eu|&]F) (2t~ 24, w*’( & 2‘””’””’) <cy|g|*

k, heN

Moreover @(£) is clearly rapidly decreasing when &; < 0. Since
(4.4.19) GUEN = 2 27 DG, - 2%, Y + D),
k=1

by means of (4.4.16), (4.4.17), (4.4.18) we can realize that for any v e R™ such that v, +
+...+v,>1/Tc, sing supp, ,u =suppr, where singsupp, ,% is the complement
in R™ of the set of points which admit some neighborhood U such that u e H . (U).
Let us introduce now for every xyeR” and ue ® (R"™) the y filter of microlocal
smoothness X, , u defined by means of (4.4.2) and (4.4.3), where %(§) is rapidly
decreasing in (R"\X),,. For every ueR", fe®'(R"™), we can easily verify that
sing supp,, , fC singsuppfand 2, , fc 2%, . f. Now, following the last part of the proof
in RopiNo [14, Theorem 38.9] and observing that 7' may grow all over R, we can
state:

THEOREM 4.4. — There exists a(x, n) € ST 1, ,(R™) which satisfy:
1) alx, D) maps Hf omp 0 ng ey UeR™;
i) for any veR"™ such thot 2 v; >0 there exists Y e, , u which is not in

2% oM, DY u, for some ueLz(R")
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REMARK. — If we set 9(&)=([EPh, ... ,[EM), u=(m/M,,...,m/M,), v=
= (s/My, ..., s/M,), the symbol class Sj7(£2) and the anisotropic Sobolev space Hj can
be identified respectively as S 1 ;(£) and Hy; see for example Ropino [14],[15].

Let us consider now, for seR, xe 2, ue® (£2):

(4.4.20) e =0X0,  XpeSje,u,

then WF, 5« and the closed conic set:
(4.4.21) {(x,5)e @ xR"\0; £y ,u};

differ only for a bounded part, see[7].
Let us consider now for r>0

(4.4.22) b(x, n) = ale, )1+ [7])"e Sy (R™ c Sy (R™),

with a(x, ) defined by (4.4.8), where ¢ (&) = 171(5). If we take u e L, as in (4.4.15), we
obtain b(x, D)u e Hy(R™); then WF, 4, b(x, D) u is empty when s <. On the other
hand Theorem 4.4 shows that WF, ,,u does not contain WF,_,, »b(x, D) u when s >
> 7. We can then easily end that WF, »ru, u € Hy 1,.(£2), is preserved under the action of
b(x, D) e 81", ,(£2) if and only if s belongs to the interval (o, o +r].

REFERENCES

[1] R. BEALS, A general caleculus of pseudodifferential operators, Duke Math. J., 42 (1975), pp.
1-42.

[2] J. M. Bony - J. Y. CHEMIN, Espaces fonctionnels associés au calcul de Weyl-Hormander,
Bull. Soc. Math. France, 122 (1994), pp. 77-118.

[8] G. BOURDAUD, Sur les opérateurs pseudo-différentiels a coefficients peu réguliers, These,
Univ. Paris Sud (1983), pp. 1-154.

[4] G. BourpAUD, Une algébre maximale d’opérateurs pseudo-différentiels, Comm. Part. Diff.
Equations, 13 (9) (1988), pp. 1059-1083.

[56] G. BoURDAUD, Une algébre maximale d’opératewrs pseudo-différentiels de type 1,1, Sémi-
naire «Equations aux Derivées Partielles», exposé VII, Ecole Politecnique, F91128 Palaiseau
Cedex (1987-88).

[6] CHIN-HUNG CHING, Pseudodifferential operators with non regular symbols, J. Diff. Equa-
tions, 11 (1972), pp. 436-4417.

[71 G. GARELLO, Inhomogeneous microlocal analysis for €= and H,, singularities, Rend. Sem.
Mat. Univ. Polit. Torino, 2 (1992), pp. 165-181.

[8] G. GARELLO, Microlocal properties for pseudodifferential operators of type 1,1, Comm. Par-
tial Diff. Equations, 19 (56&6) (1994), pp. 791-801.

[9] G. GARELLO, Inhomogeneous paramultiplication and microlocal singularities for semilin-
ear equations, Preprint Quaderni del Dipartimento di Matematica Universitd di Torino, 1
(1995).

[10] L. HORMANDER, The Analysis of Linear Partial Differential Operators I, 111, Springer-Ver-
lag, Berlin, Heidelberg, Berlin, Tokyo (1983, 1985).



160 G. GARELLO: Anisotropic pseudodifferential operators, etc.

[11] L. HORMANDER, Pseudodifferential operators of type 1,1, Comm. Partial Diff. Equations, 13
(9) (1988), pp. 1085-1111.

[12] L. HORMANDER, Continuity of pseudodifferential operators of type 1,1, Comm. Partial Diff.
Equations, 14 (2) (1989), pp. 231-243.

[13] R. Lascar, Propagation des singularités des solutions d’équations pseudodifferentielles
quasi-homogénes, Ann. Inst. Fourier, Grenoble, 27 (1977), pp. 79-123.

[14] L. Ropino, Microlocal analysis for spatially inhomogeneous pseudodifferential operators,
Ann. Sc. Norm. Sup. Pisa, Classe di Scienze, 9, n. 2 (1982), pp. 221-253.

{15] L. RobiNo, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singa-
pore (1993).

[16] F. SEGALA, Lower bounds for a class of pseudo-differential operators, Boll. Un. Mat. Ital. (5),
18-B (1981), pp. 231-248.

[17] F. TrEVES, Introduction to Pseudodifferential and Fourier Integral Operators, I, Plenum
Press, New York (1980).

[18] M. Yamazaxt, A quasi-homogeneous version of paradifferential opevators I, I, J. Fae. Sci.
Univ. Tokyo, 33-A 1, 2 (1986), pp. 131-174.

[19] M. Yamazaxt, A quasi-homogeneous version of the microlocal analysis for non linear par-
tial differential equations, Japan. J. Math., 14/2 (1988), pp. 225-260.




