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Within the metric formalism of f(R) theories of gravity, where R is the Ricci scalar, we study
the hydrostatic equilibrium structure of compact stars with the inclusion of anisotropic pressure.
In particular, we focus on the f(R) = R1+ε model and we examine small deviations from General
Relativity (GR) for |ε| � 1. A suitable definition of mass function is explicitly formulated from
the field equations and the value of the Ricci scalar at the center of each star is chosen such that
it satisfies the asymptotic flatness requirement. We find that both the mass and the radius of a
compact star are larger with respect to the general relativistic counterpart. Furthermore, we remark
that the substantial changes due to anisotropy occur mainly in the high-central-density region.

I. INTRODUCTION

It is well known that the experimental tests of Ein-
stein’s general relativity at solar-system scales (i.e., the
perihelion advance of Mercury, gravitational Doppler ef-
fect, light deflection, among others) have reached high
precision [1]. Furthermore, GR has been tested in strong-
gravity situations as the emission of gravitational waves
emanating from a collision of compact objects [2, 3]. Con-
sequently, standard GR has been the most successful and
accepted theory of gravity to describe gravitational phe-
nomena. Nevertheless, Einstein’s theory has some limita-
tions in the sense that a large portion of our observable
Universe is not completely known. In fact, the inter-
pretation of cosmic acceleration within the GR frame-
work requires the introduction of dark energy — an ex-
otic form of matter with large negative pressure. In this
direction, various modified theories of gravity have been
proposed in the last decades, where the accelerated ex-
pansion of the Universe can arise from a modification of
GR on large scales [4–11]. Additional results on mod-
ified gravity models as alternatives to dark energy can
be found in the review article by Koyama [12]. See also
Refs. [13–17] for a unified description of the inflationary
era at early times with the dark energy epoch.

One of the simplest ways to modify GR is by replac-
ing the scalar curvature R in the conventional Einstein-
Hilbert action by an arbitrary function of R, this is, the
so-called f(R) theories of gravity [18, 19]. Such theories
have been studied in order to explain the evolution of
the early and present Universe, see e.g. Refs. [20–23] for
an extensive review. On the other hand, at astrophysi-
cal scale, the macroscopic properties of compact stars are
also affected when the theory of gravity is modified. As a
matter of fact, within the framework of R2 gravity (i.e.,
the theory popularly known as the Starobinsky model
[4]) and under a non-perturbative approach, the maxi-
mum mass of compact stars in the mass-radius diagram
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undergoes a noticeable increase due to the quadratic term
[24–32]. It has been shown that the secondary component
of the GW190814 event (reported by the LIGO-Virgo
collaborations [33]) can be consistently described as a
neutron star in the context of R-squared gravity [28–30].
Astashenok and Odintsov investigated the physical char-
acteristics of non-rotating [34] and rotating [35] neutron
stars in R2 gravity with the coupling of an axion scalar
field. Additionally, for a comprehensive review on stellar
structure models in the framework of modified theories
of gravity formulated in both metric and metric-affine
approaches, see Ref. [36].

Böhmer and collaborators [37] showed that only small
deviations from GR are needed to explain the flat galactic
rotation curves. Namely, the gravitational Lagrangian in
the form f(R) ∝ R1+ε is a somewhat natural modifica-
tion of Einstein gravity, where the dimensionless param-
eter ε is expressed in terms of the tangential velocity. In
addition, this power-law f(R) model has recently been
considered for the explanation of the clustered galac-
tic dark matter problem [38], where the parameter ε is
constrained to be O(10−6). The light deflection angle
through the rotational velocity profile of typical nearby
galaxies in the R1+ε gravitational background was cal-
culated in Ref. [39]. More studies on the physical impli-
cations of the power-law f(R) theories of gravity can be
found in Refs. [40–44].

On the other hand, it has been shown that the param-
eter ε within the context of R1+ε gravity has a significant
impact on the mass-radius diagrams of isotropic neutron
stars [28, 45]. Although it is common to adopt isotropic
perfect fluids to describe the compact star matter, there
are well-supported reasons for the existence of anisotropy
in superdense matter (see for instance Refs. [46–62] and
references therein for further discussions). In these works
it has been shown that the presence of anisotropy allows
to increase or decrease the maximum-mass values and,
consequently, opens the possibility of obtaining more
massive compact stars satisfying the astronomical obser-
vations.

Using a fully self-consistent non-perturbative approach
within the Starobinsky model, the effect of anisotropies
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on the internal structure of neutron stars described by
three different types of realistic equations of state (EoSs)
has been studied by Folomeev [63]. It was revealed that
the inclusion of anisotropic pressure enables one to em-
ploy more stiff EoSs to model configurations that suf-
ficiently satisfy the observational constraints. Moreover,
anisotropic quark stars in R-squared gravity were investi-
gated in Ref. [64]. More recently, Nashed et al. [65] stud-
ied anisotropic compact stars in the context of higher-
order curvature theory of the f(R) type. Malik and col-
laborators explored anisotropic compact spheres in the
Starobinsky-like model [66, 67], as well as in generalized
modified gravity [68–70]. Using the Karmarkar condi-
tion and considering a logarithmic modification of the
standard Starobinsky model, the gravitational collapse
of an anisotropic system with heat flow was analyzed in
Ref. [71]. See also Ref. [72] for a comparative analysis of
self-consistent charged anisotropic spheres under embed-
ded spacetime using the Karmarkar condition.

To the best of our knowledge, anisotropic compact
stars have not yet been investigated in R1+ε gravity
model, so the purpose of the present study is to fill this
gap. With this in mind, we will derive the stellar struc-
ture equations in such a gravity model and we will an-
alyze the effect of anisotropy on compact stars. To do
so, we will use the MIT bag model EoS for the radial
pressure. It is worth emphasizing that quark matter
within the MIT bag model framework was considered
in the study of astrophysical events by a large number
of authors [73–78]. However, it is well known that the
anisotropic aspects of EoS arise in the treatment of color
superconductor states of dense quark matter (CFL and
LOFF states) [79, 80]. It is out of the purpose of the
present work to discuss such aspects, and we will con-
sider the phenomenological ansatz proposed by Horvat
et al. [48]. Our main goal here is to have an idea of the
competition between gravitational effect with the f(R)
treatment and anisotropic aspect of the medium, on the
quark star structure.

Our paper is organized as follows: In Sect. II we briefly
summarize metric f(R) gravity, we present the field equa-
tions for a spherically symmetric system and introduce
a mass function. Section III describes in detail the rela-
tivistic structure of anisotropic compact stars by means
of the modified TOV equations. In the same section we
present the EoS and the anisotropy profile. In Sect. IV
we show our numerical results and we analyze the devi-
ations of the physical quantities with respect to conven-
tional GR. Finally, in Sect. V we provide our conclusions.
We will use the spacetime signature (−,+,+,+) and ge-
ometric units with G = 1 = c. Nonetheless, our results
will be given in physical units.

II. THEORETICAL FORMALISM

A. Metric f(R) gravity

Here we briefly summarize f(R) theories of gravity
within the metric formalism, where the conventional def-
initions of the curvature variables hold. Such theories are
defined through the following action [18]

S =
1

16π

∫
d4x
√
−gf(R) + Sm, (1)

where R is the Ricci scalar, g is the determinant of the
metric tensor gµν , and Sm denotes the matter action. By
varying the action with respect to the metric we obtain
the field equations:

fRRµν −
1

2
gµνf −∇µ∇νfR + gµν�fR = 8πTµν , (2)

with Tµν being the matter energy-momentum tensor,
fR ≡ df(R)/dR, ∇µ stands for the covariant derivative
associated with the Levi-Civita connection of the met-
ric, and � ≡ ∇µ∇µ is the d’Alembert operator. Besides,
Rµν represents the Ricci tensor and which is constructed
solely from the connection.

It can be noted that the field equations in f(R) gravity
are fourth-order differential equations in the metric since
the Ricci scalar contains second-order derivatives, and it
is evident that Eq. (2) reduces to the Einstein equation
when f(R) = R. Inside a stellar fluid, in GR the Ricci
scalar is defined by energy density and pressure, i.e. R =
−8πT where T = gµνT

µν . However, in f(R) gravity,
both gµν and R are dynamical fields, so that now the
Ricci scalar is described by a second-order differential
equation obtained by taking the trace of Eq. (2), namely

3�fR(R) +RfR(R)− 2f(R) = 8πT, (3)

which means that T = 0 no longer implies R = 0 as in the
pure general relativistic case. As we will see later, this
indicates that non-linear functions in R lead to a non-
zero scalar curvature in the exterior region of a compact
star.

B. Field equations for a spherically symmetric
system

In order to examine the structure of compact stars in
hydrostatic equilibrium, we consider a static and spheri-
cally symmetric system whose spacetime is described by
the usual metric

ds2 = −e2ψdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2), (4)

where xµ = (t, r, θ, φ) are the Schwarzschild-like coordi-
nates. The metric functions ψ and λ depend only on the
radial coordinate r.
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The stellar matter distribution is assumed to be an
anisotropic perfect fluid, i.e. it is described by the fol-
lowing energy-momentum tensor

Tµν = (ρ+ pt)uµuν + ptgµν − σkµkν , (5)

with uµ being the four-velocity of the fluid and which
satisfies the normalization condition uµu

µ = −1, kµ is a
unit radial four-vector so that kµk

µ = 1. Furthermore,
ρ is the energy density, pr the radial pressure, pt the
tangential pressure and σ ≡ pt − pr is the anisotropy
factor. Accordingly, we can write uµ = e−ψδµ0 , kµ =
e−λδµ1 and the trace of the energy-momentum tensor (5)
takes the form T = −ρ+ 3pr + 2σ.

The four-divergence of expression (5) provides the con-
servation law of energy and momentum as in conventional

Einstein gravity, that is,

∇νT ν
1 = p′r + (ρ+ pr)ψ

′ − 2

r
σ = 0, (6)

where the prime stands for differentiation with respect
to the radial coordinate. In addition, �fR is found to be

�fR =
1√
−g

∂µ
[√
−g∂µfR

]
=

1

e2λ

[(
2

r
+ ψ′ − λ′

)
f ′R + f

′′

R

]
. (7)

Consequently, for the line element (4) and energy-
momentum tensor (5), the non-zero components of the
field equations (2) are given by

− fR
r2

+
fR
r2

d

dr

(
re−2λ

)
+

1

2
(RfR − f) +

1

e2λ

[(
2

r
− λ′

)
f ′R + f

′′

R

]
= −8πρ, (8)

− fR
r2

+
fR
e2λ

(
2ψ′

r
+

1

r2

)
+

1

2
(RfR − f) +

1

e2λ

(
2

r
+ ψ′

)
f ′R = 8πpr, (9)

fR
r2

[
1 +

1

e2λ
(rλ′ − rψ′ − 1)

]
− 1

2
f +

1

e2λ

[(
1

r
+ ψ′ − λ′

)
f ′R + f

′′

R

]
= 8πpt, (10)

and the dynamical equation for the scalar curvature (3)
becomes

3

e2λ

[(
2

r
+ ψ′ − λ′

)
f ′R + f

′′

R

]
= 8π(−ρ+ pr + 2pt)

+ 2f −RfR. (11)

C. Mass function

It is convenient here to define a mass function for the
stellar fluid. To do so, we will use the 00-component of
the field equations. In other words, the above Eq. (8)
can be recast in the form

d

dr

(
re−2λ

)
= 1− 8πr2ρ−

{
(1− fR)

d

dr

[
r(1− e−2λ)

]
+
r2

2
(RfR − f) +

r2

e2λ

[(
2

r
− λ′

)
f ′R + f ′′R

]}
,

(12)

this is, the metric function λ is generated by the matter
fields and by the terms related to the scalar curvature.
Note that the scalar curvature is generated by the second-
order differential equation (3). Then, the integration of
expression (12) leads to the following explicit result

e−2λ = 1− 2m

r
, (13)

where m(r) plays the role of mass function and char-
acterizes the mass enclosed within the radius r. Thus,
taking into account that f ′R = R′fRR and f

′′

R = R′′fRR+
R′2fRRR, such mass parameter can be written as

m = 4π

∫
ρr2dr +

1

2

∫ {
(1− fR)

r2
d

dr

[
r(1− e−2λ)

]
+

1

e2λ

[(
2

r
− λ′

)
R′fRR +R′′fRR +R′2fRRR

]
+

1

2
(RfR − f)

}
r2dr. (14)

It is evident that when f(R) = R, the second integral
vanishes and we recover the widely known expression in
GR (where the mass becomes constant outside a star).
Nevertheless, note that here the scenario is different from
Einstein gravity, even in the outer region of a compact
star where ρ = 0, the expression (14) generates an extra
mass contribution due to the Ricci scalar. For the specific
function f(R) = R + αR2, our generalized version (14)
reduces to the expression given in Ref. [32].

III. MODIFIED TOV EQUATIONS IN f(R)
GRAVITY

Here we will adopt a non-perturbative approach where
one looks for solutions of the exact fourth-order differ-
ential equations with respect to the metric functions. In
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order to construct static anisotropic compact stars, we
need to derive a modified version of the TOV equations
in f(R) gravity. To do so, we are going to properly com-

bine the field equations (8)-(9) together with Eqs. (6)
and (11). From Eqs. (8), (9) and (11), one can obtain
the following expressions, respectively

λ′ =
1

r(2fR + rR′fRR)

[
8πρr2e2λ +

e2λ

2
(r2RfR − r2f − 2fR) + fR + 2rR′fRR + r2(R′′fRR +R′2fRRR)

]
, (15)

ψ′ =
1

2r(2fR + rR′fRR)

[
r2e2λ (16πpr + f −RfR) + 2fR

(
e2λ − 1

)
− 4rR′fRR

]
, (16)

R′′ =
1

3fRR

{
e2λ [8π(−ρ+ pr + 2pt) + 2f −RfR]− 3R′2fRRR

}
+

(
λ′ − ψ′ − 2

r

)
R′. (17)

In view of Eqs. (16) and (17), Eq. (15) becomes

λ′ =
1

2rfR

{
fR(1− e2λ) +

r2e2λ

3

[
8π(2ρ+ pr + 2pt) +

1

2
(RfR + f)

]}
− R′fRR

2fR(2fR + rR′fRR)

[
r2e2λ

2
(16πpr + f −RfR)− fR(1− e2λ)− 2rR′fRR

]
, (18)

or alternatively,

λ′ =
1

2r(2fR + rR′fRR)

{
2fR(1− e2λ) +

r2e2λ

3
[16π(2ρ+ pr + 2pt) +RfR + f ]

+
rR′fRR
fR

[
2fR(1− e2λ) +

r2e2λ

3
(16π(ρ− pr + pt) + 2RfR − f) + 2rR′fRR

]}
. (19)

Therefore, within the context of f(R) modified theories of gravity, the relativistic structure of a static compact star
in the presence of anisotropic pressure is described by Eqs. (16), (17), (19) and (6), rewritten as

dψ

dr
=

1

2r(2fR + rR′fRR)

[
r2e2λ(16πpr + f −RfR) + 2fR

(
e2λ − 1

)
− 4rR′fRR

]
, (20)

dλ

dr
=

1

2r(2fR + rR′fRR)

{
2fR

(
1− e2λ

)
+
r2e2λ

3
[16π(2ρ+ 3pr + 2σ) +RfR + f ]

+
rR′fRR
fR

[
2fR

(
1− e2λ

)
+
r2e2λ

3
(16πρ+ 16πσ + 2RfR − f) + 2rR′fRR

]}
, (21)

d2R

dr2
=

1

3fRR

{
e2λ [8π(−ρ+ 3pr + 2σ) + 2f −RfR]− 3R′2fRRR

}
+

(
λ′ − ψ′ − 2

r

)
R′, (22)

dpr
dr

= −(ρ+ pr)ψ
′ +

2

r
σ, (23)

where the particular case σ = 0 corresponds to TOV
equations describing isotropic compact stars in f(R)
gravity [26]. Equation (22) will play a crucial role in
the radial behavior of the scalar curvature both inside
and outside the star. In Einstein gravity, this equation
is reduced to R = 8π(ρ − 3pr − 2σ), so that in the ex-
terior region of the star we have R = 0 and hence the
Schwarzschild solution is valid.

We can notice that the above system of equations (20)-
(23) correspond to three first-order and one second-order
ordinary differential equations, and which contains a set

of six variables ψ, λ, R, ρ, pr and σ to be determined.
Thus, given a barotropic EoS for radial pressure in the
form pr = pr(ρ) and an anisotropy relation for σ, only
five boundary conditions are required to solve such a sys-
tem inside the star. Indeed, by ensuring regularity of
the geometry at the center of the star, we establish the
boundary conditions

ρ(0) = ρc, ψ(0) = ψc, λ(0) = 0,

R(0) = Rc, R′(0) = 0, (24)

where ρc and Rc are the values of the central energy
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density and central scalar curvature, respectively. In the
meanwhile, outside the star, the solution is defined by
Eqs. (20)-(22), where the energy density and pressures
vanish (ρ = pr = pt = 0) and hence the EoS is not needed
any longer. The surface of the star is found when the
radial pressure vanishes, i.e. pr(rsur) = 0. It is therefore
convenient to settle the following junction conditions at
the stellar surface

ψin(rsur) = ψout(rsur), λin(rsur) = λout(rsur),

Rin(rsur) = Rout(rsur), R′in(rsur) = R′out(rsur). (25)

Additionally, constrains on the Ricci scalar and mass
function come from the asymptotic flatness requirement

lim
r→∞

R(r) = 0, lim
r→∞

m(r) = constant, (26)

namely, Rc must be chosen so that it satisfies the re-
quirement (26) at infinity. In turn, the central value
of the metric function ψ in Eq. (24) is fixed by requir-
ing that the spacetime geometry be asymptotically flat,
i.e. ψ(r → ∞) → 0. Consequently, by bearing in mind
Eq. (13), the total gravitational mass of the star M will
be determined from the asymptotic behavior

M ≡ lim
r→∞

r

2

(
1− 1

e2λ

)
. (27)

A. f(R) = R1+ε gravity

The solution of the system of equations (20)-(23) with
boundary conditions (24) and (25), characterizes com-
pletely the static background of an anisotropic compact
star within the metric f(R) formalism. In fact, to ob-
tain such a solution, one has to specify the particular
model of f(R) gravity. An interesting class of models are
the power-law models given by f(R) ∼ Rn (where n ∈ R)
because they are related to the existence of Noether sym-
metries [81]. Capozziello and collaborators [41] showed
that such gravity model may represent a good candidate
to solve both the dark energy problem at cosmological
level and the dark matter one at galactic scale with the
same value of the slope n of the higher-order gravitational
theory. Following Ref. [28], we assume that n = 1 + ε so
that we can study small deviations with respect to GR for
|ε| � 1. It is worth noting that this type of corrections
emerges in one-loop regularization and renormalization
process in curved spacetime. In this perspective, we can
write f(R) as a first-order Taylor expansion

R1+ε ' R+ εR lnR, (28)

this is, the correction term to the standard Einstein-
Hilbert action is logarithmic and for ε = 0 we retrieve
the pure general relativistic case. Therefore, fR =
1 + ε+ ε lnR, fRR = ε/R, fRRR = −ε/R2 and which will
be replaced into the modified TOV equations (20)-(23)

in order to determine the metric functions and thermo-
dynamic quantities of an anisotropic compact star. In
the present work we will use typical values for the lead-
ing parameter ε as in Refs. [28, 45]. In fact, it has been
argued that the results of physical interest are obtained
for ε < 0 [45].

B. Equation of state and anisotropy profile

Similar to the construction of anisotropic compact
stars in Einstein gravity, to close the system of equa-
tions (20)-(23) one needs to specify an EoS (this is, the
microphysical relation between radial pressure and en-
ergy density by means of equation pr = pr(ρ)) and also
assign an anisotropy function σ since there is now an ex-
tra degree of freedom pt. To explore quark stars in R1+ε

gravity, we employ the MIT bag model EoS for the dense
matter involved, given by

pr = b(ρ− 4B), (29)

which describes a self-gravitating fluid composed by up,
down, and strange quarks. The constant b usually varies
from 0.28 to 1/3, and the bag constant B lies in the range
0.982B0 < B < 1.525B0 where B0 = 60 MeV/fm3 [82]
In our study, we will consider the particular case b = 1/3
and B = B0. Nevertheless, we must point out that val-
ues for the bag constant can be consistently determined
together with other parameters in order to describe some
compact objects observed in nature [83].

We will consider values for the central energy density in
the range ρc ∈ [0.5, 4.0] × 1015 g/cm3, which are typical
values used in GR [75, 84]. Notice that such a range
of central densities is larger than the nuclear saturation
density, i.e., ρ/ρ0 > 1, where ρ0 = 2.8× 1014 g/cm3.

In addition to the EoS for radial pressure, we will use
the anisotropy ansatz suggested by Horvat and collabo-
rators [48] to model anisotropic matter inside compact
stars, namely

σ = βprµ, (30)

or alternatively,

pt = pr
[
1 + β(1− e−2λ)

]
, (31)

with µ(r) ≡ 2m/r being the compactness of the star. In
the non-relativistic limit, when the pressure contribution
to the energy density is negligible, the effect of anisotropy
vanishes in the hydrostatic equilibrium equation. This is
in good agreement with the assumption that anisotropy
may arise only at high densities of matter. Another ad-
vantage of such profile is that the stellar fluid becomes
isotropic at the origin since µ ∼ r2 when r → 0. It is
also commonly known as quasi-local ansatz in the liter-
ature where β measures the degree of anisotropy inside
the star and in principle can assume positive or negative
values [48–51, 56, 57, 61, 63]. Here we will consider val-
ues of β for which appreciable changes in the mass-radius
diagrams can be visualized.
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IV. NUMERICAL RESULTS AND DISCUSSION

Using the boundary conditions (24) and (25) together
with the first-order expansion (28), we numerically solve
the modified TOV equations (20)-(23) inside and outside
the star with EoS (29) and anisotropy profile (30). Here
we have to specify the numerical values of the free param-
eters ε and β. For the interior problem, this is carried out
by integrating from the center of the star to the surface
where the radial pressure vanishes, and for the exterior
problem, by fulfilling the asymptotic flatness requirement
(26). In other words, the central value of the Ricci scalar
is chosen so that asymptotically R(r → ∞) → 0 and
hence Rc can only assume a unique value for each stellar
configuration. In particular, for a central energy density
ρc = 1.0 × 1018 kg/m3, we display in Fig. 1 the inte-
rior and exterior solution for the metric functions and
Ricci scalar in f(R) = R1+ε gravity. Analogously to the
conventional GR theory, Minkowski spacetime is asymp-
totically required, i.e. ψ and λ approach zero at large
distances. From the lower panel, we observe that there
exist a significant contribution to the scalar curvature
immediately after the surface and it decreases monotoni-
cally with r. This means that the Schwarzschild metric is
not adequate to describe the exterior spacetime of a com-
pact star in f(R) gravity, it could only be a well-behaved
limit at a sufficient distance from the surface.

For the central energy density considered above, the
radial and tangential pressures are shown in the left panel
of Fig. 2 for ε = −0.002 and two specific values of β.
As expected, the fluid is isotropic at the stellar origin
and this ensures regularity. In turn, the radius of the
quark star decreases (increases) for negative (positive)
values of β as compared to the isotropic case (see also
Table I). Furthermore, the mass function is displayed in
the right panel of the same figure. In Einstein gravity
the gravitational mass is given by the first integral of
Eq. (14), it grows from the center to the surface and
always assumes a constant value in the exterior region
of the star. Nevertheless, in the R1+ε gravity model,
the logarithmic term in Eq. (28) generates an extra mass
contribution through the second integral of Eq. (14). As
a result, the total mass at infinity increases with respect
to the mass measured at the surface m(rsur). This can
be clearly observed in the data recorded in Table I, and
thus our results are in very good agreement with those
reported in Ref. [28]. In the literature it is common to
interpret such additional mass as an effective mass due
to a “gravitational sphere” outside the star [25]. Namely,
one finds that with the emergence of this sphere, the total
gravitational mass (27) increases as ε is more negative,
compared to the pure GR case. From the same plot,
note further that the role of the anisotropic pressure is
to increase the gravitational mass as β increases.

Figure 3 displays the radial behavior of the anisotropy
factor for a given central density. It is more pronounced
in the intermediate regions of the star and can be positive
(negative) if β is positive (negative). As predicted by

rsur = 11.583 km
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FIG. 1. Numerical solution of the set of modified TOV
equations (20)-(23) for a given central density ρc = 1.0 ×
1018kg/m3 with MIT bag model EoS (29) and anisotropy
profile (30) in R1+ε gravity model, where we considered
ε = −0.002 and β = 0.4. The metric functions (upper panel)
and Ricci scalar (lower panel) are displayed as functions of the
radial coordinate. In each plot, the solid and dotted lines cor-
respond to the interior and exterior solutions, respectively. It
can be observed that the Ricci scalar goes to zero as we move
away from the stellar surface according to the asymptotic flat-
ness requirement (26).

Eq. (30), the anisotropy vanishes both at the center and
at the surface of the star. Following Refs. [66, 85–87],
the second term on the right-hand side of Eq. (23) can
be interpreted as a force due to anisotropy. Namely, this
force is directed outward when 2(pt − pr)/r > 0 and
inward if pt < pr.

For different values of central energy density, we can
obtain a family of anisotropic quark stars in f(R) = R1+ε

gravity. Consequently, the mass-radius diagrams and
mass-central energy density relations in such modified
gravity framework (including the corresponding pure GR
results for the anisotropic case by blue lines) are shown
in Fig. 4. As one can see, for β fixed and ε varying, sig-
nificant deviations from GR appear in both high-mass
and low-mass regions. We observe that the εR lnR term
in Eq. (28) allows for an increase in the maximum-mass
values as ε becomes more negative. On the other hand,
for β varying and ε fixed, the total gravitational mass
of quark stars undergoes very slight changes at low cen-
tral densities and the most substantial changes occur at
higher densities due to the anisotropic pressure. This
qualitative behavior is similar to the general relativistic
situation, see for instance the blue curves in the upper
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FIG. 2. Left panel: Radial (solid lines) and tangential (dashed lines) pressure as a function of the radial coordinate for
anisotropic quark stars within the framework of f(R) = R1+ε gravity with ε = −0.002 and two specific values of β. For each
configuration the stellar surface is determined when the radial pressure vanishes. Right panel: Radial behavior of the mass
function inside (solid lines) and outside (dotted lines) a quark star for different values of the parameters ε and β. The graphs
are plotted for the MIT bag model EoS and central density ρc = 1.0× 1018kg/m3.

TABLE I. Stellar configurations with central energy den-
sity ρc = 1.0 × 1018kg/m3 and MIT bag model EoS (29) in
f(R) = R1+ε gravity for different values of ε and β. The to-
tal gravitational mass of the star as measured by a distant
observer is denoted by M . The radial profile of the metric
functions and Ricci scalar for the configuration correspond-
ing to ε = −0.002 and β = 0.4 is shown in Fig. 1. Moreover,
the radial behaviour of the pressures and mass function is
shown in Fig. 2.

Parameters rsur [km] msur [M�] M [M�]
ε = 0 (GR), β = 0 11.151 1.729 1.729
ε = −0.002, β = −0.4 11.111 1.628 1.721
ε = −0.002, β = 0 11.344 1.759 1.851
ε = −0.002, β = 0.4 11.583 1.906 1.996
ε = −0.004, β = −0.4 11.299 1.656 1.801
ε = −0.004, β = 0 11.539 1.791 1.934
ε = −0.004, β = 0.4 11.779 1.936 2.080

plots of Fig. 4, where three values of the anisotropy pa-
rameter are particularly considered. Furthermore, we re-
mark that negative values of β lead to lower maximum
masses as in Einstein gravity.

Unlike the Starobinsky model, where the quadratic
term has a substantial effect only in the high-radius re-
gion for quark stars (see Ref. [25]), in the present work we
observe that the logarithmic correction given by Eq. (28)
has a significant impact on both high-radius and low-
radius regions. Such deviations with respect to the pure
GR framework can be visualized in the mass versus ra-
dius diagrams by green lines in Fig. 4.

β = 0.4

β = -0.4

0 2 4 6 8 10

-5

0

5

r [km]

σ
[1

0
3

2
P

a
]

FIG. 3. Radial behavior of the anisotropy factor for a quark
star with central density ρc = 1.0× 1018kg/m3. As in Fig. 2,
we have considered ε = −0.002 and two values of β.

V. CONCLUSIONS

In this work we have investigated the global physical
properties of compact stars within the context of met-
ric power-law f(R) gravity. In particular, we considered
the gravitational action f(R) = R1+ε in order to explore
small deviations from the usual Einstein-Hilbert action
for |ε| � 1. Under a non-perturbative formulation of the
field equations, we have derive the modified TOV equa-
tions and studied the equilibrium structure of compact
stars in the presence of anisotropy. We have adopted
the anisotropy profile suggested by Horvat and collabo-
rators [48], where appears a dimensionless parameter β
which controls the degree of anisotropy within the com-
pact star. In that sense, the progress made in this study
was to extend previous works on isotropic compact stars
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FIG. 4. Mass-radius diagrams (left column) and mass-central density relations (right column) for quark stars with MIT bag
model EoS in GR (ε = 0) and within the context of f(R) = R1+ε gravity for some values of ε. The blue curves in the upper
panels represent anisotropic solutions for ε = 0. Green lines in the middle panels correspond to isotropic solutions (β = 0) for
different values of ε. Pink and brown curves in the lower plots correspond to β 6= 0 and ε 6= 0. Note that some combinations of
ε and β are capable of generating maximum masses above 2M�. The curves exhibit a remarkable behaviour because the radius
and mass increase as ε becomes more negative. Furthermore, the effect of anisotropy is more relevant in the high-mass region.

in f(R) = R1+ε gravity to include anisotropy.

The mass-radius diagrams of anisotropic quark stars
in terms of the free parameters ε and β have been con-
structed for the MIT bag model EoS. We have found that
the main effect of the parameter ε is to increase the total
gravitational mass throughout the range of central en-
ergy densities. In addition, the relevant changes due to
the anisotropic pressure emerge in the high-mass region
(close to the maximum-mass point), while the variations
are negligible in the low-mass region. Although this be-
havior is similar to that obtained in RG, it is also inter-
esting to note that suitable combinations of the parame-
ters ε and β allow us to obtain masses above 2M�. This
would make it possible to describe supermassive com-

pact stars and hence have a better agreement between
the theoretical calculations and the observational data.
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