


DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



ABSTRACT 
\ 

1 
\ 

We have studied the electron-phonon interaction in aluminum using 

Fermi-surface-fitted 4-OPW electron states, a realistic phonon spectrum, 

and integration mesh-density varying with local Fermi surface curvature. 

The resulting electron mass enhancement A and thermal scattering rate T 

are evaluated as functions of position on the Fermi surface, with the fol-

lowing results: 1. The agreement between observed and calculated cyclotron 

masses is improved slightly by the use of our anisotropic A rather than the 

average one, 2. The anisotropy of A is determined predominantly by mixing 

coefficient variations, rather than by phonon anisotropy, 3. The scatter-

ing rate T exhibits ordsr-of-magnitude variations over the Fermi surface 

at low temperatures. Its values at 5K are within 50% of the experimentally 

observed ones everywhere, with considerably better agreement in free-electron 

3 
regions. 4. Deviations from the naively-expected T behavior are predicted: 

In free-electron regions, umklapp processes cause a more rapid increase than 

3 3 

T for temperatures above 15-25K. On ridges, where the initial "T -coef-

ficient" is very large, we find a slower increase. There results a washing-

out of anisotropy with increasing temperature. The results on A are in good 

agreement with those of a recent similar calculation; the T results agree 

qualitatively but not quantitatively. 
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I. Introduction 

The continuing growth in capability to measure and analyze the 

1 2 
scattering rates of quasiparticle excitations in metals ' is exciting 

for a number of reasons, of which two are: 1. The scattering rate T - 1, 

together with the effective mass enhancement X, are basic to the des-

3 4 cription ' of low-lying electronic excitations in the interacting 

electron-phonon system, and 2. The quasiparticle rate x-1 is a uniquely 

sensitive probe of the anisotropy of the electron-phonon interaction — 

anisotropy which manifests itself less directly in other quantities such 

as transport coefficients. To amplify on the last statement, the elec-

trical conductivity (for example) may be written as an average of the 

anisotropic transport relaxation time x . Although its anisotropy gives 

rise to dramatic effects, it cannot be measured directly, and at best 

only its qualitative features may be inferred from experimental data. 

So transport coefficients are rather insensitive probes of anisotropy. 

In this paper we are concerned with the calculation of the quasi-

particle properties, X and x, of aluminum. The reason for the choice is 

that aluminum presents the interesting combination of a multisheeted 

Fermi surface with a very simple electronic structure. (its electronic 

properties, including Fermi surface shape, are well-described by Ashcroft's 

4-OPW model. ) Because of this simplicity the nature of the electron states 

is intimately related to the Fermi surface shape: single-OPW states in 

spherical regions, 2-OPW in most of the high-curvature regions (near zone 

boundaries), and 4-OPW near the zone corners. Certain features of the 
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quasiparticle properties might therefore be dictated by the surface shape. 

The ingredients in this calculation are discussed in detail in sec. II, 

and so we state them only briefly here for comparison with previous calcul

ations. The 4OPW model is used for both the Fermi surface shape and the 

electronphonon matrix elements, and a realistic phonon spectrum is used as 

well for the latter. The quasiparticle quantities are then calculated by 

direct integration over the Fermi surface, using a fixed mesh whose point

density is determined by local Fermi surface curvature. This calculational 

program and a somewhat similar one by Leung differ from all previous 
8 aluminum calculations in their detailed treatment of the electron structure. 

This program differs from Leung's in two respects: 1) Leung uses 15OPW 

electron states and the HeineAbarenkov pseudopotential for the calculation 

of matrix elements, and 2) Rather than doing surface integrals directly, he 
9 >■ 7 8 introduces the frequency distribution functions a F(k,(o) ' as an intermediate 

step. The general agreement between our calculated values of X suggests that 

the matrix elements are not seriously affected by the use of one method over 

the other. The discrepancy which exists between the x values probably arises 

from the difference between our integration methods, since it is difficult in 

either case to treat lowfrequency phonons with a high degree of accuracy. 

This problem will be discussed at length later. 

In the remainder of this section we review the surfaceintegral ex

pressions for X and x. First consider the simpler quantity X; recall that 

it relates the quasiparticle velocity 
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v (£) = [1 + X(k)]"1 v(k) (1) 

to the bare "band" velocity v(k). It is given by the Fermi surface 
3 integral 

i 

Hh = l 
4lT3 J 

dS 
|ga(^.k')|2 

I (2) 
n|v | a qa 

where 

. - * ■ - * ■ . |ga(k,k')|2 = (2pa)qar1|<^kqa-^|^>|2 (3) 

is the squared amplitude for the electron transition k-*k , with the 
-> emission or absorption of a phonon with wavevector q and polarization a. 

(for an emitted phonon, q = k-k' reduced to the first Brillouin zone) 

In (3), p is the mass density of aluminum, V is the Ashcroft pseudo-

potential (for consistency with the Fermi surface fit), and of course 

w and e are the phonon frequency and polarization, respectively. qa qa 
A similar formula holds for the thermal quasiparticle relaxation rate at 

the Fermi surface (e = 0) 3 

T-l(k-,e=0) =^- f-4^- II 8a <£>£') 12f(nu) /k _T) - (4) 

where 

" f(x) = (eX - l)"1 (1 + e ' V 1 5<n(x)[l - f°(x)] 

incorporates the temperature-dependence through the equilibrium Fermi and 

Bose functions f° and n; note that f(x) falls off exponentially for large 

x. For quasiparticles off the Fermi surface the relaxation rate 
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x~ (k,e) is slightly more complicated than (4). For the measurements done 
9 1 > . 

in aluminum the appropriate quantity is the average of x (k,e) over energies 
4 10 near the Fermi level, as discussed in a number of places, ' and that is simply 

<xl(kV E f de(9^!) xl(k\£) , 

= ̂  x1^, e= 0) (5) 

related to the value at the Fermi level. Later we compare experimental 

measurements with <x~ (k)>, (5), rather than (4). 

One further point must be discussed here. For very low temperatures 

the occupation factors f(x) restrict important contributions to the in

tegral in (4) to the immediate vicinity of k (i.e. Ik'  kl << k ). 

The result is that, for any fixed integration mesh, the numerical sum 

intended to represent (4) approaches zero exponentially [exp( c/T)], 

rather than algebraically (T3) as does the exact integral (4), in the 

limit T »• 0. However the exact lowtemperature limit may be calculated 

by writing the surface integral in plane polar coordinates 

dS' »■ q dq dO (T »■ 0) 

and observing the asymptotic form 

n. |g (£,£') I2 
^ —. ~ ~= J^ °„<W> ' V«) • <6> 
k'+k qa k'>k a 
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(this independence of G^ on q will be demonstrated explicitly later) which 

permits the integrals to factorize. It is then elementary to show that 

£S *-!(*, c-0) =~T] <V
)3 f d° l G a ( 0 > Ca"2^' <7> 

T T 2 V | V | iQ a ° ° 

where Co(0) is defined by *m a> ̂ (6) = q Ca(6). The angular integral may be 

done numerically, to provide the exact T3-coefficient for the low-

temperature limit. This procedure will be discussed further in sec. II, 

along with many other details of the computations. The results of the 

calculations of both X and x-1 are given in sec. III. 

II. The Calculations. 

In this section we describe the method used to perform the Fermi 

surface integrations required in (2), (4), and (7), and we discuss the 

calculation of the necessary ingredients in the integrands. The inte-

gration mesh is shown on Fig. 1. It consists of 1294 points: 873 on the 

second zone hole surface, and 421 on the third zone electron surface. 

The mesh-point-density is greatest near the zone edges, where the curvature 

is high; the density was chosen to satisfy a criterion based on the electron-

phonon matrix element variation (to be discussed later). It is apparent 

that the density is sufficient to represent the Fermi surface shape ade-

quately. The points are located, and the wavefunctions are calculated by 

means of Ashcroft's four-OPW model. This model provides an excellent fit 

to the actual Fermi surface shape, and we believe that it gives the wave-

functions to a sufficiently high level of accuracy that they are not a 
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limiting factor in the overall accuracy of the calculation. 

For each mesh point, we calculate the element of surface area and the 

velocity v = ft ̂ t
e« These are then used to evaluate three surface integrals 

of interest, two of which are related to the "specific heat" and "optical" 

effective masses, as shown in Table I. 

The matrix elements (3) required for the quasiparticle properties are 

calculated using the 4-OPW wavefunctions of the Ashcroft model, and a phonon 

spectrum derived from a Born-von Karman force constant fit to neutron data. 

The rationale for using the simple 4-OPW model for the matrix elements is as 

follows: First, we recall that Ashcroft's model is empirical, in the sense 

that the measured Fermi surface dimensions are used to infer the band gaps 

V(G). These band gaps are the values of the electron-ion form factor at 

the reciprocal lattice points G = ClUH and G = C200j. The form factor 

represents the electron-ion pseudopotential operator V — the same V which 

occurs in the electron-phonon matrix elements (3). For consistency, then, 

the matrix elements should be calculated from a pseudopotential which 

"reproduces" Ashcroft's empirical band gaps, and from the same 4-OPW wave-

functions used in their determination. 

In connection with the choice of form factor, we should point out that 

the usual Ashcroft form is used, but with the ionic core parameter R set 

at 0.61 X» rather than the 0.59 A quoted in ref.ll. This choice is necessary 
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in order to fit the empirical band gaps; it fits V1 essentially exactly and 

overestimates V0 by 13%. In contrast, the choice R = 0.60 X underestimates 
£■ c 

V, seriously (^35%), while R = 0.62 X overestimates both V, and V„. 1 c 1 2 

We have studied extensively the variation of the quantity G (k,k') 

H o) |g (k,k')| (the integrand of X, see eqn. 2) over the Fermi surface, 

particularly in the vicinity of ridges. Through this study we developed the 

criterion for mesh density that the quantity G (k,k') should vary by no more 

than 10% under the displacement of its arguments by a single interval in any 

direction. This criterion supplements the more subjective one that the mesh 

accurately represent the Fermi surface shape. As a result, there are relatively 

small regions, near the centers of ridges, where the 10% criterion becomes the 

determining factor for mesh density. The highest density is required near 

the narrow ridge which (on the second zone surface) joins the hexagonal and 

square regions. We call this the "V,ridge" since it is determined by the 

samller of the two band gaps, V.. = V(G=[lllU). The wider "V2ridge" 

(V9 = V(G=C200l]) joins two hexagonal regions of the 2nd zone, and requires 

meshdensity only slightly greater than that used in freeelectron (1OPW) 

regions near L and X. The third zone arms of the Fermi surface consist 

largely of ridges, and therefore they require dense mesh everywhere; as a 

result, the third zone accounts for roughly onethird of the total number of 

mesh points (see Fig. 2). 

Although the 10%criterion is important only near the ridges, it is 

still responsible for the large number of mesh points, because so many of 

them (about twothirds of the total number) occur near ridges. The mesh 



- 9 -

pictured in Figs. 1 and 2 is ultimately a compromise between accuracy 

(10%-criterion), computer run-time (to compute X at a single point requires 

about 3000 sec), and program cumbersomness (the mesh consists of seven 

separate regions - three on the second zone and four on the third zone). 

I 

Now we return to the point raised at the conclusion of sec. I - the 

problem of calculating x at very low temperatures. When typical thermally-

occupied phonon wavevectors are comparable with or smaller than the mesh-

point separations, the strict mesh-summation no longer represents the in-

tegral (3). However, in the low-temperature limit, x depends only on the 

gradients of the mixing coefficients (evaluated at the initial point k), 

and on the directional sound velocities C (6). These gradients may be 

evaluated with the use of the mesh points neighboring the initial state, 

and so the calculation is relatively simple. The actual expression for x 

in the low-temperature limit may be derived by expanding the matrix element 

in (3): 

T<£'|e � Vv|k> = e . Y. Z ct.e.*("k-G.-k'+G.) V (k-G.-k'+G.) , (8) 
i ' qo ' q« " i = 1 j = 1 i J i .J i J 

where a. and $. are the mixing coefficients of the 4-OPW states, e.g. 
i 3 

' 4 -> -*- ->- -y 

|k> = I a.|k-G.>0 , and V(p) = £q|v|q+ p% is the matrix element of the 
i=l X X 

(local) pseudopotential V between single-OPW states |q+p% and |q̂ > . 

-> -fr-
ill the limit k'->k we are of course considering an intraband process, so 

that a. and 3. have the same functional form a.(k), and 
3 3 J 
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13.. (k') = a..(k) + (k'-t) • VKj(k) . (9) 

Retaining only the lowest order terms in the phonon wavevector q = k-k' 

we end up with (neglecting the 8y(p)/9p term ) 

i ^ ' ' V ' VVl^ = £qa ' ^ V(0) + .E . ^i j q Ŵ"1 ' ( 10a ) 

where 

A, . = (G.-G.) (a.V a .* - a.V a .*) , (10b) 
i j l j ' i q j j q l ' ' 

-> -fr-
and V is the component of the gradient (in k-space) in the q-direction. 
We may now insert (10) into (3), and use ~ to = q C (q) to write 

g% G0<k,k') = - A r - |e • a V(o) + Z t V(G.-G )]|2 , (11) 
2pCa (q) ^ i<j J J 

->-->■ — 1 I -fr- -*• 1 2 -*■ 
(Recall G (k,k') = u) |g (k,k')| .) which depends on the direction of q 
and not on its magnitude, as claimed in (6). 

Now the form (11) is valid for points k' inside the element of surface 
-> area associated with the initial point k, and so we may calculate their 

_1 -> -1 -> 
contribution x. (k) to the integral (4) for x (k) to very good accuracy, 

in a manner analogous to the derivation of the zero-temperature limit (7). 

The difference is that the radial integral (dq) is now truncated at the 

surface-element boundary q(6), and does not extend to infinity as in (7). 

""init1 (^'e=0) = C*2*^!)"1 E 

a 

2ir 
d9Ga(6)Ca(e) 

q(6), 
qZdq f (tto /k_T) , (12) 

q a 
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The radial integral may still of course be done analytically, and then the 

angular integral done numerically. As a result of the truncation q(6), the 
— 1 -*■ contribution x (k) is accurate for all temperatures, and this guarantees mit 

that the total scattering rate 

-l r* F=0>) = T - 1 (£,£=0) + (sum over all other mesh points k') (13) x <,*.,£ v> init I 

is accurate both at zero temperature (where x = T it are both equal to (7)) 

and at higher temperatures where typical phonon wavevectors are sufficiently 

large that the mesh provides adequate angular resolution. The expression (13) 

may not be accurate for some intermediate temperature interval, depending on 

the mesh density near k. Evaluating x at 5K intervals, we find apparent 

minor loss of accuracy only at 5 K, occuring at some of the Fermi surface 

points. 

III. The Results. 

Effective Mass Enhancements. 

We first present results for the effective mass enhancement X, since it is 

the simpler quantity to talk about. X is plotted in Fig. 3 as a function of 
-fr-position k on the Fermi surface, for orbits indicated on Figs. 1 and 2. Note 

that the values 0.37-0.42 are characteristic of. free-electron-like regions, 

and that localized deviations from this range of values occur on the ridges. 

On the second-zone ridges the deviation is an increase; on third-zone ridges 

(near the principal section) it is a decrease... Near the third-zone neck the 

situation is more complicated and X is untypically large everywhere. Our 

interpretation of the behavior everywhere except near the neck is that the 

localized deviations arise from changes in the electronic mixing coefficients. 
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This is evidenced both by the localization to the ridges (the mixing co-

efficients are the only important quantities in (2) which vary on such a short 

scale), and by the antisymmetry between zones. The antisymmetry may be under-

stood by first noting that near a given ridge, and sufficiently far away from 

the third-zone neck region, two of the four mixing coefficients are dominant 

in the wavefunctions. It follows that the product of the two dominant mixing 

coefficients on, say, a second zone ridge, has the opposite sign from the 

corresponding product on the third zone ridge. As a result, typical squared 

matrix elements in (3) exhibit opposite interference effects in the two zones, 

and these appear to be largely responsible for the localized deviations 

in X. 

In addition to these ridge-localized variations, there are also longer-

range variations: X is somewhat larger in the vicinity of X (the square region) 

that it is near L (the hexagonal region) on the second-zone surface. On the 

third-zone surface X tends to become larger as one moves toward the neck 

region. These long-range variations seem to be related to the amount of 

umklapp scattering which can occur, from the region in question. The X-region 

of the second zone generally lies closer to a zone boundary than does the L-

region, and so unklapp processes are available at smaller wavevector from the 

X-region. The entire third-zone Fermi surface lies near zone boundaries, 

but the neck region is nestled in the zone corner, and achieves near-contact 

with the second-zone surface. So it is not unnatural that the largest values-fi-v .-̂  

of X should occur there. 
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The results shown in Fig. 3 agree quite well with those of Leung 

(ref. 7). As pointed out by him, the contrasting behavior between second 

and third zones (in the short-range variations) is not obtained in a single-

Q 

OPW calculation, as done for example by Leavens and Carbotte. The long-range 

variations, at least on the second zone, do seem to emerge correctly from such 

a treatment. This partial agreement between single-OPW and multi-OPW calculations 

is consistent with our interpretation of short and long-range variations as 

2-OPW and umklapp effects, respectively. 

In Table II we compare certain calculated orbital averages of X with 

those inferred from cyclotron resonance data. It is pleasing that the variations 

in X between different third-zone orbits are in agreement. In Table III, we 

compare point-values of X with those calculated by Leung, and measured by 

Doezema and Wegehaupt using the surface-Landau-level (SLL) method. The two 

calculations agree, but the measured values are consistently larger. Note, 

however, that the SLL values are also larger than the measured orbital averages 

(Table II). We cannot account for this discrepancy. 

Relaxation Rates. 

-1 "*" 
We are interested in the scattering rate x as a function of both k 

and temperature T. Anticipating a T-'-dependence in free-electron regions, we 

-1 -3 
plot x T as a function of T (Fig. 4), for several points on the second-zone 

surface indicated on Fig. 1. At very low temperatures the anisotropy is huge. 

3 
In free-electron regions there is an initial T -behavior which is augmented 

above a certain threshhold by umklapp scattering. To show this we compare 

(Fig. 4c) the total scattering rate for points k in the hexagonal region, with 
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that contribution which arises from scattering only to other states k' in the 

same hexagonal region (to eliminate umklapp). Note that the umklapp onset 

temperature is reduced as the point k moves outward from the center (L) to

ward the zone boundary (K). Finally, as one approaches the ridge (Fig.4a), there is 

no longer a welldefined umklapp threshhold (the distinction between "normal" and 

"umklapp" is not always possible when 2OPW states are involved); the quantity 
1 3 x T starts out large and falls monotonically with increasing temperature. 

»■ 1 3 
Viewed as a function of k, x T is sharplypeaked at ridges for low tempe
ratures. As the temperature increases, the peaks broaden and the anisotropy 

1 3 washes out. The washingout is accomplished by a reduction of x T near 

ridges, accompanied by an increase in freeelectron regions. This view is 
1 3 *

demonstrated in Fig. 5, where x T is plotted as a function of k, on the 

principal (110) orbit on the thirdzone arm. The absence of flatness in the 

zero temperature plot reflects the absence of completely freeelectron character 

in the wavefunctions. It is not surprising that there is no apparent umklapp 

threshhold. 

s 1 3 
The magnitude of T T are generally in good agreement with the measured 

ones (Table IV), particularly at the freeelectron points X and L. Interestingly, 

the calculated 3dzone orbital average is nearly independent of temperature for 

TOO K, and quite close to the measured value. Near the Upoint, however, the 

calculated temperature variations are quite dramatic; the value given in Table IV 

represents theplateau which exists between 10. and 30 K at the Upoint (see.,also 
1 3 Fig. 4b). The experimental value may reflect the smaller values of T T 

predicted below 10 K, as well as at neighboring kpoints (Fig. 4b). A further 
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possibility is that the experimental value results from the U'-point on the 

3rd zone (the point indicated on the (110)- orbit of Fig. 5, at which the 

surface-normal is z-directed). The calculated values range between 2.2 and 

7 -1 -3 
2.9 x 10 sec K , which are closer to the measured value of 3.1. However, 

the calculated X-value at U' is 0.35 (Fig. 3c), and thus in poorer agreement 

with the measured one (Table III), which makes this identification appear an 

unlikely possibility. 

3 
It would be interesting to confirm the predicted deviations from T 

behavior. The most clear and easily-interpreted ones occur on the second-

zone between L and K, as shown on Fig. 4a. The k-space variations are smoother 

near the V_-ridges than near the V.. -ridges because the former have less 

curvature (V„ ̂  3V ). 

-1 -3 
In a few of the T T plots (Figs. 4b, c) there is a noticeable dip at 

5K, which results from the graininess of the mesh. Where it exists, the dip 

is small and there is nevertheless possible a smooth interpolation between 

T=0 and the T>10K points. With a finer mesh, the dip would occur at lower tem-

peratures and be less pronounced. Because of practical calculational consider-

ations, coupled with the limited availability of lifetime data, such an effort 

seems unwarranted at the present time. 

IV. Concluding Remarks. 

The values of the effective mass enhancements calculated here are con-

sistent with those calculated previously by Leung, even though the two 

calculations differ in their detailed treatment of electronic structure and in 
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their methods of Fermi surface integration. The calculated anisotropy exhibits 

the same trends found in both the surface-Landau-level data and cyclotron 

resonance data, even though the actual magnitudes of X inferred from the two 

sets of data appear to be inconsistent with one other ..(as discussed in the previous 

section). The calculated values agree more closely with the cyclotron mass de-

terminations. We have not calculated the entire Fermi surface average of X 

required for comparison with the specific heat data, but Leung claims to have 

13 
found fairly good agreement there. 

The agreement between measured and calculated scattering rates is pleasing. 

Agreement is particularly good at the X and L points, where because of the free-

3 
electron character of the wavefunctions, the T -coefficient depends on the form 

factor only at zero wavevector. Because of this it is not surprising that the 

coefficients are nearly the same at these two points. For the third zone (110)-

orbital average, where T is nearly cubic in temperature, the agreement is quite 

3 
good. There is a factor of two discrepancy, however, with the measured T -

coefficient identified with the second-zone point U, Owing to the rapid variations 

-1 -3 -*� 

of T T with both T and k near this point, as well as the possible (but 

unlikely) confusion with the similar point U' on the third zone, one should perhaps 

not expect very close agreement for the U-point. Finally, the interpretation of 

data at such points would be facilitated if the predicted deviations from T3-

behavior were observed. Such observations would provide a stringent test of the 

theory, and, in particular, of the use of simple electronic structure for treating 

the electron-phonon interaction. 
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Table Captions 

1. Listed are our computed values of surface integrals representing the 

"specific heat" and "optical" effective masses, and the Fermi surface area. 

The free electron velocity v and surface area S are given for reference. 

o o 

2. For extremal orbits lying in the designated planes we list the "apparent" 

mass enhancement, which is calculated by comparing the measured cyclotron 

mass with the value calculated without enhancement (i.e. "band" mass) as 

indicated, and the orbital mass enhancement calculated here. 

3. "Point" values of X, measured by the surface-Landau-level method, are 

compared with two sets of calculated values. 

-1 -3 

4. Listed for comparison are the calculated and measured values of x T 

at three points on the second-zone surface, and averaged over the (110) 

extremal orbit (Fig. 5) of the third-zone arm. Theoretical values are taken 

for defiuiteness at zero temperature, except for the U-point, where instead 

the approximate plateau value characteristic of the temperature interval 

10-30 K is recorded. 
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I 0.73 

0.091 

0.871 

0.95 

0.095 

0.495 

0.0605 

0.38 

0.36 

0.37 

0.47 

0.50 

0.42 

0.42 

0.38 

0.44 

0.48 

j , , meas , band -
3J* A„ - iru /nip - 1 

, band, 1 . 
, where m_ /m = — o 

1 IT 

dk 

* | v | 
IT d e 
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Table III. 

Effective mass enhancements 

calculated 

X 

L 

U 

measured (ref 

0.49 

0.49 

0.65 

9) Leung (ref.7) 

0.41 

0.39 

0.44 

present ' 

0.42 

0.37 

0.47 

I 

i 
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( 

I Table IV. 
i 

Zone 2 a 

X 

L 

U 

Zone 3 

(110) 
extremal 
orbit 

-1 -3 7 -1 -3 
x lT J (lo' sec K J) 

calculated (eqn. 5) 

0.40 

0.38 

6,0 

5,0 (to 5,5) 

1 

measured 

0.41 

0.39 

3.1 

4.0 

a. ref. 9: surface-Landau-levels 

b. ref. 2: Azbel'-Kaner cyclotron resonance 
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Figure Captions 

la,) Second-zone Fermi surface. 

lb.) Second and third-zone Fermi surface sheets shown together. The 1/48 th 

minimum symmetry element is shown for the second zone; the third zone 

consists of three such sets of arms. 

i 
lc.) Second-zone mesh shown in detail. Certain Fermi surface points are 

names after corresponding points of high symmetry in the zone. The 

point U is defined so that its normal is x-directed, to enable later 

comparison with experiment. Unnamed points, indicated by dots, will 

also be referred to later. 

2a. and b. ) Two views of the minimum symmetry element of the third-zone 

surface. X and x are later calculated along the indicated line 

segments. 

3a.) Our computed values of X shown along the two line segments KL and LUX 

indicated on Fig. lc, which together comprise the (110) orbit on the 

second zone surface. 

3b.) Plot of X along segment XWK, or (100) orbit on second zone surface. Note 

the discontinuity at the contact point, which arises from the discon-

tinuity in the mixing coefficients. 

3c.) Plot of X along line segments indicated.(Fig. 2) on the third-zone 

surface. 

-1 -3 

4a.) Plots of x T as functions of temperature for points along second-

zone segment KL, indicated on Fig. lctJ1.i„Plot.sJ correspond in increasing 

order to points encountered as one moves from L to K. 

-1 -3 
4b.) Plots of x T for points along segment LUX (again see Fig. lc.) 
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) Umklapp effect for point L and the point approximately midway between 

L and K. For each point, the lower part of the. plot corresponds to the 

restriction of the integration (2) to the hexagonal face. 

-1-3 
Plots of x T versus arclength on the (HO)-orbit of the third-zone 

arm (Fig. 2), for several values of the temperature. 

-1-3 
The orbital average of x T as a function of T, for the orbit of Fig. 5. 

The zero-temperature value is recorded in Table IV. 
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Figure l a . 



Figure l b . 

L 
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Figure l c . 
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Figure 2a. 



Figure 2b. 
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Figure 3c. 
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Figure 4a. 
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Figure 4b. 
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Figure 6. 


