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Abstract

The observed properties (i.e., source size, source position, time duration, and decay time) of solar radio emission
produced through plasma processes near the local plasma frequency, and hence the interpretation of solar radio
bursts, are strongly influenced by propagation effects in the inhomogeneous turbulent solar corona. In this work, a
3D stochastic description of the propagation process is presented, based on the Fokker–Planck and Langevin
equations of radio-wave transport in a medium containing anisotropic electron density fluctuations. Using a
numerical treatment based on this model, we investigate the characteristic source sizes and burst decay times for
Type III solar radio bursts. Comparison of the simulations with the observations of solar radio bursts shows that
predominantly perpendicular density fluctuations in the solar corona are required, with an anisotropy factor of ∼0.3
for sources observed at around 30MHz. The simulations also demonstrate that the photons are isotropized near the
region of primary emission, but the waves are then focused by large-scale refraction, leading to plasma radio
emission directivity that is characterized by a half width at half maximum of about 40° near 30MHz. The results
are applicable to various solar radio bursts produced via plasma emission.

Unified Astronomy Thesaurus concepts: Radio bursts (1339); Solar coronal radio emission (1993); Solar radio
emission (1522); Solar radio flares (1342)

1. Introduction

Solar radio emission is produced in the turbulent medium of

the solar atmosphere, and its observed properties (source
position, size, time profile, polarization, etc.) are significantly
affected by the propagation of the radio waves from the
emission site to the observer. Bright radio emission produced in

the outer solar corona during flares is mostly produced via
plasma emission mechanisms, so that the radiation is generated
close to the plasma frequency or its harmonic (see, e.g., Suzuki

& Dulk 1985; Pick & Vilmer 2008 for reviews). Since the
refractive index of an unmagnetized plasma

w w= -n 1 peref
2 2 1 2( ) is significantly different from unity

for ω close to ωpe, the effects of density inhomogeneity along

the wave path play a particularly strong role in the propagation
of solar radio bursts produced by plasma processes. Appreciat-
ing this fact, even early observations (e.g., Wild et al. 1959;
Smerd et al. 1962; Steinberg et al. 1971) considered radio-wave

escape to be an important effect.
Scattering of radio waves on random density irregularities

has long been recognized as an important process for the

interpretation of radio source sizes (e.g., Steinberg et al. 1971),
positions (e.g., Fokker 1965; Stewart 1972), directivity (e.g.,
Thejappa et al. 2007; Bonnin et al. 2008; Reiner et al. 2009),

and intensity-time profiles (e.g., Krupar et al. 2018). In the
particularly strong scattering environment appropriate for
electromagnetic waves close to the plasma frequency, the
wave direction is quickly randomized, and the waves quickly

become isotropic. As the waves propagate farther away from
the source, large-scale refraction also produces a degree of
focusing/defocusing. The observed properties of solar radio
emission are therefore determined by an interconnected
combination of scattering off small-scale inhomogeneities,
which generally shifts the observed positions of sources away
from the solar disk center (Riddle 1972; Gordovskyy et al.
2019), and refraction by relatively large-scale density inhomo-
geneities, such as coronal mass ejection fronts (Afanasiev 2009)
or coronal streamers and fibers (Bougeret & Steinberg 1977),
which generally shifts the sources toward the disk center (Wild
et al. 1959; Smerd et al. 1962; Steinberg et al. 1971).
Subarcminute imaging observations of Type III solar radio

bursts have shown that intrinsic sources with sizes 0 1 result
in observed sources as large as ∼20′ at 30MHz (Kontar et al.
2017; Sharykin et al. 2018), demonstrating that scattering
dominates the properties of observed source sizes. Moreover,
the locations of the upper and lower subband sources of Type II
solar radio bursts are observed to be spatially separated (e.g.,
Zimovets et al. 2012; Chrysaphi et al. 2018), with the amount
of separation being consistent with radio-wave scattering of
plasma radio emission from a single region (Chrysaphi et al.
2018).
The majority of both past (e.g., Steinberg et al. 1971) and

recent (e.g., Thejappa & MacDowall 2008; Krupar et al. 2018)
ray-tracing simulations have assumed isotropic scattering by
small-scale density fluctuations. However, there are observa-
tions (McLean & Melrose 1985) that cannot be explained by
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the earlier models; for example, to provide a plausible
explanation of the size and directivity of Type I solar radio
bursts, a fibrous structure was invoked (Bougeret & Stein-
berg 1977). Other recent observations also suggest that the
scattering is anisotropic, with the dominant effect being
perpendicular to the heliospheric radial direction (Kontar
et al. 2017).

A quantitative understanding of radio-wave propagation is
particularly timely in the view of the opportunities to be opened
by the Square Kilometer Array (Dewdney et al. 2009; Nindos
et al. 2019) and the observations with the Chinese Spectral
Radioheliograph (Yan et al. 2009; Li et al. 2016). While there
have been a number of Monte Carlo simulations developed to
describe wave scattering (mostly for isotropic density fluctua-
tions), these do not all agree. Therefore, the present work
addresses this important issue both by extending the isotropic
plasma treatment of Bian et al. (2019) into the anisotropic
scattering domain and by improving the previous descriptions
by Steinberg et al. (1971), Arzner & Magun (1999), and
Thejappa & MacDowall (2008). The description presented
captures both multiple scattering of radio waves in anisotropic
small-scale turbulence and refraction of waves in the presence
of large-scale plasma inhomogeneity.

In Section 2, we present a general theoretical treatment of the
scattering process, and apply it to both isotropic and (using a
diagonalization scaling technique) axially symmetric anisotro-
pic scattering. In Section 3, we derive the pertinent stochastic
differential equations that allow for a numerical solution for
both isotropic and anisotropic turbulence. In Section 4, we
review the numerical Monte Carlo technique used to solve
Langevin equations modeling both source sizes and time
profiles. In Section 5, we review relevant observations of the
variation of radio source sizes and decay times with frequency,
and we compare these observations with our numerical
solutions. This leads us to the conclusion that observations of
Type III solar radio burst sizes and durations, over a broad
range of frequencies, require anisotropic scattering, in the entire
heliosphere between the Sun and the Earth, with an anisotropy
factor of around 3–4 and with the density fluctuations
predominantly perpendicular to the radial direction. As
discussed in Section 6, these observations provide essential
density fluctuation anisotropy constraints for MHD turbulence
models (Shaikh & Zank 2010; Zank et al. 2012) over a wide
range of locations between the Sun and the Earth.

2. Radio-wave Scattering Equations

The propagation of radio waves in a turbulent medium can
be effectively described using a kinetic approach (e.g.,
Mangeney & Veltri 1979; Arzner & Magun 1999; Bian et al.
2019). This approach describes the evolution of radio waves in
an inhomogeneous plasma with quasi-static density fluctuations
in the geometrical optics approximation (Tatarskii 1961;
Ishimaru 1978), i.e., when the scale length for variation of
the wavelength λ due to inhomogeneity is much smaller than
the wavelength itself:

ld
dr

1. 1( )

This description ignores diffraction effects and is generally

valid only for small amplitude density fluctuations (e.g.,

Pécseli 2012). Nevertheless, it adequately describes the multi-

ple-scattering transport of radio waves with angular frequency

ω (s−1
) near the local plasma frequency

w p=r re n m4pe e
2( ) ( ) (where e and me are, respectively,

the electron charge [esu] and mass [g], and rn( ) [cm−3
] is the

local plasma density) in the turbulent plasma of the solar

atmosphere. Similar to the weak turbulence theory of Langmuir

waves in a plasma (Tsytovich & ter Haar 1995), such a

description provides the basis for a statistical description of

density and electromagnetic wave interactions. Since the group

velocity of density fluctuations is much less than the speed of

light, the density fluctuations can be treated as effectively

static. Therefore, only elastic scattering conserving wavevector

k∣ ∣ of radio waves is considered. The description presented is

also limited to an unmagnetized plasma environment

(Zheleznyakov 1996).
The spectral number density (or photon number) k rN t, ,( )

(cm−3
[cm−1

]
−3

) can be described in the geometric-optic
approximation using a Fokker–Planck equation
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] is the number density of

photons, ki are Cartesian coordinates of wavevector k, and the

summation is understood for a repeated index, i, j=1, 2, 3.
rd dt, kd dt are given by the Hamilton equations corresp-

onding to the dispersion relation for electromagnetic waves in

an unmagnetized plasma (Haselgrove 1963):
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Here the photon packet frequency in Equation (3) is found from

the dispersion relation w w= + c kpe
2 2 2 2 for electromagnetic

waves in an unmagnetized plasma, and γ [s−1
] is the collisional

(free–free) absorption coefficient for radio waves in a plasma

(e.g., Lifshitz & Pitaevskii 1981).
The diffusion tensor Dij appropriate to scattering (see Arzner

& Magun 1999; Bian et al. 2019) is given by
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where q is the wavevector of electron density fluctuations. qS ( )

is the spectrum of the density fluctuation normalized to the

relative density fluctuation variance:

ò
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p
=
á ñ

= q
n

n
S
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2
, 62

2

2

3

3
( )
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where = á ñn n is the average plasma density, taken to be a

slowly varying function of position. Note that Equations (5)

and(6) include a scaling of (2π)
3 in the definition of the

spectral density qS ( ), consistent with the treatment of Arzner &

Magun (1999), but not with the scaling used by Bian et al.

(2019).
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2.1. Isotropic Scattering

The bulk of radio-wave scattering research has assumed an
isotropic spectrum of density fluctuations: =qS S q( ) ( ). Such
an assumption substantially simplifies the expression for the
wavenumber diffusion tensor Dij (see Appendix A for details),
so that Equation (5) becomes

òd
p
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p w
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d

d
n

d

= -

=
á ñ

- = -

¥
D

k k

k c k
q S q dq

c k
q

n

n

k k

k

k k k

k

1

32

8 2
,

7

ij ij
i j pe

pe
ij

i j
ij

i j

2

4

2
0

3

4

2

2

2 2

s
2

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( )

¯

( )

where δij is the Kronecker delta and we have introduced the

spectrum-averaged mean wavenumber
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Since the scattering frequency νs is proportional to the

spectrum-weighted mean wavenumber q 2¯ , knowing this

latter quantity leads to a determination of the scattering

frequency. Equivalently, observations of radio-wave scattering

in the solar corona provide a diagnostic of the level of density

fluctuations via the quantity q 2¯ . The assumption of isotropy

of the scattering density fluctuations allows us to substantially

simplify the diffusion operator, so that in spherical coordinates
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where m q= cos , θ being the polar angle for k.

2.2. Anisotropic Scattering

As we shall see below, using numerical simulations based on
the isotropic scattering analysis above, isotropic scattering is
inconsistent with the observations of solar radio source sizes
and time profiles. We therefore now develop a model for
scattering in an anisotropic spectrum of density fluctuations
qS ( ). Similar to previous investigations (e.g., Hollweg 1968),

we assume that the anisotropic density fluctuations are axially
symmetric, so that the spectrum can be parameterized as a
spheroid in q-space:

a= +^
-qS S q q , 112 2 2 1 2( ) ([ ] ) ( )

where α=h⊥/hPis the ratio of perpendicular and parallel

correlation lengths (see also Appendix B). When

h⊥?hP(i.e., α?1), the density fluctuations are mostly in

the perpendicular direction; conversely, when

h⊥=hP(i.e., α=1), the spectrum of density fluctuations is

dominated by the fluctuations in the parallel direction. For

example, the direction parallel to heliospheric radial direction

follows the guiding magnetic field in spherically symmetric

corona.

It is convenient to introduce the anisotropy matrix
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parallel components of the wavevector q.
Using Equations (5), (11), and (13), the wave vector

diffusion coefficient can be written as
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Jacobian matrix J transforming coordinates from q to q.
Equation (14) can be written as
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where we introduced = -k k1A .
We can now write the diffusion tensor components Dij in

terms of the original quantities k:
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For isotropic scattering, the anisotropy matrix A reduces to the

identity matrix and Equation (16) correspondingly reduces to

Equation (7). Equation (16) coincides with Equation (B10) of

Arzner & Magun (1999; note the equation sign misprint in their

paper’s appendix).

3. Stochastic Differential Equations

We now proceed to cast the Fokker–Planck Equation (2) in a
form suitable for numerical computation. The scattering term in
Equation (2) can be written as
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whereB is a positive-semi-definite matrix with matrix elements

determined by matrix D, so that

=D B B
1

2
. 18ij im jm

T ( )

The nonlinear Langevin equation for k t( ) corresponding to the

Fokker–Planck Equation (17) is

x=
¶
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+

dk

dt

D

k
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i ij

j
ij j ( )

where x t( ) is a Gaussian white noise with the properties

xá ñ =t 0( ) and x x d dá ñ =t t0i j ij( ) ( ) ( ), where á ñ... denotes an

ensemble average, δ (t) is the Dirac delta function, and the

k-dependent deterministic vectors ∂Dij/∂kj and Bij correspond

to the diffusion tensor Dij. These are analogous to the equations

describing binary collisions in a plasma (see, e.g., Ivanov &

Shvets 1978; Shvets 1979; Rosin et al. 2014). Equation (19) is

similar to the equation by Arzner & Magun (1999); it is the

definition of the stochastic integral in Itôʼs sense, adopted in the

theory of random processes. Itô’s approach considerably

simplifies its numerical integration and requires the knowledge

of function kDij ( ) at the beginning of the time step rather than

half-step in Stratonovich form (Ivanov & Shvets 1978). The

first term on the right-hand side describes the so-called Itô drift,

a systematic decrease of ki due to elastic scattering, while the

second term represents diffusion. The presence of the Itô drift

improves the stochastic differential equations used in the past

(e.g., Steinberg et al. 1971; Riddle 1974; Thejappa et al. 2007)

and conserves the value of k∣ ∣ for elastic scattering.
If we apply Itôʼs formula to the square of the wavevector
=k k k ki i· , one finds
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where we have used ki dki/dt=−ki ∂Dij/∂kj=−νsk
2 and

n=B B k2ij ij s
2. One can see that the presence of the so-called

Itô drift is necessary to ensure conservation of = kk ∣ ∣ in

scattering events, similar to pitch angle scattering in a Lorentz

gas (e.g., Ivanov & Shvets 1978).
Including large-scale refraction due to gradual variation of

the ambient density rn( ) of the solar corona, the equation for
the components of wavevector k becomes
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which, in combination with the radio-wave transport equation
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describes the propagation, refraction, and scattering of radio-

wave packets in an inhomogeneous plasma.

3.1. Numerical Solution of the Langevin Equations

Following the conceptually similar description of plasma
collisions, we modify the transport code of Jeffrey et al. (2014),
giving the wave vector and position of photons at the next time

step from the stepping equations
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where the ξi are random numbers drawn from the normal

distribution N(0, 1) with zero mean and unit variance.

3.1.1. Isotropic Scattering

In the case of isotropic density fluctuations (and hence
isotropic scattering), the Langevin equations take on a
particularly simple form. With Dij now given by
Equation (7), one finds that
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where, again, x is a vector with components ξi being random

numbers drawn from the normal distribution N(0, 1).

Equations (26) and(27) are the Euler–Maruyama approx-

imation to the Langevin Equations (21) and(22); they are in a

form particularly useful for solving initial value problems. The

time step Δt is chosen to be much smaller than the

characteristic times due to scattering and refraction. The mean

scattering time 1/νs is normally the smaller time, and so we

choose Δt=0.1/νs. Since νs (r) is a decreasing function of r,

the time step is shortest near the radio emission source and

quickly increases with distance.

3.2. Anisotropic Scattering

Now let us find the Langevin equation functions for the
anisotropic scattering tensor given by Equation (16). For the

4
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anisotropy matrix A given by Equation (12),
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where the -Aji
2 are elements of the diagonal matrix

=- - -2 1 1A A A and summation over repeated indices is implicit.

Using the definitions = -k k1A and = = -k k kk 2 1 2A∣ ∣ ∣ ∣  , one

finds the explicit expressions for Langevin equations in case of

anisotropic scattering:
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where a= +-tr 22 2A( ) is the trace of matrix -2A for the

anisotropy matrix A given by Equation (12), and
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is the k-independent coefficient in the diffusion tensor(16).
The Langevin Equation (21), together with the vector functions

(31) and(32), can be solved numerically for an arbitrary

spectrum of density fluctuations. For isotropic scattering, i.e., in

the limit α=1, the functions (31) and(32) reduce to

Equations (24) and(25), respectively.

Due to the choice of anisotropy matrix (Equation (12)), it is
useful to introduce the perpendicular
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components of ∂Dij/∂kj in the differential Equation (21). These

equations differ from Equation (44) in Arzner & Magun (1999).

For isotropic scattering (α=1), Equations (34) and(35)
reduce to the isotropic case. The expressions (34) and(35)
remain finite for the limiting cases of quasi-perpendicular

density fluctuations, i.e., a  ¥, as well as in the quasi-

longitudinal case a  0.
One can also readily verify the result (32) a posteriori:
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as required. We note that the “square root” of a matrix is not

unique, and so, to simplify the numerical solution of the

equations, we follow Schmidt et al. (2011) in the choice for Bij.

3.3. Collisional Absorption of Radio Waves

The plasma of the solar corona is a collisional medium,
which leads to free–free absorption of propagating electro-
magnetic waves, with a characteristic rate γ. For binary
collisions in a plasma (e.g., Melrose 1980; Lifshitz &
Pitaevskii 1981),
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Here the thermal speed =v T me eTe , with Te the electron

temperature in energy units. A constant Coulomb logarithm ln

Λ;20 is assumed, per Ratcliffe & Kontar (2014). We also

assume an isothermal solar corona with temperature

T=86 eV.
The effects of collisional absorption are stronger in higher

density plasmas. The attenuation of the signal due to absorption
is given by

= t-N t N e , 390
a( ) ( )

where the Coulomb collisional depth

òt g= r t dt. 40a ( ( )) ( )

Absorption is in general always important at higher frequencies

50MHz and noticeably affects the time profiles at higher

frequencies. The effect of absorption is also noticeable when

the scattering is so strong that the photons are trapped near the

source for the time longer than free–free absorption time 1/γ.

4. Monte Carlo Ray-tracing Simulations

4.1. Methodology

We have simulated the propagation of radio waves in the
presence of background density fluctuations, using the Monte
Carlo ray-tracing method presented in Section 3
(Equations (23)). Simulations were performed in the solar
centered coordinate system (x, y, z) as shown in Figure 1, with
the z-axis directed toward the observer; x and y are heliocentric-
Cartesian coordinates in the plane of the sky, used in solar
imaging observations (Thompson 2006).

The solar corona is assumed to be spherically symmetric and
the density fluctuations are assumed to be aligned with respect
to the local radial direction, so that qP is parallel to r for a given
photon location. Similar to Kontar & Jeffrey (2010) and Jeffrey

& Kontar (2011), before advancing the stochastic differential
Equations (31) and(32) corresponding to the Langevin
Equation (21), the wavevector k is first rotated to a local (x′,
y′, z′) coordinate system where z′ is radially aligned (see
Figure 2). In the paper, we only consider spherically symmetric
solar corona.10 The stochastic differential equations are then

Figure 1. Cartoon showing the Sun-centered Cartesian coordinate system (x, y, z), where the z-axis is directed toward the observer. The initial location of a point
source of radio emission is given by the radial coordinate Rs and the polar angle θs; the azimuth angle in the plane of the sky is not relevant to our study. The photons
scatter until they cross a sphere at a distance large enough that scattering is no longer important, resulting in an apparent source size and position indicated by the red
region.

Figure 2. Coordinate systems (x, y, z) and (x′, y′, z′) with the Sun center in the
origin, where z-axis is directed to an observer and the z′-axis is parallel to r,
and the y′-axis is tangent to the circle created by the intersection of the plane
formed by the z and z′ axes and a spherical surface of radius r.

10
The approach can include arbitrary alignment and hence trace the local

density anisotropy given by, e.g., a magnetic field.
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advanced one time step and then the wavevector k is rotated
back to the fixed (x, y, z) coordinate system for propagation to
the next scattering event. Figure 2 shows the corresponding
geometry; the z′-axis is parallel to r, and the y′-axis is tangent
to the circle created by the intersection of the plane formed by
the z and z′ axes and a spherical surface of radius r. The
relationships between the wavevector components are

f q q f
f q q f
q q

=- + -
= + -
= +

^ ^

^ ^

^

k k k k

k k k k

k k k

sin sin cos cos

cos sin cos sin

cos sin , 41

x x y

y x y

z y

( )

( )
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where (kx, ky, kz) are the components in the (x, y, z) coordinate

system, (k⊥x, k⊥y, kP) are the components in the (x′, y′, z′)

coordinate system, and the rotation angles are given by the

photon position in the (x, y, z) coordinate system,

f q q= = - =y x z r z rtan , sin 1 , cos . 422 2 ( )

In all simulations, the initial radio source was modeled as a
point source with an isotropic distribution of wavevector k and
with a frequency ω=1.1 ωpe(Rs) corresponding to the near-
fundamental plasma emission at a distance Rs from the solar
center, determined using a spherically symmetric Parker
density model (Parker 1960) with constant temperature and
constants chosen to agree with satellite measurements adapted
from Mann et al. (1999). The absolute value of the wavevector

w w= -k cpe
2 2 1 2( ) is therefore the same for all photons.

Although this density model is relatively simple and has been
used successfully for the simulations of Type III bursts in the
past (e.g., Kontar 2001), it does not have a simple analytical
form, which is needed for the solution of the differential
Equation (23). To simplify the density model, we fit the
numerical solution with three power-law functions (see, e.g.,
Alcock 2018), giving
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which can be easily differentiated to find the derivatives useful

to solve the ray-tracing Equation (23).
The simulations begin with approximately 104 photons with

different initial positions given by Rs from 1.05 to 57 Re. Using
the coronal density model given by Equation (43), these
correspond to plasma frequencies from 460 to 0.1 MHz,
respectively. The photon transport was simulated until a
distance where both refraction and scattering become negli-
gible, or until the photon frequency ω (which is conserved in
the simulations) became much larger than the local plasma
frequency. In each simulation run, a photon was traced until it
crossed a sphere where scattering becomes negligible or to 1 au
(whatever is less) and the arrival time and photon properties at
this sphere were recorded. The locations of the photons on this
sphere directed toward the observer (i.e., those with
0.9<kz/k<1) were then back-projected to the source plane,
thus defining the apparent source intensity map I(x, y) (Kontar
& Jeffrey 2010, red region in Figure 1). Similarly, the spread of
arrival times on this sphere determines the observed burst
intensity-time profile. In order to calculate the decay time at
different frequencies, we first select the peak time of the flux
(maximum in the histogram of the arrival times); times greater

than the peak time are regarded as defining the decay phase,
which was fitted with a Gaussian form. The delay time is
defined as the half width at half maximum (HWHM) of the
Gaussian fit.
The total flux was evaluated by performing an integral

ò I x y dx dy,( ) over the corresponding source area. Also, using
solar disk-centered coordinates, the centroid position of the
source (x̄, ȳ) was found by calculating the first normalized
moments (means) of the distribution:
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The full width at half maximum (FWHM) in each direction can

then be calculated using

s=FWHM 2 2 ln 2 , 46x y x y, , ( )

based on the assumption that the distribution I(x, y) is

Gaussian. To evaluate the FWHM source sizes we also fitted

I(x, y) with a 2D Gaussian and determined the sizes using the

best-fit parameters. Typical images I(x, y) are shown in

Figures 3 and 4.
Because of the finite number of photons in the sample, the

source centroids (Equation (44)) and sizes (Equations (45))
have associated statistical errors (see, e.g., Rao 1973). The
uncertainties in the mean values can be estimated as

d
s

d
s

x
N

y
N

, , 47
x y

¯ ¯ ( ) 

and the uncertainty in the FWHM sizes as

d
s

N
FWHM 2 2 ln 2

2
, 48x y

x y
,

,
( )

where N?1 is the number of photons used to determine the

means x y,( ¯ ¯) and the standard deviations σx, σy. These

uncertainties are used in all numerical results presented in this

paper.
Krupar et al. (2018) have recently investigated the effects of

isotropic scattering on time profiles generated in the inter-
planetary medium using Monte Carlo simulations. They
assumed a power-law spectrum of electron density fluctuations
(see Appendix C for the derivation) and also used expressions
for the diffusion coefficient from Thejappa et al. (2007) and
Thejappa & MacDowall (2008) to describe the scattering
effects. We adopt the same density fluctuations model here.
Krupar et al. (2018) used11 Equation (64), viz.

p - - q l l4 , 49i
2

0
2 3 1 3 2¯ ( )

11
Note a missing factor of π/2 in their equation.
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where li=(r/Re) [km] is the inner scale of the electron

density fluctuations (Manoharan et al. 1987; Coles &

Harmon 1989), R is the heliocentric distance, lo=0.25 Re

(R/Re)
0.82 is an empirical formula for the outer scale

(Wohlmuth et al. 2001), and d= á ñ n n2 2 is the level of

density fluctuations with the spectrum given by Equation (62).

ò was taken as a quantity independent of radial distance.
We stress that for the density fluctuations spectrum (62), the

scattering rate is determined by the density fluctuations at
scales near li. Since both the density fluctuations variance ò

2

and the outer scale lo(r) determine the level of density
fluctuations in Equation (49), ò(r) cannot be determined
without knowledge of l0(r), and different models for l0(r)
result in different values for ò(r). Hence the ò values taken for
the simulations in the next section should be viewed as the
standard deviation of density fluctuations for a given outer
scale model lo(r), and may not be suitable for direct comparison
with density fluctuation measurements in the corona.

4.2. Simulation Results for a Single Frequency

Using the assumptions presented in the previous section, we
can choose ò so that the characteristic size of the radio source is
about 19′ for fpe=32MHz (observing frequency ∼35MHz),
as typically observed for fundamental plasma emission (Kontar

et al. 2017). Figures 3–8 plot the main results of the ray-tracing

simulations. Figures 3 and 4 show the results for a point source

located above the solar disk center at a height 0.75 Re above

the photosphere, where fpe=32MHz according to the density

model(43). The simulations presented in Figure 3 use the same

level of density fluctuations ò but different values of the

anisotropy parameter (α=0.3 and α=0.5, respectively). For
both cases, the FWHM source size is about 1.15 Re (consistent

with 19′ FWHM size observations), but the time profile for the

simulation with α=0.5 (Figure 3) is significantly broader than

that for α=0.3 (Figure 4). Turbulent density fluctuations

which have a power that is weaker in the parallel direction

compared to the perpendicular to radial direction result in a

reduced time-broadening effect (i.e., radio-wave cloud broad-

ening along the z direction); consequently, the results with

anisotropy factor α=0.3 give a characteristic decay time

∼0.6 s, exactly as observed (see Figure 4 in Sharykin et al.

2018).
Figures 5 and 6 demonstrate how the observed source sizes

and the decay times vary with the value of the anisotropy

parameter α. Low-level density fluctuations (e.g., ò=0.2;
Figure 5) are too weak to provide sufficient scattering to

explain FWHM sizes as large as 1.15 Re. At the same time,

nearly isotropic scattering (Figure 6) with ò=0.8 provides the

observed sizes, but the decay time appears to be larger than

Figure 3. Simulations for a point source located at RS=1.75 Re ( fpe=32 MHz), and using ò=0.8, α=0.5. Left: time profile of the observed photons—blue with
absorption, red without absorption, and dashed line indicates the location of the time-profile maximum. Center: observed radio image in Sun-centered coordinates. The
orange circle denotes the Sun, the dashed line denotes the radius where the plasma frequency is 32 MHz, and the blue circle is the FWHM source size. Right:
directivity of the observed radio emission. The red dashed line shows the width at half maximum.

Figure 4. Simulation results as in Figure 3 but with stronger anisotropy, α=0.3.
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observed. Reduced scattering along the radial direction (e.g.,
density fluctuations that are predominantly in perpendicular
directions) decreases the characteristic decay time and aniso-
tropy, and a value α=0.3 provides the best match to the
observations. Indeed, comparing Figures 5 and 6, we find that a
density fluctuation level of ò;0.8 and an anisotropy
parameter of α=0.3 are the parameters that best explain

recent LOFAR observations by Kontar et al. (2017) and
consistent with the source sizes reported by Dulk &
Suzuki (1980).
Scattering of photons close to the intrinsic source contributes

substantially to the free–free absorption of radio waves.
Photons experiencing strong scattering stay longer in the
collisional medium and hence are absorbed. Indeed, Figure 3

Figure 5. FWHM sizes and decay time (HWHM) with ò=0.2 as a function of anisotropy α. The black symbols are from fitting the simulation data with a 2D
Gaussian function to determine the size and centroid position, the blue sizes are using Equation (46). One standard deviation uncertainty is calculated using
Equation (48).

Figure 6. Same as Figure 5, but for ò=0.8.

Figure 7. Radio images for a point source located at RS=1.75 Re ( fpe=32 MHz), and for three different source locations θs=0°, 10°, 30° from the disk center. All
images are for anisotropic turbulence with anisotropy parameter α=0.3 and a level of turbulence ò=0.8. The projected positions of the source and the image
centroid are shown by red and blue crosses respectively. The orange circle denotes the Sun, the dashed line denotes the radius where the plasma frequency is 32 MHz,
and the blue circle is the FWHM source size.
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demonstrates that the time profile is significantly extended
when absorption is switched off. This difference is smaller for
the stronger anisotropy case presented in Figure 3.

The main effects on source location and size are shown in
Figure 7. Because of projection effects along the radial
direction, the FWHM source size along the x-direction
decreases with heliocentric angle (Figure 8), while the FWHM
in the y-direction (perpendicular to the radial direction) changes
only weakly, remaining 1–1.2 Re. Sources located away from
the disk center are shifted radially (along the x-direction in our
simulations), and the near-linear dependence of the source
position on sin θs can be clearly seen from Figure 8. The
observer sees an apparent position that is shifted radially away
from the disk center, with the shift projected onto the skyplane
proportional to sin θs. While sources near the disk center
θs=0 are radially shifted toward the observer, the true and
apparent sources coincide in the (x, y) plane of the sky. The
case of more isotropic scattering (Figure 9) suggests that the
degree of anisotropy only weakly affects source sizes and
positions close to the disk center, but has a stronger effect close
to the limb. Thus, the radial size (along the X-axis) for α=0.5
(nearly isotropic scattering) does not decrease toward the limb
as fast as in the case with stronger anisotropy α=0.3
(Figure 8). This is consistent with the observations of angular
broadening of the Crab Nebula (e.g., Dennison & Blesing 1972)

by coronal turbulence, which show a preferential elongation
along the tangential direction.
Similarly, the interplay between scattering and the focusing

effects determine the directivity of the escaping emission. The
simulated directivity patterns show that although radio-wave
scattering effects lead to large source sizes, the directivity (right
panel in Figures 3–4) is predominately in the radial direction
with half widths at half maximum ;47° and ;40° for
anisotropy α=0.5 and α=0.3 correspondingly. These
results are different from early results suggesting isotropic
directivity due to scattering as reviewed by McLean &
Melrose (1985).

5. Observations of Type III Solar Radio Bursts in the
Heliosphere: Source Sizes and Decay Times

It is instructive to review observations of solar radio burst
source sizes and decay times for comparison with the ray-
tracing results. Solar radio bursts are observed over a wide
range of frequencies from about ∼500MHz down to ∼20 kHz
near 1 au. Therefore, the variation of burst parameters with
frequency allows us to diagnose the scattering over a wide
range of heliocentric distances.

Figure 8. Left: shift of the centroid position x̄ as a function of the source heliocentric angle θs. The shifts are calculated for anisotropic scattering with α=0.3 and
turbulence level ò=0.8 as in Figures 7. Center: FWHM X-size given by Equation (46). Right: FWHM Y-size given by Equation (46). The error bars show one
standard deviation given by Equation (47) and (48). The number of detected photons in z-direction is decreasing, so the uncertainties are large for angles close
to θs;90°.

Figure 9. Same as Figure 8, but for α=0.5.
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Figure 10 combines measurements12 by several different
authors (Bougeret et al. 1970; Abranin et al. 1976;
Alvarez 1976; Abranin et al. 1978; Chen & Shawhan 1978;
Dulk & Suzuki 1980; Steinberg et al. 1985; Saint-Hilaire et al.
2013; Krupar et al. 2014; Kontar et al. 2017) over the last 50
years. The Type III source sizes (FWHM; degrees) are for
frequencies ranging from ∼0.05 to 500MHz. Using a weighted
linear fit in log-space, the FWHM depends on the observing
frequency ( f; MHz) as (see Figure 10)

=  ´ - fFWHM 11.8 0.06 . 500.98 0.05( ) ( )

Similarly, a collection of Type III burst decay time
measurements (Alexander et al. 1969; Aubier & Boischot 1972;
Elgaroy & Lyngstad 1972; Alvarez & Haddock 1973; Barrow
& Achong 1975; Krupar et al. 2018; Reid & Kontar 2018),
over the frequency range from ∼0.1 to 100MHz, is presented
in Figure 10. The best-fit power-law dependence of the decay

time τ (s) on frequency f (MHz) is

t =  ´ - f72.2 0.3 . 510.97 0.03( ) ( )

For comparison, Wild (1950) derived an expression

τ=100×f−1 for the decay time, based on observations in

the frequency range 80–120MHz, while Alvarez & Haddock

(1973) obtained τ=51.29×f−0.95 based on observations in

the frequency range 50 kHz–3.5 MHz, and Evans et al. (1973)

obtained τ=(2.0±1.2)×100×f−(1.09±0.05) based on

observations in the frequency range 67 kHz–2.8MHz for 1/e
decay.
Figure 11 shows the results of our simulations, assuming

isotropic scattering. The decay time agrees within a factor of 2
with that by Krupar et al. (2018); this difference is likely due to
the different numerical schemes used (see the discussion
around Equation (20)). While a detailed comparison for various
anisotropies would require substantial computation effort
outside the scope of this work, it is nevertheless clear that
isotropic scattering cannot explain the observations. For
example, if the level of density fluctuations ò is chosen to
explain the decay times, the predicted source sizes are far too
small to explain the observations. Similarly, if the level of
isotropic density fluctuations is chosen to match the source
sizes, the decay times are too long. Evidently, anisotropic
scattering, with a reduced level of scattering along the radial
direction, is needed to account for both observed source sizes
and decay times.

6. Summary and Discussion

Radio emission from solar sources is strongly affected by
scattering on small-scale density fluctuations. In general, the
observed source sizes and positions, time profiles, and
directivity patterns are determined mainly by propagation
effects and not by intrinsic properties of the primary source. We
have constructed a new model that allows quantitative analysis
of radio-wave propagation in a medium that contains an axially
symmetric, but anisotropic, scattering component. We have
compared the results of numerical simulations using this model
with observations of source sizes and time profiles over a wide
range of frequencies. Since plasma emission sources with small
intrinsic size are observed in type III bursts (Kontar et al. 2017;
Sharykin et al. 2018), the observed radio sources are dominated
by the scattering, at least at these frequencies. Hence their sizes
can be used as diagnostics of radio-wave propagation effects.
In general, a typical source of plasma emission (e.g., Type I,

II, III, IV, or V solar radio bursts) might have a finite size
FWHMsource defined by the intrinsic size of the region
producing the radio emission. The observed FWHM size for
such a source is given by (FWHMsource

2 +FWHMscat
2

)
1/2,

where FWHMscat is calculated in this paper. Thus for
frequencies around 35MHz, FWHMscat;1.1 Re, so if the
source is substantially smaller than this value, the observed
source sizes are dominated by scattering effects. For large
sources 1.1 Re (i.e., 18′), the source sizes due to scattering
calculated in this paper can be subtracted in quadrature from
the observed source size to give the dimensions of the intrinsic
source, corrected for wave propagation effects. However, the
size of density fluctuations, and hence the scattering efficiency,
can vary appreciably from event to event and from one solar
atmosphere region to another, consistent with the considerable

Figure 10. Top: source sizes (FWHM; degrees) of typeIII solar radio
observations vs. frequency f(MHz). A combination of observations is plotted
as indicated by the legend, and a weighted linear fit was applied to the data.
The dashed line shows the fit given by Equation (50). Bottom: decay times τ
(defined as the e-folding time in seconds) of Type III solar radio observations
vs. frequency f (MHz). A combination of observations is plotted as indicated by
the legend, and a weighted linear fit was applied to the data. The dashed line
shows the fit given by Equation (51). The standard deviation error bars were
calculated from the statistical distribution of the data and measurement errors if
reported.

12
The source sizes reported by Dulk & Suzuki (1980) and Steinberg et al.

(1985) were given as the full width at 1/e of the distribution, so the values were
recalculated into FWHM values by multiplying by a factor of ln 2 .
Measurements above 1 MHz from Krupar et al. (2014) were not plotted as
“the analysis above 1 MHz is perhaps distorted by background signals resulting
in increased source sizes” and thus, the results were deemed unreliable.
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variability of the density fluctuation spectrum observed in the
solar wind (e.g., Celnikier et al. 1983; Marsch & Tu 1990).

The main result of our work comes from the comparison of
the simulation results with combined imaging and time-delay
observations. For a given density fluctuation magnitude ò and
outer and inner scales lo, li, changing the anisotropy parameter
α only weakly affects the source size over a broad range of
angles near the disk center. (These effects are most noticeable
close to the limb, where the anisotropy direction corresponds to
the line of sight.) However, the time profiles (or, equivalently,
the radio pulse expansion along the line of sight) are strongly
affected by the value of α. Comparison of the simulation results
with observations of source size and time delay, both as a
function of frequency, suggests that anisotropic density
turbulence, with preferential scattering perpendicular to the
solar radial direction (α;0.3) is required to account for both
the source size and time-delay variations at frequencies close to
30MHz. In order to explain the Type III observations in the
heliosphere between 0.1 and 1MHz, additional simulations are
required. Indeed, the simulations by Krupar et al. (2018)
demonstrate that although isotropic scattering with
ò;0.06–0.07, lo and li given by Equation (49) can explain
the decay time, the anisotropy of density fluctuations is
inadequate to explain the typical source sizes (e.g., Figure 11).
The numerical model developed in Section 3 suggests that the
anisotropic density fluctuations (lower power in the parallel
direction) are required to account for the source sizes and decay
times simultaneously. This result requires further computation-
ally intensive investigations using the method outlined in the
paper.

The other interesting result is that the directivity of solar
radio bursts is determined by a combination of wave focusing
due to large-scale refraction and scattering on small-scale
density fluctuations. At the same time, the intrinsic directivity
of the source, e.g., the dipole pattern associated with radio
emission near the plasma frequency (Zheleznyakov &
Zaitsev 1970) is quickly lost due to scattering and thus is not
evident in observations. Contrary to the results of early
simulations (e.g., McLean & Melrose 1985, for a review), the
resulting directivity appears to have a width of approximately
40° near 30MHz. The observed directivity pattern is a
combination of the focusing due to large-scale refraction and
the scattering. The anisotropy of the density fluctuation
spectrum plays an important role in governing the emission

pattern of solar radio bursts. Therefore, efficient isotropization

of radio waves near the emission source does not automatically

imply an isotropic emission pattern as sometimes assumed.
Free–free absorption appears to have a small or negligible

effect for frequencies below 30–50MHz. However, the

collisions are important for higher frequencies and can

determine the time profile. It is also important to note that

the stronger the scattering of radio waves, the more pronounced

the effect of the free–free absorption. Photons that are strongly

scattered are also absorbed stronger and hence produce a

weaker contribution to the observed properties.
The effect of radio-wave scattering depends on the radial

profiles of the quantities q r2( ¯ )( ) and α (r), representing the

size and anisotropy of density fluctuations, respectively. For a

decreasing spectrum of electron density fluctuations

S(q)∝q−5/3, scattering is most sensitive to the largest q (

i.e., the smallest scales) in the inertial range spectrum—the

scale of energy dissipation—and so provides key diagnostics

for the inner scale li(r) (Equation (49)). At the same time,

conclusions regarding the level of density fluctuations ò are

also dependent on, and so require knowledge of, the outer

density scales l0. For example, to explain the observations near

30MHz, a high level of density fluctuations ò=0.8 is required

for the model of lo (r) adopted, and it is possible that the model

lo(r) is not valid at these frequencies. Comparison between

observations and simulations therefore provides a powerful tool

with which to infer the radial variation of density fluctuations

from the Sun to the Earth, which will be the subject of

further work.
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Figure 11. FWHM size (left) and decay time (HWHM; right) calculated at various frequencies for isotropic scattering and for disk center source
(FWHMx=FWHMy) for frequencies 0.1–1 MHz. The red dashed line indicates the best fit to the observations from Figure 10.
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Appendix A
Isotropic Density Fluctuations

For isotropic density fluctuations, due to spherical symmetry,

d= -D D
k k

k
.ij ij

i j
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where the ki are components of k and the summation over

repeated indices is implicit. Using the wavenumber diffusion

tensor given by Equation (7),
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Hence one finds that Equation (52) can be written as
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This wave vector diffusion tensor has the same structure as that

for Langmuir waves (e.g., Goldman & Dubois 1982;

Muschietti & Dum 1991; Ratcliffe et al. 2012).

Appendix B
Gaussian Spectrum of Density Fluctuations

Following early works by Hollweg (1970) and Steinberg
et al. (1971) we assume that the density fluctuations have a
Gaussian correlation, so the Gaussian autocorrelation function
of the density fluctuations is

d
=
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where ĥ2 and hPare the perpendicular and parallel correlation

lengths, respectively, and dá ñn2 is the variance of density

fluctuations. For isotropic fluctuations,
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where h=h⊥=hPis the correlation length. The spectrum S

(q), defined as

ò= -S q C r e d r,k ri 3( ) ( ) ·

also has a Gaussian form
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so that the variance of density fluctuations is
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Substituting the isotropic Gaussian spectrum(56) into the wave
vector diffusion tensor(53), one finds
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The average wavenumber vector q, given by Equation (8), for

the density fluctuation spectrum of Equation (56), is
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so that the diffusion coefficient Dθθ becomes
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where d= á ñ n n2 2 2. The angular scattering rate per unit time

becomes
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or, per unit distance, for a photon with group speed
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an expression widely used (e.g., Chandrasekhar 1952; Holl-

weg 1968, 1970; Steinberg et al. 1971; Lacombe et al. 1997;

Chrysaphi et al. 2018; Krupar et al. 2018; Gordovskyy et al.

2019) and identical to the expression (27) in Arzner & Magun

(1999) (noting that =h l2 needs to be redefined to

obtain h q= á ñd dt2 2* ).

Appendix C
Power-law Spectrum of Density Fluctuations

In situ observations of density fluctuations suggest an
inverse power-law spectrum of density fluctuations
S(q)∝q−( p+2), with the exponent p close to 5/3 as observed
(Alexandrova et al. 2013). This power-law normally holds over
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a broad inertial range from outer scales l0=2π/q0 to inner
scales li=2π/qi (see, e.g., Alexandrova et al. 2013, for a
review):
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where the constant follows by normalizing the integrated

spectrum to the level of density fluctuations dá ñn2 . Then the

spectrum-weighted average wavenumber q̄ (Equation (8))

becomes (Lacombe et al. 1997; Arzner & Magun 1999)
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This is often simplified further by assuming a large range of

wave numbers, so that qo=qi. For example, Thejappa et al.

(2007) and Krupar et al. (2018) used Equation (63) with

p=5/3 in the limit qo=qi, giving the particularly simple

form
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for which the variance of density fluctuations is
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Then the scattering rate with q̄ given by (64) becomes
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Expressed as a scattering per unit of length x, Equation (66) is
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This is the expression used by Thejappa & MacDowall (2008)

and Krupar et al. (2018), but includes an additional factor of π/
2. It also coincides with Equation (30) from Arzner &

Magun (1999).
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