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Abstract. Obtaining high-quality 3D models of real world objects is an impor-

tant task in computer vision. A very promising approach to achieve this is given

by variational range image integration methods: They are able to deal with a

substantial amount of noise and outliers, while regularising and thus creating

smooth surfaces at the same time. Our paper extends the state-of-the-art approach

of Zach et al. (2007) in several ways: (i) We replace the isotropic space-variant

smoothing behaviour by an anisotropic (direction-dependent) one. Due to the di-

rectional adaptation, a better control of the smoothing with respect to the local

structure of the signed distance field can be achieved. (ii) In order to keep data

and smoothness term in balance, a normalisation factor is introduced. As a re-

sult, oversmoothing of locations that are seen seldom is prevented. This allows

high quality reconstructions in uncontrolled capture setups, where the camera po-

sitions are unevenly distributed around an object. (iii) Finally, we use the more

accurate closest signed distances instead of directional signed distances when

converting range images into 3D signed distance fields. Experiments demonstrate

that each of our three contributions leads to clearly visible improvements in the

reconstruction quality.

1 Introduction

Range image integration aims at combining multiple range images, also referred to as

depth maps, into a single 3D model. During the last few years, the topic of range image

integration has attracted an increasing amount of attention because range images are

becoming more readily available through devices such as the Kinect or time-of-flight

cameras [10]. Furthermore, it is possible to compute depth maps from stereo image
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pairs using an existing real time or high accuracy stereo method [12]. In this way, one

can employ range image integration in a multi-view stereo setting [13].

Often intermediate volumetric representations are used to integrate range images

because they allow handling meshes of arbitrary genus. Such a volumetric range image

integration has first been used to fuse range images captured by active sensors [3, 7, 16].

In this early work, the range images are converted into 3D signed distance fields and

combined into a cumulative signed distance field using an averaging scheme. The 3D

model can then be obtained using an isosurface polygonisation method; see e.g. [9].

It is known that averaging without regularisation leads to inconsistent surfaces due

to frequent sign changes within the cumulative signed distance field [8]. Zach et al. address

this problem in [17] by computing the cumulative signed distance field as the global

minimiser of a suitable energy functional that incorporates a total variation (TV) [11]

smoothness term along with a robust L1 data term.

Our Contribution. Our work extends the variational range image integration approach

presented by Zach et al. [17] in three aspects. First, the isotropic (space-variant) diffu-

sion term is replaced by an anisotropic (direction-dependent) one, which is designed

to smooth along the evolving surface and evolving ridges in the cumulative signed dis-

tance field but not across. This way it is possible to obtain very smooth surfaces from

noisy range images while preserving ridges and corners. Second, a normalisation is in-

troduced in the data term to maintain balance with the smoothness term. As a result,

oversmoothing of locations that are seen seldom is prevented and it is possible to obtain

high quality reconstructions of objects that have been captured unevenly often from dif-

ferent sides. Third, compared to Zach et al., we do not use signed distances along the

line of sight when converting range images into 3D distance fields. Instead, we compute

the closest signed distance to the range surface. We can show for every adjustment that

it leads to reconstructions of superior quality.

Organisation of the Paper. In Section 2 we describe how to obtain a more accu-

rate signed distance field from a given range image. Section 3 explains how the signed

distance fields are integrated into a globally optimal cumulative signed distance field

following the idea of Zach et al. [17]. Moreover, it derives a new anisotropic smoothing

behaviour as well as a meaningful normalisation factor for the data term. Subsequently,

Section 4 describes implementation aspects before we display experimental results in

Section 5. We conclude the paper with a summary in Section 6.

2 Signed Distance Fields

A range image maps each location of the image domain Ω2 ⊂ R
2 to a depth value,

which describes the distance from the camera centre to the surface of the scene along

the corresponding optical ray. Let us assume that a range image r : Ω2 → R+ and the

corresponding camera projection π : R3 → Ω2 are given.

In volumetric range image integration methods [3, 17], a range image r is con-

verted into a 3D signed distance field f by computing the signed distance ℓ of a point
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Fig. 1. Generally, the directional signed distance ℓ(x) overestimates the closest signed distance

d(x) to the range surface S and is a less accurate approximation of the true distance to the object.

x ∈ Ω3 ⊂ R
3 along the line of sight. Computing this directional signed distance is

computationally inexpensive because it can directly be evaluated as

ℓ(x) = r
(

π(x)
)

− |x− c|, (1)

where c corresponds to the camera centre, and locations in front of the surface are ar-

bitrarily given a positive value. However, Figure 1 illustrates that the directional signed

distance ℓ(x) generally overestimates the closest distance. Although directional dis-

tance and closest distance can coincide at certain locations, e.g. at the range surface

itself, problems occur when averaging and regularising multiple directional signed dis-

tance values. Therefore, we propose to use a more accurate approximation of the closest

distance to the object by computing the closest signed distance to the range surface S:

d(x) = sgn
(

ℓ(x)
)

· inf
y ∈S

|x− y|. (2)

Since the range image and its corresponding projection is given, the range surface S
can directly be evaluated. The sign of the closest distance is determined by the sign of

the directional signed distance. Alternatively, the sign could also be determined using

range surface normals as in [16].

We follow [17] for the remaining part of this section by scaling the signed distance

values with a factor of 1/δ and truncating them to the interval [−1, 1]:

f(x) = ψ
(

d(x)
)

with ψ(d) =

{

sgn(d) if |d| ≥ δ
d/δ else.

(3)

The parameter δ thus reflects the expected uncertainty of the depth values. We also use

a binary weight w : Ω3 → {0, 1} associated with the signed distance field f in order

to assign low confidence to f at locations behind the surface where d(x) < −η. The

parameter η > 0 thus specifies how much of the occluded region behind a surface is

assumed to be solid.

3 Variational Signed Distance Field Integration

The cumulative signed distance function u : Ω3 → R is computed as the minimiser of

an energy functional of type

E(u) =

∫

Ω3

(

D(f ,w, u) + α S(∇u)
)

dx, (4)
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containing n signed distance fields f = (f1, . . . , fn)
⊤ and the associated weights

w = (w1, . . . , wn)
⊤. The data term D(f ,w, u) models the assumption that u should

be similar to all signed distance fields f , while the smoothness term or regulariser en-

forces u to be smoothly varying in space by penalising large gradients of u. Its influence

is steered by the smoothness weight α > 0. The desired surface geometry is then given

by the zero level set of the global minimiser u.

Zach et al. [17] employ a robust L1 data term along with a total variation (TV)

smoothness term, such that data term and smoothness term are not continuously dif-

ferentiable and the resulting energy is not strictly convex. Therefore, they introduce an

auxiliary variable and solve a convex approximation of this energy using a numerical

scheme that combines the duality principle for the TV term with a point-wise optimisa-

tion step.

3.1 Minimisation by Gradient Descent

Alternatively, it is possible to replace the absolute value function by the continuously

differentiable and strictly convex approximation ΨD(s2) = ΨS(s
2) =

√
s2 + ǫ2 with a

small regularisation constant ǫ > 0 yielding the data and the smoothness term

D(f ,w, u) =

n
∑

i=1

wi ΨD

(

(u− fi)
2
)

and S(∇u) = ΨS

(

|∇u|2
)

, (5)

respectively. The resulting energy approximates the TV-L1 energy by Zach et al. and

is strictly convex. Thus, its minimiser can be found as the steady state (t → ∞) of the

gradient descent equation

∂tu = α div
(

S∇u(∇u)
)

−Du(f ,w, u). (6)

When introducing the abbreviations Ψ ′
i,D := Ψ ′

D

(

(u−fi)2
)

and Ψ ′
S := Ψ ′

S

(

|∇u|2
)

,

data and smoothness term derivatives are given by

Du(f ,w, u) = 2
(

u

n
∑

i=1

wi Ψ
′
i,D −

n
∑

i=1

wi Ψ
′
i,D fi

)

and S∇u(∇u) = 2Ψ ′
S∇u.

(7)

It is known that TV regularisation leads to minimal surfaces because it penalises the

perimeter of the level sets of u [2]. Increasing the smoothness weight α thus results in

reducing isolated small scale features and generating low-genus isosurfaces instead of

an increased smoothing of u. However, the space-variant diffusivity Ψ ′
S ignores the sur-

face orientation. Incorporating an orientation dependent behaviour requires anisotropic

smoothing [15], which is discussed next.

3.2 Anisotropic Regularisation

In order to obtain an anisotropic smoothing behaviour, we modify the diffusion term in

the gradient descent equation (6) by replacing the smoothness term derivative with

S∇u(∇u) = 2Ψ ′
S(Jρ,σ)∇u. (8)
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Region
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Fig. 2. Visualisation of diffusion tensors as ellipsoids for different local structures.

This essentially lifts the idea of Zimmer et al. [19], who modeled an anisotropic disparity-

driven stereo vision, to three dimensions. The matrix-valued function Ψ ′
S is an exten-

sion of a scalar-valued function that is applied only to the eigenvalues while leaving the

eigenvectors unchanged, and

Jρ,σ := Kρ ∗ (∇uσ∇u⊤σ ) (9)

is the structure tensor [4]. Here, uσ := Kσ ∗ u, where ∗ denotes a convolution with a

Gaussian Kσ of standard deviation σ.

Apparently, the structure tensor Jρ,σ extends the tensor product ∇u∇u⊤ in two

aspects: first, u is regularised by a Gaussian convolution with standard deviation σ. In

this context, σ can be regarded as a noise scale because the low-pass effect of Gaussian

convolution attenuates high frequencies. Although ∇uσ is already useful for edge de-

tection, it is sensitive to noise if σ is chosen too small. On the other hand, cancellation

effects are introduced if σ is chosen too large. This is overcome by the second aspect,

which is an additional Gaussian convolution of the tensor entries with standard devia-

tion ρ, also referred to as integration scale. The integration scale describes the window

size over which the orientation is analysed.

Let us now discuss how the anisotropic smoothing behaviour adapts to the local

structure by considering the eigenvalues of the diffusion tensor Ψ ′
S(Jρ,σ) for the fol-

lowing four cases: (a) In homogeneous regions, all eigenvalues are equally large, which

causes homogeneous smoothing in all three directions. (b) At smooth surfaces, one

eigenvalue is close to zero, which leads to anisotropic smoothing along the surface but

not across. (c) At ridges, i.e. oriented 1D structures in 3D space, only one eigenvalue

is large, resulting in smoothing along the ridge. (d) At corners, all eigenvalues van-

ish, which prevents smoothing. Figure 2 visualises the diffusion tensors as ellipsoids,

where the eigenvectors correspond to the semi-principal axes and the eigenvalues to the

respective equatorial radii.

3.3 Data Term Normalisation

The data term is not in balance with the smoothness term because using more range

images effectively reduces smoothing as the influence of the data term grows larger. At

a first glance it seems that a remedy is given by dividing the data term by the number of

cameras used. However, it often happens that different locations are visible unequally

often due to the camera positioning and the surface of the object. In this case, locations
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that have been seen very seldom will be excessively smoothed, whereas locations that

have been seen many times only receive very little smoothing. Obviously, this cannot

be overcome by adapting the data term globally. Instead, one has to consider how often

each location has been observed by normalising the data term accordingly:

D(f ,w, u) =
(

n
∑

i=1

wi + γ
)−1

n
∑

i=1

wi ΨD

(

(u− fi)
2
)

. (10)

If a location has not been seen by any camera, all weights are zero and the small positive

constant γ prevents division by zero. In this case, the data term evaluates to zero such

that information is filled in solely based on the smoothness term.

4 Implementation

An axis aligned bounding box that contains all range surfaces is chosen as domain of

integration Ω3. It can be discretised by choosing a number of equidistant samples n =
(n1, n2, n3)

⊤ in each direction, resulting in the sampling distances h = (h1, h2, h3)
⊤.

Efficient Computation and Storage of Signed Distance Fields. In order to set up

one of multiple signed distance fields, one has to compute the distance from a point to

a triangle n1 · n2 · n3 ·m times when assuming that a range surface is discretised by

m triangles. This complexity causes severe problems because common resolutions of

2003 voxels and 6 · 105 triangles require almost 5 · 1012 computations.

We use two strategies that help to reduce the computational effort when setting up

the signed distance fields. First, we accelerate the computation of the closest distance

for a single voxel by organising the range surface in a bounding volume hierarchy.

Second, we use the directional signed distance as a heuristic for closeness to the surface

and only compute the closest distance if |ℓi(x)| < c·δ for some c > 1.

Storing all signed distance fields and their associated weights directly requires a

huge amount of memory. In order to reduce the memory requirement, one can either

employ a voxelwise runlength encoding [17] or a coarser quantisation of the signed

distances leading to a histogram based approach [18]. In some cases, adjusting the data

term to enforce similarity to the pointwise weighted median can also yield acceptable

results and drastically reduce memory requirement. As the signed distance fields are

truncated to the interval [−1, 1], it is possible to implicitly encode a weight of zero by

using a value outside this interval.

Numerical Solution of the PDE. We discretise the gradient descent equation (6) on a

regular grid using finite differences and solve it efficiently using the recently proposed

fast explicit diffusion (FED) [6]. When ignoring the smoothness term, the minimiser

u is given by the pointwise weighted median of the signed distance fields. In general,

convergence can be strongly accelerated when using this as an initialisation compared

to an initialisation with a constant value z ∈ [−1, 1]. If a voxel has never been seen and

the bounding box is chosen rather tight, it is most probable that the voxel lies inside the
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(a) (b) (c) (d) (e) (f)

Fig. 3. From left to right: (a)-(c) A sphere was reconstructed from synthetically generated range

images with δ = 0, |h|/4, |h| using closest signed distances. (d) Error visualisation for (c).

(e) Reconstruction using directional signed distances and δ = |h|. (f) Error visualisation for (e).

object such that it is reasonable to initialise it with −1. Alternatively, a coarse-to-fine

approach can be employed to speed up the convergence. It depends on the input data and

the choice of the regularisation paramter α, which strategy yields faster convergence.

5 Experimental Results

Guidelines for Choosing the Parameters. The parameters δ and η denote the relevant

region close to the surface and the occluded region behind the surface, respectively.

When choosing δ < |h|, subvoxel accuracy that was originally present in the range

image is lost in the signed distance field due to the truncation of distances. Therefore,

one can see increasing staircasing artifacts when δ goes from |h| towards zero (see

Figure 3 (a)-(c)) and it is advisable to choose δ ≥ |h|. Additionally, it makes sense to

adapt δ in such a way that it reflects the expected measurement error in the depth maps.

Choosing η involves a tradeoff: On the one hand, η should be as small as possible to

avoid influencing surfaces on the other side. On the other hand, η has to be large enough

to allow for sign changes in the signed distance field.

Directional Distance vs. Closest Distance. In Figure 3 (e) one can see artifacts on

a sphere that was reconstructed from 48 ground truth range images using directional

signed distance values. Figure 3 (f) shows a visualisation of the error values, where

blue corresponds to a negative, red to a positive error value and green corresponds to

an error of zero. The error for a vertex is given by its distance to the ground truth ac-

cording to the error measure for accuracy used in the Middlebury Benchmark [13], and

the minimum and maximum error values have been mapped to blue and red, respec-

tively. When using the closest distance to the range surface, one can obtain an accurate

reconstruction without artifacts (see Figure 3 (c),(d)).

Non-normalised Vs. Normalised Data Term. It is common to downweight the data

term by the number of range images used as it is done in the experimental section of

[18]. However, depending on the geometry of the object and the camera placement,

different locations might not be seen equally often such that a location based normal-

isation as proposed by us is be required. In order to demonstrate the surface evolution
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Non-normalised Data Term Normalised Data Term

Fig. 4. With α increasing from top to bottom, one can see that the normalisation ensures an equal

smoothing of front an back. The variant without normalisation excessively smoothes the back.

under increasing α, the Stanford bunny taken from the Stanford 3D scanning repository

[1] is used to generate 42 range images taken from the front and only 6 from the back.

Looking at Figure 4, the experiments verify that using the normalisation smoothes front

and back equally as desired. On the other hand, the non-normalised variant excessively

smoothes the back while performing almost no smoothing in the front.

Total Variation Vs. Anisotropic Regularisation. A stair like object has been recon-

struced from 48 synthetically generated range images. In order to account for measure-

ment errors as they often occur in modern depth cameras, a small amount of noise has

been added along the line of sight. Figure 5 shows that the anisotropic diffusion term

achieves a superior result when compared to the isotropic one. In the magnification it

is clearly visible that the flat parts of the stairs are extremely smooth while the ridges

are preserved. The TV smoothness term is also able to preserve the ridges but cannot

achieve a comparable smoothness in the flat regions. This also holds for the reconstruc-

tions of the full dino dataset from the Middlebury benchmark depicted in Figure 6 (b)

and (c). We have used closest distances when converting the range images into signed

distance fields, and we have computed depth maps according to the method of Valgaerts

et al. [14]. Compared to the method of Zach [18], we are able to significantly improve

the accuracy from 0.55mm to 0.33mm. In fact, only Furukawa and Ponce [5] are able

to obtain a higher accuracy of 0.32mm at this time. However, the reconstruction of

Furukawa is not able to achieve a similar smoothness, such that our reconstruction is

visually closer to the ground truth (see Figure 6 (a)). With 4.5 hours, the runtime of our

CPU-based implementation lies between those of Furukawa (5.75 h) and Zach (3 min)

(see also http://vision.middlebury.edu/mview/). Furthermore, our FED scheme is well

suited for parallelisation on GPUs.
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Fig. 5. Stairs were reconstructed from 48 synthetically generated range images with a small

amount of noise added along the line of sight. From left to right: (a) One noisy range surface.

(b) Reconstruction with TV smoothness term. (c) Reconstruction with anisotropic diffusion term.

(a) Furukawa [5] (b) Zach [18] (c) Our method (d) Ground truth

Fig. 6. Top row: Reconstructions for the dino full dataset from the Middlebury benchmark with

the errors 0.32mm, 0.55mm and 0.33mm, respectively. Bottom row: Magnification.

6 Conclusions and Future Work

We have extended the variational range image integration method of Zach et al. [17]

w.r.t. three aspects. First, an anisotropic smoothing behaviour that outperforms the ex-

isting isotropic one has been proposed. It can produce smoother surfaces while preserv-

ing ridges and corners. Second, a normalisation of the data term ensures that portions

of an object which have only been captured seldom are not overly smoothed. It allows

for high quality reconstructions in setups where the camera positions are unevenly dis-

tributed. Third, the signed distance fields were generated from range images by comput-

ing the closest signed distance to the range surface instead of evaluating the directional

signed distance along the line of sight. In the experimental section, we could show that

all three modifications were able to improve the reconstruction quality.

Future work could aim at increasing the quality of reconstructions even further by

recognising depth discontinuities and treating them in a more sophisticated way.
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