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We investigate the surface Rashba effect for a surface of reduced in-plane symmetry. Formulating a k · p
perturbation theory, we show that the Rashba splitting is anisotropic, in agreement with symmetry-based
considerations. We show that the anisotropic Rashba splitting is due to the admixture of bulk states of different
symmetry to the surface state, and it cannot be explained within the standard theoretical picture supposing just
a normal-to-surface variation in the crystal potential. Performing relativistic ab initio calculations we find a
remarkably large Rashba anisotropy for an unreconstructed Au�110� surface that is in the experimentally
accessible range.
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I. INTRODUCTION

Metallic surfaces often exhibit Shockley-type surface
states located in a relative band gap of the bulk band struc-
ture and forming a two-dimensional electron gas. One of the
most intriguing manifestation of spin-orbit coupling �SOC�
at surfaces is the splitting of these surface states, known as
Rashba splitting.1,2 Such Rashba splitting was observed via
photoemission by LaShell et al.3 for the L-gap surface state
at Au�111� and explained theoretically in terms of a tight-
binding model4 and ab initio electronic structure
calculations5,6 but several studies of the Rashba splitting
were recently published in on Bi�111� and Bi/Ag�111�,7–9 as
well as on BixPb1−x /Ag�111�, where atomic Bi p orbitals
lead to a more pronounced spin-orbit splitting.10–13

Describing and controlling the Rashba splitting of surface
states is crucial for spintronics applications. The famous
Datta-Das transistor relies on the electric tuning of the
Rashba splitting14 and the Rashba splitting is responsible for
the spin Hall effect in two dimensions15 and the anomalous
Hall effect16 as well. A ferromagnetic control of the Rashba
coupling has also been proposed very recently.17

The simplest way to understand the origin of the Rashba
effect is to take nearly free electrons, confined by a crystal
potential, V�r�=V�z�, and having a plane-wavelike wave
function, �s,k�r�=eikr��z��s, with �s some spinor eigenfunc-
tions, and k the momentum parallel to the surface. The crys-
tal potential V�z� obviously produces an electric field, E,
perpendicular to the surface, which, in the presence of spin-
orbit interaction leads to the following spin-orbit term in the
effective Hamiltonian:

HR�k� = �R�kx�y − ky�x� , �1�

called Rashba-Hamiltonian. In Eq. �1�, �i denote the Pauli
matrices and �R= �2

4m2c2 �d3r���z��2�zV�r� is the so-called
Rashba parameter. The eigenvalue problem can then easily
be solved, resulting in a splitting of the spin degeneracy of
the surface states, ���k�= �2

2m� k2��R�k�, with m� the effec-
tive mass of the surface electrons.4,6 Clearly, the above dis-

persion is isotropic in k space, hence we term it as isotropic
Rashba splitting.

Although real systems cannot be described in terms of
free electrons, and for quantitative estimates of �R the atomic
structure of the potential needs be taken into account,8 the
form of the Rashba interaction, Eq. �1�, is very robust for
surfaces of high point-group symmetry such as C3v or C4v.18

The situation is, however, quite different for surfaces �or
points in the surface Brillouin zone� of reduced symmetry.

Such Shockley-type surface states emerge, e.g., around the Ȳ
point of the surface Brillouin zone of unreconstructed and
�2	1� reconstructed Au�110� surfaces, as revealed by recent
high-resolution photoelectron spectroscopy experiments.19 In
this case, the C2v point-group symmetry of the system not
only implies the asymmetry of the effective mass, mx

��my
�

�for the crystal axes see Fig. 1� but, in leading order in k,
representation theory also predicts the following simple form
of the effective Hamiltonian:18

SX k

k

y

x

Γ Y

bulk
continuum

surface
band

~ s

~ py

E F
kx

ε

FIG. 1. �Color online� Left: sketch of the fcc�110� surface Bril-
louin zone. The dark area denotes the projection of the L gap of
bulk Au. Right: structure of the surface energy spectrum in the
absence of SO interaction, along the line k= �kx ,0�. Surface states
in the relative gap with k�0 can be built up from states indicated
by the thick black lines and the black circle at k=0. Note that k

=0 corresponds to the Ȳ point of the Brillouin zone, see Eq. �3�.
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H�k� = �0 +
�2kx

2

2mx
� +

�2ky
2

2my
� + �R,xkx�y − �R,yky�x. �2�

The above expression can easily be justified by simple sym-
metry analysis, just by noticing that �y and −�x transform as
px and py under the operations of the double groups of C2v
and C4v. From this observation it also follows that in case of
C4v point-group symmetry �R,x=�R,y must be satisfied, and
Hamiltonian �1� is recovered.20

Although the above form of the Rashba interaction has
been predicted in Ref. 18, no microscopic theory has been
constructed so far to support it. While previous ab initio
calculations19,21 did find a Rashba splitting of the Au�110�
surface state, they focused only on the dispersion along the


̄Ȳ direction, and therefore the anisotropy of the Rashba
term remained unnoticed. In the present paper, we provide
such a microscopic analysis for an Au�110� surface with C2v
point-group symmetry. First, constructing a k · p perturbation
theory for the surface states we show that the above aniso-
tropic Rashba structure appears naturally and is due to the
finite momentum mixing of the bulk p states to the surface
state. We also perform ab initio calculations of the Rashba-
split surface state of an unreconstructed Au�110� surface and
confirm with a high numerical accuracy that there is a large
anisotropy in k space, �R,x�5�R,y, in agreement with Eq.
�2�. The predicted anisotropic Rashba splittings turn out to be
within the range of experimental accuracy.

II. k ·p PERTURBATION THEORY OF THE RASHBA
SPLITTING

Bloch states of Au�110� can be characterized by a surface
momentum and can thus be written as

�Q+k�r� = eikr�Q,k�r� �3�

with the momentum k measured with respect to the momen-

tum Q associated with the Ȳ point of the surface Brillouin
zone. Here the functions �Q,k�r� are lattice antiperiodic in
the x direction while they are lattice periodic in the y direc-
tion of the �110� plane, see Fig. 1. For any given momentum,
k, there exist an infinite number �continuum� of eigenstates,
the energy of which ��k� is determined by the condition that
the states �Q+k be eigenstates of the Hamiltonian, H= p2

2m
+V�r�+HSO, with HSO denoting the spin-orbit coupling,

HSO�r� =
�

4m2c2 ��V�r� 	 p�� . �4�

As a consequence, the functions �Q,k must satisfy the equa-
tion,

� p2

2m
+ V�r� +

�2k2

2m
+

�

m
k · p + H̃SO�k,r�	�Q,k�r�

=�k�Q,k�r� �5�

with H̃SO�k ,r� being the effective SO coupling,

H̃SO�k,r� = HSO�r� +
�

4m2c2 ��V�r� 	 �k�� . �6�

Similar to Bloch wave functions, for any fixed momentum,

k, �and for any value of H̃SO� the functions �Q,k form a
complete set for functions having the previously mentioned
periodicity property. In the spirit of k · p perturbation theory,

we can thus take the complete set of k=0 and H̃SO=0 solu-
tions, satisfying

� p2

2m
+ V�r�	�i,ni

�r� = �i,ni
�i,ni

�r� �7�

and expand �Q,k in terms of these. Here we classified the
solutions according to the four one-dimensional irreducible
representations of the C2v symmetry associated with the

point Ȳ, i� 
1,x ,y ,xy�, and labeled solutions of a given
symmetry by ni. As shown in Fig. 1, the spectrum contains a
discrete surface state of s symmetry and the projected bulk
continuum forming the gap. Let us denote the k=0 surface
state by �0 and its eigenenergy by �0. Then states with k
�0 but with H̃SO�0 can be expressed in terms of the states
�i,ni

by performing second-order perturbation theory in k,
which amounts in a surface state

��k
0
 = ��0
 +

�

m
�

i,ni��0�

��i,ni

��i,ni

�k · p��0


�0 − �i,ni

�8�

with approximate dispersion

�k
0 = �0 +

�2kx
2

2mx
� +

�2ky
2

2my
� , �9�

1

mi
� =

1

m
+

2

m2�
ni

���i,ni
�pi��0
�2

�0 − �i,ni

�i = x,y� . �10�

The index 0 in �k
0 and ��k

0
 is meant to remind us to the
absence of SO interaction.

To obtain the surface states, ��k
, we then carry out first-

order perturbation theory with the SOC operator, H̃SO, using
the states ��k

0
 as a starting point. Keeping just contributions
linear in k we get two terms to the effective Rashba Hamil-
tonian. The second term in Eq. �6� gives rise to the usual
isotropic Rashba model,

HR
iso�k� = �R�ez 	 k� · � �11�

with �R= �2

4m2c2 ��0��zV /�z��0
. The term HSO in Eq. �6�, how-
ever, gives also a finite contribution due to the admixture of
px,y states from the continuum and, in fact, this is precisely
the term that leads to an anisotropic Rashba coupling,

HR
anis�k� =

�

m
�

i=x,y
ki�

ni

��i,ni
�pi��0
���0�a��i,ni


�� + H.c.

�0 − �i,ni

,

�12�

where we defined the �axial� vector operator related to SOC,
a= �

4m2c2 ��V�r�	p�. Using the symmetry of the unperturbed
wave functions, a particularly simple form of the above an-
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isotropic Rashba Hamiltonian can be obtained,

HR
anis�k� = �xkx�y + �yky�x �13�

with the coefficient �x expressed as

�x =
2�

m
�
nx

Re���x,nx
�px��0
��0�ay��x,nx


�

�0 − �x,nx

�14�

and �y given by a similar expression. The structure of the
combined terms, Eqs. �11� and �13�, is identical to the one
obtained by symmetry analysis, Eq. �2�, with �R,x=�R+�x
and �R,y =�R−�y. It should be noted that Eq. �13� can be
transformed into the familiar Rashba-Dresselhaus Hamil-
tonian used in the context of semiconductor quantum wells
in the absence of bulk or interface inversion symmetry.14,22,23

This formal similarity is due to the C2v symmetry of the
system, however, the mechanism described above is dis-
tinctly different from that leading to the Dresselhaus cou-
pling, usually understood as a result of bulk inversion sym-
metry breaking,14 completely absent in our system.
Furthermore, increasing the in-plane symmetry of the poten-
tial �e.g., considering C4v point-group symmetry imposing
�x=−�y�, the Dresselhaus coupling vanishes, whereas the
term, Eq. �13�, arising from the mixing of the surface state
with bulk states, continues to contribute to the isotropic
Rashba splitting.

III. AB INITIO CALCULATIONS FOR Au(110)

To obtain a quantitative estimate of the parameters �R,x/y
and the induced Rashba splittings, we performed calculations
of the surface states of unreconstructed Au�110� surface near

the Ȳ point of the surface Brillouin zone, using the relativ-
istic screened Korringa-Kohn-Rostoker method.24 Notice-
ably, in this method no slab or supercell approach is used as
the substrate is modeled by a perfect semi-infinite bulk sys-
tem. The local spin-density approximation as parametrized
by Vosko et al.25 was applied, the effective potentials and
fields were treated within the atomic sphere approximation
�ASA� with an angular momentum cutoff of �max=2. The
energy integrations were performed by sampling 16 points
on a semicircular path in the upper complex semiplane and
for the necessary k integrations we selected 64 k points in the
irreducible segment of the surface Brillouin zone.

The computed dispersion relations along the 
̄Ȳ �x� and

the ȲS̄ �y� directions are plotted in Fig. 2. The maximum
binding energy, �0�370 meV, is by about 200 meV less
than the measured value19 and other theoretical values.19,21

This deviation is mostly caused by the ASA and the angular
momentum cutoff, �max=2, which resulted in some error for
the determination of the Fermi level and the vacuum poten-
tial.

The nearly free-electronlike, parabolic shape of the dis-
persion as well as the Rashba splitting being remarkably dif-
ferent along the two directions is obvious from Fig. 2, and a
detailed analysis confirms this impression: the numerical re-

sults are very well fitted by the dispersions ���k�=�0+
�2kx

2

2mx
�

+
�2ky

2

2my
� ���R,x

2 kx
2+�R,y

2 ky
2, obtained by diagonalizing the ap-

proximate Hamiltonian, Eq. �2�, with the fitting parameters,
mx

�=0.11m, my
�=0.32m, �R,x=0.8 eV Å, and �R,y

=0.17 eV Å. The obtained effective mass along the ȲS̄ di-
rection is in satisfactory agreement with the measured value,

my
�=0.25m.19 The effective mass along 
̄Ȳ, mx

� is only about
one third of my

�, which is the consequence that the states at
the lower bulk band edge are mainly of pz and px characters
�see Eq. �9��. Note that the energy separation of the surface

state at the Ȳ point is 0.8 eV and 3.4 eV with respect to the
lower and upper bulk band edges, respectively, implying a
strong admixture of “electron” states from the continuum
below the surface state.

One of the most astonishing results of these numerical
calculations is the remarkably large anisotropy of the Rashba
parameters, �R,x�5�R,y. In view of Eq. �14�, this observa-
tion can also be explained with the absence of py states at the
lower bulk band edge. This result also correlates with the
results of the effective mass: the smaller value of mx

� indi-
cates a stronger admixture of px states, also responsible for
the stronger renormalization of �x.

In order to attest the above effect, it is worth to compare
the Rashba splitting of the surface states for Au�110� with
those of the well-established Au�111� case. From our corre-
sponding calculations we conclude that �R,x for Au�110� is
even larger than �R for the L-gap state of Au�111�,
0.57 eV Å. This latter value is though considerably larger
than the experimental one, 0.4 eV Å,26 which correlates
with the theoretically computed effective mass, m�

�0.19me, being too small as compared to the experimentally
observed value, m��0.25me. The computed Fermi wave
numbers, kF=0.160 and 0.189 Å−1, on the other hand, are
almost in perfect agreement with the measured values.26

Nevertheless, based on the discrepancy regarding the value
of the effective masses, we expect that our theoretical calcu-
lations for Au�110� somewhat overestimate the Rashba pa-
rameters, �R,x/y.

The anisotropic Rashba coupling together with the aniso-
tropic effective mass gives rise to a Rashba-split Fermi sur-
face for the surface states, as shown in Fig. 3. The Rashba

splitting along ȲS̄, �ky �0.017 Å−1 is in the order of the

FIG. 2. �Color online� Dispersion relations of the Au�110� sur-

face states at the Ȳ point ��k�=0� along the Ȳ
̄ and the ȲS̄ direc-
tions. Symbols refer to the calculated data, solid and dashed lines to
the fitted curves for �−�k� and �+�k�, respectively.
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experimental resolution �0.01 Å−1� �Ref. 19� but the value
�kx�0.026 Å−1 implies that the Rashba splitting should be

detectable experimentally along the 
̄Ȳ direction.
In Fig. 4 we also show the polar plot of the energy split-

ting, ���k�=�+�k�−�−�k�, between the two bands at the in-
ner Fermi surface ��+�k�=�F�. As a comparison, the same
quantity is displayed for the surface state of Au�111�. Sup-

porting the above implication, ���k� along Ȳ
̄ for Au�110�
is almost as large as the �isotropic� energy splitting in case of
Au�111�. Furthermore, the extremely strong anisotropy of
���k�, that could be inferred from angle-resolved photo-
emission experiments, is a clear fingerprint of the anisotropic
Rashba effect discussed in this work.

IV. CONCLUSIONS

In summary, we constructed a k · p perturbation theory for
surface states in the presence of SO coupling and derived a
generalized Rashba Hamiltonian for �nearly free� electrons
on metal surfaces. We found that in case of C2v symmetry,
the Rashba interaction gets an anisotropic part in first order
of k, which for Au�110� is found to dominate over the addi-
tional, well-known symmetric term. The anisotropic Rashba

term appears due to the mixing of the surface state with the
bulk states for finite momenta. Even for surfaces of higher
symmetry, this mechanism �i.e., the corresponding term in
k · p perturbation theory� gives a large contribution to the
isotropic part of the Rashba Hamiltonian. Our approach is
rather general and—with minor modifications—can also be
applied to other types of surface states with reduced symme-
try.

Based on fully relativistic first-principles electronic struc-
ture calculations, we also demonstrated that a strongly aniso-
tropic Rashba splitting should be experimentally observable
for the unreconstructed Au�110� surface. It should, however,
be mentioned that while a similar anisotropy of the Rashba
splitting should pertain to the surface states of a missing-row
reconstructed Au�110� surface, it could be more difficult to
detect experimentally because these surface states lie above
the Fermi level.19
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