
Eur. Phys. J. C (2019) 79:885

https://doi.org/10.1140/epjc/s10052-019-7366-3

Regular Article - Theoretical Physics

Anisotropic relativistic fluid spheres: an embedding class I

approach

Francisco Tello-Ortiz1,a, S. K. Maurya2,b, Abdelghani Errehymy3,c, Ksh. Newton Singh4,d, Mohammed Daoud5,6,e

1 Departamento de Física, Facultad de ciencias básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
2 Department of Mathematical and Physical Sciences, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
3 Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences Aïn Chock, University of

Hassan II, Mâarif, B.P. 5366, 20100 Casablanca, Morocco
4 Department of Physics, National Defence Academy, Khadakwasla, Pune 411023, India
5 Department of Physics, Faculty of Sciences, University of Ibn Tofail, B.P. 133, 14000 Kenitra, Morocco
6 Abdus Salam International Centre for Theoretical Physics, Miramare, Trieste, Italy

Received: 13 July 2019 / Accepted: 1 October 2019 / Published online: 31 October 2019

© The Author(s) 2019

Abstract In this work, we present a new class of ana-

lytic and well-behaved solution to Einstein’s field equations

describing anisotropic matter distribution. It’s achieved in

the embedding class one spacetime framework using Kar-

markar’s condition. We perform our analysis by proposing a

new metric potential grr which yields us a physically viable

performance of all physical variables. The obtained model

is representing the physical features of the solution in detail,

analytically as well as graphically for strange star candidate

SAX J1808.4-3658 (Mass = 0.9 M⊙, radius = 7.951 km),

with different values of parameter n ranging from 0.5 to 3.4.

Our suggested solution is free from physical and geometric

singularities, satisfies causality condition, Abreu’s criterion

and relativistic adiabatic index Γ , and exhibits well-behaved

nature, as well as, all energy conditions and equilibrium con-

dition are well-defined, which implies that our model is phys-

ically acceptable. The physical sensitivity of the moment of

inertia (I ) obtained from the solutions is confirmed by the

Bejger−Haensel concept, which could provide a precise tool

to the matching rigidity of the state equation due to different

values of n viz., n = 0.5, 1.08, 1.66, 2.24, 2.82 and 3.4.

1 Introduction

Due to the highly nonlinear behavior of Einstein’s field equa-

tions, it remains a great challenge to obtain solutions that
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meet the requirements in order to be an admissible solution

from both physical and mathematical point of view [1]. The

early works by Schwarzschild [2], Tolman [3] and Oppen-

heimer and Volkoff [4] on self-gravitating isotropic fluid

spheres, established (as was pointed out by Murad [5]) two

classical approaches that can be followed so as to resolve

the field equations. The first one consists in making a suit-

able assumption for one of the metric functions or for the

energy density. This leads to the remaining unknown vari-

ables, which are the isotropic pressure and the other met-

ric potential. However, in the framework of this scheme not

always is possible to obtain an acceptable solution (some-

times one obtain nonphysical pressure-density configura-

tions). The second approach starts with an equation of state

which is integrated (iteratively from the center of the com-

pact object) until the pressure vanished indicating that the

object surface has been reached. As before, this scheme also

presents some drawbacks since it does not always lead to a

closed form of the solutions.

On the other hand, a stellar configuration not necessary

need to meet the isotropic condition at all (equal radial pr and

tangential pt pressure). In fact, the theoretical studies by Rud-

erman [6], Canuto [7–9] and Canuto et al. [10–13] revealed

that when the matter density is higher than the nuclear den-

sity, it may be anisotropic in nature and must be treated rel-

ativistically. So, relaxing the isotropic condition and allow

the presence of anisotropies (it leads to unequal radial and

tangential pressure pr �= pt ) within the stellar configura-

tion represent a more realistic situation in the astrophysical

sense. Furthermore, Bowers and Liang’s pioneering contri-

bution to local anisotropic properties [14] for static spheri-

cally symmetric and relativistic configurations, gave rise an

extensive studies within this framework, specifically stud-
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ies focused on the dynamical incidence of the anisotropies

in the arena of equilibrium and stability on collapsed struc-

tures [15–41]. Moreover, as Mak and Harko have contended

[35], anisotropy can merge in various settings such as: the

presence of a strong center or by the existence of type 3A

superfluid [42], pion condensation [43] or various types of

regime transitions [44].

Over the years many researches have successfully

addressed the investigation and comprehension of the pre-

tended by the anisotropy in astrophysical insides [45–81].

The nearness of anisotropy presents a few highlights in the

distribution of matter, e.g. if we have a positive anisotropy

parameter ∆ ≡ pt − pr > 0, the astrophysical configu-

ration encounters a repulsive force (attractive in the situa-

tion of negative anisotropy parameter) that counteracts the

gravitational slope. Consequently, it permits the construc-

tion of more compact stars when utilizing anisotropic fluid

than when utilizing isotropic fluid [27,33,35,82,83]. More-

over, a positive anisotropy parameter upgrades the stability

and the stellar system equilibrium.

After the study of Randall and Sundrum [84] on the the-

ory of brane, the embedding of n-dimensional space V n in

a pseudo-Euclidean space En attracted much consideration.

Many authors also use embedded spaces for the investiga-

tion of string and membranes, extrinsic gravity, solid par-

ticles, and Zitterbewegung theory [85]. In the event that a

n-dimensional at space V n can be incorporated in (n + p)-

dimensional space, where p is a floor amount of addi-

tional dimensions, at this stage V n is aforesaid to be p-class

embedding. Numerous physically significant arrangements,

for instance, the Kerr metric [86] belong to class five (p = 5),

the well-known Schwarzschild external solution [87] belong

to class two (p = 2), interior solutions of Schwarzschild

and The Universe of Friedmann [87] belong to class one

(p = 1). Two solutions for isotropic pressure are generally

conceivable. The first one is the Schwarzschild interior in

which the inner solution is conformally flat, which depicts

a limited configuration. The second case is the Kohler-Chao

solutions in which the inner solution is conformally non-flat,

representing limitless configurations.

In recent years, the use of the embedding class one space-

time via Karmarkar [88] condition as a methodical and pow-

erful technique for obtaining new and pertinent arrangements

from the field equations of Einstein, has developed [89–123].

For a spherically symmetric 4-dimensional spacetime, the

Karmarkar condition in terms of curvature components takes

the form

R1010 R2323 − R1212 R3030 = R1220 R1330. (1)

However, as was pointed out by Sharma and Pandey [124],

the above condition is not enough to spherically symmetric

4-dimensional spacetime render to be class one. So, in order

to be class one a 4-dimensional manifold must satisfies

R2323 �= 0, (2)

along with (1). As we will see later Eqs. (1) and (2) arrive to

a specific differential equation that connects the two metric

potentials eν and eλ. Therefore, one only needs to define one

of the metric potential. Finally the remainder of the physi-

cal quantities like density, pressure, sound speed, anisotropy,

etc. can be entirely established from eν and eλ. Moreover,

our stellar model incorporates a family of new solutions for

a static spherically symmetric anisotropic ïňĆuid structure

within the class I condition to find the full space-time repre-

sentation interior the stellar system.

The remainder of the article is arranged as follows: Sect. 2

presents the Einstein’s field equations for anisotropic mat-

ter distributions and the approach followed in order to solve

them, in Sect. 3 we match the obtained model with the exte-

rior spacetime given by Schwarzschild metric, in order to

obtain the constant parameters. In Sect. 4 we analyze the

physical and mathematical features of the model, studying

analytic and graphically the behavior of the metric poten-

tials, thermodynamic observables, mass function, Moment

of inertia(I ), energy conditions and central and surface red-

shift. Section 5 is devoted to the study of the equilibrium

via Tolman–Oppenheimer–Volkoff (TOV) equation and the

steadiness of the present stellar system via Abreu’s crite-

rion, relativistic adiabatic index and Harrison–Zeldovich–

Novikov criterion. The Herrera-Ospino- Prisco generators

of the solution has been discussed in Sect. 6. At last, the

concluding remarks close this paper.

2 Einstein’s field equations

In Schwarzschild like coordinates, the inside of a compact

static spherically symmetric object is represented by the fol-

lowing line element

ds2 = eνdt2 − eλdr2 − r2
(

dθ2 + sin2 θdφ2
)

, (3)

where ν = ν(r) and λ = λ(r) are purely radial functions

only. Assuming an anisotropic matter distribution within the

stellar configuration, the corresponding stress–energy tensor

is

T ν
µ = (ρ + pt ) U νUµ − ptδ

ν
µ − (pt + pr ) V νVµ, (4)

being U ν the four-velocity eν(r)/2Uα = δα
0 , while V α is a

unit spacelike vector in the radial direction V α = e−λ/2δα
1 ,

which is orthogonal to Uα . Here ρ, pr , pt are the matter

density, the radial pressure and the transverse pressure of the

fluid in the orthogonal direction to pr , respectively. Then, the

Einstein field equations for the above line element (3) and the
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stress–energy tensor (4) are expressed as

8πρ =
1

r2
− e−λ

(
1

r2
−

λ′

r

)

, (5)

8πpr = −
1

r2
+ e−λ

(
1

r2
+

ν′

r

)

, (6)

8πpt =
1

4
e−λ

(

2ν′′ + ν′2 − λ′ν′ + 2
ν′ − λ′

r

)

. (7)

The primes denote the derivative as a function to the radial

coordinate r . From now, we will work in the units where

c = G = 1.

So, combining the expressions (6) and (7) we get

∆ ≡ pt − pr

=
e−λ

8π

[
ν′′

2
−

λ′ν′

4
+

ν′2

4
+

ν′ − λ′

2r
+

eλ − 1

r2

]

, (8)

where ∆ is called the anisotropy parameter which measures

the anisotropy inner the spherical object.

2.1 Karmarkar condition

At this stage we have five unknown function, namely ν, λ,

ρ, pr and pt . In order to solve the system of Eqs. (5)–(7)

we employ the method used by Karmarkar [88] where the

obtained solutions are classified as class one spacetime. In

this method the Riemann curvature tensor Rαβµν satisfies

a particular equation that finally links the two metric com-

ponent eν and eλ in a single equation, i.e. the two metric

components are dependent on each other.

The non zero component of the Riemann curvature tensor

for the line element (3) are

R1010 = −eν

(
ν′′

2
−

λ′ν′

4
+

ν′2

4

)

, (9)

R2323 = −e−λr2 sin2 θ
(

eλ − 1
)

, (10)

R3030 = −
r

2
ν′eν−λ sin2 θ, (11)

R1212 = −
r

2
λ′, (12)

then all the above components of Riemann curvature satisfy

Karmarkar condition [88]

R1010 R2323 − R1212 R3030 = R1220 R1330. (13)

However, as was pointed out by Pandey and Sharma [124],

the above condition is only a necessary one but it is not suf-

ficient to spacetime becomes class one. In order to be class

one a spacetime must satisfies (13) along with R2323 �= 0

[124].

On substituting (9)–(12) in (13) we obtain the following

differential equation

2
ν′′

ν′ + ν′ =
λ′eλ

eλ − 1
, (14)

with eλ �= 1. Solving (14) we arrive to

eν =
(

A + B

∫
√

eλ(r) − 1 dr

)2

, (15)

where A and B are an integration constants. Expression (15)

establishes a relationship between the metric potentials eν

and eλ. Using the Karmarkar condition (15) in the expression

for anisotropy (8) we get [99],

∆(r) =
ν′

32π eλ

[
2

r
−

λ′

eλ − 1

][
ν′eν

2 r B2
− 1

]

. (16)

2.2 Relativistic embedding class one solution

Now, we have a system of equations consisting of four equa-

tions, more precisely, the Einstein field equations (5)–(8) and

five unknowns, namely ρ(r) pr (r), pt (r), ν(r) and λ(r).

Hence to find the determinate solution of the system of equa-

tions, we need two conditions which are as follows: (a) either

by picking a particular gravitational mass expressions m(r)

by that deciding the state equation must take the specific

form p = p(ρ), (b) or developing a connection between the

metric potentials ν(r) and λ(r). Hence, to acquire a well-

behaved solution, both metric potentials must meet certain

physical and mathematical prerequisites realizing that gravi-

tational potentials can not be built arbitrarily. In this respect,

Lake [125] has performed that the gravitational potential

ν(r) ought to be regular, finite, monotonic increasing func-

tion and free from any singularities inside the stellar con-

figuration, which gives a physically acceptable fluid spher-

ical object solution of Einstein’s field equations. However,

eλ(r) = 1 + O(r2) is necessary for a physically feasible

structure to be regular at the origin. In this paper, in order

to solve the field equations, we will attribute a physically

feasible form of the metric potential λ(r) that fulfills the

above prerequisites, then using embedding class I condition

to establish another metric potential ν(r). Therefore, we will

not consider any system state equations in this investigation.

For this purpose, we assume new gravitational potential to

find new closed-form solutions of Einstein’s field equation

for anisotropic fluid spherical objects,

eλ(r) = 1 + ar2 [1 + sin(br2 + c)]n (17)

We pointed out that the above metric function is a general-

ization of Fuloria and Pant [126] solution.

Employing (17) into (15) we get

eν =

(

A +
√

2 a B cos(br2 + c) F(r) f1(r) f2(r)

b(n + 1)
√

1 − sin(br2 + c)

)2

(18)

where, F(r) = 2F
[

1+n
2

, 1
2
, 3+n

2
, sin2

(
2c+π+2br2

4

)]

repre-

sents a Gauss hypergeometric function and

f1(r) = [(cos(c + br2)/2 + sin(c + br2)/2)2]−n/2
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f2(r) = [1 + sin(c + br2)]n

where A and B are constant parameters.

Therefore, the class one spacetime reads

ds2 =

(

A +
√

2 a B cos(br2 + c) F(r) f1(r) f2(r)

b(n + 1)
√

1 − sin(br2 + c)

)2

dt2

−
1

1 + ar2 [1 + sin(br2 + c)]n
dr2 − r2dΩ2, (19)

where dΩ2 ≡ sin2 θ dφ2 + dθ2. On employing (17) and

(18), one can rewrite the quantities of ρ, pr , pt and ∆ as

ρ(r) =
a [1 + sin(c + br2)]n−1

(

1 + ar2[1 + sin(c + br2)]n
)2

[

2 b n r2 cos(c + br2)

+
{

1 + sin(c + br2)
} (

3 + ar2 [1 + sin(c + br2)]n
)
]

,

(20)

pr (r) =
1

f (r)
[

1 + ar2(1 + sin(br2 + c))n
]

[

4
√

a B

√

[1 + sin(br2 + c)]n −
a f (r)

[1 + sin(br2 + c)]−n

]

, (21)

pt (r) =
{1 + sin(br2 + c)}−1

f (r)
[

1 + ar2{1 + sin(br2 + c)}n
]2

(

− b nr2

cos(br2 + c)
[√

a f (r) {1 + sin(br2 + c)}n − 2B

√

{1 + sin(br2 + c)}n
]

+ {1 + sin(br2 + c)}
[

−
√

a

f (r) {1 + sin(br2 + c)}n + 4B
√

{1 + sin(br2 + c)}n

+2aBr2{1 + sin(br2 + c)}3/2
]
)

, (22)

∆(r) =
{1 + sin(br2 + c)}−1

f (r)
[

1 + ar2{1 + sin(br2 + c)}n
]2

(√
a r2

[

− bn

cos(c + br2) + a {1 + sin(br2 + c)}1+n
][√

a f (r)

{1 + sin(br2 + c)}n − 2 B
√

1 + sin(br2 + c)
]
)

. (23)

where,

f (r) =
(

A +
√

2 a B cos(br2 + c) F(r) f1(r) f2(r)

b(n + 1)
√

1 − sin(br2 + c)

)

3 Junction conditions

We must match our inside solution (3) to the outside Schwarz-

schild solution at the limit of the spherical object, in order to

find the arbitrary constants A, B and a. The line element of

the external Schwarzschild solution [2] is given by

ds2 =
(

1 −
2M

r

)

dt2 −
(

1 −
2M

r

)−1

dr2 − r2dΩ2.

(24)

In this regard, we are going to use the Israel-Darmois junction

conditions [127,128]. Now at the limit r = R the coefficients

of gt t and grr all are continuous. This implies

A +
√

2 a B cos(bR2 + c) F(R) f1(R) f2(R)

b(n + 1)
√

1 − sin(bR2 + c)

=
√

1 −
2M

R
, (25)

1 + a R2 [1 + sin(bR2 + c)]n =
(

1 −
2M

R

)−1

. (26)

Moreover, the null radial pressure condition at the boundary

pr (R) = 0, (27)

leads to

A

B
=

1
√

a b (1 + n)
√

1 − sin(c + bR2)

×
[

{1 + sin(c + bR2)}−n
√

{1 + sin(c + bR2)}n

×
(

4 b (1 + n)
√

1 − sin(c + bR2)

−
√

2 f2(R) a cos(c + bR2)F(R)

×
[

1 + sin(c + bR2)
] 3n

2

)]

, (28)

B =
M

R2
√

a
√

[1 + sin(c + bR2)]n

√

R

R − 2M
, (29)

a =
2M

R2(R − 2M) [1 + sin(bR2 + c)]n
(30)

where,

F(R) = 2F

[
1 + n

2
,

1

2
,

3 + n

2
, sin2

(2c + π + 2bR2

4

)
]

,

f1(R) =
[

cos(c + bR2)/2 + sin(c + bR2)/2
]−n

f2(R) =
{

1 + sin(c + bR2)

}n/2 √

{1 + sin(c + bR2)}n

Equations (28), (29) and (30) are the requisite and suf-

ficient conditions to establish the constants A, B and a.

In addition, the values of the radius R and the mass M

have been determined founded on the acquired data from

the strange spherical object candidate SAX J1808.4-3658

(M = 0.9 M⊙, R = 7.951 km) as reported by Elebert et al.

[129], and we also chose n, b and c as free parameters.

4 Physical and mathematical analysis

In this section we perform an analytic and graphical analysis

in order to check the physical and mathematical properties

of our model. The following conditions have been generally

recognized to be crucial for anisotropic fluid spheres [41].
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4.1 Metric potentials and thermodynamic observables

From expressions (17) and (18) is clear that the present stellar

system is free from physical and geometric singularities as

can be seen evaluating at the center r = 0 of the compact

configuration

eλ(r)|r=0 = 1 and

eν(r)|r=0 =
(

A +
√

2a B cos c F(0)
√

(1 + sin c)n

(n + 1) b
√

(1 − sin c)

)2

.

(31)

where, F(0) =2 F
[

1+n
2

, 1
2
, 3+n

2
, sin2

(
2c+π

4

)]

Figure 1 shows the positive monotonically increasing

behaviour of both metric potentials (17) and (18) within

the compact star. Respect to the density energy ρ, radial pr

and tangential pt pressures they must have their maximum

values at the origin of the spherical object and monoton-

ically decreasing behaviour towards the surface. Moreover,

the radial pressure pr must vanish at the boundary Σ , defined

by r = R. The central values of ρ, pr and pt can be obtained

from expressions (20), (21) and (22) yielding to

ρ(0) =
3 a (1 + sin c)n

8 π
, (32)

pr (0) =
1

8π

[
4
√

a Bb
√

(1 + sin c)n (1 + n)

A b (1 + n) +
√

2a B cos c F(0)

√

(1+sin c)n

1−sin c

−a(1 + sin c)n

]

= pt (0). (33)

From (33), the non-negative pressure leads the following

inequality,

A

B
<

[4 b (n + 1)
√

1 − sin c −
√

2 a cos c F(0) (1 + sin c)n]
√

a b (n + 1)
√

(1 + sin c)n
√

1 − sin c
,

(34)

and using Zeldovich’s condition [130]

pr (0)

ρ(0)
≤ 1 ⇒

b (n + 1)
√

1 − sin c −
√

2 a cos c F(0) (1 + sin c)n

√
a b (n + 1) (1 + sin c)n

√
1 − sin c

≤
A

B
,

(35)

so, from above inequalities (34) and (35) we obtain,

b (n + 1)
√

1 − sin c −
√

2 a cos c F(0) (1 + sin c)n

√
a b (n + 1) (1 + sin c)n

√
1 − sin c

≤
A

B
<

4 b (n+1)
√

1 − sin c−
√

2 a cos c F(0) (1 + sin c)n

√
a b (n + 1)

√
(1 + sin c)n

√
1 − sin c

,

(36)

Fig. 1 Variation of metric potentials with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

Therefore, the ratio A/B should satisfy above inequality

(36) in order to ensure the positiveness of pr and pt inside

the configuration. Figures 2 and 3 shows that all the above

quantities are well behaved within the star. At this stage it

is worth mentioning that the current stellar system exhibits

a positive anisotropy parameter ∆, it can be seen in Fig. 3

where pt > pr then ∆ > 0. Thus the object is revealed

to a repulsive force that counteracts the gravitational slope,

this fact allows the construction of a more compact structure

[27]. Figure 4 display the conduct of the anisotropy parame-

ter ∆. It disappears at r = 0, that is so because at the origin

the effective radial pressure and the effective transverse pres-

sure coincide. Moreover, as the radius increases the values of

the effective radial and transverse pressures drift apart, and

consequently, the anisotropy increases in the direction of the

spherical object surface. Furthermore Fig. 5 shows that the

state equation parameters i.e. (ωr = pr/ρ) and (ωt = pt/ρ)

are less than 1, proving Zeldovich’s condition is satisfies

everywhere inside the object. Table 1 indicates values match-

ing to surface and central density which is according to the

expected ranges for a star formed by a quark fluid, also

the radial pressure is outlined at the origin of the spherical

object.

4.2 Energy conditions

Inside the anisotropic matter distribution, the energy should

be positive. In order to guarantee it, the stress–energy tensor

needs to comply with the null energy condition (NEC), which

infers that local mass–energy density must not be negative,

the weak energy condition (WEC) in both radial and tangen-

tial direction, suggesting that the flow of energy interior the

spherical object must not be quicker than the speed of light.
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Fig. 2 Variation of energy density (ρ) with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

Fig. 3 Variation of radial pressure (pr ) and tangential pressure (pt )

with the radial coordinate r for SAX J1808.4-3658 with R =
7.951, b = 0.001, c = 0.1. For this graph we choose: n = 0.5 (black

line), n = 1.08 (orange color), n = 1.66 (purple color), n = 2.24 (blue

color), n = 2.82 (brown color), n = 3.4 (red color)

Finally, the strong energy condition (SEC) and the dominant

energy conditions (DEC) in both radial and tangential direc-

tion, [131,132]:

1. (NEC): ρ ≥ 0.

2. (WEC): ρ + pt ≥ 0, ρ + pr ≥ 0 .

3. (SEC): ρ + 2pt + pr ≥ 0.

4. (DEC): ρ − |pr | ≥ 0, ρ − |pt | ≥ 0.

Figures 2 and 6 demonstrated that all the above inequalities

are fulfilled inside the spherical object. In this way we have

a well-behaved stress–energy tensor.

Fig. 4 Variation of anisotropic factor with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

Fig. 5 Variation of (pr /ρ) and (pt/ρ) with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

4.3 Mass function and compactness factor

In the presence of an anisotropic matter distribution, the

mass-radius ratio is quite different with respect to the

isotropic charged case [133]. It can be obtained from the

relationship between eλ and mass function m(r), i.e.

e−λ = 1 −
2m(r)

r
. (37)

Thus, we obtain the relationship of the mass function as fol-

lows

m(r) =
ar3 [1 + sin(br2 + c)]n

2 {1 + ar2 [1 + sin(br2 + c)]n}
(38)
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Table 1 The values of a, A, B, zc, zs and us parameters values of the compact star SAX J1808.4-3658 with mass M = 0.9M⊙ and predicted

radius R = 7.951 km, b = 0.00, c = 0.1 for different values of n [129]

n a(/km2) (10−3) B (10−2) A zc zs us

0.50 4.293 2.99 −0.3417 0.226 0.137 0.334

1.08 3.934 2.99 −0.0300 0.225 0.137 0.334

1.66 3.605 2.99 +0.1504 0.224 0.137 0.334

2.24 3.304 2.99 +0.2690 0.223 0.137 0.334

2.82 3.028 2.99 +0.3533 0.222 0.137 0.334

3.40 2.774 2.99 +0.4165 0.221 0.137 0.334

Fig. 6 Variation of energy conditions with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

The compactness factor u for the model is obtained as

u(r) =
2m(r)

r
=

ar2 [1 + sin(br2 + c)]n

{1 + ar2 [1 + sin(br2 + c)]n}
. (39)

From Eq. (39) we can observe that the compactness fac-

tor u of the strange star depends on the mass function. The

compactness factor increases with the increase of mass, as

well as the compactness value u satisfies the Buchdahl con-

dition i.e., cannot be more than 8/9 (see Fig. 7). However,

Fig. 8 displays the profile of the maximum mass M with the

radius R for the strange spherical object candidate chosen

in this work. Then this M − R graph suggests that the solu-

tion gives a rigid state equation as parameter n increases.

Since we have chosen a particular compact object i.e. SAX

J1808.4-3658, the compactness parameter at the surface is

always constant i.e. independent of n and its value is 0.334

(see Fig. 7).

Fig. 7 Variations of mass function and compactness parameter with

the radial coordinate r for SAX J1808.4-3658 with R = 7.951, b =
0.001, c = 0.1. For this graph we choose: n = 0.5 (black line), n=1.08

(orange color), n = 1.66 (purple color), n = 2.24 (blue color), n = 2.82

(brown color), n = 3.4 (red color)

4.4 Surface and central redshift

The surface redshift can be determined utilizing the com-

pactness factor u given by (39), as

zs = eλ(R)/2 − 1 =
1 −

√
1 − 2us√

1 − 2us

, (40)

explicitly it reads

zs =
√

1 + a R2 [1 + sin(bR2 + c)]n − 1. (41)

A positive anisotropy factor ∆ > 0 (like in our case) does

not foist an upper limit on the surface redshift zs , different

is the isotropic distributions case, where the most extreme

value that the surface redshift zs can reaches as zs = 4.77

[14]. Therefore, the surface redshift for anisotropic matter

distributions is bigger than its isotropic partner. On the other

hand the central redshift z can be obtained as follows
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z = e−ν(r)/2 − 1

=

(

A +
√

2 a B cos(br2 + c) F(r) f1(r) f2(r)

b(n + 1)
√

1 − sin(br2 + c)

)−1

− 1.

(42)

Figure 9 shows that both the surface zs and the central z0

redshift is positive and bounded within the star. The status of

central redshift efficiency by the solutions is maximum for

n = 0.5 and minimum for n = 3.4; nevertheless, the status of

surface redshift is actually equivalent to all values of n. This

is because the surface redshift depends only on the surface

compactness parameter (see 40) and hence independent of

the parameter n. As per Ivanov [33], the maximum surface

redshift can’t exceed 3.842 if an anisotropic fluid distribution

is considered. Therefore, the resulting surface redshift zs =
0.137 (see Fig. 9) from the solution also compatible with

Ivanov’s findings.

4.5 Moment of inertia (I )

Here we use an approximate formula of the moment of inertia

I based on Bejger-Haensel method [134] which transforms

a static system to rotating system. More specifically, we con-

sider the case where the maximum mass of uniformly rotating

configurations gives the approximate moment of inertia I in

the following form

I =
2

5
[1 + x] M R2 , (43)

where the parameter x is defined as x = (M/M⊙)(km/R).

Now using formula (43), we find the behavior of maximum

moment of inertia I against the mass M which is represented

in Fig. 10. From this figure, it is easy to see that, for all

the increasing value choices of n as shown in Table 1, the

maximum moment of inertia I is still increasing from the

zero central value till up to a certain mass limit value, and

then diminishes rapidly. Consequently, we can conclude that

the sensitivity of I − M graph increases, the corresponding

rigidity of the state equation is better in the case where the

parameter n is increasing.

5 Stability and equilibrium conditions

5.1 Causality condition and Abreu’s criterion

The sound velocity inside the compact stars can be deter-

mined by using

vr (r) =

√

dpr (r)

dρ(r)
, vt (r) =

√

dpt (r)

dρ(r)
. (44)

Fig. 8 Variation of mass M⊙ with the radius R for SAX J1808.4-

3658 with R = 7.951, b = 0.001, c = 0.1. For this graph we choose:

n = 0.5 (black line), n=1.08 (brown color), n = 1.66 (blue color),

n = 2.24 (orange color), n = 2.82 (green color), n = 3.4 (red color)

Fig. 9 Variation of redshift function with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

Both the radial and tangential subliminal sound speed inside

the star should be less than the light speed (causality condi-

tion). As appeared in Fig. 11 both speeds satisfy the above

prerequisite (taking c = 1 in relativistic geometrized units).

To check whether local anisotropic matter distribution is

stable or not, one can use the proposal of Herrera [40] known

as overturning of the star. Based on it Abreu and his collabo-

rators [37] proposed another choice for considering the sta-

bility of a self-gravitating anisotropic fluid spherical object.

Basically, this approach indicates whether the zone is poten-

tially steady where the radial sound speed is bigger than the

transverse sound speed. According to the Abreu et al. [37],

the region for stability of the compact objects can be given

by following criterion,
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Fig. 10 Variation of moment of inertia I with the mass M⊙ for SAX

J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph we

choose: n = 0.5 (black line), n = 1.08 (brown color), n = 1.66 (blue

color), n = 2.24 (orange color), n = 2.82 (green color), n = 3.4 (red

color)

−1 ≤ v2
t − v2

r ≤ 1

=
{

−1 ≤ v2
t − v2

r ≤ 0 Potentially stable

0 < v2
t − v2

r ≤ 1 Potentially unstable

}

, (45)

We note from Fig. 11 that the radial speed of sound (v2
r ) and

the transverse speed of sound (v2
t ) are satisfies the causal-

ity conditions, i.e., both v2
r , v2

t are less than 1 and mono-

tonically decreasing outward against the radial coordinate r .

On the other hand, Fig. 12 shows the stability factor i.e.,

(v2
t − v2

r ) which satisfies the concept of cracking Abreu

et al. [37] everywhere inside the compact object. Hence, we

can conclude that our compact star model provides a stable

configuration.

5.2 Relativistic adiabatic index

The stability of the relativistic anisotropic spherical object

likewise relies on the adiabatic index Γ . Heintzmann and

Hillebrandt [15] recommended that neutron spherical object

systems with anisotropic state equation are steady in the

presence of a positive and increasing anisotropy parame-

ter ∆ = pt − pr > 0. Establishing the stability condi-

tion for an anisotropic relativistic compact object is given by

Γ > 4/3. In distinction with the non-relativistic and isotropic

case (Newtonian fluids), neutron spherical object system has

no upper mass limit for the adiabatic index Γ > 4/3 [135].

So, the relativistic adiabatic index Γ is defined by [23]

Γ =
ρ + pr

pr

dpr

dρ
. (46)

It is worth mentioning that Eq. (46), corresponds to the

adiabatic index in the radial direction, this is because the

gravitational collapse occurs in that direction. On the other

hand, for Newtonian spheres the collapsing condition is

Γ < 4/3, and for anisotropic relativistic sphere is given

by [25,26]

Γ <
4

3
+

[
1

3
κ

ρ0 pr0

|p′
r0|

r +
4

3

(pt0 − pr0)

|p′
r0|r

]

max

, (47)

where ρ0 is the initial density, pr0 and pt0 are the radial and

transverse pressures when the fluid is in static equilibrium.

The second term in the right-hand side depicts the relativistic

corrections in the case of Newtonian perfect fluid and the

third term is the contribution due to anisotropy. It is obvious

from expression (47) that in the situation of a non-relativistic

matter distribution and taking pr be equal to pt ı.e ∆ = 0, the

bracket disappears and we recast the collapsing Newtonian

limit Γ < 4/3. We can see from Fig. 13 that the stellar

system is complete concurrence with the condition Γ > 4/3,

accordingly the stellar system is steady everywhere interior

the structure.

5.3 Harrison–Zeldovich–Novikov static stability criterion

Any solution representing stable astrophysical objects have

to fulfill the stability criterion. This criterion examines

whether the solution is static and stable under small radial

perturbation. This criterion imply that any solution represents

static and stable configuration if the total mass is an increas-

ing function of its central density i.e. ∂ M(ρc)/∂ρc > 0 and

potentially unstable if ∂ M(ρc)/∂ρc < 0 [136,137]. For the

solution, the expression for mass as a function of ρc is given

by

M(ρc) =
R

2

[

1 −
1

8
3
π R2ρc f2(R)(sin c + 1)−n + 1

]

(48)

∂ M

∂ρc

=
12π R4(sin c + 1)n f2(R)

[

8π f2(R)R3ρc + 3(sin c + 1)n
]

2
> 0. (49)

It is found that the solution gains its stability with an increase

in parameter n (see Fig. 14). This is because of the range

of central density until the saturation increases with n. This

signifies that the system will hold the stability while varying

the central density due to small radial perturbation.

5.4 Equilibrium under three different forces

The equilibrium of the system is based on the Tolman–

Oppen- heimer–Volkoff (TOV) equation [3,4]. Using the

TOV equation we want to investigate whether our present

stellar system is in a stable equilibrium stage under the three

following forces: the hydrostatic force Fh , the gravitational

force Fg and the anisotropic repulsive force Fa presented

by the existence of a positive anisotropy parameter ∆. As

pointed out before, the presence of a positive anisotropy

parameter counterbalances the gravitational gradient. There-
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Fig. 11 Variation of speed of sound v2
r and v2

t with radial coordinate

r for SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For

this graph we choose: n = 0.5 (black line), n = 1.08 (orange color),

n = 1.66 (purple color), n = 2.24 (blue color), n = 2.82 (brown color),

n = 3.4 (red color)

Fig. 12 Variation of stability factor with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

fore, this implies that the sum of three different forces is

becoming zero

−
ν′

2
(ρ + pr )

︸ ︷︷ ︸

Fg

−
dpr

dr
︸︷︷︸

Fh

+
2

r
∆

︸︷︷︸

Fa

= 0. (50)

The explicit expressions of these forces are

Fa =
2/ f (r)

{1 + sin(br2 + c)}
[

1 + ar2{1 + sin(br2 + c)}n
]2

(√
a r

[

− b n cos(c + br2) + a {1 + sin(br2 + c)}1+n
]

Fig. 13 Variation of adiabatic index Γ with the radial coordinate r for

SAX J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph

we choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66

(purple color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4

(red color)

Fig. 14 Variation of mass verses (m(r)) central density (ρc) for SAX

J1808.4-3658 with R = 7.951, b = 0.001, c = 0.1. For this graph we

choose: n = 0.5 (black line), n = 1.08 (orange color), n = 1.66 (purple

color), n = 2.24 (blue color), n = 2.82 (brown color), n = 3.4 (red

color)

[√
a f (r) {1 + sin(br2 + c)}n

−2 B
√

1 + sin(br2 + c)
]
)

, (51)

Fg(r) =
B

√
a

√

[1 + sin(br2 + c)]n

− f (r)
(

a [1 + sin(c + br2)]n−1 Fg1(r)
(

1 + a r2 [1 + sin(c + br2)]n
)2

+ 4
√

a B

√

[1 + sin(br2 + c)]n − a f (r) [1 + sin(br2 + c)]n

f (r)
[

1 + ar2(1 + sin(br2 + c))n
]

)

,

(52)

123



Eur. Phys. J. C (2019) 79 :885 Page 11 of 14 885

Fig. 15 Variations of hydrostatic, anisotropic and gravitational forces

acting on the model with the radial coordinate r for SAX J1808.4-3658

with R = 7.951, b = 0.001, c = 0.1. For this graph we choose: n = 0.5

(black line), n=1.08 (orange color), n = 1.66 (purple color), n = 2.24

(blue color), n = 2.82 (brown color), n = 3.4 (red color)

Fh(r) =
2 r [Fh1(r) + Fh2(r)]{1 + sin(br2 + c)}−1

(

f (r) + a r2 f (r) [1 + sin(c + br2)]n
)2

(53)

where,

Fg1(r) = 2 b n r2 cos(c + br2) +
[

1 + sin(c + br2)
]

(

3 + ar2 [1 + sin(c + br2)]n
)

,

Fh1(r) =
√

a b n f (r) cos(c + br2) {
√

a f (r)

[1 + sin(br2 + c)]n

−2 B
√

[1 + sin(c + br2)]n + 2 a B r2

[1 + sin(c + br2)]3n/2},
Fh2(r) = a[1 + sin(c + br2)]n+2 {−a f (r)2

[1 + sin(c + br2)]n

+4
√

a B f (r)
√

[1 + sin(c + br2)]n + 4 B2

[1 + ar2{1 + sin(c + br2)}n]}.

The Fig. 15 shows that gravitational force dominates the

hydrostatics and anisotropic force and the model is in equilib-

rium as the gravitational force counterbalances the combined

effect of hydrostatic and anisotropic forces.

6 Herrera–Ospino–Di Prisco generators of the solution

It has been demonstrated that all the spherically symmetric

static anisotropic solutions of the Einstein’s field equations

can be generated from two generating functions ζ(r) and

Π(r) [29]. The generator ζ(r) linked with the metric poten-

tial eν and other with pressure anisotropy. These generators

are defined via

eν = exp

[ ∫ (

2ζ(r) −
2

r

)

dr

]

(54)

Π = 8π(pr − pt ) (55)

and for this solution we get the generators as

ζ(r) =
1

r
+

abB(n + 1)r2 f2(r)

sin
(

br2 + c
)

− 1

[

4 sin
(

br2 + c
)

+ cos
(

2
{

br2 + c
})

− 3
][

aBr f2(r) cos
(

br2 + c
)

×F(r)

√

2−2 sin
(

br2+c
)

−2Ab(n + 1)

√

ar2 f2(r)

×
{

sin
(

br2 + c
)

− 1
} ]−1

(56)

Π(r) = −8π ∆(r). (57)

where ∆(r) is given by the Eq. (23).

7 Concluding remarks

Embedding class one spacetime using Karmarkar’s condition

has been proved as a simple and powerful tool to obtain the

solution of Einstein’s field equations. Despite its simplicity,

the obtained model describing anisotropic fluid spheres ful-

fills all the requirements in order to be an admissible solution

from both the physical and mathematical point of view.

It has been observed that the behavior of physical quan-

tities of both metric potentials, viz, eν and eλ, respectively,

with respect to the radial coordinate r , are illustrated in Fig. 1,

which exhibit that these two metric potentials are finite at the

center and monotonically increasing towards the limit at the

surface. Furthermore, to process the present stellar model, we

demonstrate that the energy density ρ, the radial pr and tan-

gential pt pressures are completely finite and positive quan-

tities within the stellar configuration, which is outlined in

Figs. 2 and 3. So from these three Figs. 1, 2, and 3 we valid

that our stellar system is completely free of any physical and

geometric singularities. The anisotropy of the stellar model is

represented in Fig. 4, which exhibit, that anisotropy increases

as the radius increases. For instance, the anisotropy is mini-

mum, i.e., zero at the origin and maximum on the surface of

the stellar system.

To analyze the physical agreeableness of our anisotropic

stellar structure, we have examined the energy conditions,

mass function, and compactness, stability and equilibrium

conditions of the stellar model and other features. We note

from Fig. 5 that the state equation parameters i.e. (ωr =
pr/ρ) and (ωt = pt/ρ) are less than 1, proving Zeldovich’s

condition is satisfies everywhere inside the compact object.

Furthermore, in Table 1 we have shown the possible val-

ues of the physical parameters a, A and B using parameters

values of the compact star SAX J1808.4-3658 with mass
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Table 2 Physical parameters

values of the compact star SAX

J1808.4-3658 with mass

M = 0.9 (M⊙) and predicted

radius R = 7.951 (km),

b = 0.001, c = 0.1 for different

values of n [129]

n ρs (gm/cm3) ρc (gm/cm3) pc (dyne/cm2)

0.5 4.98186 ×1014 7.23837 ×1014 2.02919 ×1034

1.08 5.06265 ×1014 7.00753 ×1014 2.31484 ×1034

1.66 5.14922 ×1014 6.78822 ×1014 2.59098 ×1034

2.24 5.24734 ×1014 6.56893 ×1014 2.85759 ×1034

2.82 5.34544 ×1014 6.36693 ×1014 3.11468 ×1034

3.4 5.43201 ×1014 6.15918 ×1014 3.34320 ×1034

M = 0.9 (M⊙) and predicted radius R = 7.951 (km) for

different values of n. Whereas, Table 2 shows that the cen-

tral energy density is within this range, which is in complete

agreement with many other reported results in the literature

[45–55,57–61,63–80]. Figure 6 clearly shows that our stel-

lar system fulfills all the energy conditions which are a basic

condition for a compact astrophysical structure to be phys-

ically acceptable. In Fig. 7, we have shown the variations

of mass function and compactness parameter with respect

to the radial coordinate r . From our stellar model, we find

that u < 9/8 for the specific strange spherical object can-

didate chosen i.e. SAX J1808.4-3658. Hence, Buchdahl’s

condition [138] holds useful for our stellar system. Also, as

r −→ 0 we find m(r) −→ 0 which demonstrates that the

mass function is regular at the origin for all values of param-

eter n. Further, in Fig. 8 variation of maximum mass M with

respect to the radial coordinate R are exhibited for differ-

ent values of parameter n. It shows that the maximum mass

points as shown by the solid circles in the figure, and we find

that for the chosen increasing values of parameter n, i.e.,

n = 0.5, 1.08, 1.66, 2.24, 2.82 and 3.4, the values of the

maximum masses are increasing progressively. In the current

study, the central Z0 and the surface Zs redshift are both pos-

itive and bounded (see Fig. 9), as well as the resulting surface

redshift Zs = 0.137 from the solution also comply with the

Ivanov’s findings [33] which are quite pertinent for strange

spherical object candidates. In Fig. 10 we have also shown

the behavior of maximum moment of inertia I against the

solar mass. We find for all the increasing value choices of n

as appeared in Table 1, the maximum moment of inertia I is

still increasing from the zero central value till up to a specific

mass limit value, and then diminishes rapidly. Consequently,

the obtained solutions are validated by the Bejger–Haensel

idea, which could give a precise tool to the coordinating

rigidity of the state equation due to different values of n.

Respect for the stability of the stellar model, it was studied

analyzing causality condition Abreu’s criterion, relativistic

adiabatic index Γ and Harrison–Zeldovich–Novikov static

stability criterion. The graphs of these criteria have been plot-

ted in Figs. 11, 12, 13 and 14, respectively. From the point

of view of causality condition and Abreu’s criterion the stel-

lar model is completely stable, because the square of sound

speed is less than 1 everywhere within the star (Fig. 11),

besides there is no change in sign v2
t − v2

r and stability fac-

tor (v2
t − v2

r ) lies between −1 and 0 for stable configuration

and 0 to 1 for unstable configuration (Fig. 12). Moreover,

the relativistic adiabatic index Γ is greater than 4/3 and are

also increasing monotonically outward, it means according

to Heintzmann and Hillebrandt [15] our system is completely

stable (Fig. 13). Finally, in Fig. 14 we have given a profile

of M with respect to the central density of the matter distri-

bution, ρc. Figure 14 demonstrates that with the increase of

parameter n the value of density increases. In this way, as the

value of n increases the stellar structure of a strange spherical

object gets shrunk and the density interior the configuration

increases progressively to make an ultra-dense compact stel-

lar system. On the other hand, the compact stellar system is in

equilibrium under three different forces, namely the hydro-

static force Fh , the gravitational force Fg and the anisotropic

force Fa (Fig. 15). The latest one causes a repulsive force that

counteracts the gravitational gradient, this is so because we

are in the presence of a positive anisotropy factor ∆ as can

be seen in Fig. 4. As was pointed out by Ruderman [6] and

Canuto [7] in their early theoretical works, anisotropy can

arise in ultra-high-density ranges. As a final comment, in

the current paper, we have effectively exhibited a stable and

physically adequate anisotropic astrophysical model, which

is reasonable to study ultra-dense strange spherical systems.

Acknowledgements S. K. Maurya acknowledge continuous sup-

port and encouragement from the administration of University of

Nizwa. F. Tello-Ortiz is partially supported by grant Fondecyt No.

1161192, Chile. F. Tello-Ortiz thanks the financial support by the

CONICYT PFCHA/DOCTORADO-NACIONAL/2019-21190856 and

project ANT-1856 at the Universidad de Antofagasta, Chile. We all are

thankful to the anonymous referee for raising several pertinent issues,

which have helped us to improve the manuscript substantially.

Data Availability Statement This manuscript has no associated data

or the data will not be deposited. [Authors’ comment: There are no

external data associated with this manuscript.]

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2019) 79 :885 Page 13 of 14 885

Commons license, and indicate if changes were made.

Funded by SCOAP3.

References

1. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395

(1998)

2. K. Schwarzschild, Sitz. Deut. Akad. Wiss. Berlin, Kl. Math. Phys.

24, 424 (1916)

3. R.C. Tolman, Phys. Rev. 55, 364 (1939)

4. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

5. M.H. Murad, Eur. Phys. J. C 78, 285 (2018)

6. R. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972)

7. V. Canuto, Annu. Rev. Astron. Astrophys. 12, 167 (1974)

8. V. Canuto, Annu. Rev. Astron. Astrophys. 13, 335 (1975)

9. V. Canuto, Ann. N. Y. Acad. Sci. USA. 302, 514 (1977)

10. V. Canuto, M. Chitre, Phys. Rev. Lett. 30, 999 (1973)

11. V. Canuto, S.M. Chitre, Phys. Rev. D 9, 1587 (1974)

12. V. Canuto, J. Lodenquai, Phys. Rev. D 11, 233 (1975)

13. V. Canuto, J. Lodenquai, Phys. Rev. C 12, 2033 (1975)

14. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

15. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

16. M. Cosenza, L. Herrera, M. Esculpi, L. Witten, J. Math. Phys. 22,

118 (1981)

17. M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Phys. Rev. D 25,

2527 (1982)

18. S.S. Bayin, Phys. Rev. D 26, 1262 (1982)

19. K.D. Krori, P. Borgohaiann, R. Devi, Can. J. Phys. 62, 239 (1984)

20. L. Herrera, J. Ponce de León, J. Math. Phys. 26, 2302 (1985)

21. J. Ponce de León, Gen. Relativ. Gravit. 19, 797 (1987)

22. J. Ponce de León, J. Math. Phys. 28, 1114 (1987)

23. R. Chan, S. Kichenassamy, G. Le Denmat, N.O. Santos, Mon.

Not. R. Astron. Soc. 239, 91 (1989)

24. H. Bondi, Mon. Not. R. Astron. Soc. 259, 365 (1992)

25. R. Chan, L. Herrera, N.O. Santos, Class. Quantum Gravity 9, 133

(1992)

26. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265,

533 (1993)

27. M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)

28. L. Herrera, A.D. Prisco, J. Ospino, E. Fuenmayor, J. Math. Phys.

42, 2129 (2001)

29. L. Herrera, J. Ospino, A.D. Prisco, Phys. Rev. D 77, 027502 (2008)

30. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)

31. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 35, 1435 (2003)

32. K. Dev, M. Gleiser, Int. J. Mod. Phys. D 13, 1389 (2004)

33. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)

34. M.K. Mak, T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002)

35. M.K. Mak, T. Harko, Proc. R. Soc. Lond. A 459, 393 (2003)

36. M.K. Mak, P.N. Dobson, T. Harko, Int. J. Mod. Phys. D 11, 207

(2002)

37. H. Abreu, H. Hernández, L.A. Núñez, Calss. Quantum Gravity

24, 4631 (2007)

38. S. Viaggiu, Int. J. Mod. Phys. D 18, 275 (2009)

39. B.V. Ivanov, Int. J. Theor. Phys. 49, 1236 (2010)

40. L. Herrera, Phys. Lett. A 165, 206 (1992)

41. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

42. R.K. Kippenhahm, A. Weigert, Stellar Structure and Evolution

(Springer, Berlin, 1990), p. 384

43. R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972)

44. A.I. Sokolov, JETP 79, 1137 (1980)

45. F.E. Schunck, E.W. Mielke, Class. Quantum Gravity 20, 301

(2003)

46. S. Ray, A.L. Espíndola, M. Malheiro, J.P.S. Lemos, V.T. Zanchin,

Phys. Rev. D 68, 084004 (2003)

47. V.V. Usov, Phys. Rev. D 70, 067301 (2004)

48. B.B. Siffert, J.R. de Mello, M.O. Calvao, Braz. J. Phys. 37, 2B

(2007)

49. R.P. Negreiros, F. Weber, M. Malheiro, V. Usov, Phys. Rev. D 80,

083006 (2009)

50. V. Varela, F. Rahaman, S. Ray, K. Chakraborty, M. Kalam, Phys.

Rev. D 82, 044052 (2010)

51. F. Rahaman, S. Ray, A.K. Jafry, K. Chakraborty, Phys. Rev. D 82,

104055 (2010)

52. F. Rahaman, P.K.F. Kuhfittig, M. Kalam, A.A. Usmani, S. Ray,

Class. Quantum Gravity 28, 155021 (2011)

53. M. Kalam, F. Rahaman, S. Ray, S.M. Hossein, I. Karar, J. Naskar,

Eur. Phys. J. C 72, 2248 (2012)

54. F. Rahaman, R. Maulick, A.K. Yadav, S. Ray, R. Sharma, Gen.

Relativ. Gravit. 44, 107 (2012)

55. M.H. Murad, S. Fatema, Int. J. Theor. Phys. 52, 4342 (2013)

56. A. Errehymy, M. Daoud, E.H. Sayouty, Eur. Phys. J. C. 79, 346

(2019)

57. S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 344, 243 (2013)

58. P. Bhar, M.H. Murad, N. Pant, Astrophys. Space Sci. 13, 359

(2015)

59. D. Deb, S.R. Chowdhury, S. Ray, F. Rahaman,

arXiv:1509.00401v2 [gr-qc] (2015)

60. S.D. Maharaj, D.K. Matondo, P.M. Takisa, Int. J. Mod. Phys. D

26, 1750014 (2016)

61. M.H. Murad, Astrophys. Space Sci. 20, 361 (2016)

62. A. Errehymy, M. Daoud, Mod. Phys. Lett. A 04, 1950030 (2019)

63. D. Shee, F. Rahaman, B.K. Guha, S. Ray, Astrophys. Space Sci.

361, 167 (2016)

64. H. Panahi, R. Monadi, I. Eghdami, Chin. Phys. Lett. 33, 072601

(2016)

65. S.K. Maurya, Y.K. Gupta, B. Dayanandan, M.K. Jasim, A. Al-

Jamel, Int. J. of Mod. Phys. D 26, 1750002 (2017)

66. S.K. Maurya, Y.K. Gupta, S. Ray, Eur. Phys. J. C 77, 360 (2017)

67. D. Deb, S.R. Chowdhury, S. Ray, F. Rahaman, B.K. Guha, Ann.

Phys. 387, 239 (2017)

68. J. Ovalle, R. Casadio, A. Sotomayor, Adv. High Energy Phys.

2017, 9756914 (2017). https://doi.org/10.1155/2017/9756914

69. J. Ovalle, Phys. Rev. D 95, 104019 (2017)

70. S.K. Maurya, A. Banerjee, S. Hansraj, Phys. Rev. D 97, 044022

(2018)

71. M.K. Jasim, D. Deb, S. Ray, Y.K. Gupta, S.R. Chowdhury, Eur.

Phys. J. C 78, 603 (2018)

72. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 618 (2018)

73. L. Gabbanelli, A. Rincón, C. Rubio, Eur. Phys. J. C 78, 370 (2018)

74. C.L. Heras, P. León, Fortsch. Phys. 66, 1800036 (2018)

75. M. Sharif, S. Sadiq, Eur. Phys. J. C 78, 122 (2018)

76. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J.

C 78, 122 (2018)

77. M. Estrada, F. Tello-Ortiz, Eur. Phys. J. Plus 133, 453 (2018)

78. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 841 (2018)

79. K. Matondo, S.D. Maharaj, S. Ray, Eur. Phys. J. C 78, 437 (2018)

80. D. Deb, M. Khlopov, F. Rahaman, S. Ray, B.K. Guha, Eur. Phys.

J. C 18, 465 (2018)

81. G. Panotopoulos, A. Rincón, Eur. Phys. J. C 78, 851 (2018)

82. A. Errehymy, M. Daoud, M.K. Jammari, Eur. Phys. J. Plus 132,

497 (2017)

83. A. Errehymy, M. Daoud, Found. Phys. 49, 144 (2019)

84. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

85. M. Pavsic, V. Tapia, arXiv:gr-qc/0010045

86. R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963)

87. K.N. Singh, N. Pant, Eur. Phys. J. C 361, 177 (2016)

88. K.R. Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)

89. S.K. Maurya, S.D. Maharaj, Eur. Phys. J. A 54, 68 (2018)

90. S.K. Maurya, D. Deb, S. Ray, P.K.F. Kuhfittig,

arXiv:1703.08436v2 (2018)

123

http://arxiv.org/abs/1509.00401v2
https://doi.org/10.1155/2017/9756914
http://arxiv.org/abs/gr-qc/0010045
http://arxiv.org/abs/1703.08436v2


885 Page 14 of 14 Eur. Phys. J. C (2019) 79 :885

91. S.K. Maurya, A. Banerjee, P. Channuie, Chin. Phys. C 42, 055101

(2018)

92. S.K. Maurya, M. Govender, Eur. Phys. J. C 77, 347 (2017)

93. S.K. Maurya, M. Govender, Eur. Phys. J. C 77, 420 (2017)

94. S.K. Maurya, S.D. Maharaj, Eur. Phys. J. C 77, 328 (2017)

95. S.K. Maurya, B.S. Ratanpal, M. Govender, Ann. Phys. 382, 36

(2017)

96. S.K. Maurya, Y.K. Gupta, F. Rahaman, M. Rahaman, A. Banerjee,

Ann. Phys. 385, 532 (2017)

97. S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Eur. Phys. J. C 76, 693

(2016)

98. S.K. Maurya, Y.K. Gupta, B. Dayanandan, S. Ray, Eur. Phys. J.

C 76, 266 (2016)

99. S.K. Maurya, Y.K. Gupta, T.T. Smitha, F. Rahaman, Eur. Phys. J.

A 52, 191 (2016)

100. S.K. Maurya, Y.K. Gupta, S. Ray, V. Chatterjee, Astrophys. Space

Sci. 361, 351 (2016)

101. S.K. Maurya, Y.K. Gupta, S. Ray, B. Dayanandan, Eur. Phys. J.

C 75, 225 (2015)

102. S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 344, 243 (2013)

103. K.N. Pant, K.N. Singh, N. Pradhan, Indian J. Phys. 91, 343 (2017)

104. K.N. Singh, N. Pant, N. Tewari, Eur. Phys. J. A 54, 77 (2018)

105. K.N. Singh, N. Sarkar, F. Rahaman, D. Deb, N. Pant, Int. J. Mod.

Phys. D 27, 1950003 (2018)

106. K.N. Singh, N. Pradhan, N. Pant, Pramana J. Phys. 89, 23 (2017)

107. K.N. Singh, N. Pant, M. Govender, Eur. Phys. J. C 77, 100 (2017)

108. K.N. Singh, N. Pant, O. Troconis, Ann. Phys. 377, 256 (2017)

109. K.N. Singh, M.H. Murad, N. Pant, Eur. Phys. J. A 53, 21 (2017)

110. K.N. Singh, N. Pant, M. Govender, Chin. Phys. C 41, 015103

(2017)

111. K.N. Singh, P. Bhar, F. Rahaman, N. Pant, M. Rahaman, Mod.

Phys. Lett. A 32, 1750093 (2017)

112. K.N. Singh, N. Pant, Eur. Phys. J. C 76, 524 (2016)

113. K.N. Singh, N. Pant, N. Pradhan, Astrophys. Space Sci. 361, 173

(2016)

114. K.N. Singh, P. Bhar, N. Pant, Astrophys. Space Sci. 361, 339

(2016)

115. K.N. Singh, N. Pant, Astrophys. Space Sci. 361, 177 (2016)

116. K.N. Singh, P. Bhar, N. Pant, Int. J. Mod. Phys. D 25, 1650099

(2016)

117. K. N. Singh et al., Ind. J. Phys. (2016)

118. P. Bhar, K.N. Singh, N. Sakar, F. Rahaman, Eur. Phys. J. C 77,

596 (2017)

119. P. Bhar, K.N. Singh, T. Manna, Int. J. Mod. Phys. D 26, 1750090

(2017)

120. P. Bhar, M. Govender, Int. J. Mod. Phys. D 26, 1750053 (2017)

121. P. Bhar, K.N. Singh, F. Rahaman, N. Pant, S. Banerjee, Int. J.

Mod. Phys. D 26, 1750078 (2017)

122. P. Bhar, Eur. Phys. J. Plus 132, 274 (2016)

123. Y.K. Gupta, J. Kumar, Astrophys. Space Sci. 336, 419 (2011)

124. S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1981)

125. K. Lake, Phys. Rev. D 67, 104015 (2003)

126. P. Fuloria, N. Pant, Eur. Phys. J. A 53, 227 (2017)

127. W. Israel, Nuovo Cim. B 44, 1 (1966)

128. G. Darmois, Mémorial des Sciences Mathematiques (Gauthier-

Villars, Paris, 1927) (Fasc. 25)

129. P. Elebert et al., Mon. Not. R. Astron. Soc. 395, 884 (2009)

130. Y.B. Zeldovich, Zh. Eksp. Teor. Fiz. l 4, 1609 (1961)

131. J. Ponce de León, Gen. Relat. Gravit. 25, 1123 (1993)

132. M. Visser, Lorentzian Wormholes (Springer, Berlin, 1996), p. 115

133. H. Andreasson, J. Differ. Equ. 245, 2243 (2008)

134. M. Bejger, P. Haensel, A & A 396, 917 (2002)

135. H. Bondi, Mon. Not. R. Astron. Soc. 281, 39 (1964)

136. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravita-

tional Theory and Gravitational Collapse (University of Chicago

Press, Chicago, 1965)

137. Y.B. Zeldovich, I.D. Novikov, Relativistic astrophysics stars and

relativity, vol. 1 (University of Chicago Press, Chicago, 1971)

138. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

123


	Anisotropic relativistic fluid spheres: an embedding class I approach
	Abstract 
	1 Introduction
	2 Einstein's field equations
	2.1 Karmarkar condition
	2.2 Relativistic embedding class one solution

	3 Junction conditions
	4 Physical and mathematical analysis
	4.1 Metric potentials and thermodynamic observables
	4.2 Energy conditions
	4.3 Mass function and compactness factor
	4.4 Surface and central redshift
	4.5 Moment of inertia (I)

	5 Stability and equilibrium conditions 
	5.1 Causality condition and Abreu's criterion
	5.2 Relativistic adiabatic index
	5.3 Harrison–Zeldovich–Novikov static stability criterion
	5.4 Equilibrium under three different forces

	6 Herrera–Ospino–Di Prisco generators of the solution
	7 Concluding remarks
	Acknowledgements
	References


