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REDUCTION AND IMAGE ENHANCEMENT
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Philips GmbH Research Laboratories
Weisshausstr. 2, D-52066 Aachen, Germany

e-mail: aach@pfa.research.philips.com

ABSTRACT

This paper describes an algorithm for noise reduction and
enhancement of images which is able to take into account
anisotropies of signal as well as of noise. Processing is
based on subjecting each image to a block DFT, followed
by comparing each observed magnitude coefficient to the
expected noise standard deviation for it. Depending on this
comparison, each coefficient is attenuated the more, the more
likely it is that it contains only noise. In addition, the atten-
uation is made dependent on whether or not the observed
coefficient contributes to an oriented prominent structure
within the processed image block. Orientation as well as the
distinctness with which it occurs are detected in the spectral
domain by an inertia-like matrix. Orientation information is
additionally exploited to selectively enhance oriented struc-
tures, thus only marginally increasing noise as compared to
isotropic enhancement.

1. INTRODUCTION

Estimation of spectral amplitude (or magnitude) from noisy
observations is a widely reported approach to the restoration
of speech signals from noise [1, 2]. Based on a division of
the observed noisy signal into overlapping short time inter-
vals which are then subjected to the (Discrete) Fourier trans-
form, the central idea is to attenuate the observed frequency
coefficients Gk depending on their instantaneous signal-to-
noise ratios (SNR) r2

k, i.e.

F̂k = Gk · h(rk) , where r2
k = |Gk|2/Φn(k) , (1)

with Φn(k) denoting an estimate of the noise power spec-
trum (NPS), and F̂k the estimate for the noise-free spectral
coefficient Fk. For noise reduction, the attenuation func-
tion h(r) varies between zero and one, and increases mono-
tonically with the square root of the instantaneous SNR r.
The overall effect is attenuating spectral coefficients likely
to represent mainly noise. The precise shape of h(r) de-
pends on noise and signal models, and the chosen objective
function [3, 4].

In [5], one spectral amplitude estimation method — termed
power spectral subtraction — was extended to two dimen-
sions and applied to noisy real-world images, with the pro-
cessing now based on overlapping image blocks. In our own
experience [6], such spectral domain techniques compare
very favourably with spatial domain filters when applied to
noisy medical images acquired with low x-ray doses. In
such images, noise is signal-dependent and exhibits a lowpass-
shaped, potentially anisotropic power spectrum [6]. For
known parameter settings of the imaging system, a noise
model provides an estimate for the noise standard devia-
tion for each coefficient, which, together with the observed
coefficient’s magnitude, determines the attenuation applied
to the coefficient (Fig. 1). However, whereas there exists

Fig. 1. Block diagram of noise reduction by spectral mag-
nitude estimation.

a variety of anisotropic spatial-domain noise reduction fil-
ters which can adapt to potential local orientation in the im-
age [7, 8], the described spatial frequency domain methods
are isotropic in the sense that the same attenuation func-
tion is applied to all coefficients Gk regardless of their po-
sition relative to local orientation. To improve the perfor-
mance of spectral amplitude estimation particularly with re-
spect to perceptually important oriented patterns formed by
lines and edges, and to allow selective enhancement of these
patterns, this paper describes a new estimation algorithm
which integrates local orientation. Specifically, our algo-
rithm takes into account the prior knowledge P that each
block can exhibit an arbitrary orientation, which in the spec-
tral domain results in a concentration of energy along the



line perpendicular to the spatial orientation and passing through
the origin. The central idea is to apply less attenuation to
coefficients along this line than to other ones, with this be-
haviour being the more pronounced, the more distinct the
local orientation. We will bring the prior knowledge to bear
within a Bayesian framework similar to the one described
in [9] for classification. Rather than employing the maxi-
mum a posteriori criterion as in [9], we will base our nu-
merical estimation problem on the minimum mean square
error (MMSE) criterion.

2. ORIENTATION DETECTION

We evaluate local orientation in the spectral domain by means
of an 2× 2 inertia matrix J [10], the eigenvectors of which
determine in a least squares sense the two axes along which
concentration of energy is strongest (local orientation) and
least, respectively. 1. The eigenvalues along these lines
measure how well this concentration is pronounced. For
our algorithm, we have carried out three modifications:

• To increase robustness against noise, calculation of
the inertia matrix is based on the signal-to-noise ra-
tios rk rather than on the observed coefficients Gk

alone. Doing so has the additional advantage that
orientation detection becomes adaptive to potential
noise anisotropies.

• The inertia matrix is rotated and normalized such that
its eigenvalues range between +1 (along local orien-
tation axis) and −1 (along the axis perpendicular to
local orientation). These values are reached for opti-
mal concentration of energy along the local orienta-
tion axis.

• To weight all coefficients identically independent of
distance from the origin, all coefficients are ”projected”
onto the unit circle, i.e. the ”mass” or spectral energy
is thought to be concentrated on the unit circle.

For a block of N × N coefficients, the non-normalized in-
ertia matrix is given by

A =


∑
j,k

j2

j2 + k2
r2
jk

∑
j,k

jk

j2 + k2
r2
jk∑

j,k

jk

j2 + k2
r2
jk

∑
j,k

k2

j2 + k2
r2
jk

 , (2)

with r2
jk, j, k = −N/2 + 1, . . . , N/2 − 1, denoting the

instantaneous SNR values. Note that, apart from the me-
chanical analogy, this matrix can also be interpreted proba-
bilistically: Define a random variable (J,K) that selects a

1In [10], this approach to local orientation detection is transformed to
the spatial domain by means of Parseval’s theorem, leading to the same
expression of local orientation as in [11], where it is shown that local ori-
entation is the axis with greatest intensity variance.

spectrum location with P (J = j, K = k) ∝ r2
jk. Then A is

proportional to the covariance matrix of the corresponding
random unit vectors (J,K)/

√
J2 + K2. Eigenvalue nor-

malization is then carried out by

B =
2

Trace(A)
A − I =

(
b1 b2

b2 −b1

)
. (3)

The eigenvalues of this matrix are d = ±
√

b2
1 + b2

2, with
the corresponding eigenvectors pointing parallel and per-
pendicular to the dominant direction in the spectrum. If all
non-zero coefficients are ideally concentrated along the ori-
entation axis, we have d = ±1, whereas an ideally isotropic
spectrum results in d = 0. In our aproach, the eigenvectors
are not computed explicitly. Referring to Fig. 2, we rather
evaluate at each location v = (j, k)T in the 2D spectral do-
main the expression

g(v) =
vT Bv

vT v
. (4)

The value of g(v) is the larger, the smaller the angular dis-
tance δ of v to the local orientation axis v̂, which needs not
to be known explicitly. The maximum |d| of g(v) is the
larger, the more distinct the local orientation.

Fig. 2. 2-D spatial frequency domain for each block. v =
(j, k) is the coordinate of an observed coefficient Gv , and
v̂ denotes the local orientation axis. ev is the unit vector
pointing to v.

3. THE NOISE REDUCTION ALGORITHM

The prior knowledge P expressed through the modified in-
ertia matrix B is brought to bear within an MMSE approach,
which also exploits the energy compaction and decorrela-
tion properties of the DFT. Modelling the coefficients as
(complex) Gaussian distributed (cf. [4, 3]), they are also
independent, and can be estimated individually by F̂v =
E[Fv|Gv,P] (marginal MMSE estimation). Without orien-
tation information, this leads to an attenuation function to
be used in (1) given by [6]

h(r) = (1 + λ exp(−αr2))−1 , (5)



with α being a weighting factor similar to the one used
in generalized Wiener filters. The parameter λ can be de-
composed into λ = λ0 · Pr(H0(v))/[1 − Pr(H0(v))], with
Pr(H0(v)) being the a priori probability of G(v) to contain
noise only. λ0 depends on the signal and noise variances,
but is regarded here as a free parameter balancing noise re-
duction and signal preservation. The orientation informa-
tion P can now be taken into account by varying Pr(H0(v))
through g(v) in (4). To selectively reduce attenuation along
the orientation, we define a ”selectivity” function

M(v) = max[g(v), 0]8/|d|7 , (6)

which ranges in [0, 1] and rises sharply in the vicinity of
the dominant orientation, where the value 1 is reached only
for ideally orientated patterns. Normalization by |d|7 makes
sure that the distinctness of orientation is still linearly de-
pendent on |d|. Assuming that Pr(H0(v)) decreases sharply
when approaching the orientation axis, one can model

Pr(H0(v))/[1− Pr(H0(v))] = (1−M(v)) , (7)

which, when integrated into λ in (5), results in the desired
anisotropic attenuation function plotted in Fig. 3. Alterna-
tively or additionally, one could assume a variable α as mo-
tivated by the ”signal equivalent” approach [7, 8], e.g.

α = α(v) = α0/[1−M(v)] . (8)

For M(v) = 1, both (7) and (8) prevent all attenuation along
the (then ideal) orientation axis.
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Fig. 3. A family of attenuation curves plotted versus the
square root of the instantaneous SNR r. For a given SNR,
attenuation increases with the angular distance between v
and the orientation. Plot based on eqs. (5) and (7) for λ0 =
1.5, α = 1.

4. DIRECTIONAL ENHANCEMENT

Availability of orientation information also enables selec-
tive enhancement of oriented patterns. Generally, sharpness

can be improved by band or high pass filtering. Isotropic
filtering, however, results in a corresponding increase of
noise. Restricting the enhancement to the dominant orien-
tation, noise amplification can be kept moderate due to the
limited number of coefficients involved and their relatively
good SNR. Let BP (|v|) denote a suitable isotropic band
pass transfer function radially selecting those frequencies
that are important for the appreciation of image sharpness,
like

BP (|v|) = sin2

(√
2 · π · |v|

N

)
, (9)

with |v| =
√

j2 + k2. Combining the radial function BP (|v|)
with the angular selectivity function M(v) given in (6) by

BPa(v) = 1 + M(v) ·BP (|v|) (10)

leads to the anisotropic transfer function BPa(v) depicted
in Fig. 4.

enhancement transfer function

0

0.5

1

1.5

2

Fig. 4. Example of an anisotropic enhancement transfer
function, plotted for ideal orientation, i.e. assuming a maxi-
mum value of one for M(v).

5. RESULTS AND SUMMARY

Both anisotropic noise reduction and enhancement were ap-
plied to the low dose x-ray image depicted in Fig. 5. Inten-
sity dependence and spectral distribution of the noise power
in this image were known (cf. “noise model” in Fig. 1). As
Fig. 6 shows, noise could be appreciably suppressed, while
visually important oriented patterns are well preserved, most
prominently the guide wire. Processing was based on a
block size of 32 × 32 pixels, with an overlap of 16 pixels
between adjacent blocks. As in [6], the FFT window was
a separable 2D Hanning window. Orientation dependence
was introduced into (5) by (7), with α = 5, and λ0 = 1.5.

In summary, we have developed a new anisotropic spec-
tral magnitude estimation algorithm for restoration of noisy



Fig. 5. Part of an original noisy medical low dose x-ray
image, depicting a thin guidewire inserted into a patient’s
vascular system.

images by a combination and extension of the approaches
of [5] and [10] based on an estimation-theoretic framework.
Direction and strength of locally dominant orientation were
quantified by an inertia-like matrix. Noise in images re-
stored by this algorithm is considerably reduced, with per-
ceptually important detail information well preserved. Ad-
ditionally, enhancement of image sharpness without sacri-
ficing image quality with respect to noise can be achieved
by selectively emphasising coefficients along the orientation
axis.

Fig. 6. Image of Fig. 5 processed by anisotropic noise re-
duction and enhancement.
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