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Anisotropic steric effects and negative (,P4 ) in nematic liquid crystals
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Starting with a model intermolecular potential that includes 0, r terms to account for anisotropic
steric interactions, we carry out a statistical mechanical calculation in the cell approximation, and

apply it specifically to the isotropic-nematic transition of methoxybenzylidene butylaniline (MBBA).
The potential is determined to fit the experimental transition temperature T~~ and the discontinuity
in the orientational order parameter ( P2 ) at transition. ( P2 ) and ( P4 ) are then calculated from
solving a set of coupled self-consistency equations for the orientational and spatial parts of the distri-
bution function, as are other phase-transition properties. There are improvements over model calcu-
lations which do not account for anisotropic steric effects, but the improvements are generally less
than significant. The most striking result is that a stable nematic phase requires (P4) to be negative
at and near the transition. It is a theoretical result qualitatively consistent with experimental data
but has not been attained until now.

I. INTRODUCTION

The theory of liquid crystals has been developing in two
major directions. One, the Landau —de Gennes theory, '

employs a phenomenological approach. The Helmholtz
free energy is expanded in powers of the order parameter
and its gradient, requiring in the process five or more ma-
terial parameters to be determined by experimental data.
The theory contains a simple temperature dependence and
no volume dependence. In the treatment of pretransitional
effects, terms of higher order than quadratic are usually
omitted. Such a theory is physically appealing,
mathematically convenient, and qualitatively powerful.
Quantitatively, however, it encounters difficulties that re-
sult from oversimplification.

The other approach is the "molecular" theory, defined
as orie that begins with a model, be it in the form of rods
or interparticle potentials. Conventional statistical
methods are applied to obtain distribution functions, free
energies, thermodynamic and phase-transition properties,
and dynamical correlations. The major difficulty in this
approach is that model construction and statistical calcu-
lation need be carried out simultaneously; both the
mathematical derivation and the numerical computation
can be overwhelmingly demanding. As a consequence, too
many simplifying approximations are made —in the choice
of models, in statistical mechanical approximation
schemes, and in the evaluation of thermodynamic quanti-
ties. We shall come back to each of these issues presently,
in Sec. II.

In our group we have devoted a large part of our effects
on liquid crystals to the molecular theoretical approach.
Using relatively simple models first suggested by
Kobayashi and McMillan —models without anisotropic
steric effects—we have obtained reasonably good, semi-

quantitative agreement with experiment in several cases,
as have other authors. But there remain puzzling
discrepancies, some of which have resulted in a certain de-
gree of unease toward the usefulness of molecular theories.
We cite here the following as examples.

(i) The calculated temperature dependence of the orien-
tational order parameter oz =—(Pz ) (and o4= (P4)) is too
weak.

(ii) oq itself, calculated at or near the isotropic-nematic
transition temperature Tl&, is too large. In particular, cal-
culations for stable nematic phases always yield positive
cr4, while experiment on certain nematic substances [e.g. ,
methoxybenzylidene butylaniline (MBBA)] gives rise to
negative o4 near TI&.

(iii) The derivative d 1nTt~(p)/d lnp, or d lnT(p)/d lnp
at constant o.2, is always too small, by a factor of 3 to 4.

(iv) The calculated latent heat at I-X transition is usual-
ly too large, by a factor of about 2 to 3.

II. MODEL AND FORMALISM

A. Model

We use a potential model. The interaction between a
pair of cylindrically symmetrical nonchiral molecules is
described as

u(i j)=v(rJ, Q;.QJ, Q; rJ, QJ rj)
= vo(rj)+u2(rz)P2(Q; QJ)+v~(rj)P4(Q; QJ)

+tv2(r J )[P2(Q;.r J )+P2(QJ.rtj)], (1)

where r; and Q; denote the position of the center of mass
of the ith molecule and its orientation, respectively. The
first three terms represent the popular McMillan form of
the potential, ' and the last term, which couples spatial
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and orientational variables, stands for the leading anisotro-
pic steric correction. In an earlier paper we inspected the
effect of a weak anisotropy by treating wq(r) as a pertur-
bation. The results obtained were not particularly infor-
mative. From fitting potential profiles obtained from Eq.
(1) to those obtained with rod models, we learned that
rv2(r) should be rather large compared to v2(r) and u4(r)
even for rods which are short and relatively soft. Thus,
there is no way to avoid treating rv2(r) on an equal basis as
u2(r) and v4(r) in a full-fledged statistical calculation.

In this work we shall parametrize the potentials as fol-
lows:

ut(r) =atexp( Pr —), l =0,2, 4

rv2(r)=bzexp( —P r ) .

The potential parameters are ao, az, a4, b2, and /3.

B. Statistical formalism

Conventional statistical treatment of a classical system
of N particles in a volume V (p—:N/V), at temperature T,
begins with the Boltzmann distribution

P~(1,2, . . . , N)
F=FO+ f g v(i j) d 1 dN

l +J

P~(1,2, . . . , N)
+kT

P~(1,2, . . . , N)
Xln d1 . dS.

I'0 is the ideal-gas term. The potential energy, i.e., the
second term, can be reduced in one step to an integral over
v(i, j)pz(i, j). The last term, from entropy, however, can-
not be reduced to a closed form involving low order
P„(1, . . . , n) It c. an be expanded in a cluster series, but
one that does not converge rapidly when the system is at
liquid densities.

We introduced in Ref. 8 a variational approach which
turns out to be most convenient for treating phase transi-
tions associated with nonspatial degrees of freedom. It be-
gins with considering the undetermined X-particle distri-
bution function P~(1,2, . . . , N) and a free-energy func-
tional

NIP~(1,2, . . . , N) = '
expZ, kT

where Z denotes the partition function

Z = f exp —$ ' d 1 d2 . . dN,u(i j)
kT

(3)

(4)

P~(1,2, . . . , N)
w IP~I=FO+ f gu(i j) dl . dN

E (J

P~(1,2, . . . , N)
+kT

NI

di—:dr;d 0;, and N. is an (arbitrary) normalization factor.
The one-particle distribution function

Po&(1)=)of(rI,Q&)= —f exp —g ' d2 . dN,
l (j

P~(1,2, . . . , N)
gin dl . . dN .

Xf

Minimization of the latter under the constraint

f P~(1,2, . . . , N)d l. . . dN =N!,

(8)

is also ihe density function, which contains information
on macroscopic long-range order in the system. PI(1), or
f(r, Q), is the weighting function used for evaluating the
order parameter (Pt ). The two-particle distribution func-
tion

yields immediately the Boltzmann distribution, Eq. (3).
This permits us to "model" P&(1,2, . . . , N) in various
stages of approximation. For example, writing
P~(1,2, . . . , N) as N. +, &

Q(Q;), and then minimizing

~ with respect to Q(Q), leads immediately to the Maier-
Saupe mean-field approximation. Writing Ptv(1, 2, . . . , N)
as

Pq(1, 2) —=P i (1)p i (2)g (1,2)

gives a measure of the short-range pairwise correlation be-
tween the molecules. PI(1) and P2(1,2) can, at least in
principle, be calculated by means of cluster-expansion pro-
cedures, integral equations, molecular dynamics, or Monte
Carlo methods.

The Helmholtz free energy of a system can be expressed

N! +Q(fl;) C(rI, r2, . . . , r~),
i=1

and then minimizing ~ with respect to Q and N, gives
rise to a formalism in which the orienting forces are
modified by pair distribution functions, which are in turn
solved for orientationally averaged intermolecular forces.
Such an approximate treatment of space-orientation cou-
pling was named the "orientationally averaged pair corre-
lations" theory (OAPC). '

The optimized Ptv(1, 2, . . . , N), when substituted back
into WIP&I, gives us a Helmholtz free energy which is
exact for that leuel of approximation, without the need of a
seriously questionable cluster-expansion procedure.
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C. Cell approximation

Spatial correlations play an important role in the theory
of high-density fluids. For liquid crystals, one way to take
them into account is to borrow from the theory of classi-
cal liquids, as in Refs. 5, 6, and 8. The other is to use a
cell approximation: Use a single-particle approximation
and restrict the motion of molecules to individual cells.
The fluidity manifests itself through large excursions of
molecules from the centers of their cells. In this paper we

I

N

P~(1,2, . . . , N)=N! ff [g(Qr. )P(r; —R;)], (10)

where IR; I represent lattice points about which the cells
are centered.

Using Eq. (10) in Eq. (8), we find

adopt the latter method for the sake of computational
economy. The model for Pz(1,2, . . . , N) is then given by

~ Ig 4'I=P'0+ g f u(i, j}g(Q;}g«)}gp(rk—Rk)dQ;dQ dr, . dr
l (J k

+kT g f g(Q; }lng(Q;)dQ;+kT f + p(r —R )ln +p(rk —Rk)dr, . d rz

=F0+ —, g f u(i,j )p(r; —R; )p( ri —RJ )d r;d rj
l (J

+kTQ f g(Q;)lng(Q;)dQ;+kTQ f p(rk —Rk}in/(rk —Rk)drk,

with

u(i j ) = t u (i j)g (Q; )g(QJ )d Q, ;dQi, (12)

an orientationally averaged pairwise potential.
Before embarking upon a variational treatment of

M Ig, gj, let us require that g(Q) be dependent only on
Q.n, where n denotes the director. This requirement is
consistent with the uniaxial property vf nematics. On the
other hand, it is not obvious that the solutions of the vari-
ational equations are necessarily uniaxial. We shall return
to this point later and in the Appendix.

We now vary ~ [g,PI with respect to g(Q) and

P( r —R) under the nor]nalization constraints

f g(Q)dQ=1

orientations of molecules k and 1, then over all possible
positions of molecule k in its cell, and finally summed
over all cells except the one occupied by molecule 1.

The Euler-Lagrange equation for g(Q} under the as-
sumption that g (Q) =g (Q n ) yields

1 1
g (Q) = exp — [ (G2cr2+K2)P2(Q. n )

Zg kT

+G4o4P4(Q n )]

where

o] ——f g(Q)P](Q.n)dQ, l =2,4

1
Zg —— exP — 620.2+K2 P2 01 n

kT

r —R dr=1 . (14)

—V( r —R ]/kT

Zp
(15)

The Euler-Lagrange equation for ]}]( r —R) gives rise to the
following solution:

+G4o4P4(Q] n )] dQ],

G]= g yi(Rk, R]), l =0,2,4
k~1

(20)

(21)

with

y(r] R])= y f u(k, 1)y(rk —Rk)drk
k~1

+2 Q +2(Rk Rl)
k~1

with

(22)

—V( r —R )/kT ~~
Z~ —— e dr .

V(r] —R]) is clearly seen as a mean field experienced by
molecule 1, obtained by first averaging u(k, 1) over all

y](Rk, R])= f ui(.k])]}]](rk—Rk)P(r] —R])drkdr],

(23)
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l~z(Rk Rl) I ~2(ykl)4(rk Rk)

)&(t(r, R—, )P2(r„,.n)drkdr, .

The Appendix derives these results for a cylindrically
symmetrical P( r —R).

D. Reduction of self-consistent equations

The lattice that we choose to work with is the simplest
possible which can accommodate a nematic arrangement
that accounts for anisotropic steric effects: a lattice of
rectangular parallelepiped cells, each of volume
dz dy dz dx d, = 1 /p. In an earlier paper we performed a
similar calcualtion as described here without the presence
of wz(r) terms in the potential. In that case, the absence

I

of anisotropic steric effects means, e.g., a parallel pair of
molecules cannot distinguish a side-by-side configuration
from an end-to-end configuration. If placed in cells on a
rectangular lattice, the most stable lattice would be cubic
(d„=d~=d, ) by symmetry arguments. Now that (vz(r)
terms have entered our model, this will no longer be the
case. We shall have to consider rectangular lattices of all
proportions, d, /d„, in order to determine which structure
is thermodynamically the most stable.

Likewise, instead of employing a spherically symmetri-
cal P( r —R), as in Ref. 9, we must now use a cylindrically
symmetric form, the simplest one being

a y —az[(x —X)2+(y —Y)2] —y (z —Z)2

For this form of P( r —R)

y(ZI ~ (i3 +a /2—)(q„+q ) (fl +y /2—)qz 2 2
0

(i)2+az/2)(q +q ) —(p +y /2)q
E2 —— dgx dgydqz C

2
3gz 2——1 M(q„,q~, q, ~

a,y ),
Vx +9'y +9'z

(27)

where

a2d 2 /2 2
—y dz/2

(cosha d„q„+cosha d„q~)+e ' coshy'd, q,
—ad /2 —ad /2 2 2+2e " [e " cosha d„q„cosha d„q~

M(q„,qy, q, ~

a, y ) = e

v(i j)=vo(rj )+vz(rj )o2+ v4(r'z )o4+2lvz(rz )o2P2(yj. n ), '

for use in Eq. (16). And thus

2 22' p 2 2 3'V(r —R):—V(u
~

a, y)= dq dq dq, oo+azoz+a4o4+bzoz ——1—00 qx+9y +Qz

+e ' (cosha d„q„+cosha d„q~)coshy d, q, ]
—y'd,'/2 2 2

—azd„—y d /2 2 2+4e " ' cosha d„q„cosha d„q~ coshy d, q, +
Equations (18)—(20) and (26)—(28) form a self-consistency loop for g (0), given P(r —R) as in Eq. (25).

Next, from Eqs. (12) and (19), using the addition theorem, the Appendix yields

—i)2(qzZ+q +qZ) —az(q„+u„)2—aZ(q +u ) —y (q, +u )2
Xe ~ 'e
&M(q„+u„,q~+u~, q, +u,

~

2a, 2y ) .

—V( u
I a, y)/kTd~

Z x (31)

Substituting Eq. (30) into Eq. (15) and taking moments
with Eq. (25), we find

I

Equations (30)—(32) form a self-consistency loop for
P(r —R), in the form of coupled equations for a and y,
given o( as in Eq. (19). The two self-consistency loops are
intricately intertwined. We shall show how they are
solved numerically in Sec. III.

—V( u
j a, y)/kTd~ (32)

E. Helmholtz free energy

Substitute into Eq. (11) the self-consistency solutions for
the nematic and isotropic phases; i.e., treat Eq. (11) term
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—NkT lnZg —NkT lnZp,
t

(33)

FI——Fo ——Go —NkT lnZ~ —NkT lnZ~ .N I I
2

(34)

These expressions will be used to determine which phase is
more stable, and, in turn, the phase-transition temperature
at constant density.

by term using Eqs. (29), (23), (24), (21), (22), (18), (19), (15),
and (16), in that order. The Helmholtz free energies
reduce to

N 3N N 2 N 2F~ = Fo — Go — ( G 2 cr~+ G 4 cr4) —2NK2 cry
2 2

a2 to negative values, for obvious physical reasons.
There are several thermodynamic variables. p and T

will be chosen as independent variables. The ratio d, /d„
will also be varied independently; the value that offers a
minimum Helmholtz free energy dictates a thermodynam-
ically stable spatial structure. Nematic and isotropic
phases will, of course, prefer different spatial structures
since they respond differently to steric effects. In particu-
lar, the optimum value of d, /d„ for the isotropic phase is
necessarily unity. For every given p, calculations need to
be carried out for a range of T and a range of d, /d„.

Parameters to be determined by the self-consistency
equations, for every set of the potential parameters and
every set of the thermodynamic variables, include 62, 64,
and K2 in Q(Q), and a and y in P(r —R).

III. CALCULATIONS FOR MBBA

A. Outline

Much information is available for the nematic liquid
crystal MBBA. We apply our present molecular theory to
a calculation of its properties.

In several earlier papers ' ' we performed molecular
theoretical calculations for MBBA without the inclusion
of anisotropic steric terms in the pairwise potential.
Reference 9 gives an outline of the procedure when a cell
approximation is employed. It may be worthwhile to first
read Sec. IV of that reference.

Let us sort out the many parameters in this theory.
First of all, for model building we have in Eq. (2) five po-
tential parameters: ao, a2, a4, b2, and P. We need to seek
a combination of these parameters which will yield the
correct phase-transition temperature Tz& and order pa-
rameter o2 at Tl& at a given density p. From experiment,
at p=0.002315 A, Trx =317—318 K and o2(Trav )

=0.33—0.34. Since phase transitions occur under rather
stringent conditions, it is not necessarily an easy rnatter to
fit these data even with several parameters —a fact that
will soon become appreciated. In our case, we shall re-
strict p to values close to p'r, ao to positive values, and

B. Actual procedure

Ggo.4
(35)

Kp

kT

Use them in Eqs. (18), (20), and (19) to calculate crz and
o &. Then the values ( G2 /2k T/o 2, G——4, = /4k T/cr4,
K2 ——$2kT) can be identified immediately as the set that
solves the self-consistency and yields that particular pair
of order parameters. By tabulating (g2, g&, g2) with their
corresponding (o2, cr4), one thus infers self-consistent sets
of (G2, G4,K2). Table I shows a typical segment of the
table. If one wishes to fix o.

2 at, e.g. , its experimental
value, one chooses the line which contains that value for
cr2, i.e., one of the lines marked with asterisks. Such
choices are, of course, far from unique. They permit us to

Actual calculations employ a procedure designed to
minimize computation. We begin with the recognition
that any set of the paramters (G2, G4, Kz) would solve the

self-consistency equation for Q(Q), thus: Take at given T
Gp0.2

kZ.

TABLE I. Typical segment of tabulated results for the solution of the self-consistency equation for
g(fl).

G2o.2

kT
—0.90
—0.90
—0.90
—0.90
—0.90
—0.90

64o4
kT

0.99
0.99
0.99
0.99
0.99
0.99

K2'= kr
—1.26
—1.16
—1.06
—0.96
—0.86
—0.76

0.367
0.351
0.335
0.319
0.303
0.286

O4

—0.025
—0.031
—0.042
—0.050
—0.057
—0.064

G4/G2

15.954
11.419
8.787
7.063
5.845
4.935

K2/G2

0.514
0.453
0.395
0.340
0.289
0.242

—1.08
—1.08
—1.08
—1.08
—1.08
—1.08

1.78
1.78
1.78
1.78
1.78
1.78

—1.32
—1.31
—1.30
—1.29
—1.28
—1.27

0.339
0.338
0.337
0.335
0.334
0.333

—0.112
—0.112
—0.113
—0.114
—0.114
—0.115

5.017
4.968
4.919
4.871
4.824
4.778

0.415
0.410
0.405
0.401
0.396
0.392
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TABLE II. Typical segment of tabulated results for the solution of the self-consistency equation for

P( r —R).

&0

383.21
395.01
407.47
419.88
430.86

—239.69
—239.69
—239.69
—239.69
—239.69

a4

—2106.04
—2106.04
—2106.04
—2106.04
—2106.04

—4960.65
—4960.65
—4960.65
—4960.65
—4960.65

+in

1.8180
1.8180
1.8180
1.8180
1.8180

0'out

1.8170
1.8175
1.8180
1.8184
1.8190

j in

0.8670
0.8670
0.8670
0.8670
0.8670

Pout

0.8654
0.8662
0.8670
0.8677
0.8685

move on to meeting other conditions.
Equation (26) indicates that once the ratio G4/Gz is

known, so is a4/a2. [For that matter, Go/Gq ——ao/aq.
But the self-consistency equation for Q(Q) says nothing
about Go. So ao is still left free. ] This is the case for
whatever values are taken on by 0, and y, since the integral
in Eq. (26) is common for all G~. Unfortunately, the same
is not true for K2. The integral in Eq. (27) differs from
that in Eq. (26). So the ratio b2/a2 as determined by
Kz/Gz comes out differently for different pairs of (a, y).
For fixed (a, y), however, once K2/Gz is known, so is
bp/a2.

Take one of the asterisked lines in Table I. Choose a
pair of (a, y) as input to Eq. (30): (a;„,y;„), but use them
first in M(q, q~, q, i

a;„,y;„) and in the integrals of Eqs.
(26) and (27). The values of (Gz, G~, Kz) from that line
uniquely determine (a~, a4, b2), leaving ao the only un-
determined potential parameter. For every choice of ap
entered into the right-hand side of Eq. (30), Eqs. (31) and
(32) yield a pair of output (a, y): (a,„„),„,). Table II
shows a list of ao, (a;„,y;„), and (a,„„y,„,). The line
marked with an asterisk indicates an ap which yields a
solution of the self-consistency equation for P(r —R). It
should be noted that most lines from Table I would yield
no solution at all, whatever the ap.

We thus collect an entire set of potential parameters
(ao, a2, aq, bz, P) which offer solutions to both self-
consistency equations and provide the right o-z, in one
thermodynamic environment: (p, T,d, /d ). For the same
potential, we now try different values of d, /d . In each
case we re-solve the self-consistency equations, and in each
case we obtain the Helmholtz free energies that corre-
spond to the solutions. For the nematic phase, a
minimum in the latter with respect to d, /d„ is sought and
compared to the isotropic free energy (at d, /d„= 1). This
process is repeated for a range of values of T. The condi-
tion I'iv ——I'I determines Trx, the transition temperature at
constant density.

It is, of course, highly unlikely that T&~ would turn out
to fall in the range 316—317 K, which corresponds' '" to
a Tl~ of 317—318 K. So the entire process must be re-
peated for a new asterisked line in (an extended) Table I.
If and when a line that gives the right Tz& is eventually lo-
cated, we will carry out the calculation for a range of T
about Tq~ to ascertain that, indeed, a transition has taken
place at the right temperature, and for obtaining
temperature-dependent properties. Table III displays cal-
culated results for p=0.002315 and 0.002317 A . In

certain ranges of temperatures, several densities will be
studied to obtain density-dependent properties.

IV. RESULTS AND DISCUSSIONS

A. Potential parameters

The set of potential parameters determined as a best fit
to the transition temperature and the order-parameter
discontinuity is

TABLE III. Summary of results at two densities.

p(A )

0.002 314 313.2
315.2
316.2
316.3
317.2
318.0

0.380
0.367
0.354
0.352
0.335
0.306

—0.030
—0.033
—0.037
—0.038
—0.044
—0.047

(I'~ —I'I )/Xk (K)

—l. .11
—0.39
—0.02

0.00
0.19
0.32

0.002 317
~IX~ 316.2

316.7
317.2
318.0

0.355
0.352
0.346
0.338

—0.037
—0.038
—0.042
—0.047

—0.06
0.00
0.12
0.27

ap/k =407.47 K,
a2/k = —239.69 K. ,

a4/k = —2106.04 K,
b /k = —4960.65 K,
P=0. 132 A

It is reasonable to inquire of the physical meaning of
these parameters. ap, az, and a4 are familiar potential pa-
rameters in the liquid-crystal literature. ' Had the r
dependence of U~(r) been more realistic, e.g., containing a
hard core, we might regard them as expansion coefficients
and require that they fall off with increasing I. But just as
in other molecular theoretical calculations referred to in
this paper, our model is much too crude to yield a sound
physical interpretation. The best that one can say is that
it is the simplest empirical formula that can be construct-
ed to fit thermodynamic data.

We are more certain of the meaning of b2 since it
represents the only anisotropic contribution to the pair-
wise potential. It contains short-range anisotropic steric
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effects. That b2 turns out to be so large should not be
surprising for the following reason. If we are to
"translate" pair interactions in a hard-rod model to poten-
tial formulas such as Eq. (1), the anisotropic term w2(r)
will be totally overwhelming. In another study, we have
been attempting to reconcile the hard-rod and potential
models through numerical comparisons of the resulting
potential profiles when parameters in both models are
varied. We found that w2(r) invariably turns out to be
large, even for rods whose length-to-diameter ratio lies be-
tween two and three. The results of that study will be
published elsewhere.

The reader is cautioned against thinking of this work as
an attempt to do a realistic theory from first principles.
That would be much too ambitious at this stage. What we
present here is merely a model calculation which illus-
trates and stresses the importance of anisotropic steric
forces in the molecular theory of liquid crystals.

040

0.35

0.30

0.25

0.10

T)N-T(K)

I

4 T)N-T(K)

B. Order parameters

From Table III we find that at Tzz ——316.3 K,
0 2 ——0.352, and 04———0.038. However, as T
=0.8—1.0 K, ' '" we take T&z ——317.2 K. At that tem-
perature, 0.

2 ——0.335 and 0.4———0.044.
This is an exciting result, for„ to our knowledge, it is the

first time that a molecular theory can yield a stable nemat-
ic phase which possesses a negative o.

& at Tzz. Experimen-
tal data' ' place this value at a point far more negative.
Nevertheless, we feel that relating negative o.

4 to anisotro-
pic steric effects has moved us one step in the right direc-
tion.

Next, we discuss the temperature dependence of the or-
der parameters. The entries in Table III should not be
directly compared to experiment. Table III was obtained
for a constant density, while experimental results are usu-
ally for a constant pressure, 1 atm. For MBBA, we use
data obtained by Gulari and Chu, ' interpolated and
scaled to give p=0.002320 A at T =317.2 K—our cal-
culated Ti~. Table IV shows our calculated results. The
last two columns are also plotted in Fig. 1 and compared
to data from Refs. 12 and 13, as well as to results calculat-
ed without the anisotropic steric potential. There seems
to be an improvement, in that the temperature dependence
is now stronger, but the improvement is slight at best.

C. Density dependence of transition temperature

-0.10

FICs. 1. Order parameters 0.2 and o.4 as functions of tempera-
ture. 0, Ref. 12; ~, Ref. 13; ———,Ref. 8 (theoretical curve
without anisotropic steric potentials);, present work.

quite strongly with p and T, so the fact that they remain
unchanged at transition cannot be taken as a foregone con-
clusion.

From Table III one can also estimate the parameter
I =d 1nTI&(p)/d lnp. It turns out to be about 1.5. This is
a slight improvement over the 1.26 obtained without an-
isotropic steric potentials, but nowhere near the experi-
mental value' of 4.7.

D. Volume change

Figure 2 is a graphic aid for carrying out a Maxwell
construction:

d(Eg —F~ ) /cV

Table III indicates that at transition under different
densities, o.

2 and o.4 remain unchanged. This is consistent
with experimental findings. ' Note that uz and o.4 vary

d(I'~ I'I )/%—
Bv T

Trx —T (K)

TABLE IV. Results under constant pressure. I' =1 atm.

v (A ) p (A ) d„ (A) d, (A)

317.2
316.2
315.2
314.2
313.2

0.0
1.0
2.0
3.0
4.0

431.05
430.50
430.07
429.66
429.28

0.002 320
0.002 323
0.002 325
0.002 327
0.002 329

5.899
5.896
5.895
5.893
5.891

12.384
12.382
12.379
12.375
12.371

0.352
0.371
0.387
0.394
0.398

—0.041
—0,034
—0.030
—0.028
—0.026
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From Table III we find at T =317.2 K,
0.12—0. 19

1 1

0.002 317 0.002 315

=0.188 kA

But from thermodynamics b,v/v =K&(Pc P~—), where
Kz denotes the isothermal compressibility, and for
MBBA, ' Kz ——4.87 &( 10 " cm /dyn. Thus ~v/v
=0. 126%, in good agreement with the experimental
value' ' of 0.11 to 0.14%.

Sc—S~ =Sr(P, T) S~(P,—T)

d(FI F~ )/N—

aT .P

d(F~ FJ )/N—
aT .P

From Table III we find at p=0.002315 A

S —S„=0.32 —( —0.02) 0. 189/
318.0—316.2

But the latent heat per particle is given by T AS, or

~H =T [(Sc—Sc)—(S~ —S~ )]+T(Sc—S~ )

=(Pp T/Kr)b, v + T(Sc—Sg ) .

Taking the coefficient of thermal expansion Pz to equal'
8.7&&10 K ' and Kz and Av from above, we find
hH =684 J/mole, significantly smaller than the 833
J/mole obtained without anisotropic steric potentials, but
still a factor of 2 larger than the experimental value' ' of

E. Latent heat

The entropy change at transition at constant density is
given by

C

I i

c
)B
I
I

~ I
gA

I
I

I
i

FIG. 2. Graphic aid for carrying out a Maxwell construction.

284—381 J/mole.
In summary, we find that our most significant gain

with the inclusion of anisotropic steric terms in the inter-
molecular potential is a negative o.4. A11 other properties
have moved somewhat toward experimental results.
Referring back to the discrepancies listed in Sec. I, even
though we have not been able to account for them, it must
be considered fortunate and encouraging that all changes
have moved in the right direction.

We intend to use the new potential determined here in a
full-fledged OAPC calculation. The latter formalism in-
cluding anisotropic steric potentials was outlined in Ref. 7.
It is more suitable than the cell approximation for a
liquid.
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APPENDIX: DERIVATION OF SELF-CONSISTENT EQUATIONS

The starting point is Eq. (11). By introducing a Lagrange multiplier k~ along with Eq. (14) and varying ~ I Q, PI with

respect to p(r —R), one obtains immediately Eqs. (15)—(17). v(i,j) reads

v(i j)= J Ivo(rj)+v2(rfj)P2(Q/ Qj)+vg(rj)P4(Q/ Qj)+W2(r/j)[P2(Q( rj)+Pp(Q, rj)]IQ(Q;)Q(QJ)dQ;dQJ .

The addition theorem
1 (l —m)!

PI(Q; Q )=PI(Q; n)PI(Q n)+2 g; PP(Q; n)PP(Q n)cosm(yn —yn ),
, (1+m)!

together with the assumption that Q (Q) =Q (Q n ), reduces v(i,j) to its form in Eq. (29).
By introducing another Lagrange multiplier A,~ to go with Eq. (13) in the variation of a [Q,PI, one finds

=0= g f v(i, 1)Q(Q;)P(r; —R;)P(r& —R&)dQ;dr;dr, +kT[lnQ(Q&)+I]+A& .
5Q(Qi)

(A 1)

Under the assumption Q (Q) = Q (Q.n ), the integral in the
above expression reduces to

YO+Y2~2P2(Q1 )+Y4~4 4(Q1 n )++2o2++2

(A2)

where

~2 ——f w2(r;&)P(r; —R;)P(r, —R&)P2(r;& n)dr;dr&,
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and r; —R; r1 —R1 P2 r;1.n

Xz= I wz(r;])y(r; —R;)y(r] —R])Pz(r ]'&])dr;dr] .
~ cos(m]]o„)d r;d r, ,

~2 ~g'1 rg —
g' 1 1 2 g1

It becomes necessary to demonstrate that g, ]gz(R;,R])
depends only on (Q].n ).

%hile undoubtedly a general proof should exist for any
cylindrically symmetrical P(r —R), we examined a special
case: a rectangular parallelepiped lattice structure with
the long axis in the z direction and ])](r—R) as given in
Eq. (2S). a and y measure the extent of molecular excur-
sion in the lateral and longitudinal directions, respectively.

Now, using the addition theorem

Xz=&zPz(Q]'n )+ (wz cosq]n +wz s]nest] )Pz(fl] n )

+ —,', (wz'cos2@n +wz'sin2@n, )Pz(Q] n), (AS)

where

)&sin( mp]„)dr;dr, , (A7)

for m =1,2. By transforming to center-of-mass and rela-
tive coordinates, it can be shown that

g w,"=g w,"=g wz"= g w,"=O.
i~1 i+1 i&1 i&1

(A8)

We actually demonstrated this fact for six nearest-
neighbor shells.

Equations (Al) —(A8) thus permit Q(Q) to be expressed
as in Eqs. (18)—(24). Straightforward algebra leads to
Eqs. (26)—(28), where contributions from three nearest-
neighbor shells are explicitly displayed. For the densities
considered, the spread in ])]](r—R) turns out to be such
that it quite suffices to consider just those three shells.
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