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ABSTRACT

Context. The thermal emission from isolated neutron stars is not well understood. The X-ray spectrum is very close to a blackbody
but there is a systematic optical excess flux with respect to the extrapolation to low energy of the best blackbody fit. This fact, in
combination with the observed pulsations in the X-ray flux, can be explained by anisotropies in the surface temperature distribution.
Aims. We study the thermal emission from neutron stars with strong magnetic fields B ≥ 1013 G in order to explain the origin of the
anisotropy.
Methods. We find (numerically) stationary solutions in axial symmetry of the heat transport equations in the neutron star crust and
the condensed envelope. The anisotropy in the conductivity tensor is included consistently.
Results. The presence of magnetic fields of the expected strength leads to anisotropy in the surface temperature. Models with toroidal
components similar to or larger than the poloidal field reproduce qualitatively the observed spectral properties and variability of
isolated neutron stars. Our models also predict spectral features at energies between 0.2 and 0.6 keV for B = 1013−1014.

Key words. stars: neutron – stars: magnetic fields – radiation mechanisms: thermal

1. Introduction

Neutron stars (NS) with large magnetic fields (B ≥ 1013 G),
the so-called magnetars, are becoming more and more abun-
dant as new observations reveal phenomena that can only be
explained by the action of strong magnetic fields. It is now be-
lieved that the small population (4 objects) of soft gamma re-
peaters (SGRs) are young neutron stars with magnetic fields in
the range ≈1014−1015 G. Another subclass of candidates to be
magnetars are the anomalous X-ray pulsars (AXPs), whose high
X-ray luminosities and fast spindown rates make them differ-
ent from isolated radio pulsars or from NS in accreting X-ray
binaries. The six members of this family (Tiengo et al. 2005;
McGarry et al. 2005) exhibit spin periods in the range 5–12 s,
and their inferred magnetic fields (from their period derivative)
are in the same range as SGRs (see e.g. Woods & Thompson
2005, for a comprehensive review about these two families of
magnetar candidates).

A third rare family of NS, the radio-quiet isolated neutron
stars among which RX J1856.4-3754 is the first and brightest ex-
ample (Walter et al. 1996), shares some common features with
the standard magnetars (SGR, AXPs): periods clustered in the
range 5–10 s, and increasing evidence of large magnetic fields
(>1013 G). The properties of the seven confirmed members of
this family are summarized in Table 1. The most puzzling fea-
ture is the apparent optical excess flux (compared to the extrap-
olation of the best fit to the X-ray emission) observed in several
objects, which needs of the existence of large temperature varia-
tions over the surface to reconcile the optical and X-ray spectra
(Pons et al. 2002). The evidence of anisotropic temperature dis-
tribution is also supported by the fact that several of the thermal
spectra show clear X-ray pulsations with pulsation amplitudes
from 5 to 20%, while others (RX J1856, RX J1605) have upper
limits of 1.3–3% to the maximum pulsation amplitude (Burwitz
et al. 2003; van Kerkwijk et al. 2004), which can be explained

in terms of different relative orientations between the rotation
and magnetic field axis. Thus, it is worth to investigate the influ-
ence of strong magnetic field configurations on the temperature
distribution, which has been shown to be able to create large
anisotropies in neutron star crusts (Geppert et al. 2004), or in
the envelope, where further complications due to quantizing ef-
fects of the magnetic field or accreted material have been studied
in detail (Potekhin et al. 2003). But there is yet another impor-
tant issue regarding the thermal emission on magnetized neutron
stars. Below some critical temperature (depending on the com-
position and the magnetic field strength), the gaseous layers of
highly magnetized neutron stars may undergo a phase transition
that turns the gas into liquid or solid state (Lai 2001), which
strongly reduces the emissivity from the NS surface compared
to the blackbody case (Brinkmann 1980; Turolla et al. 2004;
Pérez-Azorín et al. 2005; van Adelsberg et al. 2005).

In this paper our aim is to extend previous works on the
anisotropies and thermal emission of magnetized neutron stars
(Geppert et al. 2004) in two main ways: by extending to lower
density the calculations, within the model of a condensed sur-
face, and exploring the effect of toroidal components of the mag-
netic field. The generation of toroidal fields in the early stages
of a NS life, and its interplay with the poloidal component is
a complex problem linked to convective instabilities, turbulent
mean-field dynamo (Bonanno et al. 2003) or the Hall instabil-
ity (Rheinhardt et al. 2004). The magnitude of the toroidal fields
is unknown but usually thought to be larger than the poloidal
component and, as we discuss in this paper, have interesting ob-
servational implications.

This paper is organized as follows: in the next section the
plasma properties in magnetic neutron stars are reviewed. In
Sect. 3, the magnetic field configurations used in the calcula-
tions are described. In Sect. 4, we describe the equations govern-
ing the thermal evolution and structure in the presence of large
magnetic fields, the numerical code used for the calculations and
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Table 1. Properties of isolated neutron stars observed by ROSAT, Chandra, and XMM-Newton: Pons et al. (2002); Haberl (2004); Haberl et al.
(2004); Kaplan et al. (2003); Kaplan & van Kerkwijk (2005).

Source kT P Ṗ τ Optical Optical Pulsation Eline Bdb/Bcyc

(eV) (s) 10−12 (s s−1) 106 yr excess factor amplitude (keV) 1013 G

RX J0420.0−5022 45 3.453 <9 B = 26.6 <12 0.12 0.329 <18/6.6

RX J0720.4−3125 85 8.391 0.07 0.6–2 B = 26.6 6 0.11 0.270 2.4/5.2

RX J0806.4−4123 96 11.371 <2 B > 24 0.06 − <14/?

1RXS J130848.6+212708/RBS1223 95 10.313 <6 28.6 <5 0.18 0.3 ?/2-6

RX J1605.3+3249 95 − − B = 27.2 11–14 <0.03 0.46 ?/9.5

RX J1856.4−3754 60 − − 0.5 V = 25.7 5–7 <0.02 − −
1RXS J214303.7+065419/RBS1774 101 9.437 − R > 23 0.04 0.70 ?/14

some tests. The microphysics input is discussed in Sect. 5 and fi-
nally, in Sect. 6, we present our results.

2. Plasma properties in magnetic neutron stars

The transport properties and in general all physical properties
of dense matter are strongly affected by the presence of intense
magnetic fields. Before discussing in details the microscopical
properties of magnetic matter, we begin by reminding some typ-
ical definitions and quantities that serve as indicators of the rel-
ative importance of the magnetic field.

The pressure in the crust and envelope is dominated by the
contribution of the degenerate electrons. Consider an electron
gas whose number density is ne. In the absence of magnetic
field, the Fermi momentum pF, or equivalently the wave num-
ber kF = pF/� is

kF =
(

3π2ne

)1/3
=

(

3π2ρZ

Amu

)1/3

(1)

where mu is the atomic mass unit, and we have assumed that the
ions, with atomic number Z and atomic weight A, are completely
ionized. This assumption allows to relate ne and the density ρ,
ρ =

ne

Z
Amu. Defining the dimensionless quantity:

xF =
�kF

mec
= 0.010066

(

ρZ

A

)1/3

, (2)

the Fermi energy is ǫF = mec
2

√

1 + x2
F

and the Fermi tempera-

ture is TF = (ǫF − mec2)/kB = mec2(

√

1 + x2
F
− 1). If the matter

is at temperature T , the electrons are degenerate when T ≪ TF.
This condition is fulfilled in the whole NS except for the outer-
most parts.

The magnetic field affects the properties of all plasma com-
ponents, specially the electron component. Motion of free elec-
trons perpendicular to the magnetic field is quantized in Landau
levels, which produces that the thermal and electrical conductiv-
ities (as well as other quantities) exhibit quantum oscillations.
These oscillations change the properties of the degenerate elec-
tron gas in the limit of strongly quantizing field in which al-
most all electrons populate the lowest Landau level. The elec-
tron cyclotron frequency corresponding to a magnetic field B is
given by

ωB =
eB

mec
, (3)

and the magnetic field will be considered strongly quantizing
if the temperature of the electrons is T ≪ TB and the density
ρ < ρB, where

TB =
�ωB

kB

≈ 1.34 × 108 B12
√

1 + x2
F

K (4)

ρB =
AmunB

Z
≈ 7.045 × 103

(

A

Z

)

B
3/2

12
g/cm3. (5)

Here kB is the Boltzmann constant and nB = (eB/�c)3/2/(π2
√

2)
is the electron number density at which the Fermi energy reaches
the lowest Landau level. The magnetic field is called weakly
quantizing if T ≤ TB but ρ � ρB. In this case the quantum oscil-
lations are not very pronounced and occur around their classical
value. The oscillations disappear for T ≫ TB or ρ ≫ ρB and the
field can be treated as classical.

Let us turn now to the properties of the ions. In the absence
of magnetic field, the physical state of the ions depends on the
Coulomb parameter

Γ =
(Ze)2

kBTai

≈ 0.23 Z2

T6

(

ρ

A

)1/3

(6)

where ai = (3/4πni)
(1/3) is the ion-sphere radius, and ρ6

and T6 are, respectively, the density and temperature in units of
106 g/cm3 and 106 K. When Γ < 1 the ions form a Boltzmann
gas, when 1 ≤ Γ < 175 their state is a coupled Coulomb liq-
uid, and when Γ ≥ 175 the liquid freezes into a Coulomb lattice.
In general, the quantization of the ionic motion will be signifi-
cant for temperatures lower than the Debye temperature, which
is approximately (for ions arranged in a bcc lattice)

TD ≈ 0.45
�ωpi

kB

≈ 3.5 × 103
(

Z

A

)

ρ1/2 K (7)

and ωpi
is the ion plasma frequency

ωpi
=

(

4πZ2e2ni

mi

)1/2

· (8)

In presence of strong magnetic fields, the electrons in an atom
are confined to the lowest Landau level, the atoms are elongated
and with larger binding energy and covalent bonding between
them. Therefore, below some critical temperature (depending on
the composition and the magnetic field strength), the gaseous
layers of highly magnetized neutron stars may undergo a phase
transition that turns the gas into liquid or solid state depending
on the value of the Coulomb parameter Γ (Lai 2001). For typical
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Fig. 1. Phase diagram of neutron star matter. The solid lines show the
characteristic temperatures TF, TB, TD, and TU, where TF, TB have been
calculated for a magnetic field strength of B = 1013 G. The dashed lines
show the domains of partial ionization (at B = 0). The dot-dashed lines
are two realistic temperature profiles for two different models with core
temperatures of 108 K and 107 K.

magnetic field strengths of 1013 G, a Fe atmosphere will conden-
sate for T < 0.1 keV while a H atmosphere needs temperatures
lower than 0.03 keV to undergo the phase transition to a con-
densed state. In such a condensed neutron star surface made of
nuclei with atomic number Z and atomic weight A, the pressure
vanishes at a finite density

ρs ≈ 560 AZ−3/5B
6/5

12
g cm−3 (9)

where B12 is the magnetic field in units of 1012 G.

In this latter case, matter is in solid state and phonons be-
come an important agent to transport energy. When T ≥ TD,
many thermal phonons are excited in the lattice, and the phonons
behave as a classical gas. However, if temperature is low, T <
TD, phonons behave as a Bose quantum gas and the number of
thermal phonons is strongly reduced. Therefore, the Debye tem-
perature TD allows to discriminate the quantum behaviour from
the classical one. Another important parameter related to the
phonon processes of scattering is the so-called Umklapp temper-
ature, TU = TDZ1/3e2/(3�vF), with vF being the Fermi velocity
of electrons.

All the previous properties and definitions are visualized
and quantified in Fig. 1, where we show, in a phase diagram
for neutron star matter, the Fermi temperature (TF) and TB (at
B = 1013 G), the Debye temperature (TD) and the Umklapp
temperature. The central shaded band indicates the region where
matter is in the liquid state, according to Eq. (6) and the con-
dition 1 ≤ Γ < 175. The region below that is the solid state
(Γ ≥ 175) and the region above that corresponds to the gaseous
state (Γ ≤ 1). For reference, we have included two realistic
temperature profiles (dot-dashed lines), corresponding to two
different core temperatures (107 K and 108 K). The dashed lines
appearing on the left-lower corner indicate the transitions to dif-
ferent ionization states (25, 20 and 15 free electrons per atom).
The outer layers are composed of pure iron (Z = 26). For
B = 1013 G, Eq. (5) gives ρB = 5 × 105 g/cm3, therefore, the
field is strongly quantizing only at low densities, weakly quan-
tizing in most of the envelope and classical in the crust (TB ≤ T ).
The zero pressure density as defined by Eq. (9) is 7× 104 g/cm3.

3. Magnetic field structure

Although there is robust observational evidence that the exter-
nal magnetic field is well represented by a dipolar configuration,
the internal structure of the magnetic field in neutron stars is
unknown, so that one has the freedom to prescribe arbitrary con-
figurations. For weak magnetic fields (magnetic force negligible
relative to the pressure gradient or gravity) the deformation of
the star is very small and the particular field structure is not im-
portant. Finding consistent numerical solutions of the Einstein-
Maxwell equations describing the structure of neutron stars en-
dowed with a strong magnetic field, including the effects of the
Lorentz force and the curvature of the spacetime induced by the
stress-energy tensor of the magnetic field, is a difficult problem
only solved for purely poloidal configurations (Bocquet et al.
1995) or very recently including toroidal magnetic fields as per-
turbations (Ioka & Sasaki 2004). In previous works it has been
shown that to obtain a significant deformation of the star mag-
netic fields of the order of 1016 G are required. In this work,
for simplicity, and partially justified by the fact that most of
our models will be force-free (in a Newtonian sense) and less
strong (1013−1014 G), we will consider a spherical neutron star
described by a spherically symmetric metric of the form

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

(10)

where eΦ(r) is the lapse function, eΛ = (1−2m/r)−1/2 is the space
curvature factor, and we have taken G = c = 1. The usual equa-
tion of hydrostatic equilibrium of a relativistic self-gravitating
fluid is

dP

dr
= −(ρ + P)

dΦ

dr
, (11)

where P is the pressure and ρ is the mass-energy density.

Previous works about the effects of internal magnetic fields
restrict the calculations to the simplest models (homogeneous,
core dipole, purely radial in a thin layer), mainly to simplify the
problem. We address to the review by Tsuruta (1998), (Sect. 5)
for an overview of the effects of the magnetic field on the thermal
structure and evolution.

However, it is known that neutron stars are born with dif-
ferential rotation and that convective instabilities play a signifi-
cant role during the early stages of evolution (Keil et al. 1996;
Miralles et al. 2000, 2002). Both differential rotation and convec-
tive motions should lead to non-trivial magnetic field structures
with non-zero toroidal components (Bonanno et al. 2003), that
will evolve according to

∂B

∂t
= −∇ ×

(

c2

4π
R̂ · ∇ × B

)

(12)

where we have used the Newtonian equations for simplicity. The
relativistic versions of the induction equation for non-rotating
and rotating neutron stars can be found in the literature (Geppert
et al. 2000; Rezzolla & Ahmedov 2004). Above, R̂ is the resis-
tivity tensor.

In the classical (non quantizing) relaxation time approxima-
tion, the conductivities are related between them through the
magnetization parameter (ωBτ0) where τ0 is the non-magnetic
relaxation time (Urpin & Yakovlev 1980). Then, the magnetic
field evolution equation (Eq. (12)) can be written as follows

∂B

∂t
= −∇ ×

(

c2

4πσ‖

(

∇ × B +
ωBτ0

B
(∇ × B) × B

)

)

(13)
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with σ‖ being the electrical conductivities parallel to the mag-
netic field. The first term at the right hand side of the above
equation describes Ohmic dissipation and the last term is the
Hall-drift, which is not dissipative but affects the current config-
urations. In general, for strong magnetic fields, ωBτ0 ≫ 1, the
Hall-drift cannot be neglected. Notice that

c2ωBτ0

4πBσ‖
=

c

4πene

(14)

which does not depend on the relaxation time, making evident
the non-dissipative character of the Hall term. Even if the ini-
tial magnetic field is purely poloidal, it will develop a toroidal
part during the evolution (Naito & Kojima 1994; Hollerbach &
Rüdiger 2004; Rheinhardt et al. 2004; Cumming et al. 2004) and
it is necessary to consider how it affects the thermal structure
properties of neutron stars. In the remaining of this section we
describe the magnetic field configurations used in this work.

3.1. Dipolar magnetic fields

In some previous works, the structure of the magnetic field has
been assumed to be poloidal, in which case the field can be
conveniently described in terms of the Stokes stream function
(Geppert & Urpin 1994; Miralles et al. 1998; Page et al. 2000;
Geppert et al. 2004). In spherical coordinates, and writing the φ
component of the vector potential as Aφ = S (r) sin θ/r, the mag-
netic field components can be written in terms of the Stoke’s
function S (r) as follows

Br =
2S (r, t)

r2
cos θ

Bθ = −
sin θ

r

∂S (r, t)

∂r
· (15)

If we consider the static solution obtained by extending the vac-
uum solution to the center of the star we have

Br = B0R3 cos θ

r3

Bθ =
B0R3

2

sin θ

r3
(16)

which corresponds to the choice S (r) = B0R/r. This solution
diverges at r = 0. For a magnetic field confined to the crust,
S (r) should vanish in the core due to proton superconductivity.
In this work we prefer not to restrict ourselves to use poloidal
configurations and we use a more general structure as described
in the next subsection.

3.2. Force-free magnetic fields

A different, less restrictive, way to prescribe the interior mag-
netic field is to consider a family of force-free fields. A force-free
field is the simplest model for the equilibrium magnetic field in
the solar corona, above an active region of sunspots (Low 1993;
Wiegelmann & Neukirch 2003). This class of fields are normally
used to model the pre-flare coronal configurations and have the
advantage to allow large fields and currents to exist simultane-
ously without exerting any force on the material. This helps to
simplify the problem because it allows to use the spherical so-
lution for hydrostatic equilibrium without magnetic fields and
because this configurations are not subject to the Hall drift.

A force-free magnetic field obeys

∇ × B = µB (17)

B · ∇µ = 0 (18)

where the second equation is a result of the first one and the
Maxwell’s equation ∇ · B = 0.

Let us consider an axially symmetric magnetic configura-
tion. In spherical coordinates, with (θ, φ) being the angular co-
ordinates with respect to the magnetic field axis of symmetry,
a general magnetic field can be written in terms of the φ compo-
nents of the potential vector and the magnetic field as follows:

B =

(

1

r sin θ

∂(sin θAφ)

∂θ
,−1

r

∂(rAφ)

∂r
, Bφ

)

(19)

Therefore, Eq. (17) reads:

(

sin θ

r

∂(sin θBφ)

∂θ
,−1

r

∂(rBφ)

∂r
,

1

r

(

∂(rBθ)

∂r
− ∂Br

∂θ

))

=

µ

(

sin θ

r

∂(sin θAφ)

∂θ
,−1

r

∂(rAφ)

∂r
, Bφ

)

. (20)

For simplicity, we will consider solutions with µ =constant, so
that Eq. (18) is automatically satisfied, although more general
solutions exist. The equality of the r, θ components in Eq. (20)
is obviously satisfied if we take Bφ = µAφ. By analogy with the
core dipole, we try the ansatz Aφ = sin θ A(r), which leads to the
following equation for the φ components of Eq. (20)

d2A(r)

dr2
+

2

r

dA(r)

dr
+

(

µ2 − 2

r2

)

A(r) = 0. (21)

This is a form of the Riccati-Bessel equation for l = 1, which
has solutions of the form

A(r) = a jl(x) + bnl(x) (22)

where a, b are constants, x = µr and jl(x) and nl(x) are spherical
Bessel functions of the first and second kinds. For l = 1 we have,
explicitly:

j1(x) =
sin x

x2
− cos x

x
,

n1(x) = −cos x

x2
− sin x

x
· (23)

The spherical Bessel functions of the first kind are regular in the
origin ( jl(x) ∝ xl), while the functions of the second kind diverge
as nl(x) ∝ x−(l+1).

Hence, a general interior solution that matches (continuity
of the normal component of the magnetic field) with the vacuum
dipolar solution at the surface is

B = C

(

2
cos θ

r
A(r),− sin θ

r

∂(rA(r))

∂r
, µsin θA(r)

)

(24)

where C =
RSB0

2A(RS)
and B0 is the value of the magnetic field at

the pole. This magnetic field can be obtained from the following
potential vector

A = C (µr cos θ A(r), 0, sin θ A(r)) . (25)

Notice that this general solution includes all simple configura-
tions as particular limits. The core dipole can be recovered by
taking the limit µ → 0 and considering only the n1(x) functions
(a = 0 in Eq. (22)). Alternatively, in the limit µ → 0 but con-
sidering only the family of regular solutions j1(x), we arrive to
the homogeneous magnetic field. In both cases, the Bφ compo-
nent vanishes. We can also find solutions that match continu-
ously with the two components of the exterior dipole by setting,
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Fig. 2. Projections of the field lines on the (r, θ) plane for force-
free magnetic field configurations confined in the region between
Rint = 9.2 km and RS = 12.247 km. From left to right µ = 0.577,
1.569, 2.591 km−1. All configurations match continuously to an exter-
nal dipole.

l = 1, a = cos (µRS), and b = sin (µRS). The family of solu-
tions is parametrized by the value of µ, which can be interpreted
as a wavenumber. If we want to build crustal magnetic fields
that match with an external dipole we only need to adjust the
wavenumber to have a vanishing radial component in the crust-
core interface (r = Rint) and continuity of Br and Bθ at the surface
(r = RS). These values of µ are the solutions of

tan (µ (Rint − RS)) = µRint. (26)

In Fig. 2 we show three examples of crustal magnetic fields for
the first three solutions of Eq. (26) with Rint = 9.2 km and RS =

12.247 km.
In principle there are more solutions of Eq. (20) than the

linear one (Bφ = µAφ) that we have adopted. A more general
discussion about force-free configurations can be found in the
literature (Low 1993; Wiegelmann & Neukirch 2003).

Finally, we also want to mention that this general force-free
solution can be readily extended to higher order multipoles (i.e.
quadrupole). This can be done by replacing in Eq. (24) cos θ and
sin θ by the corresponding Legendre polynomial and its deriva-
tive, and using the spherical Bessel functions of the same index l.
Another advantage of this force-free solution is that, for constant
electrical resistivity (although in a realistic NS this approxima-
tion is not appropriate), one can readily estimate the diffusion
time. The evolution Eq. (13) is simplified to

∂B

∂t
= − 1

τdiff

B (27)

which solution reads

B = B0 e−t/τdiff . (28)

Here, B0 is the initial magnetic field and the decay time is

τdiff =
4πσ‖
c2µ2 , that for typical conditions in young neutron stars

is 106−107 years.

4. Thermal diffusion in highly magnetized neutron

stars

4.1. Equations

For very slowly rotating NSs, and neglecting the magnetic
force (which vanishes for force-free fields) the thermal evolu-
tion of neutron stars can still be described by the energy balance

equation

Cve
Φ(r) ∂T

∂t
+ ∇ ·

(

e2Φ(r)
F

)

= e2Φ(r)ǫ̇ (29)

where Cv is the specific heat (per unit volume), F is the en-
ergy flux and the source term (ǫ̇) includes all energy losses and
sources (neutrino emission, frictional or accretion heating, etc.).
The evolution equation can also be written in integral form ap-
plying Gauss’ theorem
∫

V

eΦ(r)Cv
∂T

∂t
dV +

∮

S

e2Φ(r)
F · dS =

∫

V

e2Φ(r)ǫ̇dV. (30)

In the diffusion limit, the energy flux is given by

eΦ(r)
F = −κ̂ · ∇

(

eΦ(r)T
)

(31)

where κ̂ is the thermal conductivity tensor. Defining a new vari-
able T̃ = eΦ(r)T , the components of the flux can be written as
follows

eΦ(r)Fr = −
(

κrre
−Λ∂rT̃ +

κrθ

r
∂θT̃

)

eΦ(r)Fθ = −
(

κθre
−Λ∂rT̃ +

κθθ

r
∂θT̃

)

(32)

where κi j are the components of the thermal conductivity ten-
sor. The φ component of the flux is not considered because we
assume axial symmetry.

In the presence of strong magnetic fields, the thermal con-
ductivities are different in the directions parallel and perpendic-
ular to the magnetic field. In the classical relaxation time ap-
proximation, and considering that only electrons carry heat, the
ratio between the parallel and perpendicular conductivities is re-
lated to the magnetization parameter (ωBτ0) as follows (Urpin &
Yakovlev 1980)

κ‖

κ⊥
= 1 + (ωBτ0)2. (33)

The heat conductivity tensor in spherical coordinates and with
the polar axis coinciding with the axis of symmetry of the mag-
netic field can be written as follows

κ̂ = κ⊥

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

I + (ωBτ0)2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b2
r brbθbrbφ

brbθ b2
θ bθbφ

brbφbθbφ b2
φ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ ωBτ0

⎛

⎜

⎜
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where I is the identity matrix and br, bθ, bφ are the components
of the unit vector in the direction of the magnetic field.

With the above expression for κ̂, the flux reads

eΦ(r)
F=−κ⊥

[

∇T̃ + (ωBτ0)2
(

b · ∇T̃
)

· b + ωBτ0

(

b × ∇T̃
)]

. (35)

The Hall contribution to the heat flux is given by the last term
on the right hand side of Eq. (35). If the magnetic field geometry
has only poloidal components, and the temperature distribution
does not depend on the azimuthal angle, φ, the divergence of the
Hall term vanishes (Geppert et al. 2004) and it does not affect the
energy balance Eq. (29). However, for a magnetic field structure
with a toroidal component, this term contributes to the heat flux,
even in axial symmetry. In the following, to simplify notation,
we will omit the tilde over the temperature and we will use the
symbol T for the red-shifted temperature.
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Fig. 3. Flux factor α as defined in Eq. (36) for a dipolar magnetic field
with Bp = 5× 1013 G, with (left panel) and without (right panel) taking
into account the effect of the motion of the ions (considered as free
particles).

4.2. Boundary conditions

Boundary conditions can be imposed in either the temperature
or the flux in the boundaries of our numerical domain. Only a
few years after birth the inner core of a NS becomes isothermal,
therefore, in the core-crust interface (r = Rint) we will impose a
fixed core temperature (Tc). At the surface we impose

F(B, T, θB) = α(B, T, θB)σT 4 (36)

where σ is the the Stephan-Boltzmann constant and α(B, T, θB)
is the integrated emissivity that depends on the particular model,
and θB is the angle between the magnetic field and the direction
normal to the surface element. At the temperatures of interest
and for magnetic fields intense enough to produce the conden-
sation of the gaseous layers, the emissivity at low energies is
strongly reduced compared to the blackbody case and depends
on the orientation angle (Brinkmann 1980; Turolla et al. 2004;
Pérez-Azorín et al. 2005; van Adelsberg et al. 2005).

In Fig. 3 we show the flux factor with (left) and without
(right) taking into account the effect of the motion of ions for
a dipolar magnetic field of B0 = 5 × 1013 G. Based on our previ-
ous results (Pérez-Azorín et al. 2005), we have obtained a poly-
nomial fit of α(B, T, θB) as a function of T6 (temperature in units
of 106 K) and cos (θB) for different magnetic field strengths (rel-
ative error <2%) with the following form:

α =

6
∑

i=1

6
∑

j=1

ai, jT
i−1
6 cos j−1(θB). (37)

The ai, j coefficients for B = 1013 G and 5 × 1013 G with and
without taking into account the effect of the motion of ions are
presented in Tables 4–7. The case of isotropic emission (black
body) can be recovered by setting α = 1.

4.3. Numerical test

The numerical algorithm consists of a standard finite difference
scheme fully implicit in time. The temperature is cell-centered,
while the fluxes are calculated at each cell-edge. In order to test
the code, we have studied the evolution of a thermal pulse in
an infinite medium (neglecting all general relativistic effects),
embedded in a homogeneous magnetic field oriented along the
z-axis. If the conductivity is constant in the medium, an an-
alytical solution for the temperature profile at a time t is the
following:

T (r, t) = T0

(

t0

t

)3/2

exp

[

− r2

4κ⊥t

(

sin2 θ +
cos2 θ

1 + (ωBτ0)2

)]

(38)

Fig. 4. Temperature profiles at different times comparing the analytic
solution (solid) and the numerical evolution (stars) of a thermal pulse
in a medium embedded in a homogeneous magnetic field. For clar-
ity, in the numerical solution we have shown only one out of every
six grid points. The parameters of the simulation are ωBτ0 = 3 and
κ⊥ = 102 (au), t0 = 10−4. The left panel shows the evolution of polar
profiles and the right panel corresponds to equatorial profiles.

where T0 is a constant (the central temperature at the initial time,
t0), κ⊥ is the transverse conductivity and (ωBτ0) is the magneti-
zation parameter. To check the accuracy of the method, we have
compared the numerical evolution of the pulse with the analyti-
cal solution, for different values of the parameters κ⊥ and ωBτ0.
As boundary conditions, we prescribe the temperature corre-
sponding to the analytical solution in the surface and we impose
F = 0 at the center. In Fig. 4 we show the comparison between
the analytical (solid) and numerical (stars) solution and for a
model with ωBτ0 = 3 and κ⊥ = 102 (au). The grid resolution
is 100× 40 (radial× angular). The deviations from the analytical
solution in all cases studied are less than 0.1%.

5. Microphysics input

The microphysical ingredients that enter in the transport
Eqs. (29) and (31) are the specific heat and the thermal con-
ductivity. Strictly speaking, the specific heat is not needed to
obtain stationary configurations, but we have chosen to evolve
Eq. (29) without sources with a fixed inner temperature until the
stationary solution is reached. Therefore, by using realistic mi-
crophysics input we will obtain also information about the ther-
mal relaxation timescales.

The dominant contribution to the specific heat is that from
electrons and ions. For electrons we use the formulae corre-
sponding to a relativistic degenerate Fermi gas while for ions
we follow van Riper (1991). The most important ingredient is,
however, the thermal conductivity, which has contribution from
electron, photon and phonon transport. In this section we sum-
marize the expressions used in the simulations.

5.1. Thermal conductivity

The region of interest covers a large range of densities, from
the core-crust boundary (≈1014 g/cm3) to the surface, which is
given by Eq. (9) in the models of condensed atmosphere. The
total conductivity includes the contributions of three carriers,

κ = κe + κrad + κph (39)

where κe is the electron conductivity, κrad is the radiative (pho-
ton) conductivity and κph is the phonon conductivity. In non
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magnetic neutron stars, heat is transported mainly by electrons in
the crust and in the inner envelope and by photons near the sur-
face, while the phonon transport is negligible. However, in the
presence of strong magnetic fields, this situation may change.
While for the transport along the magnetic field the phonon con-
tribution is still negligible, in the transverse direction the electron
transport is drastically suppressed, and the phonon contribution
may become the most important one. Let us consider each of this
contributions separately.

5.1.1. Electron transport

In the crust and the envelope of a neutron star the transport prop-
erties are mainly determined by the process of electron scattering
off strongly correlated ions. The study of the transport proper-
ties of Coulomb plasmas with and without magnetic fields has
been a focus of attention for decades (e.g. Flowers & Itoh 1976;
Urpin & Yakovlev 1980; Kaminker & Yakovlev 1981; Itoh et al.
1984). For the envelope, we will use the expressions obtained by
Potekhin (1999), who calculated the thermal and electrical con-
ductivities of degenerate electrons in magnetized envelopes by
means of an effective scattering potential that takes into account
multiphonon processes in Coulomb crystals and an appropriate
structure factor of ions in Coulomb liquids. For the crust, the
practical expression derived by Potekhin (1999) have been later
generalized (Gnedin et al. 2001) by including how the size and
shape of nuclear charge affects the transport properties as well
as reconsidering the electron-phonon scattering processes.

In our calculations we are using the results from Potekhin
(1999), whose code is of public domain1. For pedagogical pur-
poses, in order to make evident the effect of a large magneti-
zation parameter, we now summarize the classical relations for
degenerated electrons. Schematically, the thermal conductivity
can be written in terms of some effective relaxation time, τi j, as
follows

κi j =
π2k2

B
nec

2T

3ǫF
τi j(ǫF), (40)

where τi j are interpreted as inverse effective collision frequen-
cies. In the non-quantizing case, we can write explicitly the
different components in terms of the magnetization parame-
ter (ωBτ0)

τzz = τ0, τxx =
τ0

1 + ωBτ0

, τyx =
ωBτ

2
0

1 + ωBτ0

· (41)

The three main electron scattering processes that play a role in
our scenario are scattering off ions, electron-phonon scattering
and scattering off impurities. Semi-analytic expressions and fit-
ting formulae for the relaxation times and thermal conductivities
along the magnetic field for all three processes were derived by
Potekhin & Yakovlev (1996). The total contribution of electrons
to the thermal conductivity is then calculated as

κe =
(

κ−1
e−ph + κ

−1
e−imp

)−1
. (42)

In Fig. 5 we show the magnetization parameter, related to the
anisotropy of the thermal conductivity by Eq. (33), as a func-
tion of density and for different temperatures. For comparison,
we show results with different impurity concentration parame-
ter Q = nimp(Zimp − Z)2/ni. The dashed, solid, and dash-dotted
lines correspond to Q = 0, 0.1, and 10, respectively. For highly
inhomogeneous matter (Q = 10), the magnetization parameter
is strongly reduced in the crust (ωBτ0 ≈ 1).

1 www.ioffe.rssi.ru/astro/conduct/condmag.html

Fig. 5. Magnetization parameter (ωBτ0) against density for different
temperatures (from top to bottom 105, 106, 107, 108 K) and B = 1013 G.
The solid lines are calculated with an impurity parameter of Q = 0.1, the
dashed lines are for homogeneous matter (Q = 0) and the dot-dashed
lines correspond to highly inhomogeneous matter Q = 10.

At large temperature the total electron conductivity is weakly
dependent on temperature. If the temperature drops below the
Umklapp temperature (T ≪ TU), the Umklapp processes are
disallowed and κ ∝ T−4. Therefore, at high temperature the
dominant process is the electron-phonon scattering but at low
temperature the scattering off impurities becomes the dominant
contribution.

5.1.2. Photon transport

Radiative conduction becomes the most effective transport
mechanism in the outermost layers of the envelope, where elec-
trons are non degenerate. We employ the expressions derived by
Potekhin & Yakovlev (2001) for fully ionized iron, who fitted
previous results (Silant’ev & Yakovlev 1980).

Free-free transitions and Thompson scattering off free elec-
trons are the two contributions to the total radiative conductivity,
that is calculated according to

κrad =
(

κ−1
ff + κ

−1
T

)−1
. (43)

For temperatures below 107 K, the dominant contribution comes
from free-free transitions, which scales as ≈ρ−2T 6.5. Notice that
for T < 107 K we have κ⊥ ≈ 2κ‖.

5.1.3. Phonon transport

Energy transport by phonons is usually orders of magnitude less
effective than the usual electron or radiative transport. However,
in the situation that we are studying, the large anisotropy induced
by the magnetic field can suppress electron thermal conduction
in the perpendicular direction by factors of 103−106. Under this
circumstances, transport by phonons become important, since
this processes will become the most effective way to transport
energy in the perpendicular direction. For this reason, we need
to include it in our calculations.

In a first approximation, we consider a very simplified
model, in which the phonon distribution is characterized by a
Debye spectrum and all the relaxation times are functions of the
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wave vector of one mode only. In this approximation, the lattice
thermal conductivity can be expressed as

κph =
kB

2π2cs

(

kB

�

)3

T 3

∫ TD/T

0

τ(x)
x4 exp (x)

(exp (x) − 1)2
dx (44)

where cs is the sound speed, TD is the Debye temperature, x is
a dimensionless variable (x ≡ �ω/kBT ) and τ is the combined
relaxation time, whose reciprocal is the sum of the reciprocal re-
laxation times for all scattering processes considered, Umklapp
and impurity scattering processes (both dissipative) and the three
phonon normal scattering which are non dissipative (Holland
1963; Konstantinov et al. 2003):

τ−1 = τ−1
U + τ

−1
I + τ

−1
N . (45)

At temperatures T > TD, the lattice conductivity is mainly de-
termined by the Umklapp processes, and the integral (44) can be
approximated to the expression

κph ∼
ρc3

s a

4T
(46)

where a ≈
(

AmB

ρ

)1/3
is the lattice constant. At lower tempera-

tures (T < TD), dissipative processes make the conductivity to
increase very rapidly and the inclusion of impurity and normal
phonon scattering becomes necessary. These processes (which
conserve the total momentum) cannot by themselves lead to a
finite thermal conductivity, but do not allow very large heat cur-
rents to be carried by modes of long wavelength. In this low
temperature limit the thermal conductivity can be expressed in
the form (Callaway 1961)

κph =
kB

2π2cs

(

kB

�

)3

T 3

(

∫ TD/T

0
x4 exp (x)(exp (x) − 1)−2dx

)2

∫ TD/T

0
τ−1

D
x4 exp (x)(exp (x) − 1)−2dx

(47)

where τ−1
D
= τ−1

U
+τ−1

I
. In the limit τ−1

U
= 0 we recover the Ziman

limit (Ziman 1971)

κph =
2�ω3

D

360π3csTΓimp

(48)

where ωD is the Debye frequency and Γimp is a parameter that
takes into account the different atomic masses of the impurities
and the lattice deformation.

According to this expressions, in the crust and inner enve-
lope, the heat transport along the magnetic field is dominated by
the electron component, while phonons become the main trans-
port agent in the transverse direction (see Fig. 6). If the core tem-
perature is low enough (T < 105 K), the phonon contribution
becomes very important also in the parallel direction, making
the crust to be quasi isothermal. Near the surface, the radiative
conductivity dominates in both directions.

6. Results

Our aim is to find stationary solutions of the temperature distri-
bution in a given background magnetic field configuration. We
assume that the inner core is isothermal, and that the diffusion
time of the magnetic field (τdiff) is much longer than the re-
laxation time to reach thermal equilibrium so that the magnetic
field is kept fixed. We also assume that the sources or sinks of
energy (if any) are effective only at longer timescales. This as-
sumptions are justified because both the magnetic diffusion time

Fig. 6. Thermal conductivity due to electron transport (dashed line),
phonon transport (dot dashed line), photon transport (double dot
dashed) and total (continuous line). The left panels show the conduc-
tivity in the direction longitudinal to the magnetic field while the right
panels show the transverse conductivity, which is strongly suppressed.

(either Ohmic or ambipolar) and the cooling time are >105 years,
while the typical time to achieve the stationary solution (starting
from a constant temperature profile) is ≈103 years. Notice that
the diffusion timescale when the Hall instability occurs is about
104 years, so that in this case one would need to consider the
coupled evolution of the temperature and the magnetic fields.
Instead of solving the equation ∇ · F = 0 directly, we evolve
Eq. (29), without sources, until the stationary solution is reached.

The main effect of the magnetic field on the temperature
distribution can be guessed by looking at the expression of
the heat flux (35). When the magnetization parameter is large
(ωBτ0 ≫ 1), the dominant contribution to the flux is propor-
tional to (ωBτ0)2(B · ∇T ). Therefore, in order to reach the sta-
tionary configuration the temperature distribution must be such
that the surfaces of constant temperature are practically aligned
with the magnetic field lines (B · ∇T ≪ 1). This is shown ex-
plicitly in the left panel of Fig. 7, where we show the stationary
solution for a purely poloidal configuration confined to the crust
and the outer layers (poloidal confined, PC in the following).
This alignment is enforced in most of the crust and envelope,
and only near the surface strong radial gradients are generated.
When we introduce a toroidal component the situation changes,
because the Hall term in Eq. (35) induces large meridional fluxes
(order ωBτ0) which result in an almost isothermal crust. This
is clearly seen in the central panel, that shows the temperature
distribution for a force-free magnetic field (FF) with a toroidal
component present in the outer layers (crust and envelope). For
comparison, we also considered another non force-free model
(right panel) which has a toroidal component confined to a thin
crustal region (toroidal confined, TC in the following), with a
maximum value of 2 × 1015 G. It acts as an insulator keeping a
different temperature at both sides of the toroidal field. In the re-
gion external to the toroidal field, since only the poloidal compo-
nent is present we see again the alignment of isothermal surfaces
with the magnetic field lines, which would not happen if the Bφ
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Fig. 7. Upper panel: temperature distribution in the crust of neutron stars with different toroidal components. The poloidal component is the same
in all models (Bp = 1013 G) and it is confined to the crust (solid lines). The left panel shows results for a purely poloidal field, the central panel a
force-free configuration, and the right panel corresponds to a toroidal component confined to a narrow region of the crust. In the two latter cases
the dashed lines show contours of constant Bφ. The scale has been stretched about a factor 2 to enlarge the crustal region. Lower panel: same as
the upper panel but stretching the scale to enlarge the region of the envelope.

component extend all the way up to the surface, as in the central
panel. We must stress again that the poloidal field is the same
in all three models (solid lines, Bp = 1013 G), but the field lines
have been omitted in the central panel for clarity. The dashed
lines are contours of constant Bφ. In the lower panel of Fig. 7 we
show the same results but stretching artificially the low density
regions to make visible the gradients near the surface. A slight

north-south asymmetry provoked by the Hall term is visible in
the right panel.

The core temperature for all models is 5×107 K. Thus, the
anisotropy induced by the field becomes important not only in
the crust but also in the condensed envelope. The direct conse-
quence is a non-uniform surface temperature distribution shown
in Fig. 8, where we show the angular distribution of the surface
temperature for several magnetic field configurations, all of them
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Fig. 8. Surface temperature profiles as a function of the polar angle for
different magnetic field configurations with the same value at the pole
Bp = 1013 G. The core temperature for all models is 5×107 K. The mod-
els considered are: core dipolar (dashed), PC (dotted), TC (dash-dot),
and FF (thin solid line). In all cases we have included phonon transport
effects with Γimp = 0.1. The temperature distribution of Greenstein and
Hartke (49) is also shown for comparison (thick solid line).

with the same surface magnetic field (dipolar, Bp = 1013 G).
For comparison, we have also included (thick solid line) the
semi-analytic temperature distribution derived by Greenstein &
Hartke (1983),

T 4 = T 4
p

(

cos2 θB +
κ⊥
κ‖

sin2 θB

)

(49)

where θB is the angle between the normal vector to the surface
and the magnetic field. The figure compares the following mod-
els: core dipole (dashed line), PC (dotted line), FF (thin solid
line) and TC (dash-dot). Qualitatively, the purely poloidal con-
figurations (core dipole, PC) look similar to the Greenstein &
Hartke solution of Eq. (49), with quantitative differences of the
order of 10–20%. The general structure (relatively large hot po-
lar region, and narrow cool equatorial band) is reproduced by all
models without toroidal components of the magnetic field. This
situation changes when a toroidal magnetic field is included,
as for example in the force free configuration. In models with
important toroidal components, the surface thermal distribution
consists of a small hot polar region and a relatively large cooler
(about a factor 2–3) area. The slight north-south asymmetry pro-
voked by the Hall term is only visible in the TC model (compare
thin solid line with dot-dashed line).

In the models where large meridional gradients in the crustal
region are not present the phonon contribution to the thermal
conductivity is not relevant and varying the impurity concen-
tration barely changes the results. This is not true for the most
extreme models (PC, TC), where phonon transport can make a
difference. In Fig. 9 we compare the surface temperature dis-
tribution in the PC and TC models when phonon transport is
switched off. The solid lines correspond to models in which the
phonon contribution to the thermal conductivity is included (we
have taken Γimp = 0.1), while the dashed lines show models ob-
tained without including the phonon conductivity. Despite the
fact that the effect of phonons is evident in the TC model, we
must point out that the general distribution (small hot polar cap,
larger cooler region) remains similar.

A simple way to understand the results presented in this sec-
tion is based on the following arguments. The models can be
generally classified in two subclasses: i) magnetic field config-
urations that result in almost isothermal crusts (core dipole, FF,

Fig. 9. Surface temperature profiles as a function of the polar angle for
the PC and TC configurations. The dashed lines have been calculated
without taking into account the phonon contribution, while the solid
lines correspond to models including phonon transport effects with an
impurity parameter of Γimp = 0.1.

homogeneous) and ii) configurations for which large crustal tem-
perature gradients are present (PC, TC). The first subclass in-
cludes models without toroidal components but also models with
toroidal components present in the whole crustal region (i.e. FF).
As discussed at the beginning of this section, the Hall term in
Eq. (35) is responsible of the meridional heat flux that smears
out temperature anisotropies in the crust. For such models, the
surface temperature distribution is well reproduced by the clas-
sical Greenstein and Hartke formula (49) but noticing that the
dependence of θB with the polar angle θ is different for each
model. For a core dipole, we have

cos2 θB =
4 cos2 θ

1 + 3 cos2 θ
, (50)

for a FF model

cos2 θB =
4 cos2 θ

(1 + µ2R2) + (3 − µ2R2) cos2 θ
(51)

and for a homogeneous magnetic field cos2 θB = cos2 θ. We have
checked that T = T (θB) looks very similar in all three cases de-
spite the apparent differences in the surface distribution T (θ).
The size of the hot polar cap can be easily estimated for this
models. If we define the angular size of the polar cap as the an-
gle where the temperature has decreased a given factor (say a
factor 2, for example) with respect to the polar temperature, we
can solve for θ to obtain the polar cap size.

Models that admit strong crustal temperature gradients (PC,
TC) do not obey Eq. (49), and in principle there is no simple way
to obtain how the temperature varies with the polar angle. The
only general rule is that a strong toroidal component is necessary
to produce small hot polar caps.

6.1. Effective temperature

In Fig. 10 we show the dependence of the effective temperature
on the core temperature and the magnetic field strength. The ef-
fective temperature is defined as L = 4πR2

S
σT 4

eff
, where L is the

total integrated luminosity over the surface. This effective tem-
perature is the quantity usually obtained from black-body fits
to observational data, and plotted on cooling curves to compare
data with theoretical predictions. The three solid lines corre-
spond to three different core temperatures, from bottom to top
107, 5× 107, and 108 K, and for a core dipole configuration. The
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Fig. 10. Dependence of the effective temperature on the core temper-
ature and the magnetic field strength for two different configurations
core dipole (solid) and force free (dashes). We show results for three
different core temperatures, from bottom to top 107, 5× 107, and 108 K.

dashed lines correspond to the same core temperatures but for a
force free magnetic field. In all cases we observe a systematic
lower effective temperature (a factor ≈2) in configurations with
toroidal magnetic fields in the crust-envelope region. This means
that among NS with similar ages (i.e. similar core temperatures
during the neutrino dominated cooling era), those with strong
toroidal fields have an apparent effective temperature about a
factor 2 smaller than those with low magnetic fields or purely
dipolar configurations.

Our result can also be compared to the classical formula that
relates the temperature at the base of the envelope with the sur-
face temperature (Gudmundsson et al. 1982)

Tb,8 = 1.288

(

Teff,6

g14

)0.455

(52)

where Tb,8 is the temperature in the base of the envelope in
units of 108 K, Teff,6 is the surface temperature in units of 106 K
and g14 is the gravity acceleration in units of 1014 cgs. For the
three core temperatures (107, 5×107, 108 K) used in Fig. 10, and
assuming an isothermal crust, the surface temperature of non-
magnetized NSs would be of 0.05, 1.85 and 8.58 × 105 K, re-
spectively. The quite different effective temperatures predicted
by different models are relevant for the interpretation of the com-
parison of observational data with cooling curves.

6.2. Quantizing magnetic field effects

In the previous results the quantizing character of the mag-
netic field has been neglected. For 1013 G, Eq. (5) gives ρB ≈
4.8 × 105 g/cm3, while the density of the condensed surface is
ρs ≈ 7 × 104 g/cm3. Therefore only in the outermost thin layer
(ρ < ρB) the magnetic field can be considered strongly quan-
tizing while in most of the envelope it is weakly quantizing.
Including the quantizing effects on the conductivities in a trans-
port code is challenging because the rich structure in Landau
levels makes necessary a robust code and high resolution to han-
dle properly the gradients that might develop near each transi-
tion. For a selected number of models we have performed the
calculations including quantizing effects with the purpose of un-
derstanding the qualitative and quantitative differences with the
classical case. In Figs. 11 and 12 we show the results for the
same models as in Figs. 8 and 9 but including quantizing effects
on the electron thermal conductivity (Potekhin 1999). The two

Fig. 11. Surface temperature profiles as a function of the polar angle
for the same models as in Fig. 8 but including quantizing effects on the
electron thermal conductivity.

Fig. 12. Same as Fig. 9 but including quantizing effects on the electron
thermal conductivity.

main facts that we observe in this figures (present as well in other
models not shown) are the following. First, the average effec-
tive temperature is generally lower and the anisotropy is more
pronounced, i.e. a smaller angular size of the hot polar region.
Second, the surface temperature distribution shows small oscil-
lations in models without toroidal components near the surface
(core dipolar, PC, TC), associated to the oscillatory behaviour
of the thermal conductivity in the quantizing case. This can be
explained by the fact that the poloidal component is practically
radial and heat transport in the meridional direction is strongly
suppressed. The radial gradients are different at each latitude due
to the different magnetic field strength, and therefore different
densities at which electrons are filling the corresponding Landau
levels. This is shown in Fig. 13 where radial temperature profiles
for three different polar angles are plotted. The Landau levels are
clearly visible. This oscillatory behaviour cannot be smoothed
out by meridional heat fluxes because they are suppressed by a
factor ≈(ωBτ0)2. The exception is the FF model, for which oscil-
lations are not observed, because the it has a toroidal component
extended up to the surface. This makes possible the existence
of heat flux in the meridional direction because the Hall term is
order (ωBτ0)κ⊥.

6.3. Influence of the physical conditions of the outer layers

One of the important issues under debate is whether the enve-
lope and atmosphere will be in a gaseous or condensed state. In
order to estimate the dependence of our results on the choice
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Fig. 13. Temperature profiles as a function of the density for different
polar angles θ = 0, 45, 60, and 90◦. The magnetic field configuration is
TC with Bp = 1013 G and a core temperature of 5 × 107 K.

Fig. 14. Influence of the boundary condition on the surface temperature
distribution for a model with Tc = 5 × 107 K and a force-free mag-
netic field configuration with B = 1013 G. Results are shown for black-
body emission (dot-dashed), gaseous magnetic envelope (dashed), and
metallic surface with (solid) and without (triple dot – dash) taking into
account the motion of the ions.

of a particular model, we have compared four different outer
boundary conditions which represent the different possibili-
ties one can find. A common approach is to solve the 2D heat
transfer
equation only in the crust (Geppert et al. 2004) and match
at ρ ≈ 1010 g/cm3 to some magnetized envelope solution
(Potekhin & Yakovlev 2001). Alternatively, as we have dis-
cussed in this work, there is the condensed surface model in
which the emissivity at low energies may vary depending on
the way that the motion of ions in the lattice (fixed or free
ions are the two limits) is treated (Pérez-Azorín et al. 2005;
van Adelsberg et al. 2005). Also one can consider the simplest
model which is to assume that the condensed surface (e.g.
ρs = 7× 104 g/cm3, for B = 1013 G) radiates as a blackbody. We
have analyzed this four possibilities and we show the resulting
surface temperature distribution for all four models in Figs. 14
and 15, for the classical and quantizing cases, respectively.
The main difference, as stated previously, is that including
quantizing effects leads to lower average temperatures. Notice
also that when quantizing effects are included, the size of the hot
polar region is smaller and the temperature is nearly constant in
a large part of the surface of the star.

It must be stressed that these are all FF configurations, for
which the crust is very close to isothermal, and the gradients of

Fig. 15. Same as Fig. 14 but including quantizing effects of the magnetic
field.

temperature are generated in the low density region. The con-
clusion from this comparison is that not only the temperature at
the base of the crust, but also the physical conditions in the low
density layers affect the total luminosity (the average effective
temperature). However, the general shape of the surface temper-
ature distribution is qualitatively similar in all cases, which leads
to conclude that irrespectively of the physical assumptions, neu-
tron stars with strong magnetic fields do have large surface tem-
perature variations.

It a forthcoming work we will study models with stronger
magnetic fields (magnetar rather than isolated NS conditions) in
which the quantizing effects are probably even more important.
For the remaining of this work, and having established the qual-
itative trends that differentiate classical and quantizing models,
we will focus on analyzing, in the classical limit, a number of
other different issues that might have important consequences
on the emission properties.

6.4. Influence of impurities

The influence that impurities or defects in the lattice have on the
final temperature distribution may be important. Impurity scat-
tering dominates either at very low temperatures (where phonon
scattering is suppressed) or when the impurity level is very high.
For isolated NSs the values of the impurity parameter may vary
from Q ≈ 10−3 in very pure crusts to Q ≥ 10 in the amorphous
inner crust (Jones 2004). In accreting neutron stars Q is set by
the composition of the nuclear burning occurring at low density,
and it is likely that Q ≈ 100 (Schatz et al. 1999). The impu-
rity content also determines the critical field above which the
Hall effect dominates over purely Ohmic dissipation (Cumming
et al. 2004). Given this uncertainty, we have explored a variety
of models with the impurity parameter to test the sensitivity of
our results to the impurity concentration.

In Fig. 16 we show the resulting surface temperature distri-
butions corresponding to the PC and FF configurations and for
different values of the impurity parameter Q = 0 (dot-dashed),
0.1 (dashed), and 10 (solid). Only small corrections to the PC
configuration are visible, while the lines are indistinguishable
for the FF model. Therefore, the exact value of the impurity con-
centration might be important for the long term evolution of the
magnetic field and the temperature, but it does not seem to be
crucial for the stationary solution corresponding to a background
field.
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Fig. 16. Influence of the impurity content for models with Tc = 5×107 K
and two different magnetic field configurations (PC and FF), both with
the same poloidal component (B = 1013 G). We show results for Q = 0
(dash-dots), Q = 0.1 (dashes) and Q = 10 (solid).

6.5. Pulsations

The anisotropic temperature distribution obtained from our cal-
culations will translate into periodic pulsations if the neutron star
is rotating and the magnetic and rotation axis are not aligned.
Within a fully relativistic framework that includes light bending
effects (Page 1995; Page & Sarmiento 1996), we have calcu-
lated the visible luminosity curves for a number of models with
different magnetic field strengths and configurations. In Fig. 17
we show the observed luminosity obtained for models with a
core dipolar configuration with Bp = 1013 G and Tc = 107 K.
We denote by O the angle between the observer and the rotation
axis and by B the angle between the rotation and magnetic axis.
The numbers next to each line are the maximum pulsed fraction
(MPF):

MPF =
Fmax − Fmin

Fmax + Fmin

∣

∣

∣

∣

∣

B=π/2
· (53)

The dependence of the MPF on the different parameters can
be understood by analyzing the results summarized in Tables 2
(core dipolar configurations) and 3 (force free configurations).
Several interesting conclusions can be drawn from the results.
First, for a given core temperature, it depends very weakly on
the strength of the magnetic field (Bp), but can by up to twice
larger when the toroidal magnetic field is included (force free
models). For poloidal fields the MPF in the models we analyzed
is 16%, but it can be increased to 25–30% in the force-free mod-
els. We must remind that the toroidal component is larger in
about one order of magnitude than the poloidal one (see Eq. (24),
µRS ≈ 10). The anisotropy and therefore the variability may
be increased by using other magnetic field configurations with
larger toroidal components. The observed variability of isolated
neutron stars in consistent with this results, but some of them
show large pulse fractions (11% in RX J0720, 12% in RX J0420,
18% in RBS 1223) than seem to indicate the existence of toroidal
interior magnetic fields, and large angles between the rotation
and magnetic axis. The lack of pulsations in (RX J1856) is com-
patible with nearly aligned rotation and magnetic axis (B < 6◦).
The information about the variability correlated with the effec-
tive temperature and the optical excess flux can therefore give
relevant information about the magnetic field structure.

Fig. 17. Observed flux variability and the corresponding maximum
pulsed fraction for three different orientations of the magnetic axis with
a fixed observer position (O = π/2): solid (B = 0), dotted (B = π/2)
and dashed (B = π/4). The magnetic field structure is core dipolar with
Bp = 1013 G and Tc = 107 K.

6.6. A comparison to blackbody models

Since most spectral fits to real data are made with simple black-
body models, we have taken one of our models (FF, Bp = 1013 G,

Tc = 5 × 107 K) and fitted our results to a single blackbody. We
have assumed a column density of nH = 1.5 × 1020 cm−2, typ-
ical of galactic interstellar medium absorption. The comparison
between this model, and a BB fit is shown in Fig. 18. The X-ray
part of the spectrum is well fitted by a single blackbody but our
model predicts an optical flux about a factor 4 larger than the
blackbody fit to the high energy part. This factor may vary de-
pending on the magnetic field strength and geometry and it is
consistent with the systematic excess flux observed in the op-
tical counterparts of isolated neutron stars. More interestingly,
the condensed surface models also predict the existence of an

edge at an energy E ≈ �

(

ωBi
+ ω2

p/ωBe

)

(van Adelsberg et al.

2005; Pérez-Azorín et al. 2005), where ωp = (4πe2ne/me)
1/2 is

the electron plasma frequency, that for typical magnetic fields
(1013−1014 G) falls in the range 0.2–0.6 keV (depending also
on the gravitational redshift). Some spectral features have been
reported in that range although they are usually associated to
proton synchrotron lines. The only object for which an inde-
pendent estimate of the magnetic field is available is J0720,
for which the measure of Ṗ = 6.98 ± 0.02 × 10−14 (s s−1)
implies B = 2.4 × 1013 G (Kaplan & van Kerkwijk 2005).
The observed spectral feature is fitted by a Gaussian absorption
line at an energy of 0.27 keV, and has been associated to cy-
clotron resonance scattering of protons in a magnetic field with
B = 5 × 1013 G (Haberl et al. 2004). Assuming a magnetic field
strength (from Ṗ) of B = 2.4 × 1013 G, the condensed surface
model predicts a phase dependent edge at an energy (local) of
0.35 keV, which would imply a redshift of z = 0.29. The phase
dependent emitted spectrum for one of our models (FF) is shown
in Fig. 19. We have taken O = π/2 and B = π/2. The feature is
strongly dependent on the orientation, being stronger when the
magnetic field axis is pointing to the observer and practically
undetectable when the magnetic axis is normal to the direction
of observation. The angles have been chosen to show the most
extreme case, where the variability is very large. As reported in
Table 3, this particular model has a maximum pulsed fraction
of 0.24.
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Table 2. Maximum pulsed fraction for O = π/2 and B = π/2 with a core dipolar configuration.

Bp = 3 × 1012 G Bp = 1013 G Bp = 2.5 × 1013 G Bp = 5 × 1013 G Bp = 1014 G

Tc = 107 K 0.15 0.14 0.13 0.11 0.10

Tc = 5 × 107 K 0.16 0.16 0.16 0.15 0.13

Tc = 108 K 0.16 0.16 0.16 0.16 0.15

Table 3. Maximum pulsed fraction for O = π/2 and B = π/2 with a force-free configuration.

Bp = 3 × 1012 G Bp = 1013 G Bp = 2.5 × 1013 G Bp = 5 × 1013 G Bp = 1014 G

Tc = 107 K 0.18 0.18 0.18 0.19 0.21

Tc = 5 × 107 K 0.26 0.24 0.23 0.22 0.22

Tc = 108 K 0.28 0.27 0.26 0.25 0.24

Table 4. Coefficients of the fit to the emissivity from a condensed surface (Eq. (37)) for B = 5× 1013 G taking into account the effect of the motion
of ions.

ai, j 1 2 3 4 5 6

1 0.451428 0.652402 –0.329039 0.123172 0.107814 –0.0967540

2 –0.304007 –0.626414 –5.79256 17.3578 –20.8844 9.57023

3 –0.378297 4.48855 3.42040 –26.5822 38.1295 –18.8900

4 0.562032 –3.96036 –0.866190 17.5741 –26.3781 13.3072

5 –0.226386 1.36369 0.0520957 –5.29775 8.03772 –4.06952

6 0.0299993 –0.169923 0.0232908 0.568170 –0.880843 0.450272

Table 5. Same as Table 4 without taking into account the effect of the motion of ions.

ai, j 1 2 3 4 5 6

1 0.0520960 0.906625 –2.27950 3.50014 –2.73453 0.831342

2 –0.092588 3.96721 –6.00109 1.76058 3.73908 –2.65634

3 0.1884173 –6.88457 16.2169 –20.2954 13.1221 –3.36603

4 –0.0905443 5.4989 –15.7136 24.2137 –19.2636 6.14122

5 0.0197174 –1.92340 6.01936 –9.94622 8.30053 –2.73754

6 –0.001500 0.239160 –0.782216 1.33117 –1.13048 0.376769

Table 6. Same as Table 4 with B = 1013 G.

ai, j 1 2 3 4 5 6

1 0.37727 –0.0297095 0.172343 0.934048 –1.86330 1.05495

2 –1.32853 7.41110 –16.7803 15.8174 –4.53211 –1.57610

3 1.70549 –7.45357 16.4152 –14.9966 5.40906 0.726946

4 –0.826587 1.60020 2.15163 –13.0149 14.5113 –5.62832

5 0.185560 0.229112 –3.75523 9.92179 –9.52118 3.30446

6 –0.0162908 –0.076025 0.652672 –1.58083 1.48421 –0.505131

Table 7. Same as Table 5 with B = 1013 G.

ai, j 1 2 3 4 5 6

1 0.0682268 0.945109 –2.14347 2.99701 –2.20175 0.647961

2 –0.269514 4.23065 –6.58908 2.17098 4.27706 –3.28306

3 0.323785 –3.69871 2.05278 6.96692 –11.4661 5.26209

4 0.030067 –0.483140 11.2452 –27.8763 26.7549 –9.23072

5 –0.066218 0.77907 –6.42987 14.4756 –13.4195 4.50075

6 0.0118741 –0.131711 0.949772 –2.10127 1.94095 –0.648770
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Fig. 18. Comparison between the spectra of a FF model (solid line) with
Bp = 1013 G and Tc = 5×107 K and a single blackbody fit (dashed line).
The parameters of the real NS are M = 1.4 M⊙, R = 12.27 km, and we
have taken d = 117 pc and nH = 1.5 × 1020 cm−2. We have assumed
O = π/2 and B = 0. The parameters of the BB fit are given in the
figure. The optical flux of the FF model is a factor 4.3 larger than the
BB fit.

7. Conclusions

In this paper we have presented the results of detailed calcula-
tions of the temperature distribution in the crust and condensed
envelopes of neutron stars in the presence of strong magnetic
fields. The surface temperature distribution has been calculated
by obtaining 2D stationary solutions of the heat diffusion
equation with anisotropic thermal conductivities. From the va-
riety of strengths and configurations of the magnetic field ex-
plored, we conclude that variations in the surface temperature of
factors 2–10 are easily obtained with magnetic fields in the range
(B ≥ 1013–1014 G). The average luminosity (or the inferred ef-
fective temperature) does not depend much on the strength of
the magnetic field, but it is drastically affected by the geome-
try, in particular by the existence of a toroidal component. The
toroidal field acts effectively as a heat insulator forcing heat to
flow towards the poles. Therefore, it is the particular geometry (a
priori unknown) of the magnetic field that eventually determines
the size of the hot polar caps. A back of the envelope calcula-
tion to estimate the size of the polar cap is the following. For
purely radial magnetic fields the non-magnetic solution is not
affected while for purely tangential fields the temperature gradi-
ent is quite larger. Therefore the hot polar cap will be determined
by the angular size of the region in which the magnetic field is
nearly radial. For a classical dipole, the condition B2

r = B2
θ leads

to sin θ ≈ 2/
√

5, which gives a hot polar cap of about 63◦. For
FF models, for example, the condition B2

r = B2
θ + B2

φ leads to

sin θ ≈ 2/
√

5 + µ2R2. The configurations we have employed cor-
respond to µR ≈ 16, which gives an estimate of the size of the
hot polar cap of 7◦, in good agreement with the numerical re-
sults.

For purely poloidal configurations, the surface temperature is
high in a large fraction of the star surface and lower in a narrow
equatorial band, while for configurations with toroidal compo-
nents of the same strength as the poloidal one the temperature
distributions is more close to hot polar cap with a large cooler
area at low latitudes. Thus, this latter family of models shows
larger pulsation amplitudes and optical excess flux, in very good
agreement with the observed properties of isolated neutron stars.
We defer to future work for detailed fitting of real data with our

Fig. 19. Phase dependent emitted spectrum (unabsorbed) of a FF model
with Bp = 1013 G and Tc = 5 × 107 K. We have assumed O = π/2 and
B = π/2. From bottom to top, the different lines correspond to phase
angles of 0, 30, 45, 60, and 90◦. The hot polar cap (and therefore the
magnetic field axis) is pointing to the observer when the phase angle
is 0◦.

models, but preliminary calculations show that the spectral en-
ergy distribution and its variability can be easily explained with-
out fine tunning of the model parameters. This can be interpreted
as indirect evidence of the existence of toroidal fields in the crust
and envelopes of NSs. We have also investigated the influence of
some relevant inputs such as the physical conditions of the
surface (condensed, gaseous) by varying the outer boundary
conditions, i.e., the emissivity at a given temperature and B. We
found that the main conclusions remain qualitatively unchanged,
although quantitative differences can arise. We have also ex-
plored the effect of having different impurity content, finding
that their effect is not important in general, being only visible
in models without toroidal components.

Another interesting result is that the condensed surface
models predict the existence of an edge at an energy E ≈
�

(

ωBi
+ ω2

p/ωBe

)

that for typical magnetic fields falls in the

range 0.2–0.6 keV, where some spectral features have been re-
ported, and usually associated to proton synchrotron lines. The
energy of the spectral feature observed in J0720, as well as its
pulsation amplitude predicted by our models are consistent with
the inferred magnetic field. We also plan to extend our work to
calculations with stronger magnetic fields and higher tempera-
tures, typical condition of magnetars (SGRs, AXPs). The mean
caveat that we must point out is the large uncertainty in the par-
ticular structure of the magnetic fields inside neutron stars and
the need of a full 2D calculation of the relativistic structure of
neutron stars with arbitrary magnetic fields. The bottom line is
that magnetic fields do change significantly the thermal emis-
sion from isolated neutron stars and cannot be overlooked if
one expects to infer valuable information (radius, gravitational
redshift, composition) from the observed spectral energy distri-
bution. What one infers from the blackbody fits to X-ray obser-
vations (assuming a known distance to the object) is the prod-
uct T 4

∞R2
∞, and model dependent variations in the estimation of

the effective temperature translate into the estimate of the ra-
dius. Our models with toroidal components result in inferred
radii about a factor 3–5 larger than the BB radius or than the in-
ferred radius from a model with only poloidal component. This
naturally solves the problem of the apparent smallness of some
isolated neutron stars.

If the existence of strong magnetic fields in isolated NSs
is confirmed, we will need more detailed calculations coupling
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the evolution of the magnetic field with the temperature before
we can establish firm constraints on NS properties by fitting
observational data.
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