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ABSTRACT 

This paper describes a new computational method of fully automated anisotropic 

triangulation of a trimmed parametric surface. Given as input: (1) a domain geome-

try and (2) a 3 x 3 tensor field that specifies a desired anisotropic node-spacing, this 

new approach first packs ellipsoids closely in the domain by defining proximity-based 

interacting forces among the ellipsoids and finding a force-balancing configuration using 

dynamic simulation. The centers of the ellipsoids are then connected by anisotropic De-

launay triangulation for a complete mesh topology. Since a specified tensor field controls 

the directions and the lengths of the ellipsoids' principal axes, the method generates a 

graded anisotropic mesh whose elements conform precisely to the given tensor field. 

Keywords: Unstructured mesh, anisotropy, parametric surface, metric tensor, Delaunay 
triangulation. 

1. Introduction 

Triangulating parametric surfaces is an essential task in many computer applica-

tions, including finite element method (FEM) and computer graphics. The original 

challenge in surface triangulation was to create a well-shaped graded mesh, that 

is, to generate triangles as equilateral as possible with the element size distribution 

conforming to a given metric. There are many algorithms proposed for this isotropic 

graded meshing problem, and some of them are commercially available. 

The isotropic meshing problem has thus been mostly solved, but a new challenge 

now is to triangulate a surface into an anisotropic mesh, a mesh stretched in a given 
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direction. An anisotropic mesh is often advantageous in terms of computational 

cost and solution accuracy when physical phenomena on a surface or a geometric 

property of a surface has strong directionality. 

For example, in fluid dynamics simulation using FEM, we prefer an anisotropic 

mesh stretched along shock/boundary layers and stream lines because a fewer mesh 

elements are required than in isotropic meshing to obtain the same level of solu-

tion accuracy. When simulated phenomena have strong directionality, as in fluid 

dynamics, an anisotropic mesh is more efficient in terms of computational time and 

solution accuracy than an isotropic mesh. The desired anisotropy of a mesh, how-

ever, is usually unknown prior to the analysis, and thus we have to perform adaptive 

remeshing (refinement and coarsening) based on the analysis result. 

Another situation where we prefer an anisotropic mesh is when we approximate 

a curved surface by piecewise linear triangular elements. It is efficient to use an 

anisotropic mesh whose edge sizes are adjusted according to the directions of the 

principal curvatures. In order to equidistribute an approximation error, the edge 

length should be longer in a low curvature direction, and shorter in a high curvature 

direction. 

In this paper we propose a versatile computational method of automatically 

generating an anisotropic graded triangular mesh of a trimmed parametric surface, 

applicable to FEM analyses and surface approximations. 

Let us first define our problem of anisotropic triangulation of a parametric sur-

face. We assume that an anisotropy is given as a 3 x 3 tensor field defined over a 

domain to be meshed. The surface triangulation problem is then stated as follows: 

Given: 

• a geometric domain on a parametric surface S(u,v) trimmed by trimming 

curves Ct(s) 

• inside curves Q ( s ) and vertices V on which nodes are exactly located 

• a desired anisotropic node spacing distribution, given as a 3 x 3 tensor field 

M(x) 

Genera te : 

• an anisotropic graded triangular mesh that is compatible with trimming curves, 

inside curves, and inside vertices 

In the above problem statement, each surface patch is defined as a mapping, de-

noted as S(u,v) = (x(u,v)Jy(u,v),z(u,v)), from a rectangular region called para

metric space into a 3D coordinate system called object space. A surface patch can 

be trimmed by restricting the rectangular region to a subset called the trimmed 

region, and its boundary curves are called trimming curves, denoted as Ct(s) = 

(x(s), y(s), z(s)). Occasionally we need to define extra curves and vertices inside the 

trimmed region so that some nodes are exactly located on those geometric elements. 

These curves and vertices are referred to as inside curves and inside vertices, de-

noted as Ci(s) = (x(s),y(s),z(s)) and V = (x,y,z) respectively. The actual curve 
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and surface representations can be of any form, as long as they are continuous and 

tangent vectors can be calculated anywhere on the curves and surfaces. 

In order to generate an anisotropic triangular mesh over a given trimmed para-

metric surface, we modified and extended the bubble mesh method that we previ-

ously proposed for isotropic meshing.9'11'12 The original bubble meshing procedure 

consists of two steps: (1) pack an appropriate number of spheres, or bubbles, closely 

in the domain, while the sizes of the spheres are adjusted based on a specified node 

spacing scalar field, and (2) connect the bubbles' centers by constrained Delaunay 

triangulation to generate node connectivity. The novelty of this method is that the 

close packing of bubbles mimics a pattern of Voronoi regions that yield well-shaped 

triangles and tetrahedra. Although the original bubble mesh using sphere packing 

creates a well-shaped, graded triangular or tetrahedral mesh, its application is lim-

ited to isotropic meshing because the close packing of spheres, or isotropic cells, 

naturally generates an isotropic node distribution. 

In this paper, to apply the bubble mesh concept to anisotropic meshing of para-

metric surfaces, we assume as input a 3 x 3 tensor field that specifies the desired 

anisotropy of a mesh. With this tensor field, a spherical bubble is deformed to an 

ellipsoid whose directions and lengths of the principal axes are calculated from the 

eigenvectors and eigenvalues of the tensor respectively. By packing ellipsoidal bub-

bles closely in the domain, a set of nodes is distributed so that a graded, anisotropic 

triangular mesh is formed when the nodes are connected by anisotropic Delaunay 

triangulation. 

The remainder of the paper is organized as follows. After reviewing related 

previous work (Section 2), we give an overview of our triangulation procedures 

(Section 3). We then give the derivation of a metric tensor for parametric surfaces 

(Section 4), physically-based bubble packing (Section 5), and anisotropic Delaunay 

triangulation (Section 6). Finally we show generated anisotropic meshes (Section 

7) and close with discussion and conclusions (Section 8). 

2. Related Work 

In this section we review related work on three technical issues: (1) the usage 

of a tensor matrix for representing anisotropy; (2) interacting particles; and (3) the 

original bubble mesh for isotropic meshing. 

2.1. Metric Tensor for Representing Anisotropy 

One common way to represent an anisotropy is to define a metric tensor field, 

M, over the domain.4'3,2'1 M is a symmetric positive-definite 2 x 2 matrix in two 

dimensional problems, and a symmetric positive-definite 3 x 3 matrix in three di-

mensional problems. Castro-Diaz et al. show how a metric tensor can be defined 

so that it improves the quality of the adapted meshes in flow computations with 

multi-physical interactions and boundary layers.4 Bossen and Heckbert use as input 

a 2 x 2 metric tensor in generating a 2D planar anisotropic triangular mesh using a 

system of interacting particles.3 Borouchaki et al. demonstrate how a metric tensor 
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can be used to generate an anisotropic triangular mesh on a surface and to convert 

it to a quadrilateral mesh.2 Shimada uses a 2D vector field equivalent to a 2 x 2 

tensor for 2D anisotropic meshing.10 

In this paper we also use the same metric tensor to control the size and the 

shape of an ellipsoid to be packed in a domain. Note that this tensor matrix is 

used not only to specify anisotropy of a mesh but also to dictate the element size 

distribution of the mesh. 

2.2. Interacting Particles 

A particle system is a collection of particles that moves over time according to 

either a deterministic or a stochastic set of rules or equation of motion. In com-

puter graphics, a particle system was originally used to model and render natural 

fuzzy phenomena such as fog, smoke, and fire.8 While early particle systems had 

little or no interparticle interaction, particle systems with proximity-based force 

interaction are recently used for different purposes, including Turk's re-tiling of 

a polygonal surface,15 Szeliski's surface modeling,14 de Figueiredo et al.'s polygo-

nization of implicit surfaces, 5 Witkin and Heckbert's sampling and controlling of 

implicit surfaces,16 and Fleischer et al.'s texture generation.6 

These interacting particle systems use either repelling only or repelling and 

attracting forces among particles. If the magnitude and range of the force are 

uniform, the system creates a uniform distribution of particles yielding a hexagonal 

arrangement. Uneven, or graded, distribution can also be obtained by adjusting 

the magnitude and the range of the interparticle forces. 

Bossen and Heckbert apply an interacting particle system to 2D anisotropic FEM 

mesh generation.3 The method uses a 2 x 2 metric tensor to specify an anisotropy 

in a planar region, similar to Castro-Diaz's,4 and generates a anisotropic node dis-

tribution using a proximity-based force similar to Shimada's.9'11'12 This approach 

seems to be successful and to create a high-quality anisotropic 2D mesh. In terms 

of the definition of the interacting force, it is most similar to our bubble mesh in 

the 2D case. 

2.3. Bubble Mesh 

The bubble system is similar to the particle systems used in computer graphics 

in the sense that discrete bodies interact in 3D space as a result of the application 

of pairwise, repulsive/attractive forces. However, there are several unique charac-

teristics that make this method particularly suitable for FEM mesh generation: 

• A bubble system can triangulate a curved domain, a planar domain, a surface 

domain, a volumetric domain, and a hybrid of these domains (a non-manifold 

geometry) in a consistent manner. Bubbles are packed in order of dimension, 

i.e., vertices, edges, faces, and volumes, easily identified in CAD data. (See 

Figure 1.) 

• Unlike some early particle systems for rendering, particle motion and its dy-

namic simulation themselves are not the focus. The model and the numerical 
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Fig. 1. Bubble meshing procedures* 

solution of a bubble system are devised specifically to minimize the computa-

tional time necessary for reaching a force-balancing configuration. 

A quick initial guess at the final bubble configuration is obtained by using hi-

erarchical spatial subdivision. This reduces the computational time necessary 

for the normally time-consuming process of dynamic simulation or physically 

based relaxation. 

Unlike in a system of uniform particles, bubble diameters are adjusted indi-

vidually by the node-spacing function. This makes precise control of triangle 

size possible throughout the mesh. 

A population control mechanism is used during relaxation to remove any su-

perfluous bubble that is largely overlapped by its neighbors, and to subdivide 

any lone bubble missing some neighbors, so that a given domain is filled with 

an appropriate number of bubbles. This automatic feature drastically reduces 

the time necessary for the system to converge to a force-balancing configura-
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tion. 

In the original bubble mesh, spheres are closely packed to create isotropic meshes 

in ID, 2D, surface, and 3D domains.9'11,12 The method was later extended to gen-

erate a 2D planar anisotropic mesh by packing ellipsoids instead of spheres and 

modifying a circumcircle test in Delaunay triangulation.10 In this paper, we demon-

strate that the same idea of packing ellipsoids can be applied to anisotropic meshing 

of a trimmed parametric surface. The proposed surface meshing can be used as a 

subprocess of 3D and non-manifold meshing, and anisotropic meshing of such volu-

metric domains can be performed by the same ellipsoidal bubble packing. (Simply 

replace the spheres in Figure 1 by ellipsoids.) 

3. Basic Approach 

The novelty of our anisotropic meshing lies in the process of packing ellipsoidal 

bubbles closely in a domain. We achieve this close packing configuration by defin-

ing a proximity-based interbubble force and then solving the equation of motion 

numerically to yield a force-balancing configuration. 

The first part of this section discusses the order of packing ellipsoidal bubbles, 

and the second part describes how the shapes and sizes of the bubbles are specified 

using 3 x 3 tensor matrices. 

3.1. Triangulation Procedures 

In order to obtain anisotropic node locations, ellipsoidal bubbles are packed on 

geometric entities in order of dimension as shown in Figure 2, that is: 

1. Bubbles are placed on all the vertices V, including inside vertices, as well as 

the endpoints of trimming curves and inside curves. 

2. Bubbles are packed on all the trimming curves Ct and inside curves C t . 

3. Bubbles are placed inside the trimmed region of the surface S. 

In the above process it is essential that we first place bubbles on geometric entities 

of lower dimension. In this way two fixed bubbles are already placed at the two 

endpoints of a curve when bubbles are packed on the curve, and these two bubbles 

are stable throughout the packing process, preventing moving bubbles from escaping 

the range of the curve. Similarly, when bubbles are packed inside the trimmed region 

of a surface, the trimming curves are already filled with fixed bubbles, preventing 

moving bubbles from escaping the trimmed region. In other words we put higher 

priority on the bubble placement of lower dimensional elements, i.e., vertex bubbles 

over edge bubbles, and edge bubbles over face bubbles. This strategy makes sense 

because lower order geometric elements are often more critical in FEM analysis. 

Once all the bubbles are packed so that they cover the entire surface domain 

without significant gaps and overlaps, their centers are connected by anisotropic 

Delaunay triangulation for a complete mesh topology. The anisotropic Delaunay 

triangulation is detailed in Section 6. 
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Fig. 2. Ellipsoidal bubble packing procedure. 

3.2. Ellipsoidal Bubbles 

As in previous work of anisotropic mesh generation,4'3,2 we assume as input a 

symmetric positive-definite 3 x 3 metric tensor field M(x) that represents a desired 

anisotropy. We then use this metric tensor to specify the shapes and sizes of the 

ellipsoidal bubbles packed in 3D space. Such a 3 x 3 tensor matrix can be charac-

terized by three eigenvalues A$, i = 1,2,3 and three eigenvectors v,, i = 1,2,3. 

The eigenvalues define the inverse squares of the radii of the major, medium, 

and minor radii of the ellipsoidal bubble, and they are calculated by solving the 

equation 

d e t | M - A l | = 0 . (1) 

After the eigenvalues Â  are determined, the eigenvectors v^ can be found by solving 

the equation 

Mvi = AiVi, i = 1,2,3. (2) 

The three eigenvectors are thus expressed as 

Vi = A*ei, i = 1,2,3, (3) 

where e$, i = 1,2,3 are unit vectors in the directions of the eigenvectors v^, i = 

1,2,3. These unit vectors are mutually orthogonal, and they are used to define the 

directions of the major, medium, and minor axesa of an ellipsoidal bubble. 

Given unit vectors ei , e2, and e3, of the major, medium, and minor axes of an 

ellipsoid, and the diameters di, ^2, and ^3, along these axes, a 3 x 3 metric tensor 
a I n some computational mechanics applications, particularly in the study of materials, these 

axes are referred to as the principal axes of the tensor and they are physically important. For 
example, if the tensor is a stress tensor, the principal axes are the directions of normal stress with 
no shear stress. 
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RT = R 

is written as 

M = R 0 
0 

A2 

0 

0 

0 

A3 

/ (d i /2)" 2 0 0 

' 0 (d2/2)~
2 0 | R 

V o o (4/2) 
(4) 

R = ( ei e2 e3 ) = I eiy e2y e32/ 1 , (5) 

where 

and di, i = 1,2,3 are the ellipsoid's diameters along the principal axes. The size and 

the shape of an ellipsoidal bubble is thus given as a function of its center position 

using the above 3 x 3 tensor field. 

4. Metr ic Tensor for Pa ramet r i c Surfaces 

Although we need a 3 x 3 metric tensor field M(x) to specify the size and shape 

of an ellipsoid, a desired anisotropy is often given by a 2 x 2 metric tensor field 

defined in either parametric space or object space. A good example of such a case 

is when a surface is triangulated based on its curvature. Hence it is important that 

we discuss the following two issues in this section: 

• How to find a corresponding ellipse, or a 2 x 2 tensor in parametric space, when 

an anisotropy is defined by a 2 x 2 tensor in object space. This is necessary 

for anisotropic Delaunay triangulation in parametric space. 

• How to define an ellipsoid, or a 3 x 3 tensor, in object space, necessary for 

force calculation, when only a 2 x 2 tensor in object space is given as input. 

The two issues are discussed in the remaining of this section, Section 4.1 and Section 

4.2 respectively. 

4*1' Finding Ellipses in Parametric Space 

Given a point on a surface, we can calculate two tangent vectors in the u direction 

and v direction, | j | and | | respectively. We then define a local coordinate sytem 

x'y'z' in such a way thiat: (1) the rs'-axis is parallel to | | ; (2) the z'-axis is parallel 

to the normal direction § | x | | ; and (3) the y'-axis is parallel to the cross product 

of the z'-axis and the x'-axis (See Figure 3(b)). 

A 2 x 2 metric tensor M ^ / represents an ellipse in object space lying on the 

tangent plane x'y', and this tensor can be expressed as 

M x V = R2(0) ( ^ 2
 ( d 2 / ° 2 ) _ 2 \ R2(6f, (6) 

where 0 measures an angle between the x'-axis and the major axis of the ellipse, 

and d\ and d% are diameters along the major axis and the minor axis. 
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(a) uv parametric space (b) xyz object space 

Fig. 3. Tensor ellipse on a tangent plane. 

To find a corresponding ellipse in parametric space, we first find the following 

2 x 2 matrix A that transforms the x
f
y

f coordinate system to the uv coordinate 

system, 

C) 
HII II f II-KM 

||£H(«.) 
(7) 

where 6W measures an angle between the x'-axis and | | . 

Using this coordinate transformation matrix A and the 2 x 2 metric tensor in 

object space M ^ ' , the 2x2 metric tensor in parametric space M.uv can be obtained 

as 

\ m2i m22 J ' 

This is a 2 x 2 symmetric positive-definite matrix and hence mn = rri2i-

By calculating eigenvalues and eigenvectors, we can also express M.uv in the 

form 

Muv = A M x V A2 
(8) 

M.uv = R*2($p) 
(dPi/2)' 

0 

0 
R-2(#p) (9) 

(<V2)-
2 

where 0P measures an angle between the ti-axis and the major axis of the ellipse in 

parametric space, and dpi and dP2 diameters along the major axis and the minor 

axis in parametric space. The implicit form of this ellipse is 

muu
2 + m22^2 + 2mi2uv = 1. (10) 

Now we have found how to calculate a corresponding 2 x 2 metric tensor, or 

an ellipse, in parametric space when a 2 x 2 tensor field is given on the surface in 

object space. 

A particularly useful 2 x 2 metric tensor is one based on the curvature of a 

surface; a surface region of high curvature is meshed with fine triangles, and a 

region of low curvature with coarse triangles. The curvature changes depending 

on a cross-sectional plane perpendicular to the tangent plane, and two principal 

curvature directions can be identified. These two principal axes are orthogonal, 
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and they represent the directions of the maximum radius of curvature and the 

minimum radius of curvature. In order to equidistribute the approximation error, 

one can define d\ and d2 in Equation 6 as follows 9 '12 

di = mini2\j2epmax - e2, Dmax), 

d2= min\2^2epmin - e 2 , D m a x ) , (11) 

where Pmin and pmax denote the minimum radius of curvature and the maximum 

radius of curvature respectively, e a target constant error between the original sur-

face and the mesh, and Dmax the allowable maximum size of the diameter of an 

ellipsoid. Setting this maximum size is necessary because, when a surface is nearly 

flat in one direction, pmax approaches infinity, yielding an oversized mesh element. 

4-2. 2 x 2 Metric Tensor in Parametric Space 

As mentioned earlier in this section we also need to find how to define a 3 x 3 

metric tensor, or a tensor ellipsoid, when only a 2 x 2 metric tensor is given on the 

surface. This is the process of expanding ellipses to ellipsoids by adding a diameter 

along the third axis. The process is essential because, as detailed later in Section 5, 

interbubble forces are calculated using ellipsoids defined by a 3 x 3 metric tensor. 

To decide the diameter along the third axis, parallel to the normal to the surface, 

we compare the two diameters d\ and d2 along the two principal axes on the tangent 

plane x'y
1 and give the smaller value to the diameter along the third axis. The 3 x 3 

metric tensor is thus defined as 

"M.XyZ = R 

/ ( 4 /2 ) " 2 0 0 \ 

0 (rf2/2)"
2
 0 

I 0 0 (min(dud2)/2\ J 

R r . (12) 

Although there are other ways to define the ellipsoid diameter along the third 

axis, for example by taking the average of d\ and d2, we choose to use the mini-

mum of d\ and d2 because a smaller diameter gives a smaller element size in the 

surface normal direction, which is advisable if the surface triangulation is used as a 

subprocess of three dimensional meshing. 

5. Bubble Packing by Proximity-Based Forces 

5.1. Interbubble Forces 

In isotropic meshing the ideal node configuration is a regular hexagonal arrange-

ment, a repeating pattern often observed in nature. One such example of a regular 

hexagonal arrangement is a molecular structure; the pattern is created by the van 

der Waals force, which exerts a repelling force when two molecules are located closer 

together than the stable distance and exerts an attracting force when two molecules 
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are located farther apart than the stable distance. One of the mathematical repre-

sentations of this van der Waals force is 

f(r) = 12Ar~
13

 - 6Br~7, (13) 

where A and B are positive constants, and r is the distance between two points. 

The first term describes the repulsion force, and the second the attraction force. 

Since the van der Waals force creates a regular layout of points, as observed 

in metal bonding, we could simply take one of the standard mathematical models 

of this force and implement it as the interbubble force field. This is not a good 

approach, however, because our goal is not the realistic simulation of the behavior 

of molecules, but is to find a force-balancing configuration efiiciently. This is why 

we have devised the following simplified force model using a single piecewise cubic 

polynomial function. 

Let the positions of adjacent bubbles i and j be x$ and x -̂; the current distance 

between the two bubbles l(xi,Xj); the target stable distance Zo(x»,Xj); the ratio 

of the current distance and the target distance tx;(xi,x7) = i****?) a n ( j ^e cor_ 

responding linear spring constant at the target distance ko. Our simplified force 

model can then be written as 

. , x f ^-(l.25w
3
 -2.375w

2
 +1.125) 0 < t u < 1 . 5 „ .. 

/ ( w ) s =
i ° o il<». (14) 

As shown in Figure 4, this force model applies either a repelling or attracting force 

between two bubbles based on the following distance comparison. Assuming that 

two bubbles are adjacent to each other, a repelling force is applied if I is smaller 

than ZQ, or if w < 1.0. An attracting force is applied if I is larger than io3 or if 

1.0 < w < 1.5. No force is applied if the two bubbles are located exactly at the 

stable distance or if they are located much farther apart, the cases where w = 1.0 

or 1.5 < w. 

In the original isotropic bubble meshing, where two bubbles are spherical, the 

stable distance can be calculated simply as the sum of the radii of the two bubbles 
9,11,12 

where d(xi) and d(xj) are the diameters of bubble i and bubble j respectively. If the 

two bubbles are ellipsoidal, however, this target stable distance should be calculated 

as the sum of the two lengths, measured along the line segment that connects the 

centers of the two ellipsoids, from the center to boundary of each ellipsoid (See 

Figure 4). Let these two lengths be Uj and Iji] the target stable distance lo is then 

given as 

l0(xi,Xj) = lij+lji, (16) 

where Uj is calculated with a relatively low computational cost by multiplying the 

tensor matrix M(x^) and a unit vector from x^ to x^, and Iji is calculated similarly. 

Note that Equation 15 is a special case of Equation 16. 
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I, hi h Ij, 

(a) Attracting (b) Repelling (c) Stable 

Fig. 4. Target stable distance. 

fir) 

Repelling 

force 

Attracting 
force 

(a) van der Waals force (b) Implemented simplified force 

Fig. 5. Interbubble proximity-based force. 

Compared to the van der Waals force, our force, as shown in Figure 5, has the 

following two characteristics that make it suitable for our physically-based relax-

ation: 

• The force is saturated near tx/=0, where two bubbles are located extremely 

close together. This prevents the interbubble force from growing infinitely 

large and causing numerical instability in dynamic simulation. 

• The force interaction is active only within a specified distance and only when 

two bubbles are adjacent. 

The second point is particularly important to reduce the single most time con-

suming process in physically-based node placement: the calculation of pairwise 

interaction forces. In our implementation, we run the anisotropic Delaunay tri-

angulation, detailed in Section 3.5, every certain number of iterations in order to 

identify adjacent pairs of bubbles. Force is exerted, consequently, only on adjacent 

bubbles. 

5.2. Physically-Based Mesh Relaxation 

Given the proximity-based interbubble force, our goal of physically-based relax-

ation is to find a bubble configuration that yields a static force balance in a direction 

tangential to the surface. In other words, we want the summation of interbubble 

force vectors applied to a bubble to be parallel to the surface normal direction. This 

condition can be written as 

fi - 1 ^ = 0, t = l , . . . , n , (17) 

1.0 15 
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where fj represents the total force on bubble % from all its adjacent bubbles, n^ the 

surface normal § | x | | at the location of the bubble center x^, and n the number 

of mobile bubbles. 

Due to an arbitrarily defined tensor field and geometric constraints on bubble lo-

cations, Equation 17 is highly nonlinear, and thus it is difficult to solve the equation 

directly by a multidimensional root-finding technique such as the Newton-Raphson 

method. Our alternative approach is to assume a point mass m at the center of 

each bubble and the effect of viscous damping c, and to solve the following equa-

tion of motion6 by using a standard numerical integration scheme, the fourth-order 

Runge-Kutta method. 

m±i(t) + c±i(t) = fi(t), i = 1 , . . . , n. (18) 

There are two subprocesses that we need to perform in solving Equation 18 nu-

merically: (1) imposing geometric constraints on bubble movements so that bubbles 

do not pop out of a curve or a surface; and (2) adjusting the bubble population so 

that a given surface domain is filled with an appropriate number of bubbles. The 

two subprocesses are briefly described below. 

Imposing geometric constraints on bubble movements is important. Because 

a new bubble location obtained by the numerical integration of the equation of 

motion is not constrained to a curve or surface, we need to move the bubbles 

back onto the curve or the surface. We accomplish this in the following two steps: 

(1) calculate a corresponding displacement in parametric space by projecting the 

unconstrained displacement onto unit tangent vectors of the curve or the surface; 

and (2) map the displacement onto the curve or the surface. The basic approach to 

impose geometric constraints on bubble movements is common to both anisotropic 

meshing and isotropic meshing, and more details can be found elsewhere.9'11'12 

Another process incorporated in solving the equation of motion is adaptive bub-

ble population control. This is essential because we do not know beforehand an 

appropriate number of bubbles that is necessary and sufficient to fill a region. Al-

though our initial bubble configuration generator gives a reasonably good guess, to 

produce an optimum number of bubbles in the domain we implemented a procedure 

of adaptively adding and deleting bubbles based on local population density. To 

identify areas that are either too sparse or too crowded we first perform triangula-

tion when the system of bubbles becomes stable, and then we check the lengths of 

the triangle edges to see if they are close to the desired lengths specified by a given 

tensor field. An edge much longer than the desired length indicates that there is a 

significant gap around it and thus a new bubble is added at the middle point of the 

edge. Conversely, an edge much shorter than the desired length means that there 

is a significant overlap and thus a bubble needs to be deleted. 

bThe first order equation can also be used.3 In either case, the essential point is that after 
a certain number of iterations the system reaches a virtual equilibrium, where both the velocity 
term x and the acceleration term a; approach zero, leaving a static force balance. 
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(a) Original circumcircle test will choose AX1X2X3 and AX1X3X4 

(b) Anisotropic circumcircle test with M.uv = I J will choose AX1X2X4 and AX2X3X4 

Fig. 6. Anisotropic circumcircle test. 

6. Anisotropic Delaunay Triangulation 

Once a force-balancing configuration of ellipsoidal bubbles is obtained, the bub-

bles' centers must be connected to form a complete triangular mesh. In connecting 

nodes, Delaunay triangulation is considered suitable for finite element analysis, as 

the triangulation maximizes the sum of the smallest angles of the triangles. It cre-

ates triangles as equilateral, or isotropic, as possible for the given set of points; thus 

thin, or anisotropic triangles are avoided whenever possible. 

One important property of Delaunay triangulation is that a circumscribing circle 

of a Delaunay triangle, called a circumcircle, must not contain other points inside. 

To check this, many Delaunay triangulation algorithms use the so-called circumcir

cle test. This test is also used in Sloan's algorithm,13 which we implemented in the 

original 2D isotropic bubble mesh. As shown in Figure 6, the circumcircle test is 

performed on a pair of adjacent triangles that forms a convex quadrilateral. Given 

such a set of four points, the circumcircle test checks one of the triangles to see 

whether the fourth point is inside the circumcircle. If it is, the four points are then 

reconnected into the other possible configuration of two triangles. 

Obviously the original Delaunay triangulation with this circumcircle test is not 

suitable for our anisotropic meshing. We therefore modified the original Delaunay 

triangulation slightly to incorporate anisotropy in the circumcircle test. Assum-

ing the metric tensor is locally constant, we perform the same circumcircle test in 

parametric space, but only after the four nodes' coordinate values have been trans-

formed so that an ellipse is mapped back to a circle. A local average tensor for four 

nodes in parametric space can be determined by first calculating the barycenter of 
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(a) Isotropic triangulation (b) d\ axis direction (c) Anisotropic triangulation, 

di=2 and d2=i 

Fig. 7. An example of anisotropic Delaunay triangulation. 

the four nodes and then finding the metric tensor at this barycenterc 

MTO = M M , ( X 1 + X 2 + X 3 + X 4 ) . (19) 

Figure 6 shows a case where a different pair of triangles is selected when the cir-

cumcircle test is performed after the positions of the four nodes are transformed. 

To demonstrate the effectiveness of this anisotropic Delaunay triangulation, 

Figure 7(a) and Figure 7(c) compare the original Delaunay triangulation and the 

anisotropic Delaunay triangulation. Given the same set of triangular grid nodes, 

the anisotropic Delaunay triangulation creates an anisotropic mesh that is stretched 

and "flows" along the direction of the major eigenvectors shown in Figure 7(b). 

7. Resul ts 

The anisotropic meshing described above has been implemented in C and C-f+. 

Three meshing results are shown in Figures 9,11, and 13, and their quality measures 

are shown in Figures 10, 12, and 14 respectively. Figure 8 summarizes the statistics 

of these three meshes, including: (1) the numbers of mesh nodes and elements; (2) 

CPU times for the initial meshing, intermediate meshing after 30 iterations of dy-

namic simulation, and the final meshing after 100 iterations of dynamic simulation; 

and (3) mesh irregularity after 100 iterations. The CPU time was measured on an 

IBM Unix workstation (PowerPC 604e, 133MHz). 

To measure the mesh irregularity shown in Figure 10, Figure 12, Figure 14, and 

Figure 8, we used two types of irregularity measure, topological irregularity and 

geometric irregularity. 

For topological irregularity, we defined the following measure, similar to that 

defined by Frey and Field:7 

et = -J2\^-6\ (
2
°) 

where 5i represents the degree, or the number of neighboring nodes, connected to 

the ith interior node, and n represents the total number of interior nodes in the 
c Slightly different anisotropic Delaunay triangulation schemes are used by other 

researchers.4 '3 '2 For example, an alternative way to take an average of four metric tensors is: 

Muv = M M w u ( x i ) + M l i1,(x2) + M l i V(x3) + M M V (x4) ) . 
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Mesh 

Mesh 1 

Mesh 2 

Mesh 3 

Nodes 

1468 

4 4 2 

4 1 5 

Elements 

2872 

7 8 2 

7 3 2 

CPU time 

initial mesh 

3 sec. 

0.4 sec. 

0.2 sec. 

CPU time 

30 iterations* 

13 sec. 

4 sec. 

2 sec. 

CPU time 

100 iterations 

45 sec. 

12 sec. 

8 sec 

Mesh irregularity 

after 100 i terat ions 

et = 0.2689 

et = 0.2472 

et = 0.2555 

eg = 0.0197 

eg = 0.0243 

eg = 0.0321 

* Approximately 30 iterations are sufficient to generate a reasonably good anisotropic mesh. 

Fig. 8. Mesh statistics. 

mesh. As elements become more equilateral, this topological irregularity approaches 

0, but vanishes only when all the nodes have exactly 6 neighbors, a rare situation. 

Otherwise, it has a positive value that measures how much the mesh topologically 

differs from a perfectly regular triangular lattice. 

For geometric irregularity we define the following measure, eg, using the ratio 

of the inscribed circle radius to the circumcircle radius 

where m is the number of triangles, and ri the inscribed circle radius of the ith 

triangle, and Ri the circumcircle radius of the ith triangle. Since a resultant mesh 

is anisotropic and stretched according to a given tensor field, radii of inscribed circles 

and circumcircles should be calculated after the triangles' three node locations are 

transformed so that an ellipsoid is mapped back to a circle, a process similar to that 

of the anisotropic Delaunay triangulation described in Section 6. An average tensor 

for each triangle is calculated at the barycenter of the triangle. Since the ratio 

u/Ri is at maximum 0.5 for an equilateral triangle, an ideal element, the smaller 

the value of eg, the more geometrically regular the mesh. 

Figure 9 shows an example of graded isotropic meshing of a single bicubic para-

metric surface. The diameters of the packed ellipsoids are adjusted by the minimum 

radius of curvature as follows 

d\= d2=d3= min\2yj2eprnin - e 2 ,D m a x ) (22) 

where pmin denotes the minimum radius of curvature, e a target constant error 

between the original surface and the mesh, and Dmax the allowable maximum di-

ameter of an ellipsoid. With this metric tensor definition all the bubbles become 

spheres, yielding a graded isotropic triangular mesh. 

In addition to the minimum radius of curvature we can also calculate the max-

imum radius of curvature and use both radii to shape the ellipsoids to be packed, 

as shown in Figure 11. In this case the metric tensor is defined with 

d1 = min[2^/2eprnax-e
2
, Dmax J, 

d2 = dz= min\2y/2epmin - e2, Dmax), (23) 

where pmax denotes the maximum radius of curvature, and Dmax the allowable 

maximum value of the major diameter of an ellipsoid. 
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(a) Packed bubbles and a triangular mesh in parametric space 

(b) Packed bubbles and a triangular mesh in object space 

Fig. 9. Mesh 1: graded isotropic mesh based on the maximum curvature 
(1468 nodes, 2872 elements). 
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Fig. 10. Mesh 1: mesh quality histogram after 100 iterations. 
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(a) Packed bubbles and a triangular mesh in parametric space 

(b) Packed bubbles and a triangular mesh in object space 

Fig. 11. Mesh 2: graded anisotropic mesh based on the principal curva-
tures (442 nodes, 782 elements). 
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Fig. 12. Mesh 2: mesh quality histogram after 100 iterations. 
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(a) Packed bubbles and a triangular mesh in parametric space 

(b) Packed bubbles and a triangular mesh in object space 

Fig. 13. Mesh 3: mesh quality based on an arbitrarily defined metric 
tensor (415 nodes, 732 elements). 

Fig. 14. Mesh 3: mesh quality histogram after 100 iterations. 
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(a) Initial configuration. (b) After 10 iterations. 

(c) After 30 iterations. (d) After 100 iterations. 

Fig. 15. Dynamic simulation of bubble movement (Mesh 2). 

Iteration 

(a) Topological irregularity £*. (b) Geometric irregularity eg. 

Fig. 16. Irregularity reduced during mesh relaxation (Mesh 2). 
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Figure 13 shows the anisotropic triangulation of a trimmed parametric surface 

with five trimming curves Ct and one inside curve C$ as shown in Figure 13(a). 

Because we pack bubbles on these curves before packing bubbles inside the trimmed 

region, mesh nodes are placed exactly on these curves in the final mesh shown in 

the right of Figure 13(b). 

Figure 15 shows how bubbles are moved to a force-balancing configuration during 

dynamic simulation, yielding the mesh shown in Figure 11. During the mesh relax-

ation process both topological irregularity and geometric irregularity are reduced 

as shown in Figure 16. Although we can get a reasonably good mesh after about 

30 iterations, mesh quality can still be improved after 100 iterations. The actual 

termination criteria of iterations should be decided based on analysis requirements. 

Finally Figure 17 and 18 show more meshing results. In Figure 17 a trimmed 

parametric surface is defined, and the metric tensor is calculated based on the 

maximum radius of curvature and the minimum radius of curvature, identical to 

the one used for Mesh 2 shown in Figure 11. 

Figure 18 shows a graded anisotropic triangulation of a simple 2D domain. We 

have defined a 2 x 2 tensor field so that the mesh is stretched along parabolic stream 

lines and so that element sizes are adjusted based on their proximity to three points 

defined inside the domain. Elements located closer to three points are smaller than 

those located farther away. 

8. Discussion and Conclusion 

We have presented a new physically-based method for anisotropic triangulation 

of a trimmed parametric surface. Our central idea was to pack ellipsoids (and 

ellipses in parametric space) closely in a domain to create a well-shaped mesh that 

conforms to a given 3 x 3 metric tensor field that specifies a desired anisotropy. The 

application is not limited to surface meshing as previous techniques are; in fact the 

method is designed so that it can be used as a subprocess in anisotropic meshing of 

3D and non-manifold domains. 

In our original sphere packing method for isotropic meshing, the hexagonal 

pattern created by the close packing of spheres mimics a Voronoi diagram cor-

responding to a well-shaped isotropic Delaunay triangulation. In our new method 

of packing ellipsoids for anisotropic meshing, the same concept applies, except the 

space is stretched, or deformed, by an anisotropic metric tensor. Consequently if 

an anisotropic mesh generated by our method is transformed by the inverse of the 

metric tensor, the node arrangement will be close to a regular hexagonal pattern. 

Providing a good initial node distribution is essential in physically-based mesh-

ing approaches like ours. Although it is possible to start with a minimum number 

of "seed nodes" or "seed triangles" and wait until more nodes or triangles are added 

adaptively during the relaxation process, starting from a good initial configuration 

helps to reduce convergence time significantly. Also, when speed is critical this 

initial node distribution can itself be used for a quick triangulation solution. 

In this paper we assumed that a desired anisotropy is given by a 3 x 3 metric 

tensor, which decides the shape and the size of an ellipsoid to be packed. This is 
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(a) Packed bubbles and a triangular mesh in parametric space 

(b) Packed bubbles and a triangular mesh in object space 

Fig. 17. Mesh 4: graded anisotropic mesh based on the principal curva-
tures (901 nodes, 1686 elements). 

Fig. 18. Mesh 5: 2D graded anisotropic mesh (1454 nodes, 2733 ele-
ments) . 
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because we wanted to make our method consistently applicable to ID, 2D, surface, 

3D, and non-manifold domains. In some cases, however, a desired anisotropy is 

naturally given by a 2 x 2 metric tensor in parametric space or on the tangent plane 

in object space; all of the curvature-based meshing examples in Section 7 are such 

cases. To deal with this situation, we proposed a simple rule to "expand" a 2 x 2 

metric tensor to a 3 x 3 metric tensor by adding a third eigenvalue and eigenvector 

based on the first two. 

The proposed method appears particularly suitable to FEM mesh generation, 

especially when the phenomena is anisotropic, as well as to approximating of a 

trimmed parametric surface to with linear triangular elements. The method is 

also well suited to adaptive mesh refinement when a geometry and/or a desired 

anisotropy changes over time. 
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