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f (Q, T) theory of gravity is very recently proposed to incorporate within the action Lagrangian,
the trace T of the energy-momentum tensor along with the non-metricity scalar Q. The cosmologi-
cal application of this theory in a spatially flat isotropic and homogeneous Universe is well-studied.
However, our Universe is not isotropic since the Planck era and therefore to study a complete evolu-
tion of the Universe we must investigate the f (Q, T) theory in a model with a small anisotropy. This
motivated us to presume a locally rotationally symmetric (LRS) Bianchi-I spacetime and derive the
motion equations. We analyse the model candidate f (Q, T) = αQn+1 + βT, and to constrain the pa-
rameter n, we employ the statistical Markov chain Monte Carlo (MCMC) method with the Bayesian
approach using two independent observational datasets, namely, the Hubble datasets, and Type Ia
supernovae (SNe Ia) datasets.

I. Introduction

Several recent Type Ia supernovae (SNe Ia) datasets [1, 2] and Planck Collaboration [3] results have revealed
that the Universe is expanding at an accelerated rate. To explain this late-time cosmic acceleration in the realm of
general relativity (GR), several ideas have been presented in the literature. The most prominent candidate causing
this acceleration is thought to be some yet undetected form of Dark Energy (DE), which cannot be described by the
baryonic matter. However, such a cosmic scenario is plagued with several issues [4], promoting the development
of alternative gravity models. The first in line and simplest form of such modified gravity theories must be the
f (R̊) theories, where the Ricci-scalar R̊ in the original Einstein-Hilbert action was replaced by an arbitrary but viable
function f (R̊) [5]. Several curvature based modified gravity theories were proposed and analysed in the literature,
for a thorough survey one can see [6, 7] and the references therein. In this research direction, extending the popular
f (R̊) gravity, a matter-geometry coupling in the form of f (R̊, T) theory was first proposed by Harko et al [8] and
later frequently investigated in cosmological research [9, 10]. Studies of f (R̊, T) gravity coupled with a real scalar
field was also conducted in the inflationary paradigm [11]. However, the most general technique to couple a scalar
field with the gravitational degrees of freedom with second-order Euler-Lagrange field equations is given by the
well-known Horndeski Lagrangian, initiated in [12]. This theory can only incorporate the Riemannian curvature
tensor and the second derivatives of the scalar field in a severely constrained form to maintain the Euler-Lagrange
field equations in second order; even though the theory contains arbitrary functions of the scalar field and its kinetic
component. This might be motivated to survive the Ostrogradsky instability, which was present in the higher-order
theories of gravity, fourth-order f (R̊) theory being an exception. In particular, it is forbidden for the curvature
invariants to arise freely via arbitrary functions. This is due to the fact that the curvature invariants already contain
second derivatives of the metric, which, in most cases, would result in higher-order equations [13, 14]. After the
recent discovery of GW170817, most of Horndeski’s terms are severely constrained by the tensor mode propagation
speed [15].

On the other hand, an equivalent formulation of gravity was proposed on a flat spacetime geometry based solely
either on the torsion (TEGR) or the non-metricity (STEGR), the first is known as metric teleparallel theories and the
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second as symmetric teleparallel theories. Nester and Yo [16] proposed the latter from an action term
∫

Q
√−gd4x.

Due to its dependence on the dark sector, Jimenez et al. later extended it to formulate the f (Q) gravity [17] such that
the late-time acceleration could be demonstrated from the additional geometric components. In STEGR, an extension
was also proposed by considering a linear combination of all the possible quadratic contractions of the nonmetricity
tensor [18, 19]. Scalar fields were also coupled to the nonmetricity scalar Q in [20, 21]. The Hordenski type theory
was very recently proposed in both metric and symmetric teleparallel geometries, respectively in [22] and [23] and
thorough investigation is still due. Even though most of the terms are the same as in the original Hordenski theory
in GR, a much richer phenomenology is noticed in the latter two counterparts.

In the recent past, a tremendous amount of works were carried out in the f (Q) theories [24–43].

Very recently, a matter-geometry coupling in the form of f (Q, T) theories were proposed in which the Lagrangian
was represented by a viable function of the non-metricity scalar Q, and the trace T of the energy-momentum tensor
[44]. Harko argued that this dependence can be caused by exotic imperfect fluids or quantum phenomena [45].
The STEGR, and specially the current f (Q, T) theory is naturally a second-order theory, unlike the curvature-based
original Hordenski theory which was constructed with additional constraints to be of second-order. After the first
article, several works were published in this new gravity theories [46–49]. However, all the existing works were
carried out in a background of spatially flat homogeneous and isotropic Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) spacetime. Whereas, there are sufficient evidences to support a not so symmetrical looking Universe, atleast
in its beginning near the initial singularity [50–52]. Moreover, some of the anisotropic Bianchi models (models I,
VII0, V, VIIh, and IX) can be interpreted as the homogeneous limit of linear cosmological perturbations of the FLRW
spacetime [53, 54]. The homogeneous and isotropic model naturally cannot provide a complete account of evolution
of Universe. One must relax the assumption of FLRW geometry from the very start and investigate the transition
from an anisotropic and inhomogeneous state to the observed level of homogeneity and isotropy. A number of
recent articles in several modified gravity theories can be cited [55–60] for a diverse field of investigation in the
background of anisotropic Bianchi type Universe models. In the present discussion we consider a special type of
Bianchi Universe, the locally rotationally symmetric (LRS) Bianchi type-I model to denote the anisotropic state of the
Universe, given by the metric in the Cartesian coordinates

ds2 = −dt2 + A2(t)dx2 + B2(t)(dy2 + dz2). (1)

Here, A (t) and B (t) = C (t) are the metric potentials that are time-dependent scale factors. All of our results can be
extended to the Bianchi type-I model without much effort.

In this paper, we analyse the model candidate f (Q, T) = αQn+1 + βT, and as a special case we briefly discuss the
model f (Q, T) = αQ + βT, in the background of an anisotropic Universe with a well-known physically motivated
condition of proportionality between the expansion and shear scalar. The present research focuses on observable
evidence from SNe, Cosmic Microwave Background (CMB), and Baryon Acoustic Oscillations (BAO), all of which
are shown to be useful in constraining cosmological models. The Hubble parameter H(z) datasets reveal the com-
plicated structure of the expansion of the Universe. The ages of the most massive and slowly developing galaxies
provide direct measurements of the H(z) at different redshifts z, culminating in the construction of a new type of
standard cosmological probe [69]. In this paper, we present 31 Hubble expansion observations spread using the
differential age approach [70]. Scolnic et al. previously posted Pantheon, a massive SNe datasets with 1048 loca-
tions across the redshift range z ∈ [0.01, 2.3] [74]. The Hubble and SNe Ia are used in our analysis to constrain the
cosmological model.

The paper is structured as follows: After introduction, in Section II, we provide an outline of f (Q, T) gravity,
followed by the motion equations and some results crucial for the current study in Section III. In Section IV, we
propose the cosmological model used in the paper, along with computation of certain parameters. Then we proceed
to analyze the model f (Q, T) = αQn+1 + βT in Subsection IV A, and the brief account of the special linear case in
Subsection IV B. In Section V, we use Hubble and SNe Ia datasets to constrain the model parameters. Finally, in
Section VI, we summarise our findings.
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II. The mathematical formulation

As an extension of symmetric teleparallel gravity theory, the f (Q, T)-gravity theory is also constrained by the
curvature free and torsion free conditions, i.e., Rρ

σµν = 0 and Tρ
µν = 0. The disformation tensor is defined as the

difference between the associated connection Γλ
µν and the Levi-Civita connection Γ̊λ

µν

Lλ
µν = Γλ

µν − Γ̊λ
µν . (2)

It can also be expressed as

Lλ
µν =

1
2
(Qλ

µν −Qµ
λ

ν −Qν
λ

µ) ,

where Qλµν := ∇λgµν is the non-metricity tensor. The non-metricity scalar Q reads as [35]

Q = QλµνPλµν = −1
2

QλµνLλµν +
1
4

QλQλ − 1
2

QλQ̃λ , (3)

where

Pλ
µν :=

1
4

(
−2Lλ

µν + Qλgµν − Q̃λgµν −
1
2

δλ
µ Qν −

1
2

δλ
ν Qµ

)
, (4)

is the superpotential tensor, Qλ = Qλµ
µ and Q̃λ = Qνλ

ν. The action of f (Q, T)-gravity is defined as [44]

S =
∫ [ 1

2κ
f (Q, T) + LM

]√
−g d4x ,

where g := det[gµν], LM is the Lagrangian for matter source and T is the trace of the stress energy tensor Tµν, which
is defined as

Tµν = − 2√−g
δ(
√−gLM)

δgµν .

The following metric field equation can be obtained after varying the action with respect to the metric

2√−g
∇λ(

√
−g fQPλ

µν)−
1
2

f gµν + fT(Tµν + Θµν) + fQ(PνρσQµ
ρσ − 2PρσµQρσ

ν) = κTµν , (5)

where fQ = fQ (Q, T) and fT = fT (Q, T) denote the partial derivative of f = f (Q, T) with respect to Q and T
respectively, and

Θµν =
gαβδTαβ

δgµν .

Noticing that the field equation (5) is differ from that of [44] due to the choice of the sign in defining the non-
metricity scalar (12), yet it does not affect the results obtained in general. In the present paper a perfect fluid type
spacetime is considered, for which the stress energy tensor is given by

Tµν = pgµν + (p + ρ)uµuν ,

where ρ, p and uµ represent the energy density, pressure and four velocity of the fluid respectively. We have chosen
here the matter Lagrangian to be LM = p. In addition, the matter Lagrangian is supposed to rely only on the metric
tensors. As a result,

Θµν = pgµν − 2Tµν .
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III. Equations of motion in the LRS-BI model

In this section, we consider the LRS-BI spacetime whose line element is given by (1) in Cartesian coordinates. We
use the usual flat affine connection in this coincident gauge choice to obtain the motion equations of a test particle.
Corresponding to (1), the directional Hubble parameters are defined as

Hx (t) =
Ȧ
A

, Hy (t) =
Ḃ
B

, Hz (t) =
Ḃ
B

, (6)

and

H (t) =
1
3

V̇
V

=
1
3

[
Ȧ
A

+ 2
Ḃ
B

]
, (7)

is the average Hubble parameter, where the spatial volume is

V (t) = AB2 = a3. (8)

where a is the mean scale factor of the Universe. The rate of expansion is evaluated by anisotropy parameter

∆ (t) =
1
3

3

∑
i=1

(
Hi − H

H

)2
=

2
9H2

(
Hx − Hy

)2
. (9)

It follows that

H2
y + 2Hx Hy = 3H2

(
1− ∆

2

)
. (10)

The expansion scalar θ(t) and shear σ(t) of the fluid are given by

θ (t) = Hx + 2Hy, σ (t) =
|Hx − Hy|√

3
. (11)

The non-metricity scalar is given by

Q (t) = −6(2H − Hy)Hy . (12)

Using (1) and (5), we obtain the following Friedmann-like equations.

(κ + fT (Q, T))ρ + fT (Q, T) p =
f (Q, T)

2
+ 6 fQ (Q, T) (2H − Hy)Hy , (13)

κp =− f (Q, T)
2

− ∂

∂t

[
2 fQ (Q, T) Hy

]
− 6 fQ (Q, T) Hy H, (14)

κp =− f (Q, T)
2

− ∂

∂t

[
fQ (Q, T) (3H − Hy)

]
− 3 fQ (Q, T) (3H − Hy)H . (15)

It follows from (13)–(15) that

κρ =
f (Q, T)

2
+

6 fQ (Q, T)
κ + fT (Q, T)

[
κ(2H − Hy)Hy + fT (Q, T) H2

]
+

2 fT (Q, T)
κ + fT (Q, T)

∂

∂t
[

fQ (Q, T) H
]

, (16)

κp =− f (Q, T)
2

− 2
∂

∂t
[

fQ (Q, T) H
]
− 6 fQ (Q, T) H2 . (17)

On the other hand, using (14)–(15) we obtain

0 =
∂

∂t

[
fQ (Q, T) (H − Hy)

]
+ 3 fQ (Q, T) (H − Hy)H .

Solving this differential equation gives

fQ (Q, T) (H − Hy) = la (t)−3 , (18)

where l is a constant.
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IV. Exact solutions of LRS-BI model

In this section, we opt for the exact solutions of the above-mentioned system which requires some additional
assumption to determine. The well-studied physical condition of proportionality between the expansion scalar θ(t)
and the shear scalar σ(t) is used here, which yields

A (t) = B (t)λ , (19)

where the constant λ accounts for the anisotropic nature of the model, i.e., if λ is equal to one, the model is isotropic.
The physical basis for this hypothesis is supported by studies of the velocity redshift relation for extragalactic
sources, which indicate that the Hubble expansion of the Universe can attain isotropy if σ(t)

θ(t) is constant. Collins
proved the physical importance of this condition in the case of a perfect fluid with a barotropic equation of state
(EoS). Additionally, it was showed [75] that in radiation era, a quadratic model f (Q) = f0Q2 reproduces the condi-
tion σ2 ∝ θ2.

Using the condition (19), we can derive the relationship between the directional Hubble parameters Hx (t) and
Hy (t) as follows:

Hx (t) = λHy (t) . (20)

Also, we obtain

Hy (t) =
3H (t)
λ + 2

. (21)

Using Eqs. (18) and (21), we get

fQ (Q, T) H (t) =
(λ + 2)la (t)−3

(λ− 1)
, (22)

In this case, the non-metricity scalar Q (t) in Eq. (12) has the form

Q (t) = −18(2λ + 1)
(λ + 2)2 H (t)2 . (23)

Substituting these into (16)–(17) and simplifying we get

κρ =
f (Q, T)

2
+

6 fQ (Q, T) H (t)2

κ + fT (Q, T)
3κ(2λ + 1)
(λ + 2)2 , (24)

κp = − f (Q, T)
2

. (25)

From the previous two equations, we see that when studying the case of a Universe filled with pressureless matter,
i.e. p = 0 in association with condition (19), the function f (Q, T) is not defined. Thus, in the next two sections, we
study some forms of the function f (Q, T) with p 6= 0.

A. Cosmological model with f (Q, T) = αQ(n+1) + βT

As a first case of the cosmological model of f (Q, T) gravity, let us consider the scenario when f (Q, T) has the
non-linear form f (Q, T) = αQ(n+1) + βT, where α, β and n are constants. Then, we have fQ = α(n + 1)Qn and
fT = β. Thus, Eq. (22) becomes

α(n + 1)

(
−18(2λ + 1)
(λ + 2)2

)n

H (t)2n+1 =
(λ + 2)la (t)−3

(λ− 1)
. (26)
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Solving this equation gives

H(t) =
2n + 1

3t + (2n + 1)cn
, (27)

where cn is a constant.
Again, solving the field equations (24) and (25) to find the expressions for pressure and energy density, we obtain

ρ (t) = −
α2n−19n+1(β(3n + 2) + 8π(2n + 1))

(
−H2(2λ+1)

(λ+2)2

)n+1

(β + 4π)(β + 8π)
, (28)

p (t) = −
α2n−19n+1(β(n + 2) + 8π)

(
−H2(2λ+1)

(λ+2)2

)n+1

(β + 4π)(β + 8π)
. (29)

Therefore, at the first epoch t→ 0, we see that energy density and pressure have finite values. Also, these quanti-
ties diminish in value as cosmic time t increases and approaches to zero at infinite time.

Now, using Eqs. (20) and (21), the directional Hubble parameters are obtained as

Hx (t) =
3λ(2n + 1)

(λ + 2)[3t + (2n + 1)cn]
, (30)

and

Hy (t) =
3(2n + 1)

(λ + 2)[3t + (2n + 1)cn]
. (31)

Further, the metric potentials are derived as

A (t) =

(
H0[3t + (2n + 1)cn]

2n + 1

) (2n+1)λ
λ+2

, (32)

and

B (t) =

(
H0[3t + (2n + 1)cn]

2n + 1

) 2n+1
λ+2

, (33)

where

H0 = (λ + 2)
[

l
(λ− 1)(n + 1)α

] 1
2n+1

[
−1

18(2λ + 1)

] n
2n+1

. (34)

The model exhibits no singularity at the beginning epoch t → 0, since the metric potentials have constant values.
For time t→ ∞, the metric potentials tend to infinity as time passes. Thus, using Eqs. (32) and (33), the LRS Bianchi
type-I metric becomes

ds2 = −dt2 +

(
H0[3t + (2n + 1)cn]

2n + 1

) (2n+1)λ
λ+2

dx2 +

(
H0[3t + (2n + 1)cn]

2n + 1

) 2n+1
λ+2

(dy2 + dz2). (35)

By applying (8), (11) and (20), the spatial volume V, expansion scalar θ(t), and shear scalar σ(t) are derived as,

V (t) =

(
H0[3t + (2n + 1)cn]

2n + 1

)2n+1

, (36)
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θ(t) =
3(2n + 1)

3t + (2n + 1)cn
, (37)

σ(t) =
√

3(λ− 1)(2n + 1)
(λ + 2)[3t + (2n + 1)cn]

. (38)

Using Eqs. (37) and (38), we obtain

σ(t)2

θ(t)
=

(λ− 1)2(2n + 1)
(λ + 2)2[3t + (2n + 1)cn]

. (39)

Here, It is observed that the isotropy condition, i.e., σ(t)2

θ(t) → 0 as t → ∞, is fulfilled in this case. Eqs. (36) and
(37) show that the spatial volume is finite at t = 0 and increases with time from a finite to an infinitely large value,
but the expansion scalar is infinite, implying that the Universe begins to evolve with finite volume at t = 0. This is
compatible with the Big Bang scenario.

Also, from Eq. (27), we obtain

H (t)
H0

=
3t0 + (2n + 1)cn

3t + (2n + 1)cn
, (40)

where H0 and t0 represent the current value of Hubble parameter and age of the Universe. To get cosmological
findings that enable for direct comparison of cosmological model predictions with astronomical data, we use the
redshift parameter z as an independent variable in place of the cosmic time variable t. The redshift parameter for
a distant source is inversely related to the scale factor of the Universe at the moment in which the photons were
produced from the source. In this case, the equation relates the scale factor a (t) with the redshift parameter z is
given by

a =
a0

(1 + z)
. (41)

Here, the scale factor is normalized such that its current value is one i.e. a0 = a (0) = 1. Using Eqs. (40) and (41),
the expression for Hubble parameter H (t) in terms of the redshift parameter z is derived as

H (z) = H0 (1 + z)
3

2n+1 , (42)

where

H0 = (λ + 2)
[

l
(λ− 1)(n + 1)α

] 1
2n+1

[
−1

18(2λ + 1)

] n
2n+1

. (43)

In addition, we find the power-law expansion as the solution to the field equations in an anisotropic Universe.
Power-law cosmology provides an attractive solution to several exceptional problems, including flatness and the
horizon problem. In literature, the power-law expansion is well justified. The author of [76] examined cosmic
parameters using a power-law, and Hubble and Type Ia supernova datasets. Rani et al. [77] used state-finder
analysis to investigate the power law cosmology. Recently, Koussour and Bennai [78] employed the power law to
investigate cosmic acceleration in an anisotropic Universe in f (Q) gravity.

The deceleration parameter q (t), which indicates the accelerating/decelerating aspect of the expansion of the
Universe, is an essential cosmological variable. The deceleration parameter is expressed by the equation:

q = −1 +
d
dt

(
1
H

)
= −1−

.
H
H2 . (44)

Using Eq. (41), the time operator is given by

d
dt

=
dz
dt

d
dz

= − (1 + z) H (z)
d
dz

. (45)
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The deceleration parameter q (t) can be calculated as a function of the redshift parameter z using the formula

q (z) = −1 + (1 + z)
1

H (z)
dH (z)

dz
. (46)

Here, the sign of the q (z) (negative or positive) shows if the Universe accelerates or decelerates. The value of the
deceleration parameter for this scenario is

q = −1 +
3

1 + 2n
. (47)

This is a constant as predicted according to the power law type expansion of the cosmological model. It is clear
from Eq. (47) that there is a transition phase from deceleration to acceleration at n = 1. Fig. 1 depicts the evolution
of the deceleration parameter in terms of n for the function f (Q, T) = αQ(n+1) + βT and in our model, it is directly
dependent on the parameter n. According to Fig. 1, the deceleration parameter is positive at n < 1 and negative for
n > 1. Thus, it shows that the Universe is transitioning from deceleration to acceleration. q decreases as n increases.

Decelarated Universe

Accelerated Universe

0 2 4 6 8 10

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

n

q

FIG. 1. The plot of deceleration parameter vs. n.

B. Cosmological model with f (Q, T) = αQ + βT

We can observe that for n = 0, the previous situation is reduced to the linear form of the f (Q, T) function as
f (Q, T) = αQ + βT, where α and β are constants. Then, we have fQ = α and fT = β. So, for n = 0, we can solve Eq.
(26) and get the Hubble parameter expression as

H (t) =
1

3t + c0
, (48)

where c0 is the constant i.e. c0 = cn (n = 0).
Now, using Eqs. (20) and (21), the directional Hubble parameters are obtained as

Hx (t) =
3λ

(λ + 2) [3t + c0]
, (49)

and

Hy (t) =
3

(λ + 2) [3t + c0]
. (50)
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Using Eq. (39), we obtain

σ(t)2

θ(t)
=

(λ− 1)2

(λ + 2)2 [3t + c0]
. (51)

Also, it is observed that the isotropy condition, i.e., σ(t)2

θ(t) → 0 as t→ ∞, is fulfilled in this case.
As previously mentioned, all of the cosmological parameters listed above must be expressed in terms of redshift

parameter z. Using Eq. (42), the expression of Hubble parameter H (t) for n = 0 in terms of the redshift parameter z
is derived as

H (z) = H0 (1 + z)3 , (52)

where H0 = (λ+2)l
α(λ−1) . It is important to note that Eq. (42) can be interpreted like the famous Hubble’s Law which

states that the proper distance d between galaxies is proportional to their recessional velocity v as measured by the
Doppler effect redshift i.e. v = H0d. Thus, the value of the Hubble parameter in terms of redshift parameter is
extremely important in an astrophysical background. For this scenario, the value of the deceleration parameter is
q = 2, implying a Universe that is decelerating. Many authors of different modified gravity theories have obtained
the same result.

V. Observational constraints

It should be highlighted that a thorough evaluation of the parameter values is important in examining the cos-
mological features. In this sense, the current section presents observational analyses of the current situation. The
statistical method we use helps us to constrain parameters like H0 and n. Especially, we use the Markov Chain Monte
Carlo (MCMC) with the standard Bayesian approach. Furthermore, using the pseudo-chi-squared function χ2, the
best fit values for the parameters are obtained by the probability function,

L ∝ e−
χ2
2 , (53)

To do this, we now focus on two datasets: Hubble and Type Ia supernova (SNe Ia) data. To begin, we evaluate the
parameter space priors, which are (60.0 < H0 < 80.0) to account for all possible scenarios of the Hubble parameter,
(−10.0 < n < +10.0) to get all the scenarios of the expansion of the Universe. Also, take into consideration that our
cosmological model must also fit the observational datasets. The next subsections go into further depth on the data
sets and statistical analyses.

A. Hubble datasets

Here, we employ a standardized collection of 31 measures derived from the differential age technique (DA) in the
redshift range 0.07 < z < 2.42 and are listed in Tab. V A [86, 87]. The DA technique can be used to calculate the rate
of expansion of the Universe at redshifts z. The Hubble datasets chi-square (χ2) is calculated as follows:

χ2
Hubble =

31

∑
j=1

[
Hth(zj)− Hobs(zj, ps)

]2

σ(zj)2 , (54)

where Hth and Hobs are the theoretical and observed values of the Hubble parameter H (z), and ps denotes the
parameter space of the model to be constrained. In addition, σ2 denotes the standard error in the observed value of
H (z), ps = (H0, n) and is the parameter space of the cosmic background.
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z H(z) σH Ref. z H(z) σH Ref.

0.070 69 19.6 [79] 0.4783 80 99 [83]
0.90 69 12 [80] 0.480 97 62 [79]
0.120 68.6 26.2 [79] 0.593 104 13 [81]
0.170 83 8 [80] 0.6797 92 8 [81]

0.1791 75 4 [81] 0.7812 105 12 [81]
0.1993 75 5 [81] 0.8754 125 17 [81]
0.200 72.9 29.6 [82] 0.880 90 40 [79]
0.270 77 14 [80] 0.900 117 23 [80]
0.280 88.8 36.6 [82] 1.037 154 20 [81]

0.3519 83 14 [81] 1.300 168 17 [80]
0.3802 83 13.5 [83] 1.363 160 33.6 [85]
0.400 95 17 [80] 1.430 177 18 [80]

0.4004 77 10.2 [83] 1.530 140 14 [80]
0.4247 87.1 11.2 [83] 1.750 202 40 [80]
0.4497 92.8 12.9 [83] 1.965 186.5 50.4 [85]
0.470 89 34 [84]

TABLE I. H(z) datasets with 31 data points.

0.0 0.5 1.0 1.5 2.0 2.5
z
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150
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250

H(
z)

f(Q, T) gravity
CDM

From Hubble datasets

FIG. 2. The plot of H(z) vs. redshift parameter z for our f (Q, T) = αQ(n+1) + βT model, shown in red, and ΛCDM, shown in
black dashed lines, shows an excellent fit to the 31 points of the Hubble datasets.

B. Type Ia supernovae (SNe Ia) datasets

The measurement of SNe Ia is essential to comprehend how the Universe is expanding. The Panoramic Survey
Telescope and Rapid Response System (Pan-STARSS1), Sloan Digital Sky Survey (SDSS), Supernova Legacy Survey
(SNLS), and Hubble Space Telescope (HST) surveys all collected data on SNe Ia [74]. Here, we employ the Pantheon
sample, which consists of 1048 points with distance moduli µj in the range 0.01 < zj < 2.26 at various redshifts. The
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SNe Ia datasets chi-square (χ2) is calculated as follows:

χ2
SNe =

1048

∑
j,i=1

∆µj(C−1
SNe)ji∆µi. (55)

Here, CSNe is the covariance matrix, and ∆µj = µth
j (zj, ps)− µobs

j is the difference between the measured distance
modulus value collected from cosmic measurements and its theoretical values estimated from the model with the
specified parameter space ps. The theoretical distance modulus µth is given as

µth(zj) = 25 + 5log10

[
dl

1Mpc

]
, (56)

and the luminosity distance dl defined as,

dl(z) = (1 + z)
∫ z

0

c
H(z, ps)

. (57)

0.0 0.5 1.0 1.5 2.0 2.5
z

32

34

36

38

40

42

44

46

(z
)

f(Q, T) gravity
CDM

From SNe Ia datasets

FIG. 3. The plot of µ(z) vs. redshift parameter z for our f (Q, T) = αQ(n+1) + βT model, shown in red, and ΛCDM, shown in
black dashed lines, shows an excellent fit to the 1048 points of the SNe Ia datasets.

C. Results

The model parameters for the joint (Hubble+SNe) are constrained using χ2 = χ2
Hubble + χ2

SNe. Tab. II shows the
outcomes and results. Figs. 2 and 3 compare our model to the widely accepted ΛCDM model in cosmology i.e.

H (z) = H0

√
Ωm

0 (1 + z)3 + ΩΛ
0 ; we use Ωm

0 = 0.3, ΩΛ
0 = 0.7, and H0 = 69 km.s−1.Mpc−1 for the plot. The figures

also show the Hubble and SNe Ia experimental findings, with 31 and 1048 data points and errors, respectively,
allowing for a direct comparison of the two models. To find out the outcomes of our MCMC study, we employed
100 walkers and 1000 steps for all datasets: Hubble, SNe Ia, and Joint. Also, Fig. 4 shows the likelihood contours
for Hubble, SNe Ia, and Joint analysis, and Tab. II shows the numerical findings. From Fig. 4, it is clear that the
likelihood functions for all datasets (Hubble, SNe Ia, and Joint) are very well matched to a Gaussian distribution
function. In every cosmological model, the Hubble constant H0 and the deceleration parameter q play a significant
role in characterizing the nature of the expansion of the Universe. The first describes the current rate of expansion of
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the Universe, whereas the latter describes if the Universe is accelerating (q < 0) or decelerating (q > 0). We obtain
the constraints on these parameters using the most recent Hubble with 31 data points and SNe Ia data with 1048
pantheon sample points. At the 1− σ CL, the constraints determined from Hubble datasets are H0 = 65.9+1.5

−1.5 and
q = −0.011± 0.01, whereas the constraints determined from SNe Ia data are H0 = 66.8+2.6

−2.5 and q = −0.261± 0.03.
We also run the joint test with Hubble and SNe Ia datasets, which gives the constraints H0 = 65.1+1.2

−1.2 and q =
−0.014 ± 0.01. It is worth noting that the values of parameter H0 correspond to the observations [3]. Also, the
deceleration parameter values show that the observational data represent the actual cosmic acceleration within the
context of anisotropic f (Q, T) cosmology.

64 66 68
H0

0.95

1.00

1.05

1.10

1.15

n

H0 = 65.9+1.5
1.5

1.0 1.1
n

n = 1.016+0.064
0.058

Hubble

a)

64 66 68 70
H0

1.0

1.5

2.0

2.5

n

H0 = 66.8+2.6
2.5

1.0 1.5 2.0 2.5
n

n = 1.53+0.50
0.44

SNe Ia

b)

64 65 66 67
H0

1.0

1.1

1.2

n

H0 = 65.1+1.2
1.2

1.0 1.1 1.2
n

n = 1.021+0.063
0.064

Joint

c)

FIG. 4. The marginalized constraints on the parameters H0 and n are presented using the Hubble (a), SNe Ia (b), and Joint (c)
datasets. The dark red shaded areas represent the 1− σ confidence level (CL), whereas the light red shaded regions represent the
2− σ confidence level. The parameter constraint values are displayed at the 1− σ CL.

TABLE II. With a confidence level of 68%, marginalized constrained data of the parameters H0, n and q for various data samples
were obtained.

Dataset H0 n q
Hubble 65.9+1.5

−1.5 1.016+0.064
−0.058 −0.011± 0.01

SNeIa 66.8+2.6
−2.5 1.53+0.50

−0.44 −0.261± 0.03
Joint 65.1+1.2

−1.2 1.021+0.063
−0.046 −0.014± 0.01

VI. Concluding remarks

This study has investigated an anisotropic cosmology in the modified f (Q, T) gravity theory, where Q denotes
non-metricity scalar and T is the trace of the energy-momentum tensor. The exact solution of the field equations
for an LRS Bianchi type-I spacetime are explored. Because the field equations are highly nonlinear and difficult, we
have solved them by assuming that the expansion scalar θ(t) is proportional to the shear scalar σ(t). It has provided
A (t) = B (t)λ, where A(t) and B(t) are the metric potentials and λ is an arbitrary constant that accounts for the
anisotropic nature of the model. We have primarily investigated two solutions of modified field equations using two
functional forms of f (Q, T).

For the model f (Q, T) = αQn+1 + βT the isotropy condition, i.e. σ(t)2

θ(t) → 0 as t → ∞, has been fulfilled. At t = 0,
the spatial volume is finite and the expansion scalar is infinite, implying that the Universe began to evolve with a
finite volume at t = 0. We obtain the scenario of the big bang. The energy density and pressure are finite at the first
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epoch. Furthermore, as cosmic time t increases, the value of these quantities decreases and approaches 0 at infinite
time. The deceleration parameter q(t) is found to be q = −1 + 3

1+2n , implying a phase transition from deceleration
to acceleration at n = 1. From Fig. 1, it is observed that the deceleration parameter is positive (deceleration) at n < 1
and negative (acceleration) for n > 1. Next, to obtain the constraint value for the parameter n, we employed the
statistical Markov chain Monte Carlo (MCMC) method with the Bayesian approach. We also examined the results for
two independent observational datasets, Hubble datasets, and Type Ia supernovae (SNe Ia) datasets, which contain
SDSS, SNLS, Pan-STARRS1, low-redshift survey, and HST surveys. The best-fit values obtained are n = 1.016+0.064

−0.058
for the Hubble datasets, n = 1.53+0.50

−0.44 for the SNe Ia datasets and n = 1.021+0.063
−0.046 for the Hubble+SNe Ia datasets.

Moreover, the deceleration parameter has been constrained, which is important in describing the evolution of the
Universe. The best-fit values obtained are q = −0.011± 0.01 for the Hubble datasets, q = −0.261± 0.03 for the
SN Ia datasets and q = −0.014± 0.01 for the Hubble+SNe Ia datasets, which indicates an accelerating model of the
Universe. Furthermore, using these parameter values, we compared our f (Q, T) = αQn+1 + βT model with the
most commonly accepted model for the Universe i.e. ΛCDM in Figs. 2 and 3.

Finally, we have obtained the solutions to the field equation by studying the linear case of the function f (Q, T) i.e.
n = 0. We have observed the same behavior for the cosmological parameters mentioned above, with the exception
that the deceleration parameter in this scenario turns out to be a constant q = 2, which indicates a decelerating
model of the Universe. The paper by Shamir [56] discusses a cosmological model based on f (R, T) gravity in LRS-BI
space-time. The author derived the field equations and solved them using an analytical approach. The obtained
solutions were then used to investigate the evolution of the scale factor, energy density, and pressure of the uni-
verse. When compared to our paper on f (Q, T) gravity, the primary distinction between Shamir’s study on LRS-BI
cosmology in f (R, T) gravity is that while our paper utilizes observational constraints on the parameters of the
f (Q, T) gravity model, especially, we used the MCMC method to fit our f (Q, T) gravity model parameters to Hub-
ble and SNe Ia datasets which allows us to estimate the posterior probability distribution of the model parameters
and quantify the uncertainties in our parameter estimates, Shamir does not incorporate any observational data in
their analysis of the f (R, T) gravity model. By incorporating observational data in our analysis, our paper provides
a more comprehensive study of the f (Q, T) gravity model, as it allows for a more rigorous comparison between the
theoretical predictions and observational data. This can lead to more robust constraints on the model parameters,
which can help to rule out or support specific modifications to gravity theory. In addition, Kennedy et al. [89] have
reconstructed Horndeski’s theories from phenomenological modified gravity and dark energy models on cosmo-
logical scales. Their approach is complementary to ours, as they aim to reconstruct the theoretical framework of
Horndeski gravity from observed data, rather than proposing a specific gravity model. However, it is interesting to
compare their results with ours, as both approaches aim to explain the observed acceleration of the universe without
introducing dark energy.

Thus, these findings can encourage us to investigate the anisotropic nature of f (Q, T) theory further, since it fol-
lows the observational data. Furthermore, it would be interesting to study the acceleration scenario of the Universe
using certain parameterizations of the equation of state parameters. We intend to investigate this scenario in the
future.

Data Availability

All generated data are included in this manuscript.
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