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Abstract
We introduceanisotropic Voronoi diagrams, a generalization of
multiplicatively weighted Voronoi diagrams suitable for generat-
ing guaranteed-quality meshes of domains in which long, skinny
triangles are required, and where the desired anisotropy varies over
the domain. We discuss properties of anisotropic Voronoi diagrams
of arbitrary dimensionality—most notably circumstances in which
a site can see its entire Voronoi cell. In two dimensions, theaniso-
tropic Voronoi diagram dualizes to a triangulation under these same
circumstances. We use these properties to develop an algorithm for
anisotropic triangular mesh generation in which no triangle has an
angle smaller than20◦, as measured from the skewed perspective
of any point in the triangle.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Anisotropic Voronoi diagram, anisotropic mesh generation

1. Introduction
The best-performing triangulations for interpolation andnumer-

ical modeling have triangles or tetrahedra whose aspect ratios and
orientations are chosen to suit the function they interpolate, or the
partial differential equation whose solution they approximate. Tri-
angles, tetrahedra, or most generallyd-simplices inEd (henceforth
elements) that are nearly equilateral are excellent for some applica-
tions; for others, elements that are long and thin, like those depicted
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in Figure 1, can offer better accuracy with fewer elements [3, 9, 12,
18]. Applications in the latter class are said to exhibitanisotropic
behavior.

The construction of anisotropic triangulations that meet the needs
of these applications is an important problem for which manyheur-
istic solutions are available [5, 7, 11, 19]. However, theseal-
gorithms have no guarantee of success. For example, the edge
flip algorithm for constructing the Delaunay triangulationis eas-
ily modified to take anisotropy into account. Alternatively, George
and Borouchaki [7] suggest an anisotropic version of the Bowyer–
Watson algorithm [6, 20] for inserting a site into a Delaunaytrian-
gulation. But is the final triangulation produced by either of these
algorithms unique? What are its properties? Will the flip algorithm
terminate or loop forever?

Here we describe an approach that puts anisotropic meshing on
firm theoretical ground. In Section 3 we defineanisotropic Voronoi
diagrams, a generalization of multiplicatively weighted Voronoi di-
agrams [4]. Anisotropic Voronoi diagrams can be defined in any
dimensionality. The geometric dual of an anisotropic Voronoi di-
agram is not generally a triangulation. We describe conditions in
which the Voronoi cells are guaranteed to be entirely visible from
their generating sites in Section 5. For the special case of two di-
mensions, the same conditions also guarantee that the planar dual
is a geometric triangulation with no inverted triangles.

These results make possible an algorithm that generates high-
quality two-dimensional anisotropic meshes by refining an aniso-
tropic Voronoi diagram to enforce the conditions that guarantee that
the dual is a triangulation, and to remove any poor-quality elements

Figure 1: Anisotropic meshes generated by Voronoi refinement, and
the anisotropic Voronoi diagrams used to generate them.
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Figure 2: The deformation tensor Fp maps physical space into a
space where p’s distance metric is isotropic.

from the triangulation. We present the algorithm in Section9, and
prove in Section 10 that it generates an anisotropic mesh whose
triangles are all of good quality.

2. Anisotropy: Measures and Goals
Consider a domainΩ ⊆ Ed. Suppose that at each pointp in Ω

there is a symmetric positive definitemetric tensorMp, provided
by the user, which dictates how lengths and angles are measured
from the perspective ofp. The metric tensor is most easily repre-
sented as ad×d matrix. We wish to define a Voronoi diagram over
Ed, and perhaps its Delaunay dual restricted toΩ.

Given a metric tensorMp, define adeformation tensorFp to be
anyd × d matrix satisfying

Mp = F T
p Fp and det Fp > 0. (1)

Fp maps thephysical spaceEd to a rectified space where lengths,
areas, and angles asp sees them are measured in the usual way, as
Figure 2 illustrates. For example, ifq1 andq2 are two points inEd,
the distance betweenq1 andq2 as measured byp is

dp(q1, q2) = ‖Fpq1 − Fpq2‖2 =
√

(q1 − q2)T Mp(q1 − q2).

We will also use the shorthand notationsdp(q) = dp(p, q) and
d(p, q) = min{dp(q), dq(p)}. Note thatdp(·, ·) satisfies the trian-
gle inequality, butd(·, ·) does not.

The angleθ = ∠q1q2q3 as measured byp is

θ = arccos
(q1 − q2)

T Mp(q3 − q2)

dp(q1, q2)dp(q3, q2)
.

In the mesh generation problem, each point in the domain would
like to be in an element that is as close to equilateral and equiangu-
lar as possible, as measured by that point. For example, if a point q
lies in a triangle with verticesu, v, andw, the triangle with vertices
Fqu, Fqv, andFqw should have no angle close to0◦ or 180◦.

The deformation tensorFp is underconstrained. If thed × d
matrixQ represents a proper orthogonal transformation (i.e. a rota-
tion), replacingFp with QFp makes no difference. To computeFp

fromMp one can choose the Cholesky decomposition, a symmetric
square root, or any otherFp that satisfies (1).

Where doesMp come from? It usually expresses the effects of
element shape on interpolation error—or for finite element meth-
ods, the effects of shape on discretization error and stiffness matrix
conditioning. For interpolation,Mp is often closely related to the
Hessian matrix of the function to be interpolated, and may even be

the Hessian. Unlike the Hessian,Mp must be positive definite, but
its eigenvalues may encode upper bounds on the magnitude of the
curvature of the function atp alongd principal axes of curvature.
For finite element methods,Mp may also take into account the nat-
ural anisotropy of the partial differential equation whosesolution is
sought. See elsewhere [18] for details.

Mp may or may not also encode the ideal size of each element.
We have the option of representing the ideal shape and size inthe
metric tensor, or of representing shape only and handling size sep-
arately. With the former option, the ideal element has, say,a unit
edge length as measured byp; a larger value ofMp indicates the
desire for smaller elements. (But be aware that in two dimensions,
the circumradius as measured byp is a better gauge of interpola-
tion error than the edge lengths [18].) We revisit these choices in
Section 9.

A central tool in our work is the idea of therelative defor-
mationFqF

−1
p which maps a pointp’s view of the world to an-

other pointq’s. (See Figure 2.) Therelative distortionτ(p, q) =
max{‖FqF

−1
p ‖2, ‖FpF−1

q ‖2} gives an upper bound on how dif-
ferently p and q perceive distances. For any pointsp, q, anda,
τ(p, q) ≥ 1, τ(p, q) = τ(q, p), andτ(p, q) ≤ τ(p, a)τ(a, q).

PROPOSITION 1. Letp, q, a, andb be points inΩ. Then

dp(a, b)

‖FpF−1
q ‖2

≤ dq(a, b) ≤ ‖FqF
−1
p ‖2 dp(a, b) and

dp(a, b)

τ(p, q)
≤ dq(a, b) ≤ τ(p, q)dp(a, b).

PROOF. dq(a, b) = ‖Fq(a − b)‖2 = ‖FqF
−1
p Fp(a − b)‖2 ≤

‖FqF
−1
p ‖2‖Fp(a−b)‖2 = ‖FqF

−1
p ‖2dp(a, b) ≤ τ(p, q)dp(a, b).

Similarly, dp(a, b) ≤ ‖FpF−1
q ‖2dq(a, b) ≤ τ(p, q)dq(a, b). �

3. Anisotropic Voronoi Diagrams
The domainΩ and the metric tensor fieldM together are a Rie-

mannian manifold, so the natural way to define an anisotropicVor-
onoi diagram of a point set is to compute a Voronoi diagram on that
manifold. Leibon and Letscher [10] do just that. In Riemannian ge-
ometry, the length of a paths = s(t), 0 ≤ t ≤ 1, connecting two
pointsp = s(0) andq = s(1) is calculated by the path integral

R(s) =

∫ 1

0

√

ds

dt

T

Ms(t)
ds

dt
dt,

and the distance between two pointsp andq is the length of the
shortest path connecting them. The Voronoi diagram is defined in
the usual manner: the Voronoi cellVor(v) of a point sitev is the
set of all points on the manifold that are at least as close tov as to
any other site. Leibon and Letscher show that if there is an upper
bound on the sectional curvature of the manifold, and if the sites
are spaced densely enough, the Voronoi diagram dualizes to awell-
defined Delaunay triangulation.

Unfortunately, finding the shortest Riemannian path between two
points is a computationally difficult operation. Local geodesic paths
can be approximated numerically, but the algorithms for doing so
are slow enough to make generating large anisotropic meshesim-
practical. These problems can be overcome by using approximate
distance computations and approximate geodesics or other heuris-
tics [7], but none of these has been amenable to the kind of analysis
that would yield a provably good algorithm.

Here, we propose an approximation to the Riemannian Voronoi
diagram that can be generated reasonably efficiently, yet makes it
possible to prove that our Delaunay triangulations have favorable
properties. Like Leibon and Letscher, we show that if the spacing



Figure 3: An anisotropic Voronoi diagram. Thin arcs are isocontours
of the nearest site’s distance metric.

of the sites satisfies the right conditions, we can guaranteea ge-
ometrically well-defined two-dimensional Delaunay triangulation;
furthermore, we can offer triangles with guaranteed good quality.

DEFINITION 1 (ANISOTROPICVORONOI DIAGRAM). LetV
be a set of sites. TheVoronoi cellof a sitev in V is

Vor(v) = {p ∈ Ed : dv(p) ≤ dw(p) for all w ∈ V }.
Any subset of sitesW ⊆ V induces a Voronoi cellVor(W ) =
⋂

w∈W Vor(w) of points equally close to the sites inW and no
closer to any others. If it is not empty, such a cell has a dimension-
ality ofdim(Vor(W )) ≥ d+1−|W |, achieving equality if the sites
are in general position. Every site inW is said toown Vor(W ).
Theanisotropic Voronoi diagramof V is the arrangement of the
Voronoi cells{Vor(W ) : W ⊆ V,W 6= ∅, Vor(W ) 6= ∅}.

Figure 3 depicts an example. Anisotropic Voronoi diagrams are
a generalization of multiplicatively weighted Voronoi diagrams [4]
in which the distance metric is anisotropic. If the metric tensor field
M is isotropic (i.e. for some scalar fieldc, Mp = cpI for all p ∈ Ω,
whereI is the identity tensor), the anisotropic Voronoi diagram is
the multiplicatively weighted Voronoi diagram.

One odd characteristic that anisotropic Voronoi diagrams share
with multiplicatively weighted Voronoi diagrams is that a Voronoi
cell (of any dimension) can consist of multiple connected compo-
nents. Cells are partitioned intofacesof the arrangement whose
relative interiors are connected. 0-faces areVoronoi vertices, and
1-faces areVoronoi arcs. A d-face that does not contain its gener-
ating site is called anorphan. (Figure 3 has three orphans.)

PROPOSITION 2. The boundary between two adjoiningd-cells
is composed of patches of a quadratic curve or surface.

PROOF. Any point q in Vor(v) ∩ Vor(w) satisfiesdv(q) =
dw(q), or (q−v)T Mv(q−v) = (q−w)T Mw(q−w). This equa-
tion is quadratic inq, therefore every point inVor(v)∩Vor(w) lies
on a common quadratic curve or surface. �

In three dimensions quadratic surfaces are also called quadrics.
In two dimensions, nondegenerate quadratic curves are alsocalled
conic sections (circles, ellipses, parabolas, and hyperbolas).

Another way to think of anisotropic Voronoi diagrams is as the
lower envelope of the arrangement inEd+1 of the paraboloids
zv(p) = (p− v)T Mv(p− v). By projecting the faces of the lower
envelope down toEd we form theminimization diagram[16] of
the paraboloids, which is the anisotropic Voronoi diagram.

Figure 4: A wedge.

4. Diagram Complexity and Construction
The complexity of ad-dimensionaln-site anisotropic Voronoi

diagram is inO(nd+ǫ), whereǫ is an arbitrary (small) positive con-
stant, by virtue of Halperin and Sharir’s upper bounds on thecom-
plexity of lower envelopes [8, 15]. To construct a lower bound ex-
ample ofΩ(nd) worst-case complexity, choose paraboloids whose
isocontours are frisbee-shaped, axis-aligned, and form a grid. (Our
thanks go to Micha Sharir for this example).

Two-dimensional anisotropic Voronoi diagrams can be construc-
ted in O(n2+ǫ) time by a divide-and-conquer algorithm of Agar-
wal, Schwarzkopf, and Sharir [2, 16] for minimization diagrams.
Three-dimensional anisotropic Voronoi diagrams can be construc-
ted inO(n3+ǫ) expected time by a random incremental algorithm
of Agarwal, Aronov, and Sharir [1, 16].

For the purpose of Voronoi refinement, we need an incremen-
tal site insertion algorithm, but we cannot randomize the order in
which sites are inserted. At any rate, any incremental site insertion
algorithm is too slow for our needs. We discuss a sneaky alterna-
tive, fast enough for practical use, in Sections 7 and 8.

5. Anisotropic Delaunay Triangulations
The dual of the standard Voronoi diagram is the Delaunay tri-

angulation. Our anisotropic Voronoi diagram can be very com-
plicated, and its geometric dual may contain inverted or repeated
simplices and other irregularities. In this section we describe con-
ditions under which the dual of the anisotropic Voronoi diagram is
a correct triangulation.

DEFINITION 2. Let v and w be two sites. Define thewedge
between these two sites as the locus of pointsq for which the angle
∠qvw as viewed fromv is less than90◦, and the angle∠qwv as
viewed fromw is less than90◦. (See Figure 4.) Mathematically,

wedge(v, w) = {q ∈ Ed : (q − v)T Mv(w − v) > 0

and(q − w)T Mw(v − w) > 0}.

LEMMA 3 (VISIBILITY LEMMA ). Let v and w be two sites
in Ed. If we restrict the two-site Voronoi diagram of{v, w} to
wedge(v, w), thenv can see its entire cell, andw can see its entire
cell as well.

PROOF. The restricted Voronoi cell ofv is defined by the follow-
ing three inequalities.

(q − v)T Mv(w − v) > 0.

(q − w)T Mw(v − w) > 0.

(q − w)T Mw(q − w) ≥ (q − v)T Mv(q − v).

Let q be any point that satisfies these inequalities. The visibility
claim is thatq′ = λq +(1−λ)v satisfies these inequalities as well,



for 0 < λ < 1. This claim can be verified by substitutingq′ for q
and showing that the inequalities hold forq′, given that they hold
for q. The result holds forw by symmetry. �

Lemma 3 is tight. The visibility property stops precisely where
the Voronoi surface exits the wedge.

DEFINITION 3. A Voronoi k-face f ⊆ Vor(W ), with 0 ≤
k < d, is said to bewedgedif for every pair of distinct sites
v1, v2 ∈ W , every pointq onf falls insidewedge(v1, v2). For ex-
ample,f ⊆ Vor({v1, v2, v3}) is wedged iff ⊆ wedge(v1, v2) ∩
wedge(v2, v3) ∩ wedge(v3, v1).

THEOREM 4 (VISIBILITY THEOREM). If every lower-dimen-
sional face of ad-face ofVor(v) is wedged, then thed-face is star-
shaped and every point in thed-face is visible fromv.

PROOF. For the sake of contradiction, letp be a point in thed-
face that is not visible fromv. Let q be the point furthest fromp on
the line segmentpv that is visible fromp. Becausep is not visible
fromv, neither isq. Letw be the owner of the first face encountered
strictly afterq on the ray~qv. Thenq lies on a face owned byv and
w. By assumption this face is wedged. Imagine a Voronoi diagram
with sitesv and w only. In this diagramq is in Vor(v) and in
wedge(v, w), butq is not visible fromv, contradicting Lemma 3.�

The following lemma implies that if a Voronoi surface is not
wedged, we can insert a new site on it that is not close to an existing
site—a handy tool for mesh generation.

LEMMA 5. Letq be a point inVor(v)∩Vor(w) that lies outside
wedge(v, w) on the side ofw. Letγ ≥ 1 be a constant for which
τ(v,w) ≤ γ. Then the proximity ofq to v and w is bounded by
dv(q) = dw(q) ≥ dw(v)/

√

γ2 − 1.

PROOF. Becauseq is onw’s side ofwedge(v, w), dw(q, v)2 ≥
dw(q)2 + dw(v)2 by Pythagoras’ Theorem. By Proposition 1,
dw(q, v)2 ≤ τ(v,w)2dv(q)2 ≤ γ2dv(q)2. Becauseq ∈ Vor(v) ∩
Vor(w), dv(q) = dw(q). The result follows by combining inequal-
ities and rearranging terms. �

The rest of this section applies to the two-dimensional caseonly.

LEMMA 6 (TRIANGLE ORIENTATION LEMMA ). Let q be a
Voronoi vertex owned by the sitesv1, v2, v3. If q is wedged, then
the orientation of the trianglev1v2v3 matches the ordering of the
cellsVor(v1), Vor(v2), Vor(v3) locally aroundq. In other words,
if at q the cellsVor(v1), Vor(v2), Vor(v3) occur clockwise, then
the sitesv1, v2, v3 occur clockwise in the plane, and vice versa.

PROOF. The trianglev1v2v3 cannot be degenerate, because if,
say, the angle atv1 is 180◦, thenwedge(v1, v2) andwedge(v1, v3)
are disjoint (because they are defined as open sets), and soq cannot
lie in their intersection. Imagine a Voronoi diagram with sitesv1,
v2, andv3 only. By Lemma 3,dv1

(q′) ≤ dv2
(q′) anddv1

(q′) ≤
dv3

(q′) for any pointq′ on the line segmentv1q. Thereforev1 can
seeq in the three-point Voronoi diagram. Symmetrically, so canv2

andv3.
There are three cases. (1)q lies in the trianglev1v2v3. (2) q

lies on the opposite side of exactly one edge of the triangle.(3)
q lies on the opposite side of exactly two edges. In cases (1) and
(2), the three-way visibility property implies matching orientations
as claimed. Case (3) implies opposite orientations, but case (3) is
impossible. Ifq lies on the opposite side of edgesv1v2 andv1v3,
say, then as measured byv1, ∠qv1v2 + ∠qv1v3 > 180◦, which
contradicts the wedge properties∠qv1v2 < 90◦ and∠qv1v3 <
90◦. The lemma follows. �

THEOREM 7 (DUAL TRIANGULATION THEOREM). Let the
domainΩ be a polygonal subset of the plane, letV be a set of sites
in Ω which include every vertex ofΩ, and letD be the anisotropic
Voronoi diagram ofV . LetD|Ω be the restriction ofD to Ω. Sup-
pose that each Voronoi arc cut by the restriction operation is owned
by the endpoints of the edge ofΩ that cuts it. If all the Voronoi arcs
and vertices ofD|Ω are wedged, then the geometric dual ofD|Ω
is a polygonalization ofΩ (with strictly convex polygons), and is
a triangulation ofΩ if V is in general position. Arbitrarily trian-
gulating each polygon yields what we call ananisotropic Delaunay
triangulationof (V,Ω).

PROOF. D|Ω has no orphans because an orphan inD that sur-
vives the restriction toΩ unchanged is ruled out by Theorem 4,
and an orphan that is cut or created by the restriction toΩ would
defy the assumption that each cut Voronoi arc is dual to the domain
edge that cuts it. Thus every 2-face inD|Ω dualizes to the site that
generates it.

Every Voronoi vertex has degree three or greater, and thus du-
alizes to a polygon. The polygon cannot have a repeated sitev
because that would imply that four Voronoi arcs owned byv meet
at the vertex: two of these arcs have points that are not visible from
v, contradicting Lemma 3. If the degree of the vertex exceeds three,
triangulate the polygon arbitrarily. Every Voronoi vertexof D|Ω is
wedged, so by Lemma 6, triangles that share an edge have compat-
ible orientations. By transitivity, this means that all triangles are
positively oriented regardless of how each polygon is triangulated,
so each polygon is strongly convex.

Every uncut Voronoi arc ofD|Ω is incident to two distinct Voronoi
vertices, because the Voronoi arc lies within the wedge of its two
generating sites so it cannot form a loop around one of the sites.
Every uncut Voronoi arc thus dualizes to an edge between two tri-
angles, and by assumption every cut arc dualizes to an edge onthe
boundary ofΩ. Therefore, the geometric dual ofD|Ω is a valid
triangulation ofV coveringΩ. �

WhenMp ≡ I, Voronoi edges and vertices are always wedged,
and Theorem 7 reiterates what we already know: the dual of the
standard Voronoi diagram is a triangulation. However, for arbitrary
sets of sites and arbitrary metric tensor fields, the preconditions of
Theorem 7 seldom hold. The theorem becomes useful in conjunc-
tion with the Voronoi refinement method described in Section9.

6. Triangle Quality
There is a simple relationship between the minimum angleθmin

of a triangle and the ratioβ of its circumradius to its shortest edge
length: sin θmin = 1

2β
. Here we revisit this relationship for our

anisotropic notions of “circumradius” and “shortest edge.”

LEMMA 8. Consider a triangle with sidesa, b, andc and oppo-
site anglesA, B, andC such thatc2 ≥ |a2 − b2|. Imagine another
triangle with sidesa′, b′, andc′ and opposite anglesA′, B′, and
C ′. If a′ ≥ a, b′ ≥ b andc′ ≤ c, thenC ′ ≤ C.

PROOF. Scaling does not change angles, so we can assumec′ =
c by scaling every side of the second triangle byc/c′ ≥ 1. Imagine
the circle through the vertices of the first triangle. Sincec′ = c,
fix the vertices atA andB and generate the second triangle from
the first by moving the vertex atC only. c2 ≥ |a2 − b2| implies
c2 ≥ a2 − b2 andc2 ≥ b2 − a2, which impliesA ≤ 90◦ and
B ≤ 90◦, so when the sidesa andb increase, the vertex atC can
only move out of the circle, which by circle geometry impliesthat
C ′ ≤ C. �
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Figure 5: Two cases for bounding θ = ∠v1v2v3.

THEOREM 9. Let q be a Voronoi vertex owned by the sitesv1,
v2, andv3. Let thecircumradiusassociated withq ber = dv1

(q) =
dv2

(q) = dv3
(q). Let theshortest edge lengthℓ of the trian-

gle t = △v1v2v3 be min{d(v1, v2), d(v2, v3), d(v3, v1)}. Let
1 ≤ γ ≤

√
2 andβ ≥ 1/

√
2 be constants such thatβ ≥ r/ℓ and

τ(vi, vj) ≤ γ for i, j ∈ {1, 2, 3}. Letχ = 1/(2β)− (γ2−1)β/2.
If χ > 0, thenq is wedged. Furthermore, each angleθ of t

satisfiesθ ≥ arcsinχ, whereθ is measured from the perspective
of some vertex oft (strangely, not necessarily the same vertex for
each angle, and not necessarily the vertex where the angle is). Note
that this only implies thatsin θ ≥ χ if θ is acute.

PROOF. Let φ = ∠qv1v2 as measured byv1. Note that
dv1

(v1, q) = r, dv1
(v1, v2) ≥ r/β, anddv1

(v2, q) ≤ γdv2
(q) =

γr. Becauseγ ≥ 1 andβ ≥ 1/
√

2, we have(γr)2 ≥ |r2−(r/β)2|
so Lemma 8 applies and by the law of cosines,

cos φ ≥ r2 + (r/β)2 − (γr)2

2r(r/β)
=

1

2β
− (γ2 − 1)β

2
= χ.

If χ > 0, thencos φ > 0, so φ < 90◦ and one of the two
inequalities required to show thatq ∈ wedge(v1, v2) is satisfied
(namely(q − v1)

T Mv1
(v2 − v1) > 0). By repeating the argument

for φ = ∠qvivj , i, j ∈ {1, 2, 3}, i 6= j, we obtain all six inequal-
ities required to show thatq ∈ wedge(v1, v2) ∩ wedge(v2, v3) ∩
wedge(v3, v1); thereforeq is wedged.

Next we boundθ = ∠v1v2v3, the angle at vertexv2. Consider
the case whereq lies on the opposite side of edgev1v3 from v2

(but on the triangle-side of edgesv1v2 andv2v3) as illustrated in
Figure 5 (left). As measured byv2, ∠v2qv1 + ∠v2qv3 < 180◦.
Assume without loss of generality that∠v2qv1 < 90◦. If we com-
pute the angleφ = ∠qv1v2 as before, but now as measured by
v2, we havedv2

(v1, q) ≥ r/γ, dv2
(v1, v2) ≥ r/β ≥ r/(βγ),

and dv2
(v2, q) = r. Multiplying these bounds byγ does not

change the angles, so Lemma 8 applies as before andcos φ ≥ χ
as measured byv2 as well. Because∠v2qv1 < 90◦, this implies
that sin ∠v1v2q ≥ χ, which in turn implies thatθ ≥ ∠v1v2q ≥
arcsinχ as measured byv2.

The proof of Lemma 6 tells us there are only two other cases:
eitherq lies in t, or q lies on the opposite side of exactly one edge,
v1v2 or v2v3—assume without loss of generalityv2v3. In either
case the linev1q cuts the angle∠v3v1v2. Consider Figure 5 (right),
drawn fromv1’s perspective, wheret achievessin θ = cos φ =
χ. In the figure, imaginev1 and q are fixed. We claim that the
illustrated positions ofv2 andv3 minimizeθ.

For the case whereq lies on the opposite side ofv2v3, we choose
to measureθ = ∠v1v2v3 fromv1’s perspective. Becausedv1

(v2) ≥
r/β anddv1

(v2, q) ≤ γr, v2 is constrained to lieinsidethe illus-
trated circle (which circumscribes our proposed worst-case t). By
circle geometry, movingv2 subject to this constraint can only in-
creaseθ. Oncev2 is fixed, movingv3 subject to the symmetrical
constraintsdv1

(v3) ≥ r/β anddv1
(v3, q) ≤ γr cannot decreaseθ

either. Therefore fromv1’s perspective,θ ≥ arcsinχ.
For the case whereq lies in t, there are two other configurations

of the vertices that sometimes locally minimizeθ, but the case just

described is always the global minimum for the ranges ofγ andβ
specified in the theorem. Details are omitted.

Rotate the vertex labels and repeat the argument to provide a
lower bound for all three angles oft. �

COROLLARY 10. Let q, v1, v2, v3, γ, andβ satisfy the condi-
tions of Theorem 9. Letp be an arbitrary point such thatτ(p, vi) ≤
γ for i ∈ {1, 2, 3}. Let χ = 1/(2β) − (γ2 − 1)β/2. Then each
angleθ of the trianglet = △v1v2v3 satisfiesarcsin(χ/γ2) ≤ θ ≤
2 arccos(χ/γ2), as measured byp.

PROOF. Let θp = ∠v1v2v3 as measured byp. Write θvi
for

the same angle as measured byvi. By Theorem 9, for somej ∈
{1, 2, 3}, eithersin θvj

≥ χ or θvj
≥ 90◦. Let Ap be the area of

t as measured byp, andAvj
the area oft as measured byvj . By a

well-known formula for the sine of an angle,

sin θp =
2Ap

dp(v1, v2)dp(v2, v3)
=

2Avj
det(FpF−1

vj
)

dp(v1, v2)dp(v2, v3)

≥
2Avj

‖FpF−1
vj

‖2/‖Fvj
F−1

p ‖2

‖FpF−1
vj

‖2
2dvj

(v1, v2)dvj
(v2, v3)

=
2Avj

‖Fvj
F−1

p ‖2‖FpF−1
vj

‖2dvj
(v1, v2)dvj

(v2, v3)

≥ 1

γ2
sin θvj

.

Thereforesin θp ≥ χ/γ2 if θvj
≤ 90◦. If θvj

is obtuse butθp

is acute, divideθvj
into a90◦ piece and a leftover, and apply the

bound to the90◦ portion, yieldingsin θp > 1/γ2 > χ/γ2. By
repeating the argument for each angle oft, we have that fromp’s
perspective, the sine of every acute angle oft is at leastχ/γ2. A tri-
angle with no angle smaller thanarcsin(χ/γ2) has no angle greater
than180◦ − 2 arcsin(χ/γ2) = 2 arccos(χ/γ2). �

7. Loose Anisotropic Voronoi Diagrams
In an ordinary Voronoi diagram, inserting a site is by naturea lo-

cal operation. Although one new site can cause extensive changes
to most of the diagram, that is not the common case. Randomized
incremental construction algorithms enjoy expected constant-time
site insertions in theory (not counting the point location time), and
Ruppert’s Delaunay refinement algorithm for quality mesh genera-
tion [13] usually enjoys constant-time site insertions in practice.

Anisotropic Voronoi diagrams do not inherit this virtue, because
a Voronoi cell is not necessarily connected. An incrementalsite
insertion algorithm must inspect the entire diagram in search of
points that are closer to the new site than to the older sites,thereby
creating orphans where necessary. This makes site insertion slow.

However, a goal of our mesh generation algorithm is to create
a Voronoi diagram that has no orphans. Our meshing algorithm
works correctly even if we use a sloppy incremental site insertion
algorithm that forgets to install new orphans.

Let V be a set of sites, and consider again the arrangementA
in Ed+1 of the paraboloidszv(p) = (p − v)T Mv(p − v) for all
v ∈ V , whose lower envelope is the anisotropic Voronoi diagram.
Each paraboloid inA is sliced intod-faces where it intersects other
paraboloids. We wish to choose a subset of thesed-faces that form
a structure that is similar to the lower envelope, but easierto con-
struct.

Let F be a subset of thed-faces ofA, and let
⋃

F be the union
of these faces. SupposeF satisfies the following two conditions.
First,F contains everyd-face that contains its generating site. Sec-
ond,

⋃

F is a manifold without boundary that intersects every ver-
tical line (parallel to thexd+1-axis) at exactly one point. In other



Loose anisotropic Voronoi Diagram

Anisotropic Voronoi Diagram (one−dimensional)

Figure 6: A loose anisotropic Voronoi diagram often has fewer or-
phans than the true anisotropic Voronoi diagram. Black points are
sites; white points are Voronoi vertices.

words, iff(p) is a function that maps each pointp in Ed to a real
numberh such that(p, h) ∈ ⋃

F , thenf is single-valued, continu-
ous, and defined everywhere inEd. See the lower half of Figure 6
for an example. For anyF that satisfies these conditions, letL be
the arrangement formed by projecting thed-faces inF to Ed; we
call L a loose Voronoi diagramof V .

For a loose Voronoi diagramL, a sitev ownsa faceg of L if g
is the projection of a face ofF that lies onv’s paraboloid.

In general, a set of sitesV may have many loose Voronoi dia-
grams; the true anisotropic Voronoi diagram ofV is one of them.
They differ from each other by the orphans they contain. For each
sitev in V , every loose Voronoi diagram ofV contains thed-face
of Vor(v) that containsv, or a superset of that face. The other
components ofVor(v) may or may not be present, andv may own
territory that is not part ofVor(v).

Observe that if the true Voronoi diagramD has no orphans, then
it is the only loose Voronoi diagram, becauseEd is covered by the
d-faces that contain their generating sites. Likewise, ifD|Ω has no
orphans, then for any loose diagramL, L|Ω = D|Ω. Therefore, if
D satisfies the preconditions of the Dual Triangulation Theorem,
then D|Ω can be constructed by incrementally inserting its sites
into a loose Voronoi diagram.

8. Incremental Voronoi Diagram Construction
This section sketches an incremental site insertion algorithm

which, given a two-dimensional loose Voronoi diagramL of a set
V of sites and a sitev 6∈ V , constructs a loose Voronoi diagramLv

of the setV ∪ {v}. Let F be the set of 2-faces of the paraboloid
arrangementA that project to faces inL. Let z bev’s paraboloid,
z(q) = (q − v)T Mv(q − v). Let F v be the three-dimensional ar-
rangement formed byz and the faces inF . In F v, z is sliced into
2-faces. One of these 2-faces projects to a 2-facef that containsv.

The main idea is that the algorithm inserts only the 2-facef into
L. Therefore, the updated loose Voronoi diagramLv has only one
2-face owned byv (namelyf ), andv has no orphans. The up-
date step is thus local in nature and will often run in constant time
per site insertion in practice—especially in the Voronoi refinement
algorithm of Section 9, which quickly makes the sites regularly
spaced. The worst-case running time for a sequence ofn site inser-
tions is betweenΩ(n2) andO(n3) (to narrow this range is an open
problem), but the worst-case time is unlikely to be realizedduring
Voronoi refinement.

Observe that the loose Voronoi diagram created by the algorithm
is not necessarily orphan-free. The insertion ofv does not create
any orphans owned byv, but it may split other sites’ cells up into
multiple faces, thereby creating orphans owned by other sites.

w

Figure 7: A segment encroached upon by w is split.

The algorithm runs in three steps. The first step finds a 2-face
of L that contains the new sitev. (In the Voronoi refinement al-
gorithm, this information is already provided.) The secondstep
computes the overlay off with L—the arrangement in the plane
formed byL and the boundary off . Let G be the set of 2-faces of
L that intersect the interior off . This step exploits locality by using
depth-first search to visit only the 2-faces inG. Let g be a face in
G with ownerw. The algorithm determines whether the boundary
of f intersectsg—more directly, whether the curvedv(p) = dw(p)
intersectsg—and constructs the overlay off with g. The details of
overlay computation are routine [2, 16] and are omitted.

The third step merges all faces in the interior off into one 2-face
owned byv. The resulting arrangement isLv.

9. Anisotropic Mesh Generation by
Voronoi Refinement

Let X be a planar straight line graph (PSLG)—a set of sites and
segments in the plane that are required to appear in the mesh.Let
Ω ⊂ E2 be a finite domain to triangulate (whose boundary must be
the union of some of the segments inX), and letM be a metric ten-
sor field defined overΩ. The following Voronoi refinement algo-
rithm is an anisotropic revision of Ruppert’s Delaunay refinement
algorithm for guaranteed-quality isotropic mesh generation [13].

To guarantee that his algorithm will terminate, Ruppert demands
that any two segments ofX that share an endpointv must be sepa-
rated by an angle of at least90◦. We impose the condition that the
angle is at least79◦, where the angle is measured according to the
metric tensorMv. (The angle constraint can be relaxed a bit; see
Theorem 11.)

Voronoi refinement begins with the construction of the Voronoi
diagramD of the sites inX under the metric tensor fieldM . The
algorithm works equally well whetherD is a true anisotropic Vor-
onoi diagram or a loose anisotropic Voronoi diagram. At thistime,
the dual ofD|Ω is not necessarily a triangulation.

Let s be any segment inX, and leta andb be its endpoints. Say
thats is encroachedif it intersects a Voronoi cell belonging to any
sitew other thana andb (see Figure 7). Ifs is encroached,split it
by inserting a new sitez in s∩Vor(w) (at a location to be discussed
shortly). Update the Voronoi diagramD by incrementally insert-
ing z. The splitting operation replacess with two subsegmentsaz
andzb, which may or may not be encroached and need to be split
further.

When possible, split a segment so thatda(z) = db(z). Occa-
sionally, however, this is inappropriate because the “midpoint” z
satisfying this condition does not lie inVor(w) for any encroach-
ing sitew. This can happen ifs ∩ Vor(w) lies entirely on one side
of the “midpoint.” In this case, place the new sitez in s ∩ Vor(w)
as close to the “midpoint” as possible.

The purpose of segment splitting is to ensure that each subseg-
ment is an edge in the geometric dual ofD|Ω. When no encroached
segment or subsegment exists, the algorithm attempts to eliminate
a poorly shaped triangle, an orphan, or another irregularity by in-



serting a site. A pointq ∈ Ω is said to be aviolator if
• q lies on a Voronoi 1-cellVor(v)∩Vor(w) but is not wedged

(in wedge(v, w))—call q awedge violator; or
• q is a Voronoi vertex that dualizes to a trianglet that is in-

verted, is too large, or has an angle less than some constant
θbound, as measured by the metric tensorMp for any pointp
in t.

The Voronoi refinement algorithm chooses an arbitrary violatorq
and attempts to insert a site there, thereby eliminating theviolator.
It might not be necessary to eliminate every violator; the algorithm
may stop as soon asD|Ω dualizes to a triangulation of satisfactory
quality. However, the proof in Section 10 guarantees termination
even when no violator is spared.

A new site is never permitted to encroach upon a segment ofX.
If q does not encroach upon any segment, the algorithm updatesD
to reflect the insertion ofq, then looks for another violator. Ifq
encroaches upon a segments, q is not inserted. Instead,s is split
as described above. The splitting sitez must lie in s ∩ Vor(q),
whereVor(q) is the Voronoi cell that would have been created ifq
were inserted. Subject to this restriction,z must lie as close to the
“midpoint” defined byda(z) = db(z) as possible.

If the Voronoi refinement algorithm terminates, the dual ofD|Ω
is a triangulation ofΩ by Theorem 7, and the triangles are of good
quality (because otherwise the algorithm would not stop). But does
it terminate? Section 10 shows that, with reasonable restrictions on
M andθbound, it does.

To simplify programming, an implementation only needs to find
Voronoi “arcs” that are ellipses (which always have violators), and
Voronoi vertices that dualize to inverted or poor-quality triangles.
(For this purpose, the “dual” of an orphan is the site that owns it.)
An attack on these violators will also eliminate all orphansand
“island” Voronoi cells (enclosed in other Voronoi cells, possibly
adjoining other islands) without any need to explicitly test for their
existence. We omit the proof.

Because the Voronoi refinement algorithm refines the mesh heav-
ily in regions whereM varies rapidly, we suggest the following
variation. For any pointp, let M ′

p = (det Mp)
−1/dMp, so the

metric tensorM ′
p has determinant one. The tensorsMp andM ′

p

measure angles identically but lengths differently. UseMp to judge
whether a triangle is too large (as before), but define the anisotropic
Voronoi diagram using the tensor fieldM ′

p. Then the relative dis-
tortion between two points is solely attributable to differences in
how they measure angles, and not differences in how they measure
areas. In our experiments, the modified algorithm produces meshes
with fewer triangles.

10. Proof of Termination
Intuitively, the Voronoi refinement algorithm inserts sites for one

of two reasons: either the spacing of sites is not uniform enough to
guarantee good-quality triangles, or neighboring sites have metric
tensors that strongly disagree with each other. The distances at
which these effects occur are called thelocal feature sizeand the
bounded distortion radius.

DEFINITION 4. For a metric tensor fieldM and a fixedγ >
1, the bounded distortion radiusbdr(p, γ) at a point p ∈ Ω is
the greatest number such that for every pointq ∈ Ω, if dp(q) ≤
bdr(p, γ), thenτ(p, q) ≤ γ. (Note thatbdr(p, γ) can be infinite.)
Thedistortion diskcentered atp is the elliptical disk{q ∈ E2 :
dp(q) ≤ bdr(p, γ)}. Letbdrmin(γ) = infp∈Ω bdr(p, γ).

Every point inp’s distortion disk has a similar view of lengths
and angles. The Voronoi refinement algorithm is guaranteed to ter-
minate ifbdrmin(γ) is positive. This is always true if the metric

tensor fieldM is continuous overΩ with bounded spatial gradi-
ents, but is sometimes true even with minor discontinuitiesin M .
The value ofγ depends on how strong an angle bound the user
demands; see Theorem 11 below.

Let q and q′ be two distinctfeature points—points that lie on
input sites or segments inX. Say thatq andq′ are intertwinedif
they lie on a common segment ofX, or if they lie on segmentss
ands′, respectively, wheres ands′ share a common endpointb and
τ(q, b) ≤ γ andτ(q′, b) ≤ γ.

DEFINITION 5. For a PSLGX and a fixedγ > 1, thelocal fea-
ture sizelfs(p) at a pointp ∈ Ω is the radius (as measured byp) of
the smallest elliptical disk (circular fromp’s perspective) centered
at p that intersects two feature points ofX that are not intertwined.
In other words, there are non-intertwined feature pointsq and q′

such thatdp(q) = lfs(p) anddp(q
′) ≤ lfs(p), but this is not true

for any radius smaller thanlfs(p). Let lfsmin = infp∈Ω lfs(p).

This definition of local feature size is similar to Ruppert’s, but
it is adjusted to account for the fact that two segments that meet
at an angle greater than90◦, from the perspective of their shared
endpoint, might meet at an angle of1◦, from the perspective of
points q and q′ on each segment. In this case,q and q′ are not
intertwined, and the distance between them (as they measureit)
influences the local feature size nearby. However, ifbdrmin > 0,
thenlfsmin > 0.

For brevity, the following theorem applies only when the Voronoi
refinement algorithm does not refine triangles for being too large. It
is straightforward (if tedious) to adapt the proof to cover refinement
of oversized triangles as well.

THEOREM 11. Let θbound < arcsin 1

2
√

2
be a constant. Sup-

pose a trianglet is considered to bepoorly shaped(thus its circum-
center is a violator) ift has an angle less thanθbound, as measured
by an arbitrary pointp in t. Letγ be the real root of

γ8 + 2γ4
√

γ2 + 1 sin θbound − γ4 − 1 = 0

that is greater than one. Suppose any two adjoining segmentsof
X are separated by an angle of at least2 arcsin(γ2/2), as mea-
sured from the perspective of the intersection point. (Thisangle
is less than79◦, and can be reduced arbitrarily close to60◦ by
choosingγ closer to one.) Ifbdrmin(γ) > 0, then the Voronoi re-
finement algorithm described in Section 9 generates a triangulation
T wherein no trianglet has an angle less thanθbound as measured
by any pointp ∈ t, and every pair of sitesu 6= v in T satisfies

du(v) ≥ min

{

lfsmin

γ
,

bdrmin(γ)

(γ5 + γ3)
√

γ2 + 1

}

.

If θbound = 0◦—the minimum requirement for a geometrically
valid triangulation—thenγ

.
= 1.1278. This suggests that if neigh-

boring sites measure lengths more than about12% differently, that
may be enough to trigger refinement to reduce the disparity, even
if the sites are uniformly spaced. Ifθbound = 10◦, γ

.
= 1.0629.

θbound may be as high as about20.7◦ (as it is for Ruppert’s al-
gorithm), but asθbound approaches this upper limit, the algorithm
may have to refine the edges to very short lengths to keep the rela-
tive distortion locally small enough.

Our proof of Theorem 11 proceeds through many lemmas, in
which all references to Voronoi cells refer to cells of the true aniso-
tropic Voronoi diagram, even if the Voronoi refinement algorithm
uses a loose Voronoi diagram instead. Lemma 20 shows that it does
no harm for the algorithm to work with the latter.



LEMMA 12. Let v be a site of a Voronoi diagramD, and letq
be a point inVor(v). For someγ ≥ 1, supposedv(q) ≥ bdr(v, γ).
Then for any sitew of D, d(w, q) ≥ bdrmin(γ)/γ. Thus, inserting
q into D creates no inter-site distance shorter thanbdrmin(γ)/γ.

PROOF. Suppose for the sake of contradiction that for some
site w of D, d(w, q) < bdrmin(γ)/γ. Then eitherdw(q) <
bdr(w, γ)/γ or dq(w) < bdr(q, γ)/γ, so τ(w, q) ≤ γ. In the
former casedw(q) < bdrmin(γ)/γ, and in the latter casedw(q) ≤
γdq(w) < bdrmin(γ).

Becauseq is in Vor(v), dv(q) ≤ dw(q) < bdrmin(γ), which
contradicts the assumption thatdv(q) ≥ bdr(v, γ). �

LEMMA 13. Let D be a Voronoi diagram, and letq be a point
where no site ofD lies. Letz be a point that would be inVor(q)
if q were inserted intoD. For someγ ≥ 1, supposedq(z) ≥
bdr(q, γ). Then for any sitew of D, d(w, z) ≥ bdrmin(γ)/γ.

PROOF. Essentially the same as the proof of Lemma 12. (Ob-
serve that becausez would lie inVor(q) if q were inserted,dq(z) ≤
dw(z) for any sitew of D.) �

LEMMA 14. Let u andv be sites of a Voronoi diagramD. Let
q be a point on the Voronoi 1-cellVor(u) ∩ Vor(v). For some
γ ≥ 1, supposedu(v) ≥ bdr(u, γ). Then for any sitew of D,
d(w, q) ≥ bdrmin(γ)/(γ3 + γ).

PROOF. If du(q) ≥ bdr(u, γ) or dv(q) ≥ bdr(v, γ), the result
follows by Lemma 12. Otherwise, by the definition of bounded
distortion radius,τ(u, q) ≤ γ andτ(v, q) ≤ γ, soτ(u, v) ≤ γ2.

Suppose for the sake of contradiction that for some sitew of D,
d(w, q) < bdrmin(γ)/(γ3 +γ). Then eitherdw(q) < bdr(w, γ)/
(γ3 + γ) or dq(w) < bdr(q, γ)/(γ3 + γ), soτ(w, q) ≤ γ. In the
former casedw(q) < bdrmin(γ)/(γ3 + γ), and in the latter case
dw(q) ≤ γdq(w) < bdrmin(γ)/(γ2 + 1).

Becauseq is in Vor(u) ∩ Vor(v), du(q) = dv(q) ≤ dw(q) <
bdrmin(γ)/(γ2 + 1). Recall thatτ(u, v) ≤ γ2, so du(v, q) ≤
γ2dv(q) < γ2bdrmin(γ)/(γ2 + 1). By the triangle inequality,
du(v) ≤ du(q) + du(v, q) < bdrmin(γ), which contradicts the
assumption thatdu(v) ≥ bdr(u, γ). The result follows. �

LEMMA 15. Let v be a site of a Voronoi diagramD, and letq
be a point where no site ofD lies. Letz be a point inVor(v) that
would be inVor(q) if q were inserted intoD. For someγ ≥ 1,
supposedq(v) ≥ bdr(q, γ). Then for any sitew of D, d(w, z) ≥
bdrmin(γ)/(γ3 + γ).

PROOF. Omitted. Similar to the proof of Lemma 14, but it uses
Lemma 13 as well as Lemma 12. �

LEMMA 16. Let D be a Voronoi diagram, and letq be a point
in Ω. For any γ ≥ 1 and for every sitew of D, dq(w) ≥
min{dw(q)/γ, bdr(q, γ)}.

PROOF. For each sitew, eitherdq(w) ≥ bdr(q, γ) (satisfying
the lemma) ordq(w) < bdr(q, γ). In the latter case,τ(q, w) ≤ γ
by the definition ofbdr anddq(w) ≥ dw(q)/γ. �

LEMMA 17. LetX be a PSLG whose intersecting segments sat-
isfy the angle condition specified in Theorem 11. Lets be a segment
in X with endpointsa andb. Let D be a Voronoi diagram whose
sites include the sites inX (includinga andb). Let v be a site of
D that encroaches upons. Let z be a point inVor(v) ∩ s. Let
m = min{da(v), db(v)}.

Then for any sitew of D, d(w, z) ≥ min{m, lfsmin/γ,
bdrmin(γ)}. Thus, insertingz into D creates no inter-site distance
shorter thanmin{m, lfsmin/γ, bdrmin(γ)}.

PROOF. Eitherv is a site inX or v lies on a segment ofX (oth-
erwisev would not have been inserted). Supposev andz are not
intertwined. Thendv(z) ≥ lfs(v) by the definition oflfs. Because
z is in Vor(v), dw(z) ≥ dv(z) ≥ lfs(v) for any sitew of D.
By Lemma 16,dz(w) ≥ min{lfs(v)/γ,bdr(z, γ)}, so the lemma
holds.

If v andz are intertwined, thenv lies on a segments′ that ad-
joins s. Assume without loss of generality that the shared end-
point of s ands′ is b; thenτ(v, b) ≤ γ by the definition of inter-
twined. We claim thatdb(v, z) > γ2db(v). Suppose for the sake
of contradiction thatdb(v, z) ≤ γ2db(v). Becausez is in Vor(v),
db(z) ≥ dv(z) ≥ db(v, z)/γ, sodb(v, z) ≤ γdb(z) < γ2db(z).

Let θ be the angle∠vbz as measured byb. Given the constraints
db(v, z) ≤ γ2db(v) anddb(v, z) < γ2db(z), θ is maximized at
θ = 2 arcsin(γ2/2) when the constraints achieve equality. But the
second constraint cannot achieve equality, and the angle condition
is θ ≥ 2 arcsin(γ2/2), so the claim holds by contradiction.

Therefore, for any sitew of D, dw(z) ≥ dv(z) ≥ db(v, z)/γ >
γdb(v) ≥ γm. By Lemma 16,dz(w) ≥ min{m, bdr(z, γ)}. �

LEMMA 18. Letq be a Voronoi vertex that dualizes to a poorly
shaped trianglet = △v1v2v3. Defineγ as in Theorem 11. Sup-
pose thatdvi

(vj) < bdr(vi, γ) for everyi, j ∈ {1, 2, 3}. Let the
shortest edge lengthℓ of t bemin{d(v1, v2), d(v2, v3), d(v3, v1)}.

Then for every sitew of D, dw(q) > γ2
√

γ2 + 1ℓ.

PROOF. For each vertexvi of t, the distortion disk ofvi is large
enough to enclose the other two vertices, so it enclosest. There-
fore, τ(vi, p) ≤ γ for any vertexvi of t and pointp in t. Because
t is poorly shaped, there is a pointp in t from whose perspectivet
has an angleθ < θbound. Let r = dv1

(q) = dv2
(q) = dv3

(q). Let
β = γ2

√

γ2 + 1. If β ≥ r/ℓ, then by Corollary 10,2γ2 sin θ ≥
1/β−(γ2−1)β. Substitution ofβ givesγ8+2γ4

√

γ2 + 1 sin θ−
γ4 − 1 ≥ 0. By assumption,γ8 +2γ4

√

γ2 + 1 sin θbound −γ4 −
1 = 0, sosin θ ≥ sin θbound, a contradiction; henceβ < r/ℓ.

For every sitew of D, dw(q) ≥ r > βℓ = γ2
√

γ2 + 1ℓ. �

LEMMA 19. Let u and v be sites of a Voronoi diagramD.
Let q be a wedge violator inVor(u) ∩ Vor(v) that is outside
wedge(u, v). Defineγ as in Theorem 11. Then for every sitew

of D, dw(q) ≥ min{γ2
√

γ2 + 1 d(u, v), bdrmin/(γ3 + γ)}.

PROOF. If τ(u, v) > γ, thendv(q) ≥ bdrmin/(γ3 + γ) by
Lemma 14. Ifτ(u, v) ≤ γ, assumeq is outsidewedge(u, v) on
the side ofu. From Lemma 5 we havedv(q) ≥ du(v)/

√

γ2 − 1.
By assumption,γ8 − γ4 − 1 ≤ 0, so du(v)/

√

γ2 − 1 ≥
γ2

√

γ2 + 1du(v) ≥ γ2
√

γ2 + 1 d(u, v).
Becauseq ∈ Vor(v), for every sitew of D, dw(q) ≥ dv(q) ≥

min{γ2
√

γ2 + 1 d(u, v), bdrmin/(γ3 + γ)}. �

LEMMA 20. Suppose the Voronoi refinement algorithm main-
tains a loose anisotropic Voronoi diagram instead of a true ani-
sotropic Voronoi diagram. Letq be a point that the algorithm
identifies as a violator, but is not really a violator. The bound of
Lemma 19 applies toq (for some pair of sitesu andv).

PROOF. Let L be the loose Voronoi diagram maintained by the
algorithm at the momentq is identified as a violator, and letD be
the true anisotropic Voronoi diagram of the same sites. Becauseq
is incorrectly identified as a violator,q lies in a 2-cellc of L owned
by some sitez whose Voronoi cell (inD) does not containz.

Consider first the case whereq lies in the interior ofc. Because
q 6∈ Vor(z), there must be some other sitev for whichq ∈ Vor(v).



The 2-cell ofL owned byv includes every point ofVor(v) that
is visible to v within Vor(v). Therefore,q is not visible tov
within Vor(v). Let p be the point nearestv on the line segment
qv such that the line segmentqp lies entirely inVor(v). (It is pos-
sible thatp = q.) Let u 6= v be a site such thatp ∈ Vor(u)
and some point ofVor(u) lies betweenp andv. By Lemma 3,p
is outsidewedge(u, v), sop is a wedge violator. By Lemma 19,
dv(p) ≥ min{γ2

√

γ2 + 1 d(u, v), bdrmin/(γ3 + γ)}. Becausep
lies betweenq andv, dv(q) ≥ dv(p). Becauseq ∈ Vor(v), for
every sitew of D, dw(q) ≥ dv(q). The result follows.

Now consider the case whereq lies on the boundary ofc. Let
c′ = c \Vor(z), and observe thatq ∈ c′. Because the bound holds
for every point in the interior ofc′, it holds for every point on the
boundary ofc′ by the continuity of distances. �

LEMMA 21. Letq be a site inserted at a violator by the Voronoi
refinement algorithm. LetD be the Voronoi diagram just beforeq
is inserted. Letm = minu6=v du(v) where the sitesu and v are
chosen from among all sites ofD. For every sitew of D, d(q, w) ≥
min{γ

√

γ2 + 1m, bdrmin(γ)/(γ4 + γ2)}. Thus, the insertion of
q into D creates no inter-site distance shorter than that.

PROOF. The violatorq does not encroach upon any subsegment
(otherwise it would not be inserted). Ifq is a wedge violator, the
result follows from Lemmas 19 and 16. Ifq is a violator by mis-
taken identity, the result follows from Lemmas 20 and 16. Oth-
erwise,q dualizes to a poorly shaped trianglet = △v1v2v3. If
dvi

(vj) ≥ bdr(vi, γ) for anyi, j ∈ {1, 2, 3}, then by Lemma 14,
d(q,w) ≥ bdrmin(γ)/(γ3 + γ) as claimed. Hence, assume that
dvi

(vj) < bdr(vi, γ) for every i, j ∈ {1, 2, 3}. By Lemma 18,
dw(q) ≥ γ2

√

γ2 + 1m. The result follows from Lemma 16. �

LEMMA 22. Let s be a segment with endpointsa and b in a
PSLGX. Let z be the “midpoint” of s, defined so thatda(z) =
db(z). Let D be a Voronoi diagram whose sites include the sites
in X (includinga andb). Letq be a point such thatVor(q) would
containz if q were inserted intoD (thusq would encroach upons).

Supposeτ(a, q) ≤ γ and τ(b, q) ≤ γ for someγ ≥ 1. Then
da(z) = db(z) ≥ min{da(q), db(q)}/(γ

√

γ2 + 1).

PROOF. Consider a linel throughz that is perpendicular tos
from q’s point of view. Specifically,l is composed of the pointsp
that satisfydq(b, z)2 + dq(z, p)2 = dq(b, p)2 (Pythagoras’ Law).
Suppose without loss of generality thatq lies on the same side ofl
asb, or q lies onl. Thendq(b, z)2 + dq(z)2 ≥ dq(b)

2. Because
τ(b, q) ≤ γ, it follows thatγ2db(z)2 + dq(z)2 ≥ db(q)

2/γ2.
Vor(q) would containz if q were inserted intoD, sodq(z) ≤

db(z). Therefore,(γ2 + 1)db(z)2 ≥ db(q)
2/γ2, from which the

result follows. �

LEMMA 23. Let z be a site inserted on a segments because a
violator q (not inserted) encroaches upons. LetD be the Voronoi
diagram just beforez is inserted. Letm = minu6=v du(v) where
the sitesu and v are chosen from among all sites ofD. De-
fine γ as in Theorem 11. For every sitew of D, d(z, w) ≥
min{m, bdrmin(γ)/((γ5 + γ3)

√

γ2 + 1)}.

PROOF. The segments intersects only two Voronoi cells, namely
Vor(a) andVor(b) wherea andb are the endpoints ofs. Other-
wise, the algorithm would have splits before trying to insertq.
There are two cases to consider. In Case A,z lies on the Voronoi
curveVor(a)∩Vor(b). In Case B,z lies in just one Voronoi cell—
without loss of generality, sayVor(b)—because ifq were inserted,
Vor(q) would not intersects ∩ Vor(a).

If dq(b) ≥ bdr(q, γ), the result follows by Lemma 15. Hence,
assumeτ(q, b) ≤ γ. Similarly, in Case A the result follows if
dq(a) ≥ bdr(q, γ), so assume in that case thatτ(q, a) ≤ γ.

Let v1, . . . , vk be the sites whose Voronoi cells containq. In
Case A, by Lemma 22,db(z) ≥ min{da(q), db(q)}/(γ

√

γ2 + 1).
Becauseq lies in Vor(vi) for eachi ∈ [1, k] andz lies in Vor(b),
for any sitew of D we havedw(z) ≥ db(z) ≥ min{da(q), db(q)}/
(γ

√

γ2 + 1) ≥ dvi
(q)/(γ

√

γ2 + 1).
A similar result holds in Case B. LetDq be the Voronoi di-

agram formed by insertingq into D (even though the algorithm
does not insertq). In Dq, there are one or two intersection points
s ∩ Vor(b) ∩ Vor(q), andz is the one furthest fromb. Althoughz
lies in Vor(b) in Dq, eitherz is not visible fromb within Vor(b),
or z lies whereVor(q) tangentially intersectss at a single point.
By Lemma 3,z lies outsidewedge(b, q) on q’s side of the wedge.
From Lemma 5 we havedq(z) ≥ dq(b)/

√

γ2 − 1. In D, q lies
in Vor(vi) for eachi ∈ [1, k], and inDq, z lies in Vor(q), so for
any sitew of D we havedw(z) ≥ dq(z) ≥ dq(b)/

√

γ2 − 1 ≥
db(q)/(γ

√

γ2 − 1) ≥ dvi
(q)/(γ

√

γ2 − 1).
In either Case A or B,dw(z) ≥ dvi

(q)/(γ
√

γ2 + 1) for any
sitew of D and anyi ∈ [1, k]. Suppose thatdvi

(q) ≥ bdr(vi, γ)

for somei ∈ [1, k]. Thendw(z) ≥ bdr(vi, γ)/(γ
√

γ2 + 1) and,
by Lemma 16,dz(w) ≥ bdrmin(γ)/(γ2

√

γ2 + 1) for any sitew
of D, so the result follows.

If the supposition is not true for anyi ∈ [1, k], thendvi
(q) <

bdr(vi, γ) and thusτ(vi, q) ≤ γ for everyi ∈ [1, k]. This implies
thatτ(vi, vj) ≤ γ2 for anyi, j ∈ [1, k].

Suppose that there are two sitesvi and vj for which i, j ∈
[1, k] and dvi

(vj) ≥ bdr(vi, γ). By the triangle inequality,
dvi

(vj) ≤ dvi
(q) + dvi

(q, vj) ≤ dvi
(q) + γ2dvj

(q) = (γ2 +

1)dvi
(q) ≤ (γ3 + γ)

√

γ2 + 1dw(z) for any sitew of D. Thus
dw(z) ≥ bdr(vi, γ)/((γ3 + γ)

√

γ2 + 1) and, by Lemma 16,
dz(w) ≥ bdrmin(γ)/((γ4 + γ2)

√

γ2 + 1) for each sitew, so
the result follows.

If the supposition is not true, thendvi
(vj) < bdr(vi, γ) for

every pair of sitesvi andvj whose Voronoi cells containq. One of
the preconditions for Lemma 18 is thus satisfied.

Depending on what type of violatorq is, Lemma 18, 19, or 20
applies, showing thatdw(q) ≥ min{γ2

√

γ2 + 1m, bdrmin(γ)/
(γ3 + γ)} for every sitew of D. It follows thatdw(z) ≥ dvi

(q)/

(γ
√

γ2 + 1) ≥ min{γm, bdrmin(γ)/((γ4 + γ2)
√

γ2 + 1)}
and, by Lemma 16,dz(w) ≥ min{m, bdrmin(γ)/((γ5 + γ3)·
√

γ2 + 1)} for each sitew of D as claimed. �

PROOF OFTHEOREM 11. The anisotropic Voronoi diagram of
the sites inX has no inter-site distance less thanlfsmin, by the def-
inition of lfsmin. By Lemmas 17, 21, and 23, every inter-site dis-
tance created by any site the algorithm inserts is at least asgreat as
eitherlfsmin/γ, bdrmin(γ)/((γ5 + γ3)

√

γ2 + 1), or the shortest
inter-site distance existing prior to the site insertion.

By induction on the sequence of site insertions, for any two sites
v andw that are ever inserted by the Voronoi refinement algorithm,
d(v, w) ≥ µ = min{lfsmin/γ, bdrmin(γ)/((γ5+γ3)

√

γ2 + 1)}.
Let λmax be an upper bound on the largest eigenvalue ofM over

the domainΩ. For any two sitesv andw, µ ≤ dv(w) = ‖Fv(v −
w)‖2 ≤ ‖Fv‖2‖v−w‖2 = (maxx xT Mvx/xT x)1/2‖v−w‖2 ≤√

λmax ‖v − w‖2. Therefore, measured in physical space,‖v −
w‖2 ≥ µ/

√
λmax. Imagine that a disk of radiusµ/(2

√
λmax) is

centered at each site. The interiors of these disks do not intersect.
Only a finite number of such nonoverlapping disks can be packed
so their centers lie inΩ, therefore the algorithm terminates. �



11. Conclusions
There are several clear directions for improvement and exten-

sion of our results. We suspect it is straightforward (albeit messy)
to prove that our Voronoi refinement algorithm generatesgraded
meshes in which edge lengths are dictated primarily by localfea-
tures—the mesh is not refined to very small triangles in one region
because of very small features far away. Ruppert [13] provessuch
a result for isotropic meshing. However, the anisotropic grading re-
sult would be weaker than Ruppert’s isotropic result because a site
whose metric tensor is small sees faraway elements as being close
by, and therefore its influence on them is less attenuated. Specifi-
cally, a site with a small metric tensor has a wide paraboloidwhich
can create orphans at a great distance, thereby causing refinement
in distant locations to remove the orphans. These effects might be
mitigated by simply removing the orphans without insertingnew
sites (exploiting the flexibility of loose Voronoi diagrams), or by
resizing the metric tensors (and paraboloids) of problem sites.

Our Voronoi refinement algorithm, like Ruppert’s Delaunay re-
finement algorithm, recovers segments of the PSLG by splitting
them. There are many advantages to using a constrained Delaunay
triangulation (CDT) instead. But can CDTs be made anisotropic?
Seidel [14] proposes theextended Voronoi diagram, which dualizes
the (isotropic) CDT by extending the plane so that each segment
serves as a gateway to another “sheet” of paper, inhabited bysome
of the faces of the Voronoi diagram. As a natural generalization,
we suggest extended anisotropic Voronoi diagrams, which dualize
to constrained triangulations under the same conditions for which
anisotropic Voronoi diagrams dualize to triangulations.

For practical mesh generation, it is attractive to maintainthe re-
stricted Voronoi diagramD|Ω rather thanD because the rest ofD
is not needed. We could also redefine loose site insertion so that the
depth-first search stops at the boundary ofΩ, but the diagram cre-
ated this way is not necessarilyL|Ω. It is an open problem whether
an analog of Lemma 20 holds for this weaker site insertion method.
More generally, if loose insertion and extended anisotropic Voronoi
diagrams can be made to work together, the combination mighten-
joy the speed of loose insertion and the benefits of CDTs.

In three dimensions or more, we cannot prove that our Voronoi
refinement algorithm creates a triangulation with no geometrically
inverted elements, for the same reason that it is difficult toprove
that isotropic three-dimensional mesh generation algorithms create
no sliver tetrahedra. Delaunay refinement algorithms for tetrahe-
dral mesh generation are nevertheless effective in practice at re-
moving slivers [17], and we believe the same is true of three-di-
mensional Voronoi refinement in the anisotropic case.
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