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Abstract

We introduceanisotropic Voronoi diagramsa generalization of
multiplicatively weighted Voronoi diagrams suitable foergrat-
ing guaranteed-quality meshes of domains in which longyrski
triangles are required, and where the desired anisotrajpgsvaver
the domain. We discuss properties of anisotropic Vororegigims
of arbitrary dimensionality—most notably circumstanagsvhich
a site can see its entire Voronoi cell. In two dimensions athigo-
tropic Voronoi diagram dualizes to a triangulation undesséasame
circumstances. We use these properties to develop anthigdor
anisotropic triangular mesh generation in which no triarftds an

angle smaller thag0°, as measured from the skewed perspective

of any point in the triangle.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory
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1. Introduction

The best-performing triangulations for interpolation amoner-
ical modeling have triangles or tetrahedra whose aspe&osrahd
orientations are chosen to suit the function they intemgolar the
partial differential equation whose solution they appnoaie. Tri-
angles, tetrahedra, or most generallgimplices inE¢ (henceforth

elementsthat are nearly equilateral are excellent for some applica

tions; for others, elements that are long and thin, likeérdepicted
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in Figure 1, can offer better accuracy with fewer element9[32,
18]. Applications in the latter class are said to exhé#itsotropic
behavior.

The construction of anisotropic triangulations that meetteeds
of these applications is an important problem for which miaewr-
istic solutions are available [5, 7, 11, 19]. However, thate
gorithms have no guarantee of success.
flip algorithm for constructing the Delaunay triangulatisneas-
ily modified to take anisotropy into account. AlternativeBeorge
and Borouchaki [7] suggest an anisotropic version of the Bow
Watson algorithm [6, 20] for inserting a site into a Delautrdgn-
gulation. But is the final triangulation produced by eithétrese
algorithms unique? What are its properties? Will the flipoaihm
terminate or loop forever?

Here we describe an approach that puts anisotropic meshing o

firm theoretical ground. In Section 3 we defigisotropic Voronoi

diagrams a generalization of multiplicatively weighted Voronot di
agrams [4]. Anisotropic Voronoi diagrams can be defined in an
dimensionality. The geometric dual of an anisotropic Variouh-

agram is not generally a triangulation. We describe comaltin

which the Voronoi cells are guaranteed to be entirely visfobm

their generating sites in Section 5. For the special case@fi-

mensions, the same conditions also guarantee that ther glaah
is a geometric triangulation with no inverted triangles.

These results make possible an algorithm that generatés hig
quality two-dimensional anisotropic meshes by refining ais&
tropic Voronoi diagram to enforce the conditions that gntea that
the dual is a triangulation, and to remove any poor-qualéynents
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Figure 1: Anisotropic meshes generated by Voronoi refinement, and
the anisotropic Voronoi diagrams used to generate them.

For example, the edge



Physical space

Figure 2: The deformation tensor F}, maps physical space into a
space where p's distance metric is isotropic.

from the triangulation. We present the algorithm in Sec@pand
prove in Section 10 that it generates an anisotropic meshs&ho
triangles are all of good quality.

2. Anisotropy: Measures and Goals

Consider a domaift C E<. Suppose that at each pojnin Q
there is a symmetric positive definiteetric tensorM,,, provided
by the user, which dictates how lengths and angles are meshsur
from the perspective gf. The metric tensor is most easily repre-
sented as d x d matrix. We wish to define a Voronoi diagram over
E<, and perhaps its Delaunay dual restrictefto

Given a metric tensah/,,, define adeformation tensof’, to be
anyd x d matrix satisfying

M, = FJ F, and det F, > 0. 1)

F, maps thephysical space?? to a rectified space where lengths,

areas, and angles asees them are measured in the usual way, as

Figure 2 illustrates. For example gf andg: are two points inE?,
the distance between andqg. as measured hyis

dp(q1,2) = |1 Fpqr — Fpaall2 = /(a1 — 42) "My (g1 — q2).

We will also use the shorthand notatiods(q) = d,(p,q) and
d(p,q) = min{d,(q),dq(p)}. Note thatd, (-, -) satisfies the trian-
gle inequality, buti(-, -) does not.

The angled = Zq1q2q3 as measured by is

(1 — q2)" Mp(g3 — q2)
dp(q1,q2)dp(gs, q2)

In the mesh generation problem, each point in the domaindvoul
like to be in an element that is as close to equilateral anchagu-
lar as possible, as measured by that point. For example gifre. ¢p
lies in a triangle with vertices, v, andw, the triangle with vertices
F,u, Fyu, andF,w should have no angle close@d or 180°.

The deformation tensoF,, is underconstrained. If thé x d
matrix @ represents a proper orthogonal transformation (i.e. a rota
tion), replacingl}, with QF, makes no difference. To compukg

6 = arccos

the Hessian. Unlike the Hessiahi, must be positive definite, but
its eigenvalues may encode upper bounds on the magnitudie of t
curvature of the function at alongd principal axes of curvature.
For finite element method3/,, may also take into account the nat-
ural anisotropy of the partial differential equation wheséution is
sought. See elsewhere [18] for details.

M, may or may not also encode the ideal size of each element.
We have the option of representing the ideal shape and sitein
metric tensor, or of representing shape only and handlireysep-
arately. With the former option, the ideal element has, aayit
edge length as measured pya larger value of\/,, indicates the
desire for smaller elements. (But be aware that in two dinogss
the circumradius as measured pys a better gauge of interpola-
tion error than the edge lengths [18].) We revisit these a®in
Section 9.

A central tool in our work is the idea of theelative defor-
mation Fqu‘1 which maps a poinp’s view of the world to an-
other pointg’s. (See Figure 2.) Theelative distortionr(p, q)
max{||E,F; " ||z, || EpFy '||2} gives an upper bound on how dif-
ferently p and ¢ perceive distances. For any pointsg, anda,
7(p,q) > 1, 7(p,q) = 7(q,p), andr(p, q) < 7(p, a)7(a, q).

PROPOSITION 1. Letp, ¢, a, andb be points int2. Then

dp(a,b) -1
— = <dy(a,b) < ||F,F dy(a,b) and
||Fch;1||2 = q( ) ” q''p ”2 T—’( )
dp(a7b)
2 <dy(a,b) < 7(p,q)dp(a,b).
T(p,q) — ‘I( ) (p Q) P( )

PROOR. d, (a,) = [ Fy(a — D)2 = | FyF; ' Fyfa — b)[: <
I, E, el Eo(a=b) 2 = |1FyFy *flady(a,) < 7(p, )y (a,b):
Similarly,d, (a,b) < [ B,y lady(0,8) < 7(p.a)dy(a.b).

3. Anisotropic Voronoi Diagrams

The domair2 and the metric tensor fieldl/ together are a Rie-
mannian manifold, so the natural way to define an anisotiapic
onoi diagram of a point set is to compute a Voronoi diagrarrhai t
manifold. Leibon and Letscher [10] do just that. In Riemamrge-
ometry, the length of a path= s(t), 0 < ¢t < 1, connecting two
pointsp = s(0) andg = s(1) is calculated by the path integral

1 T
ds ds
R(s :/ VE Myw= dt,
(s) o Var W

and the distance between two poipteindq is the length of the
shortest path connecting them. The Voronoi diagram is defime
the usual manner: the Voronoi célbr(v) of a point sitev is the
set of all points on the manifold that are at least as closeas to
any other site. Leibon and Letscher show that if there is greup
bound on the sectional curvature of the manifold, and if fkess
are spaced densely enough, the Voronoi diagram dualizesed-a
defined Delaunay triangulation.

Unfortunately, finding the shortest Riemannian path betviee
points is a computationally difficult operation. Local gesit paths
can be approximated numerically, but the algorithms fonda@o
are slow enough to make generating large anisotropic meshes
practical. These problems can be overcome by using appat&im

from M, one can choose the Cholesky decomposition, a symmetric distance computations and approximate geodesics or otueish

square root, or any othéf, that satisfies (1).

Where does\,, come from? It usually expresses the effects of
element shape on interpolation error—or for finite elemeathm
ods, the effects of shape on discretization error and stffrmatrix
conditioning. For interpolation}/,, is often closely related to the
Hessian matrix of the function to be interpolated, and manéwe

tics [7], but none of these has been amenable to the kind bfsiea
that would yield a provably good algorithm.

Here, we propose an approximation to the Riemannian Voronoi
diagram that can be generated reasonably efficiently, ykesih
possible to prove that our Delaunay triangulations haverte
properties. Like Leibon and Letscher, we show that if thecspa



Figure 3: An anisotropic Voronoi diagram. Thin arcs are isocontours
of the nearest site’s distance metric.

of the sites satisfies the right conditions, we can guaraatge-
ometrically well-defined two-dimensional Delaunay triategion;
furthermore, we can offer triangles with guaranteed goaaityu

DEFINITION 1 (ANISOTROPICVORONOI DIAGRAM). LetV
be a set of sites. Théoronoi cellof a sitev in V' is

Vor(v) = {p € E*: d,(p) < du(p) forall w e V}.

Any subset of siteB/ C V induces a Voronoi celVor(W) =
Nwew Vor(w) of points equally close to the sites W and no
closer to any others. If it is not empty, such a cell has a dsien
ality of dim(Vor(W')) > d+1—|W/|, achieving equality if the sites
are in general position. Every site iV is said toown Vor(W).
The anisotropic Voronoi diagramf V' is the arrangement of the
Voronoi cells{Vor(W) : W C V,W # 0, Vor(W) # (}.

Figure 3 depicts an example. Anisotropic Voronoi diagranes a
a generalization of multiplicatively weighted Voronoi drams [4]
in which the distance metric is anisotropic. If the metrieger field
M is isotropic (i.e. for some scalar fiedd M, = ¢, I forallp € Q,
wherel is the identity tensor), the anisotropic Voronoi diagram is
the multiplicatively weighted Voronoi diagram.

One odd characteristic that anisotropic Voronoi diagrahzses
with multiplicatively weighted Voronoi diagrams is that argnoi
cell (of any dimension) can consist of multiple connectethpo-
nents. Cells are partitioned infacesof the arrangement whose
relative interiors are connected. 0-faces ¥oeonoi verticesand
1-faces ar&/oronoi arcs A d-face that does not contain its gener-
ating site is called anrphan (Figure 3 has three orphans.)

PROPOSITION 2. The boundary between two adjoinidecells
is composed of patches of a quadratic curve or surface.

PROOF Any point ¢ in Vor(v) N Vor(w) satisfiesd,(q) =
dw(q), or (g—v)" M, (qg—v) = (¢ —w)T M, (¢ —w). This equa-
tion is quadratic iry, therefore every point iWor(v) N Vor(w) lies
on a common quadratic curve or surface. |

In three dimensions quadratic surfaces are also calledriggad
In two dimensions, nondegenerate quadratic curves arecalksal
conic sections (circles, ellipses, parabolas, and hypesho

Another way to think of anisotropic Voronoi diagrams is as th
lower envelope of the arrangement Ef*' of the paraboloids
z0(p) = (p —v)T M, (p — v). By projecting the faces of the lower
envelope down tadZ® we form theminimization diagran{16] of
the paraboloids, which is the anisotropic Voronoi diagram.

Figure 4: A wedge.

4. Diagram Complexity and Construction

The complexity of ad-dimensionaln-site anisotropic Voronoi
diagram is inO(n%*<), wheree is an arbitrary (small) positive con-
stant, by virtue of Halperin and Sharir's upper bounds orctire-
plexity of lower envelopes [8, 15]. To construct a lower bdwx-
ample ofQ2(n?) worst-case complexity, choose paraboloids whose
isocontours are frisbee-shaped, axis-aligned, and forrida(@ur
thanks go to Micha Sharir for this example).

Two-dimensional anisotropic Voronoi diagrams can be coist
ted in O(n?"¢) time by a divide-and-conquer algorithm of Agar-
wal, Schwarzkopf, and Sharir [2, 16] for minimization diagrs.
Three-dimensional anisotropic Voronoi diagrams can besttoo-
ted inO(n®T) expected time by a random incremental algorithm
of Agarwal, Aronov, and Sharir [1, 16].

For the purpose of Voronoi refinement, we need an incremen-
tal site insertion algorithm, but we cannot randomize ttaeoin
which sites are inserted. At any rate, any incremental sgertion
algorithm is too slow for our needs. We discuss a sneakyralter
tive, fast enough for practical use, in Sections 7 and 8.

5. Anisotropic Delaunay Triangulations

The dual of the standard Voronoi diagram is the Delaunay tri-
angulation. Our anisotropic Voronoi diagram can be very com
plicated, and its geometric dual may contain inverted oeated
simplices and other irregularities. In this section we dbégsccon-
ditions under which the dual of the anisotropic Voronoi déag is
a correct triangulation.

DEFINITION 2. Letv and w be two sites. Define theeedge
between these two sites as the locus of peijrits which the angle
Zquw as viewed fromv is less tharf0°, and the angleZquwv as
viewed fromw is less thard0°. (See Figure 4.) Mathematically,

{ge E*: (q—v)"My(w—v) >0
and(q — w)" My, (v — w) > 0}.

wedge(v,w) =

LEMMA 3 (VISIBILITY LEMMA). Letv andw be two sites
in B4, If we restrict the two-site Voronoi diagram ¢b, w} to
wedge(v, w), thenv can see its entire cell, and can see its entire
cell as well.

PROOF The restricted Voronoi cell of is defined by the follow-
ing three inequalities.
(¢ — v)TMU(w —v) > 0.
(¢ —w)" My(v—w) > 0.
(¢ —w)" My(q—w) > (g —v)" Mu(g - v).

Let ¢ be any point that satisfies these inequalities. The vigpbili
claimis thaty’ = A\g+ (1 — \)v satisfies these inequalities as well,



for 0 < X < 1. This claim can be verified by substitutiggfor q
and showing that the inequalities hold fgr given that they hold
for g. The result holds fotw by symmetry. |

Lemma 3 is tight. The visibility property stops preciselyevé
the Voronoi surface exits the wedge.

DEFINITION 3. A Voronoi k-face f C Vor(W), with 0 <
k < d, is said to bewedgedif for every pair of distinct sites
v1,v2 € W, every poingy on f falls insidewedge(v1, v2). For ex-
ample,f C Vor({vi,v2,vs}) is wedged iff C wedge(v1,v2) N
wedge(v2, v3) N wedge(vs, v1).

THEOREM4 (VISIBILITY THEOREM). Ifevery lower-dimen-
sional face of al-face ofVor(v) is wedged, then thé-face is star-
shaped and every point in thiface is visible from.

PrROOF For the sake of contradiction, Igtbe a point in thei-
face that is not visible from. Let ¢ be the point furthest from on
the line segmenv that is visible fromp. Because is not visible
fromv, neitherisg. Letw be the owner of the first face encountered
strictly afterq on the raygo. Theng lies on a face owned by and
w. By assumption this face is wedged. Imagine a Voronoi diagra
with sitesv andw only. In this diagramyg is in Vor(v) and in
wedge(v, w), butq is not visible fromv, contradicting Lemma 3

The following lemma implies that if a Voronoi surface is not
wedged, we can insert a new site on it that is not close to atiegi
site—a handy tool for mesh generation.

LEMMA 5. Letg be a pointinVor(v)NVor(w) that lies outside
wedge(v, w) on the side ofv. Lety > 1 be a constant for which
7(v,w) < 7. Then the proximity of to v and w is bounded by

do(q) = du(q) > du(v)/ /47 = 1.

PROOF. Becausg; is onw's side ofwedge(v, w), dw (g, v)? >
dw(q)? + dw(v)? by Pythagoras’ Theorem. By Proposition 1,
dw(q,v)? < 7(v,w)?dy(q)* < ¥?dy(q). Becausg € Vor(v) N
Vor(w), dv(q) = dw(g). The result follows by combining inequal-
ities and rearranging terms. |

The rest of this section applies to the two-dimensional cabe

LEMMA 6 (TRIANGLE ORIENTATION LEMMA). Let g be a
Voronoi vertex owned by the sites, v2, vs. If ¢ is wedged, then
the orientation of the triangle, v2vs matches the ordering of the
cellsVor(v1), Vor(vz2), Vor(vs) locally aroundg. In other words,
if at ¢ the cellsVor(v1), Vor(vz2), Vor(vs) occur clockwise, then
the sitesvy, v2, v3 occur clockwise in the plane, and vice versa.

PROOF The trianglev;v2vs cannot be degenerate, because if,
say, the angle at; is 180°, thenwedge(v:, v2) andwedge(v1, vs)
are disjoint (because they are defined as open sets), anthsmot
lie in their intersection. Imagine a Voronoi diagram witkesiv,,
va, andwvz only. By Lemma 3d., (¢') < dw,(q') andd., (¢') <
d., (¢") for any pointg’ on the line segment; ¢q. Thereforev; can
seeq in the three-point Voronoi diagram. Symmetrically, so ean
andvs.

There are three cases. (d)ies in the trianglev;vavs. (2) g
lies on the opposite side of exactly one edge of the trian¢g.
q lies on the opposite side of exactly two edges. In cases @) an
(2), the three-way visibility property implies matchingetations
as claimed. Case (3) implies opposite orientations, bug (3sis
impossible. Ifq lies on the opposite side of edgesy, andvyvs,
say, then as measured by, Zquivs + Zquivs > 180°, which
contradicts the wedge propertiggvive < 90° and Zguivs <
90°. The lemma follows. [ |

THEOREM7 (DUAL TRIANGULATION THEOREM). Let the
domain(2 be a polygonal subset of the plane, 1ébe a set of sites
in Q which include every vertex 6f, and letD be the anisotropic
Voronoi diagram ofi. Let D|q be the restriction oD to Q2. Sup-
pose that each Voronoi arc cut by the restriction operatoawned
by the endpoints of the edgef@fthat cuts it. If all the Voronoi arcs
and vertices ofD|, are wedged, then the geometric dualofq
is a polygonalization of2 (with strictly convex polygons), and is
a triangulation ofQ2 if V' is in general position. Arbitrarily trian-
gulating each polygon yields what we call anisotropic Delaunay
triangulationof (V, Q).

PROOF D|q has no orphans because an orphabithat sur-
vives the restriction td2 unchanged is ruled out by Theorem 4,
and an orphan that is cut or created by the restrictiof twould
defy the assumption that each cut Voronoi arc is dual to timeaiio
edge that cuts it. Thus every 2-facelifj, dualizes to the site that
generates it.

Every Voronoi vertex has degree three or greater, and thus du
alizes to a polygon. The polygon cannot have a repeatedsite
because that would imply that four Voronoi arcs ownedvbyeet
at the vertex: two of these arcs have points that are notleifiom
v, contradicting Lemma 3. If the degree of the vertex exceled®t
triangulate the polygon arbitrarily. Every Voronoi ver@eikD|q, is
wedged, so by Lemma 6, triangles that share an edge have tompa
ible orientations. By transitivity, this means that albtrgles are
positively oriented regardless of how each polygon is gidated,
so each polygon is strongly convex.

Every uncut Voronoi arc aD|q, is incident to two distinct Voronoi
vertices, because the Voronoi arc lies within the wedgesofwb
generating sites so it cannot form a loop around one of tles.sit
Every uncut Voronoi arc thus dualizes to an edge betweenriwo t
angles, and by assumption every cut arc dualizes to an edton
boundary ofQ2. Therefore, the geometric dual éf|¢ is a valid
triangulation ofV” coverings2. |

When M, = I, Voronoi edges and vertices are always wedged,
and Theorem 7 reiterates what we already know: the dual of the
standard Voronoi diagram is a triangulation. However, fbitaary
sets of sites and arbitrary metric tensor fields, the preitiond of
Theorem 7 seldom hold. The theorem becomes useful in conjunc
tion with the Voronoi refinement method described in Sec@ion

6. Triangle Quality

There is a simple relationship between the minimum afigle
of a triangle and the rati@ of its circumradius to its shortest edge
length: sin Omin = % Here we revisit this relationship for our
anisotropic notions of “circumradius” and “shortest etige.

LEmMA 8. Consider a triangle with sides, b, andc and oppo-
site anglesA, B, andC such that:®> > |a® — b?|. Imagine another
triangle with sidesa’, b’, andc¢’ and opposite angled’, B’, and
C' lfa >a, b >bandcd < ¢ thenC’ < C.

PrOOF. Scaling does not change angles, so we can asslime
c by scaling every side of the second triangleddy’ > 1. Imagine
the circle through the vertices of the first triangle. Sinte= c,
fix the vertices atA and B and generate the second triangle from
the first by moving the vertex at only. ¢ > |a® — b?| implies
2 > a? —b? andc® > b2 — a2, which impliesA < 90° and
B < 90°, so when the sides andb increase, the vertex &t can
only move out of the circle, which by circle geometry impltaat
' <C. [ |



Figure 5: Two cases for bounding § = Zvjvav3.

THEOREM 9. Letq be a Voronoi vertex owned by the sites
v2, andvs. Let thecircumradiusassociated witly ber = d,, (¢) =
dv,(q) = dus(q). Let theshortest edge length of the trian-
gle t = A’l}1’l}2’l}3 be min{d(vl, 1)2), d(l}z, ’Ug)7 d(’Ug, ’Ul)}. Let
1 < <+/2andg > 1/v/2 be constants such that > /¢ and
7(vi,v;) < yfori,j e {1,2,3}. Letx = 1/(28) - (* —1)8/2.

If x > 0, thenq is wedged. Furthermore, each andleof ¢
satisfiesd > arcsin x, whereé is measured from the perspective
of some vertex of (strangely, not necessarily the same vertex for
each angle, and not necessarily the vertex where the angls ate
that this only implies thatin 8 > x if 6 is acute.

PROOF Let ¢ = Zquivs as measured by;. Note that
dvl (1)17 q) = dvl (Uh UQ) > ’I‘/ﬁ, anddvl ('U27 Q) < 'deg (q) =
vr. Becausey > 1andg > 1/v/2, we have(yr)? > |r2—(r/B)?|
so Lemma 8 applies and by the law of cosines,

P8P — () 1 (P18
N )

=23 5 X

If x > 0, thencos¢ > 0, so¢ < 90° and one of the two
inequalities required to show thate wedge(v1, v2) is satisfied
(namely(q — v1)T M, (v2 —v1) > 0). By repeating the argument
for ¢ = Zquiv;, 1,5 € {1,2,3},i # j, we obtain all six inequal-
ities required to show that € wedge(v1, v2) N wedge(vz, vs) N
wedge(vs, v1); thereforey is wedged.

Next we bound = Zvvqvs, the angle at vertex.. Consider
the case whereg lies on the opposite side of edgevs from v,
(but on the triangle-side of edgesv: andwvyvs) as illustrated in
Figure 5 (left). As measured by, Zvaqu1 + Zvaqus < 180°.
Assume without loss of generality thdv2qvi < 90°. If we com-
pute the anglet = Zquivs as before, but now as measured by
vs, We haved,, (vi,q) > r/7, du,(v1,02) > /B > /().
and d,, (v2,q) = r. Multiplying these bounds by does not
change the angles, so Lemma 8 applies as beforea@ng > x
as measured by, as well. Becausevaqui < 90°, this implies
thatsin Zviv2q > x, which in turn implies that > Zviv2q >
arcsin y as measured by,.

The proof of Lemma 6 tells us there are only two other cases:
eitherq lies int, or ¢ lies on the opposite side of exactly one edge,
v1v2 OF vevz—assume without loss of generalityvs. In either
case the line; g cuts the angle‘vsviv2. Consider Figure 5 (right),
drawn fromuv,’s perspective, where achievessin = cos¢ =
x. In the figure, imagine; andq are fixed. We claim that the
illustrated positions of, andvz minimized.

For the case wherglies on the opposite side ofvs, we choose
to measuréd = Zvivpvs fromu,’s perspective. Becausgk, (v2) >
r/B andd,, (v2,q) < ~r, vz is constrained to lignsidethe illus-
trated circle (which circumscribes our proposed worsee¢asBy
circle geometry, moving- subject to this constraint can only in-
creasdd. Oncew, is fixed, movingvs subject to the symmetrical
constraintsl,, (v3) > r/3 andd,, (vs, q) < vr cannot decrease
either. Therefore from,'s perspectived > arcsin .

For the case wherglies int, there are two other configurations
of the vertices that sometimes locally minimizebut the case just

described is always the global minimum for the ranges ahdj
specified in the theorem. Details are omitted.

Rotate the vertex labels and repeat the argument to provide a
lower bound for all three angles of |

COROLLARY 10. Letgq, v1, v2, vs, v, and 3 satisfy the condi-
tions of Theorem 9. Letbe an arbitrary point such that(p, v;) <
yfori € {1,2,3}. Letx = 1/(28) — (4* — 1)3/2. Then each
anglef of the trianglet = Av;vqv3 satisfiesarcsin(y/v?) < 0 <
2 arccos(x/v?), as measured by.

PROOF. Let 6, = Zvivavs as measured by. Write 6, for
the same angle as measureddy By Theorem 9, for somé €
{1,2,3}, eithersin@,; > x or,; > 90°. Let A, be the area of
t as measured by, andA,,; the area ot as measured by;. By a
well-known formula for the sine of an angle,

24, 24, det(FpF, )
dp(v1,v2)dp(v2,v3)  dp(v1,v2)dp(v2,v3)

240, | Fp Fy 2/ 1o, By 2
|1 Fp Fo; (13 do, (v1, v2)do, (v2, 03)

24,
”ij *FP_1 ||2HFPFU_]‘1 HQde (1)1, UQ)de (U27 U3)

sin 6,

>

g sin ij.
Thereforesin6, > x/+° if 6,, < 90°. If 6, is obtuse but,

is acute, divided,; into a90° piece and a leftover, and apply the
bound to thed0° portion, yieldingsin 8, > 1/4* > x/~*. By
repeating the argument for each angle ,ofve have that fromp’s
perspective, the sine of every acute angleiefat leasty /2. A tri-
angle with no angle smaller thamcsin(x/~7?) has no angle greater
than180° — 2 arcsin(x/v?) = 2arccos(x/7?).

7. Loose Anisotropic Voronoi Diagrams

In an ordinary Voronoi diagram, inserting a site is by natute-
cal operation. Although one new site can cause extensivegesa
to most of the diagram, that is not the common case. Randdmize
incremental construction algorithms enjoy expected @orisime
site insertions in theory (not counting the point locatione), and
Ruppert’'s Delaunay refinement algorithm for quality meshegya-
tion [13] usually enjoys constant-time site insertionsiiagice.

Anisotropic Voronoi diagrams do not inherit this virtue chese
a Voronoi cell is not necessarily connected. An incremesitel
insertion algorithm must inspect the entire diagram in ceaf
points that are closer to the new site than to the older glieseby
creating orphans where necessary. This makes site inssftio.

However, a goal of our mesh generation algorithm is to create
a Voronoi diagram that has no orphans. Our meshing algorithm
works correctly even if we use a sloppy incremental siteriise
algorithm that forgets to install new orphans.

Let V be a set of sites, and consider again the arrangement
in E4T* of the paraboloidg, (p) = (p — v)T M, (p — v) for all
v € V, whose lower envelope is the anisotropic Voronoi diagram.
Each paraboloid itd is sliced intod-faces where it intersects other
paraboloids. We wish to choose a subset of thiefseces that form
a structure that is similar to the lower envelope, but easieon-
struct.

Let F' be a subset of thé-faces ofA, and let| J F' be the union
of these faces. Suppoge satisfies the following two conditions.
First, F' contains everyi-face that contains its generating site. Sec-
ond,|J F is a manifold without boundary that intersects every ver-
tical line (parallel to thec,41-axis) at exactly one point. In other
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Figure 6: A loose anisotropic Voronoi diagram often has fewer or-
phans than the true anisotropic Voronoi diagram. Black points are
sites; white points are Voronoi vertices.

words, if f(p) is a function that maps each popmin E¢ to a real
numberh such thaip, h) € |J F, thenf is single-valued, continu-
ous, and defined everywhere #f.. See the lower half of Figure 6
for an example. For any’ that satisfies these conditions, etbe
the arrangement formed by projecting #héaces inF" to E%; we
call L aloose Voronoi diagranof V.

For a loose Voronoi diagrarh, a sitev ownsa faceg of L if g
is the projection of a face df' that lies onv’s paraboloid.

In general, a set of sites may have many loose Voronoi dia-
grams; the true anisotropic Voronoi diagramiéfis one of them.
They differ from each other by the orphans they contain. Bche
sitev in V, every loose Voronoi diagram 6f contains thel-face
of Vor(v) that containsv, or a superset of that face. The other
components oVor(v) may or may not be present, andnay own
territory that is not part oVor(v).

Observe that if the true Voronoi diagraihhas no orphans, then
itis the only loose Voronoi diagram, becausé is covered by the
d-faces that contain their generating sites. Likewis&) i, has no
orphans, then for any loose diagrdmL|o = D|q. Therefore, if
D satisfies the preconditions of the Dual Triangulation Tkegr
then D|q can be constructed by incrementally inserting its sites
into a loose Voronoi diagram.

8. Incremental Voronoi Diagram Construction

This section sketches an incremental site insertion alyaori
which, given a two-dimensional loose Voronoi diagréanof a set
V of sites and a site ¢ V/, constructs a loose Voronoi diagrafii
of the setl” U {v}. Let F be the set of 2-faces of the paraboloid
arrangement that project to faces il. Let z bev's paraboloid,
2(q) = (¢ — v)T M, (¢ — v). Let F* be the three-dimensional ar-
rangement formed by and the faces i#". In F', z is sliced into
2-faces. One of these 2-faces projects to a 2-fatteat containg.

The main idea is that the algorithm inserts only the 2-fAgeto
L. Therefore, the updated loose Voronoi diagrathhas only one
2-face owned by (namely f), andv has no orphans. The up-
date step is thus local in nature and will often run in corstame
per site insertion in practice—especially in the Vorondimement
algorithm of Section 9, which quickly makes the sites regyla
spaced. The worst-case running time for a sequengesie inser-
tions is betweef2(n?) andO(n?) (to narrow this range is an open
problem), but the worst-case time is unlikely to be realidadng
Voronoi refinement.

Observe that the loose Voronoi diagram created by the alhgori
is not necessarily orphan-free. The insertiorvafoes not create
any orphans owned by, but it may split other sites’ cells up into
multiple faces, thereby creating orphans owned by othes sit

Figure 7: A segment encroached upon by w is split.

The algorithm runs in three steps. The first step finds a 2-face
of L that contains the new site (In the Voronoi refinement al-
gorithm, this information is already provided.) The secatep
computes the overlay of with L—the arrangement in the plane
formed byL and the boundary of. Let G be the set of 2-faces of
L that intersect the interior of. This step exploits locality by using
depth-first search to visit only the 2-facesGh Let g be a face in
G with ownerw. The algorithm determines whether the boundary
of f intersectgy—more directly, whether the cuneg (p) = dw (p)
intersectg/—and constructs the overlay gfwith g. The details of
overlay computation are routine [2, 16] and are omitted.

The third step merges all faces in the interiorfdhto one 2-face
owned byv. The resulting arrangementis’.

9. Anisotropic Mesh Generation by
Voronoi Refinement

Let X be a planar straight line graph (PSLG)—a set of sites and
segments in the plane that are required to appear in the rhesh.
Q C E? be afinite domain to triangulate (whose boundary must be
the union of some of the segmentsii), and letM be a metric ten-
sor field defined ovef2. The following Voronoi refinement algo-
rithm is an anisotropic revision of Ruppert’s Delaunay refirent
algorithm for guaranteed-quality isotropic mesh genergfi3].

To guarantee that his algorithm will terminate, Ruppert deds
that any two segments df that share an endpointmust be sepa-
rated by an angle of at lea@h°. We impose the condition that the
angle is at least9°, where the angle is measured according to the
metric tensorM,,. (The angle constraint can be relaxed a bit; see
Theorem 11.)

Voronoi refinement begins with the construction of the Varion
diagramD of the sites inX under the metric tensor fieltl/. The
algorithm works equally well whethdp is a true anisotropic Vor-
onoi diagram or a loose anisotropic Voronoi diagram. At timee,
the dual ofD|q, is not necessarily a triangulation.

Let s be any segment iX, and leta andb be its endpoints. Say
thats is encroachedf it intersects a Voronoi cell belonging to any
sitew other tham andb (see Figure 7). I§ is encroachedsplit it
by inserting a new site in sNVor(w) (at a location to be discussed
shortly). Update the Voronoi diagram by incrementally insert-
ing z. The splitting operation replaceswith two subsegmentsz
and zb, which may or may not be encroached and need to be split
further.

When possible, split a segment so thafz) = dy(z). Occa-
sionally, however, this is inappropriate because the “miiat =
satisfying this condition does not lie iVior(w) for any encroach-
ing sitew. This can happen i N Vor(w) lies entirely on one side
of the “midpoint.” In this case, place the new sitén s N Vor(w)
as close to the “midpoint” as possible.

The purpose of segment splitting is to ensure that each gubse
ment is an edge in the geometric dual®f,. When no encroached
segment or subsegment exists, the algorithm attemptsrionelie
a poorly shaped triangle, an orphan, or another irregylasitin-



serting a site. A poing € €2 is said to be &iolator if
e ¢lies on aVoronoi 1-celVor(v)N'Vor(w) but is not wedged
(in wedge(v, w))—call ¢ awedge violatoyror
e ¢ is a Voronoi vertex that dualizes to a triangl¢hat is in-

tensor fieldM is continuous ovef) with bounded spatial gradi-
ents, but is sometimes true even with minor discontinuitied/.

The value ofy depends on how strong an angle bound the user
demands; see Theorem 11 below.

verted, is too large, or has an angle less than some constant et ¢ andq’ be two distinctfeature points—points that lie on

Ovound, @S Mmeasured by the metric tenddy, for any pointp
int.

The Voronoi refinement algorithm chooses an arbitrary viola
and attempts to insert a site there, thereby eliminatinyitlator.

It might not be necessary to eliminate every violator; tigwethm
may stop as soon d3| dualizes to a triangulation of satisfactory
quality. However, the proof in Section 10 guarantees teatiom
even when no violator is spared.

A new site is never permitted to encroach upon a segmet. of
If ¢ does not encroach upon any segment, the algorithm upfates
to reflect the insertion of,, then looks for another violator. K
encroaches upon a segmeny; is not inserted. Instead,is split
as described above. The splitting sitenust lie ins N Vor(q),
whereVor(q) is the Voronoi cell that would have been created if
were inserted. Subject to this restrictianmust lie as close to the
“midpoint” defined byd,(z) = dy(z) as possible.

If the Voronoi refinement algorithm terminates, the dualdf,
is a triangulation of2 by Theorem 7, and the triangles are of good
quality (because otherwise the algorithm would not stopt. ddes
it terminate? Section 10 shows that, with reasonable otistns on
M andfyoung, it does.

To simplify programming, an implementation only needs td fin
Voronoi “arcs” that are ellipses (which always have viotajpand
Voronoi vertices that dualize to inverted or poor-qualifngles.
(For this purpose, the “dual” of an orphan is the site that®itn
An attack on these violators will also eliminate all orphams
“island” Voronoi cells (enclosed in other Voronoi cells, gsibly
adjoining other islands) without any need to explicitlyttes their
existence. We omit the proof.

Because the Voronoi refinement algorithm refines the mesh hea
ily in regions whereM varies rapidly, we suggest the following
variation. For any poinp, let M, = (det M,)~Y4M,, so the
metric tensor)M,, has determinant one. The tensdts and M,
measure angles identically but lengths differently. Bgeto judge
whether a triangle is too large (as before), but define theoamipic
Voronoi diagram using the tensor field;,. Then the relative dis-
tortion between two points is solely attributable to diéfieces in
how they measure angles, and not differences in how theyureas
areas. In our experiments, the modified algorithm produeshes
with fewer triangles.

10. Proof of Termination

Intuitively, the Voronoi refinement algorithm inserts sifer one
of two reasons: either the spacing of sites is not unifornughdo
guarantee good-quality triangles, or neighboring sites metric
tensors that strongly disagree with each other. The distat
which these effects occur are called theal feature sizeand the
bounded distortion radius

DEFINITION 4. For a metric tensor field// and a fixedy >
1, the bounded distortion radiusdr(p,y) at a pointp € Q is
the greatest number such that for every paing Q, if d,(q) <
bdr(p, ), thent(p, q) < ~. (Note thatbdr(p, ) can be infinite.)
Thedistortion diskcentered ap is the elliptical disk{q € E? :
dp(q) < bdr(p,v)}. Letbdrmin(y) = infpeq bdr(p, 7).

Every point inp’s distortion disk has a similar view of lengths
and angles. The Voronoi refinement algorithm is guaranteéett
minate if bdrmin () is positive. This is always true if the metric

input sites or segments i. Say thaty andq’ areintertwinedif
they lie on a common segment &f, or if they lie on segments
ands’, respectively, wherg ands’ share a common endpoithaind
7(q,b) < vandr(q',b) < 1.

DEFINITION 5. Fora PSLGX and afixedy > 1, thelocal fea-
ture sizelfs(p) at a pointp € Q is the radius (as measured py of
the smallest elliptical disk (circular from’s perspective) centered
at p that intersects two feature points &fthat are not intertwined.
In other words, there are non-intertwined feature poigtand ¢/
such thatd, (q) = Ifs(p) andd,(q’) < Ifs(p), but this is not true
for any radius smaller thaifs(p). Letlfsmin = inf,yeq 1fs(p).

This definition of local feature size is similar to Ruppertit
it is adjusted to account for the fact that two segments thegtm
at an angle greater th&®°, from the perspective of their shared
endpoint, might meet at an angle of, from the perspective of
pointsq and ¢’ on each segment. In this casgeandq’ are not
intertwined, and the distance between them (as they meijure
influences the local feature size nearby. Howevesdif,in > 0,
thenlfsmin > 0.

For brevity, the following theorem applies only when the dfooi
refinement algorithm does not refine triangles for being &ogd. It
is straightforward (if tedious) to adapt the proof to cowafimement
of oversized triangles as well.

THEOREM 11. Let fyouna < arcsin 2—12 be a constant. Sup-
pose a triangle is considered to bpoorly shapedthus its circum-
center is a violator) it has an angle less th&ouna, as measured
by an arbitrary pointp in ¢t. Let~ be the real root of

’ys + 274\/72 + 1sin fyound —’y4 —1=0

that is greater than one. Suppose any two adjoining segnténts
X are separated by an angle of at le@strcsin(y?/2), as mea-
sured from the perspective of the intersection point. (Emigle

is less than79°, and can be reduced arbitrarily close &0)° by
choosingy closer to one.) Ibdrwin(y) > 0, then the Voronoi re-
finement algorithm described in Section 9 generates a trilaigpn

T wherein no triangle has an angle less thah,ouna @s measured
by any poinp € ¢, and every pair of sites # v in T' satisfies

. lfsmin bdrmin(’y)
dy(v) > min , .
{ TPV

If Obouna = 0°—the minimum requirement for a geometrically
valid triangulation—thery = 1.1278. This suggests that if neigh-
boring sites measure lengths more than ali@ét differently, that
may be enough to trigger refinement to reduce the dispasign e
if the sites are uniformly spaced. #f,ouna = 10°, v = 1.0629.
fvouna May be as high as abo0.7° (as it is for Ruppert’s al-
gorithm), but a®,.una approaches this upper limit, the algorithm
may have to refine the edges to very short lengths to keep lte re
tive distortion locally small enough.

Our proof of Theorem 11 proceeds through many lemmas, in
which all references to Voronoi cells refer to cells of theetaniso-
tropic Voronoi diagram, even if the Voronoi refinement algon
uses a loose Voronoi diagram instead. Lemma 20 shows thast d
no harm for the algorithm to work with the latter.



LEMMA 12. Letwv be a site of a Voronoi diagramv, and letg
be a pointinVor(v). For somey > 1, supposél,(q) > bdr(v, ).
Then for any sitev of D, d(w, ¢) > bdrmin(7)/7. Thus, inserting
g into D creates no inter-site distance shorter thiadhrmin () /7.

PROOF Suppose for the sake of contradiction that for some
sitew of D, d(w,q) < bdrmin(vy)/7. Then eitherd,(¢) <
bdr(w,y)/v ofr dq(w) < bdr(g,7)/v, soT(w,q) < . Inthe
former casel,, (¢) < bdrmin(y)/7, and in the latter casé, (q) <
ydg(w) < bdrmin (7).

Because; is in Vor(v), dv(q) < dw(g) < bdrmin(y), which
contradicts the assumption théit(¢) > bdr(v, ). [ |

LEMMA 13. Let D be a Voronoi diagram, and let be a point
where no site oD lies. Letz be a point that would be iVor(q)
if ¢ were inserted intaD. For somey > 1, supposel,(z) >
bdr(g, ). Then for any sitev of D, d(w, z) > bdrmin(y)/7.

PROOF Essentially the same as the proof of Lemma 12. (Ob-
serve that becausewould lie inVor(q) if g were inserteddq(z) <
dw(2) for any sitew of D.) [ |

LEMMA 14. Letu andwv be sites of a Voronoi diagram®. Let
g be a point on the Voronoi 1-ceNor(u) N Vor(v). For some
~ > 1, supposel,(v) > bdr(u,~). Then for any sitav of D,
d(w,q) > bdrumin(v)/ (> + 7).

PROOF If dyu(q) > bdr(u, ) ord,(q) > bdr(v,~), the result
follows by Lemma 12. Otherwise, by the definition of bounded
distortion radiusy (u, ) < v andr (v, q) < 7, sot(u,v) < v%

Suppose for the sake of contradiction that for somesité D,
d(w,q) < bdrmin(7)/(7v*+7). Then eithetl,, (¢) < bdr(w,~)/
(v* +7) or dg(w) < bdr(q,7)/(7* +7), so7(w,q) < 7. Inthe
former casel,, (q) < bdrmin(7)/(¥® + 7)., and in the latter case
dw(q) < ydq(w) < bdrmin(y)/(v* +1).

Becausey is in Vor(u) N Vor(v), du(q) = duv(q) < duw(q) <
bdrmin(7)/ (72 + 1). Recall thatr(u,v) < ~2, s0dy(v,q) <
v2dy(q) < ¥*bdrmin(y)/(¥* + 1). By the triangle inequality,
dy(v) < du(q) + du(v,q) < bdrmin(y), which contradicts the
assumption thad, (v) > bdr(u, ). The result follows. [ |

LEMMA 15. Letwv be a site of a Voronoi diagran, and letg
be a point where no site dP lies. Letz be a point inVor(v) that
would be inVor(q) if ¢ were inserted intaD. For somey > 1,
supposel, (v) > bdr(q,~). Then for any sitev of D, d(w, z) >

bdrmin(7)/(v* + 7).

PROOF Omitted. Similar to the proof of Lemma 14, but it uses
Lemma 13 as well as Lemma 12. [ |

LEMMA 16. Let D be a Voronoi diagram, and let be a point
in Q. For anyy > 1 and for every sitew of D, dq(w) >

min{dw(q)/7, bdr(g, )}

PROOF For each sitev, eitherd,(w) > bdr(q,~) (satisfying
the lemma) o, (w) < bdr(g, ). In the latter caser (¢, w) <
by the definition obdr andd,(w) > dw(q)/7- [ |

LEMMA 17. LetX be a PSLG whose intersecting segments sat-
isfy the angle condition specified in Theorem 11.dle¢ a segment
in X with endpoints: andb. Let D be a Voronoi diagram whose
sites include the sites iX (includinga andb). Letv be a site of
D that encroaches upos. Letz be a point inVor(v) N s. Let
m = min{d,(v), d»(v)}.

Then for any sitew of D, d(w,z) > min{m,fsmin/7,
bdrmin()}. Thus, inserting into D creates no inter-site distance
shorter thanmin{m, fSmin /7, bdrmin (7) }.

PROOEF Eitherwv is a site inX or v lies on a segment oX (oth-
erwisev would not have been inserted). Suppesandz are not
intertwined. Thend, (z) > 1lfs(v) by the definition ofifs. Because
z is in Vor(v), dw(z) > dy(z) > lfs(v) for any sitew of D.

By Lemma 164 (w) > min{lfs(v)/~, bdr(z,~)}, so the lemma
holds.

If v andz are intertwined, them lies on a segment’ that ad-
joins s. Assume without loss of generality that the shared end-
point of s ands’ is b; thent(v,b) < ~ by the definition of inter-
twined. We claim thatl, (v, z) > y?d,(v). Suppose for the sake
of contradiction thatl, (v, z) < v2dy(v). Because: is in Vor(v),
dp(2) > do(2) > db(v, 2) /7, S0dy(v, 2) < vdp(2) < V2dp(2).

Let 0 be the angleZvbz as measured by Given the constraints
dp(v,2) < ¥2dp(v) anddy (v, 2) < Y3dy(2), 0 is maximized at
9 = 2arcsin(y?/2) when the constraints achieve equality. But the
second constraint cannot achieve equality, and the anglditean
is ® > 2arcsin(y?/2), so the claim holds by contradiction.

Therefore, for any sitev of D, dw,(2) > duv(2) > dp(v, 2) /v >
~vdy(v) > ym. By Lemma 164 (w) > min{m, bdr(z,~v)}. W

LEMMA 18. Letq be a Voronoi vertex that dualizes to a poorly
shaped triangle = Awvyvovs. Definey as in Theorem 11. Sup-
pose thatd,, (v;) < bdr(v;,~) for everyi,j € {1,2,3}. Let the
shortest edge lengthof ¢t bemin{d(v1,v2), d(ve,vs), d(vs,v1)}.

Then for every sitev of D, d.,(q) > 7v2/72 + 14

PROOF For each vertex; of ¢, the distortion disk ob; is large
enough to enclose the other two vertices, so it enclos@here-
fore, 7(vi, p) < ~ for any vertexv; of ¢ and pointp in ¢. Because
t is poorly shaped, there is a poimin ¢ from whose perspective
has an anglé < 6younda. Letr = dy, (¢) = dv, (¢) = du;(q). Let
B =~*/~2+1. If B > r/t, then by Corollary 102+ sin§ >
1/B—(y*—1)0. Substitution of3 givesy® +2v*1/~2 + 1sin 6 —
~* —1 > 0. By assumptiony® + 2v*1/72 + 1 sin fpouna — v —
1 =0, sosinf > sin Oyouna, @ contradiction; hencg < r /2.

For every sitaw of D, dw(q) > r > 80 = v*/~2 + 1L.

LEMMA 19. Let w and v be sites of a Voronoi diagranb.
Let ¢ be a wedge violator inVor(u) N Vor(v) that is outside
wedge(u,v). Definey as in Theorem 11. Then for every site

of D, dw(q) > min{y*\/72 + 1d(u,v), bdrmin/(v* + 7)}.

PROOF If T(u,v) > 7, thend,(q) > bdrmin/(v* + 7)
Lemma 14. Ifr(u,v) < v, assumey is outsidewedge(u, v)
the side ofu. From Lemma 5 we havé,(q) > d.(v)//~? — 1.
By assumption,y® — 4* — 1 < 0, sod,(v)//72 -1 >
VA2 + 1du(v) 2 ¥*\/42 + 1d(u,v).

Because; € Vor(v), for every sitew of D, dw,(q) > dv(q)

min{'VQ V 72 +1 d(ua U), bdrmin/(’yg + ’7)}

LEMMA 20. Suppose the Voronoi refinement algorithm main-
tains a loose anisotropic Voronoi diagram instead of a trug-a
sotropic Voronoi diagram. Leg be a point that the algorithm
identifies as a violator, but is not really a violator. The Inglof
Lemma 19 applies tg (for some pair of sites andv).

by
on

>

PROOF Let L be the loose Voronoi diagram maintained by the
algorithm at the moment is identified as a violator, and |é? be
the true anisotropic Voronoi diagram of the same sites. Bsza
is incorrectly identified as a violatay,lies in a 2-cellc of L owned
by some sitez whose Voronoi cell (inD) does not contain.

Consider first the case whegdies in the interior ofc. Because
q ¢ Vor(z), there must be some other sitéor whichq € Vor(v).



The 2-cell of L owned byw includes every point oVor(v) that
is visible to v within Vor(v). Therefore,q is not visible tov
within Vor(v). Let p be the point nearest on the line segment
gv such that the line segmegp lies entirely inVor(v). (It is pos-
sible thatp = ¢.) Letu # v be a site such that € Vor(u)
and some point oVor(u) lies betweerp andv. By Lemma 3,p
is outsidewedge(u,v), SOp is a wedge violator. By Lemma 19,
dy(p) > min{y*\/v2 + 1d(u, v), bdrmin/(v* +v)}. Because
lies betweery andv, d,(q) > d.(p). Because; € Vor(v), for
every sitew of D, d.(q) > dv(q). The result follows.

Now consider the case whegelies on the boundary of. Let
¢’ = ¢\Vor(z), and observe that € ¢’. Because the bound holds
for every point in the interior of’, it holds for every point on the
boundary ofc’ by the continuity of distances. |

LEMMA 21. Letq be a site inserted at a violator by the Voronoi
refinement algorithm. LeD be the Voronoi diagram just before
is inserted. Letn = min,x, d.(v) where the sites, andv are
chosen from among all sites BX. For every sitav of D, d(q, w) >

min{yy/7v2 + 1m, bdrmin('y)/(’y4 + 72)}. Thus, the insertion of
g into D creates no inter-site distance shorter than that.

PROOF The violatorg does not encroach upon any subsegment
(otherwise it would not be inserted). dfis a wedge violator, the
result follows from Lemmas 19 and 16. {fis a violator by mis-
taken identity, the result follows from Lemmas 20 and 16. -Oth
erwise,q dualizes to a poorly shaped triangle= Avjvavs. If
dy,; (v;) > bdr(vs, ) foranyi, j € {1, 2, 3}, then by Lemma 14,
d(g,w) > bdrmin(y)/(¥* + 7) as claimed. Hence, assume that
dy,; (v;) < bdr(v;,~y) for everyi,j € {1,2,3}. By Lemma 18,
dw(q) > v*y/92 + Im. The result follows from Lemma 16. B

LEMMA 22. Let s be a segment with endpoindgssand b in a
PSLGX. Letz be the “midpoint” of s, defined so that,(z) =
dy(z). Let D be a Voronoi diagram whose sites include the sites
in X (includinga andb). Letq be a point such thaVor(g) would
containz if ¢ were inserted intd (thusq would encroach upog).

Supposer(a,q) < v and7(b,q) < « for somey > 1. Then

da(2) = dp(2) > min{da(q),ds(q)}/(vv/7* + 1).

PROOF Consider a lind throughz that is perpendicular te
from ¢’s point of view. Specifically] is composed of the poings
that satisfyd, (b, 2)* + dy(z,p)? = dq(b,p)* (Pythagoras’ Law).
Suppose without loss of generality thglies on the same side 6f
asb, or g lies onl. Thend, (b, 2)> + dq(2)* > dq(b)*. Because
7(b,q) < v, itfollows thaty?dy (2)* + dy(2)* > dp(q)? /7>

Vor(g) would containz if ¢ were inserted intd, sod,(z) <
dy(z). Therefore,(v? + 1)dy(2)? > di(q)*/~?, from which the
result follows. [ |

LEMMA 23. Letz be a site inserted on a segmenbecause a
violator ¢ (not inserted) encroaches upenLet D be the Voronoi
diagram just before: is inserted. Letn = minyx, d.(v) where
the sitesu and v are chosen from among all sites &f. De-
fine v as in Theorem 11. For every site of D, d(z,w) >

min{m, bdrmin(7)/((7* +7%)v/7% + 1)}

PrROOF The segment intersects only two Voronoi cells, namely
Vor(a) and Vor(b) wherea andb are the endpoints of. Other-
wise, the algorithm would have split before trying to insery.
There are two cases to consider. In Case Aes on the Voronoi
curveVor(a) NVor(b). In Case B¢ lies in just one Voronoi cell—
without loss of generality, sayor(b)—because if; were inserted,
Vor(g) would not intersect N Vor(a).

If dg(b) > bdr(q,~), the result follows by Lemma 15. Hence,
assumer(q,b) < ~. Similarly, in Case A the result follows if
dq(a) > bdr(g, ), S0 assume in that case thdty, a) < .

Let v1,...,vr be the sites whose Voronoi cells contain In
Case A, by Lemma 22}, (z) > min{da(q), ds(q)}/(vy/7* + 1).
Becausey lies in Vor(v;) for eachi € [1, k] andz lies in Vor(b),
for any sitew of D we haved,, (z) > dy(z) > min{d.(q),ds(q)}/
(VW2 +1) > dv, (@)/(vy/7? + D).

A similar result holds in Case B. Leb, be the Voronoi di-
agram formed by inserting into D (even though the algorithm
does not inserg). In Dy, there are one or two intersection points
s N Vor(b) N Vor(q), andz is the one furthest frorb. Althoughz
lies in Vor(b) in Dy, eitherz is not visible fromb within Vor(b),
or z lies whereVor(gq) tangentially intersects at a single point.
By Lemma 3,z lies outsidewedge(b, ¢) on g's side of the wedge.
From Lemma 5 we havé,(z) > dq(b)/+/7%> — 1. In D, q lies
in Vor(v;) for eachi € [1, k], and inDy, z lies in Vor(q), so for
any sitew of D we haved,,(z) > dq(z) > dq(b)//¥* —1 >

do(q)/ (72 = 1) > du, (9)/(v/7? = 1).

In either Case A or Bd.,(z) > duv,(q)/(v/7% + 1) for any
sitew of D and any; € [1, k]. Suppose thad.,, (¢) > bdr(vs, )
for somei € [1,k]. Thend.,(z) > bdr(vi,v)/(vy/~? + 1) and,
by Lemma 164 (w) > bdrmia(7)/(72\/72 + 1) for any sitew
of D, so the result follows.

If the supposition is not true for any € [1, k], thend,, (q¢) <
bdr(v;, ) and thusr(v;, g) <  for everyi € [1, k]. This implies
thatr (v, v;) <~ foranyi,j € [1, k].

Suppose that there are two sitesand v; for which i,j €
[1,k] and dy,(v;) > bdr(vi,y). By the triangle inequality,
dy; (v;) < du,(q) + du, (¢,v3) < du,(q) +77du; () = (7 +
Ddv, (q) < (7 + )/ + 1dw(2) for any sitew of D. Thus
dw(2) > bdr(vi,v)/((¥* + v)\/~2 + 1) and, by Lemma 16,
d.(w) > bdrmin(7)/((y* + ¥*)\/72 + 1) for each sitew, so
the result follows.

If the supposition is not true, thed,, (v;) < bdr(v;,~) for
every pair of sites; andv; whose Voronoi cells contaiqn One of
the preconditions for Lemma 18 is thus satisfied.

Depending on what type of violatgris, Lemma 18, 19, or 20
applies, showing that,,(¢) > min{y*\/+2 + Im, bdrmin(y)/
(v* + ~)} for every sitew of D. It follows thatd,, (z) > d., (q)/

i

(vv/7*+1) = min{ym, bdrmin(1)/((7* + 7))v7* + 1)}
and, by Lemma 16, (w) > min{m, bdrmis(7)/((v* + 7°)-

/7% + 1)} for each sitaw of D as claimed. [ |

PROOF OFTHEOREM 11. The anisotropic Voronoi diagram of
the sites inX has no inter-site distance less tH&n,i,, by the def-
inition of Ifsymin. By Lemmas 17, 21, and 23, every inter-site dis-
tance created by any site the algorithm inserts is at leagtead as
eitherlfsmin /v, bdrmin (7)/((¥® + v*)\/72 + 1), or the shortest
inter-site distance existing prior to the site insertion.

By induction on the sequence of site insertions, for any titess
v andw that are ever inserted by the Voronoi refinement algorithm,
d(v,w) > p = min{Ifsmin /7, bdrmin (7)/ (1 +7*)y/7% + D}

Let Amax be an upper bound on the largest eigenvaluk/adver
the domairf2. For any two sitey andw, p < dy,(w) = || Fy(v —
w)lla < [Follallo —wll2 = (max, 27 Mya/zT2)?|jv —w]ls <
VAmax |[v — wl|2. Therefore, measured in physical spage,—
w2 > 1/vAmax. Imagine that a disk of radiug/(2v/Amax) IS
centered at each site. The interiors of these disks do nersiett.
Only a finite number of such nonoverlapping disks can be mhcke
so their centers lie if2, therefore the algorithm terminates. B



11. Conclusions

There are several clear directions for improvement andnexte
sion of our results. We suspect it is straightforward (albedssy)
to prove that our Voronoi refinement algorithm generaesied
meshes in which edge lengths are dictated primarily by ez
tures—the mesh is not refined to very small triangles in og®re
because of very small features far away. Ruppert [13] preveh
a result for isotropic meshing. However, the anisotropadgrg re-
sult would be weaker than Ruppert’s isotropic result beeausite
whose metric tensor is small sees faraway elements as bleisg ¢
by, and therefore its influence on them is less attenuatedciftp
cally, a site with a small metric tensor has a wide parabolgditth
can create orphans at a great distance, thereby causingmefir
in distant locations to remove the orphans. These effeaibinbie
mitigated by simply removing the orphans without insertimeyv
sites (exploiting the flexibility of loose Voronoi diagram®r by
resizing the metric tensors (and paraboloids) of probld¢essi

Our Voronoi refinement algorithm, like Ruppert’s Delaunay r
finement algorithm, recovers segments of the PSLG by smitti
them. There are many advantages to using a constrainedriaglau
triangulation (CDT) instead. But can CDTs be made anisatfop
Seidel [14] proposes ttextended Voronoi diagrapwhich dualizes
the (isotropic) CDT by extending the plane so that each sagme
serves as a gateway to another “sheet” of paper, inhabiteding
of the faces of the Voronoi diagram. As a natural generadinat
we suggest extended anisotropic Voronoi diagrams, whictizki
to constrained triangulations under the same conditiong/foch
anisotropic Voronoi diagrams dualize to triangulations.

For practical mesh generation, it is attractive to maintaeire-
stricted Voronoi diagranD |, rather thanD because the rest @
is not needed. We could also redefine loose site insertidmegdite
depth-first search stops at the boundar§2obut the diagram cre-
ated this way is not necessarilyq. It is an open problem whether
an analog of Lemma 20 holds for this weaker site insertiorhotbt
More generally, if loose insertion and extended anisotrdpronoi
diagrams can be made to work together, the combination meight
joy the speed of loose insertion and the benefits of CDTs.
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