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Abstract. Cardiac arrhythmias are increasingly being treated using ab-
lation procedures. Development of fast electrophysiological models and
estimation of parameters related to conduction pathologies can aid in
the investigation of better treatment strategies during Radio-frequency
ablations. We present a fast electrophysiological model incorporating
anisotropy of the cardiac tissue. A global-local estimation procedure is
also outlined to estimate a hidden parameter (apparent electrical conduc-
tivity) present in the model. The proposed model is tested on synthetic
and real data derived using XMR imaging. We demonstrate a qualita-
tive match between the estimated conductivity parameter and possible
pathology locations. This approach opens up possibilities to directly in-
tegrate modeling in the intervention room.

1 Introduction

Radio-frequency ablation (RFA) techniques are becoming increasingly preferred
as an alternative to drug therapy for treatment of cardiac arrhythmias. These
procedures are carried out under x-ray guidance, with specialized catheters for
making invasive recordings of the electrical activity of the heart. Although RFA
procedures can be highly e�ective with minimal side e�ects, they still have un-
satisfactory success rates for some group of patients. There is still a need for
substantial innovation in guiding these interventions. XMR suites are a new
type of clinical facility combining in the same room a MR scanner and a mobile
cardiac x-ray set. Registration of the two image spaces (MR and x-ray) makes
it possible to combine patient anatomy with electrophysiology recordings 4.

The use of electrophysiology models simulating electrical propagation for
various cardiac arrhythmias is a way forward in guiding the RFA procedures.
Existing models however are computationally expensive and are presently not
suitable for direct use in the intervention room. The aim of this research is to

4 obtained from Ensite (St. Jude Medical) or Carto (Biosense)
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design electrophysiological models that are suited for clinical use and to propose
methods to combine these models with interventional data in order to better
estimate the patient cardiac function and aid in the guidance of RFA procedures.

Modeling the complete electrophysiology of the heart begins with the in-
corporation of electrical phenomena from the microscopic cellular level into the
macroscopic set of partial di�erential equations (PDE) modeling a continuum.
The resulting models are the bidomain and monodomain models [1]. The numer-
ical solution of these models is computationally demanding due to a very small
spatial scale associated with the electrical propagation in comparison to the size
of the ventricles. Fortunately as the depolarization occurs only in a narrow re-
gion, the depolarization region can be considered as a propagating wavefront [2]
and an Eikonal equation can be derived describing this activation phenomenon.
Further, the solution of these models cannot be directly correlated with patholo-
gies due to the complex interaction of various parameters present in the models.
We believe that development of algorithms for identifying the hidden parameters
in the electrophysiological models would help cardiologists in a quicker diagnosis
and treatment of pathologies. For our interventional purpose and as parameter
adjustment often requires several simulations, we propose to use the Eikonal
equation to model the electrophysiology.

In this paper, we develop a Fast Marching Method (FMM) for the numerical
solution of the anisotropic Eikonal-Curvature (EC) equation on surface triangu-
lations and use it in an iterative algorithm to estimate the apparent conductivity
parameter. This parameter is estimated �rst on a global basis and then local cor-
rections are made. The developed model is validated on synthetic data and also
applied to clinical data. We show that the proposed estimation procedure can
potentially aid in the detection of scarred/infarcted regions in the myocardium
using electrophysiological (Ensite) and geometrical (XMR) information.

2 Anisotropic Fast Marching Electrophysiology Model

Cardiac tissue is strongly anisotropic with wave speeds that di�er substantially
depending on their direction. For example, in human myocardium, propagation
is about 0:5 m/s along �bres and about 0:17 m/s transverse to the �bres. In
this section, we present a fast electrophysiological model for depolarization wave
propagation on anisotropic cardiac surfaces.

The static EC equation [3] for the depolarization time (T ) in the myocardium
is given by
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where c and k are constants related to the cell membrane. D is the volumetric
electrical conductivity of the tissue and M 5 is a tensor quantity incorporating
cardiac �bre directions. The term in square brackets in Eq. (1) is the anisotropic
curvature 
ow term.
5 M = A�DAt, where A is the matrix de�ning the �bre directions in the global
coordinate system and �D = diag(1; �2; �2). � is the anisotropic ratio of propagation
speeds and is of the order 0:33 in human myocardium.
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Sophisticated numerical techniques have already been developed to solve the
Eikonal-Curvature equation to study propagation in normal myocardium [2{
4]. These models generate accurate depolarization times at the expense of high
computational cost. However, the requirement for our electrophysiological model
is that it should be fast. In accordance to this view, we propose an alternative
�xed point iterative method combined with a very fast Eikonal solver based
on a modi�ed anisotropic Fast Marching Method (FMM) [5]. The �xed point
iterative algorithm is presented in Algorithm 1. The curvature 
ow term in Step
2 is obtained by the anisotropic generalization of the curvature term given in [6]
and the Eikonal equations in Steps 1 and 3 are solved using the modi�ed FMM.

Algorithm 1 Iterative Algorithm for Solving Eikonal Curvature Equation

1) Solve Eq. (1) without curvature term to get an initial estimate T0. Set Tcurr = T0.
2) Compute anisotropic curvature 
ow term (e�(T )) with the current estimate Tcurr.
3) Solve c

p
kD

�prT t
newMrTnew

�
= 1 +De�(Tcurr) to obtain new estimate of T .

4) If kTnew � Tcurrk < ", Stop, Else Tcurr = Tnew, Goto Step 2.

2.1 Validation of Algorithm

The algorithm presented to solve Eq. 1 is tested for its convergence and accuracy
by performing numerical experiments. A square domain [0; 1]�[0; 1] is considered
with the initialization point being the origin. The parameter values used are
c = 3:89 and D = 0:005. We tested the algorithm on a family of unstructured
meshes ranging from N = 121 to N = 5041 mesh points. The myocardial tissue
is simulated by requiring that the speed of propagation in the x-direction (along
�bre direction) be three times the speed of propagation in the y-direction.
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Fig. 1. A. Convergence of the �xed point algorithm for di�erent mesh sizes B. Evolu-
tion of error (thick line) and Wall time (dashed) w.r.t mesh size.

The results of numerical experiments conducted are presented in Fig. 1. The
left sub �gure (1.A) shows the convergence of the �xed point iterative algorithm
for di�erent mesh sizes. The y-axis of this �gure contains the residual correction
kTk+1 � Tkk1. From this �gure, it can be seen that the �xed point algorithm
converges to a pre-speci�ed limit (say 1:0e � 10) for di�erent meshes and also
that the convergence seems to be dependent on the number of mesh points N .
For the densest mesh considered in the study (5000 nodes), the algorithm seems
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to converge in about 40 iterations which is very fast and hence may be suitable
for faster computations in real time interventional cases.

Fig. 1.B shows the convergence of the solution to a �xed limit as N !1 and
also the wall time clocked by the FMM algorithm. As the exact solution of this
problem is not available, we construct a reference solution by solving the problem
on a �ne mesh (N = 5041) and the convergence of the solution on coarser meshes
is examined towards this limit. From the �gure, it can clearly be seen that mesh
convergence is achieved for this particular case. Note that in comparison to time
taken by the sophisticated FEM method (about 4 minutes for 2300 nodes)[2],
the FMM method obtains results on a 5000 node mesh in about 4 sec. Further,
the stability of the FEM method depends on the numerical di�usion term added
and is dependent on the mesh size thus increasing the computational e�ort re-
quired. In contrast, we observe that the FMM method is quite stable even on
coarser meshes and one can re�ne meshes with a correspondingly small increase
in computational e�ort (O(n log (n))) with a reasonable �rst order accuracy [7].

3 Apparent Conductivity Estimation Procedure
Cardiologists generally base their analysis of electrophysiological data on the
isochrones of depolarization/repolarization times of the epicardium and endo-
cardium. However, these time variables are di�cult to interpret due to the in-

uence of the geometry and curvature of the propagating front and often need
expert intervention. We hope that estimation of additional parameter maps re-
lated to conduction pathologies 6 would enable cardiologists to perform a quicker
diagnosis. Additionally, a model based method has the advantage of allowing the
use of the model in a predictive way, once adjusted to the data. This can be very
useful to test therapies and plan interventions.

The idea in this section is to estimate these hidden parameters using the pro-
posed anisotropic fast marching EC model and clinical measurements obtained
during electrophysiology study. The two parameters that are present in the EC
formulation are c (related to cell membrane) and the apparent conductivity D.
As we have only one measure which is the depolarization time, we can only
chose to estimate one parameter. We aim to estimate the apparent conductivity
D, which can be thought of as a good indicator in the case of pathologies. For
example, in case of a scarred tissue, we expect that the apparent conductivity
in the scarred region may be di�erent (lower) than in the normal tissue.

The algorithm is based on matching the isochrones of measured depolariza-
tion time Tm (from clinical data) to the simulated depolarization time T s (from
model), in order to get an estimate of the conductivity value (D). To begin with,
we assume that there is a nominal value of conductivity (Dglobal) on the entire
cardiac surface and then you have local variations in conductivity (Dlocal) at
each mesh point. We expect that these variations have a large magnitude at
points near possible pathological locations.

The global conductivity is estimated by using a simple bisection method
(Algorithm 2). As the FMM used in the estimation algorithm is very fast, the

6 A similar study of estimating myocardial conductivity from body surface potential
measurements using a nonlinear system approach can be found in [8].
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global estimation of apparent conductivity parameter is done in a very quick
time. The obtained Dglobal after convergence is used as an initial guess for the
local conductivity estimation algorithm.

Algorithm 2 Bisection Algorithm for Estimating Global Conductivity

1) Set D = D0, where D0 is the given user estimate for conductivity.
2) Evaluate the average value of measured depolarization time Tm

3) Solve Eq. (1) using FMM algorithm in Section 2 and calculate the average of
simulated depolarization time T s.
4a) If jT s � Tmj < �, Dglobal = D, Stop; Else,
4b) If T s < Tm, D = D � 0:5D; Else, D = D + 0:5D, and Goto Step 3.

The local correction of conductivity at each mesh point is obtained by min-
imization of the quadratic error between the model and data. The algorithm
works on minimizing the cost function given by J(D) = 1

2

PN

i=1 (Ti(D)� Tm
i )

2
;

where Tm
i is the measured depolarization time at vertex i and Ti(D) is the solu-

tion of the Eikonal-Curvature equation with the given set of parameters D. The
minimization is done using the method of steepest descent. The gradient vector is
obtained using forward �nite di�erences. i.e., (@DJ)i = [J(D+ ��i)� J(D)] =�;
where �i is the unit vector in the ith dimension. We note that the algorithm
(local estimation) can be expensive for a large number of points. However, this
idea of gradient minimization can be incorporated into a framework in which
the conductivity is estimated on region by region basis, where the entire surface
is divided into di�erent regions. Further, we expect improved optimization per-
formance using more powerful descent algorithms such as conjugate gradients.

3.1 Propagation in a Slab of Tissue
We evaluate the performance of presented algorithms initially using synthetic
data. A two dimensional slab of anisotropic cardiac tissue ([0; 1]� [0; 1]) is con-
sidered for computations. The bottom surface represents the endocardium and
the top represents the epicardium. The �bre directions are varied according to
�(y) = 2�y=3L where L = 1:0 represents the thickness of myocardium. The
initial point of excitation is taken as the bottom leftmost corner of the slab.
To simulate the myocardium propagation velocity of around 0:5 m/s, the value
of the parameters taken was c = 3:89 and D = 0:005 along the �bre direction
[3] and the anisotropy ratio is set to 0:33. The anisotropic Eikonal-Curvature
equation was solved for a case where the conductivity distribution map is taken
as shown in Fig. 2.A. Two regions were de�ned with a higher (2D0) and lower
(0:5D0) conductivities than the nominal conductivity (D0 = 0:005) over the en-
tire domain. The resulting isochrones of depolarization time obtained by using
the fast electrophysiological model (shown in Fig. 2.B) are taken as the measured
data for the conductivity estimation algorithm. Fig. 2.C shows the convergence
of the global estimation procedure for di�erent initial user values. From the �g-
ure, it can clearly be seen that the nominal conductivity values obtained by the
bisection procedure are very near to the nominal conductivity value (D0) used
for obtaining measured data. Thus, the need for a good initial guess by the user
is eliminated by this global conductivity estimation algorithm.
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Fig. 2. A. Simulation of di�erent conductivity zones with D twice the normal value
(left square in red) and half the normal value (right square in blue); B. Resulting
isochrones with the anisotropic Eikonal-Curvature equation (used as measured data
for conductivity estimation); The arrows in the �gure represent the �bre direction; C.
Convergence of the global conductivity estimation procedure for di�erent user initial
values;

Next, we evaluate the performance of the estimation algorithm (global+local)
for a case when the �bre directions are not known (Fig. 3.A) and when the �bre
directions are given (Fig. 3.B). When the �bre directions are not known, we
assume isotropic wave propagation. In the case of isotropic propagation, it can be
seen that although the values of the estimated conductivities are not same as the
measured values, a fair idea of the location of low conductivity region is obtained.
The estimated low conductivity region is more di�used as compared to that in
Fig. 2.A. A much sharper delineation of conductivity regions is obtained when
the estimation algorithm is run with �bre data (Fig. 3.B). After convergence
of the estimation procedure for the anisotropic case, we obtain a mean error of
2:8�10�2 on the depolarization times which are between 0 and 104 ms. Further,
we tested the estimation algorithm for the anisotropic case with noisy �bre
data given by adding Gaussian noise to the �bre directions and the estimated
conductivity map is shown in Fig. 3.C 7. The estimated conductivity map with
noisy �bre data corresponds more closely to the measured conductivity map (Fig.
2.A) than assuming isotropic wave propagation (Fig. 3.A). From these results,
it can be clearly seen that the global and local parameter estimation algorithm
can successfully estimate di�erent conductivity regions present in the domain.
Further, in relation to clinical applications, as patient speci�c data on �bre
orientations is di�cult to obtain in-vivo, prior knowledge on these orientations
has to be used. Statistical studies on these showed a variability of around 10
degrees [9], thus we tested the impact of such unknown (�bre orientations) on
the estimation procedure.

4 Application to Clinical Data
In this section, we present some preliminary results of applying the conductiv-
ity estimation algorithm to clinical data obtained during an electrophysiology

7 A zero mean Gaussian noise with a standard deviation of 10o was added to the �bre
directions. We further note that the percentage change of the estimated conductivity
w.r.t the added noise ranging from 0o� 15o standard deviations was less than 0:1%.
This suggests that the algorithm is quite robust to Gaussian noise.
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A. Isotropic B. Anisotropic C. Anisotropic (noisy �bre data)

Fig. 3. A. EstimatedD with isotropic FMM (� = 1:0); B. EstimatedD with anisotropic
FMM (� = 0:33, �(y) = 2�y=3L); C. Estimated D with noisy �bre direction

study in XMR environment. XMR registration makes it possible to incorporate
the electrophysiology measurements and patient anatomy in the same coordinate
space. This in turn enables to validate the conductivity estimation model devel-
oped by comparing the pathology location obtained from MR with estimated
low conductivity regions.

A. Isochrones B. Scar 1 Comparison C. Scar 2 Comparison

Fig. 4. A. Isochrones obtained using the anisotropic FMM algorithm; B, C. Matching
between the estimated conductivity and scars segmented in a late enhancement MR
image. Note that the scars do not lie on the ventricular surface as the late enhancement
image was acquired one day before the procedure.

The electrical measurements were obtained using the Ensite system, which is
a non-contact invasive catheter based device for recording the electrical activity
of the heart (reconstructed on 256 points). This data is from a patient with left
bundle branch block, so the initialization comes from the septum rather than the
Purkinje network. The �bre orientation on the endocardium is taken as +60o

to the circumferential axis (b�) 8. We assume that the 3D aspect of electrical
propagation does not a�ect the endocardial surface recordings. The apparent
conductivity is estimated on this case and is compared to scar locations estimated
by segmentation of late enhancement MR image (see Fig. 4). We obtain a mean
error of 6 � 10�2 on the depolarization times which are between 0 and 66 ms.

8 The circumferential direction at each mesh point is obtained by a cross product of
the long axis vector (bl) of the reconstructed geometry and the position vector of the

considered point. Unit vectors in the radial (b� = bl� b�) and longitudinal (b� = b� � b�)
are obtained successively.
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Visual inspection of Fig. 4 shows that the low conductivity areas and scars were
co-localised to the accuracy of the MRI to Ensite registration.

5 Conclusion and Future Work

A novel anisotropic fast marching algorithm incorporating �bre data is presented
to achieve fast simulations of electrophysiology, along with a parameter estima-
tion procedure to adjust model parameters using interventional data. The ap-
parent conductivity parameter present in the model is estimated on a global and
local basis, to identify possible pathological locations (lower conductivity). The
algorithm is used on both synthetic as well as real interventional data and the
results obtained are very encouraging. Having such a model opens up possibili-
ties for early detection of possible scar regions in the myocardium and also aid in
treatment and planning of di�erent strategies before the actual RFA procedure.

There can be several improvements made to the proposed model to enhance
its estimation properties which will be the focus of our future research. In or-
der to model complex re-entrant arrythymias, we need to re-introduce the time
derivative term in the EC equation. Initial work demonstrating re-entrant wave
behaviour using FMM applied to the classical Eikonal equation was presented
in [10]. Further in this paper, the cardiac propagation is considered only on tri-
angulated surfaces as relevant clinical data is present only on the endocardial
surface. In order to build a more realistic model one should consider the propa-
gation in the entire myocardial volume. A volumetric FMM has been developed
for tetrahedral meshes for such a case which will be reported soon.
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