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The stochastic gravitational wave background (SGWB) is expected to be a key observable for

gravitational wave (GW) interferometry. Its detection will open a new window to early Universe cosmology

and to the astrophysics of compact objects. Using a Boltzmann approach, we study the angular anisotropies

of the GW energy density, which is an important tool to disentangle the different cosmological and

astrophysical contributions to the SGWB. Anisotropies in the cosmological background are imprinted

both at its production and by GW propagation through the large-scale scalar and tensor perturbations of

the Universe. The first contribution is not present in the cosmic microwave background radiation (as the

Universe is not transparent to photons before recombination), causing an order 1 dependence of the

anisotropies on frequency. Moreover, we provide a new method to characterize the cosmological SGWB

through its possible deviation from Gaussian statistics. In particular, the SGWBwill become a new probe of

the primordial non-Gaussianity of the large-scale cosmological perturbations.

DOI: 10.1103/PhysRevD.100.121501

I. INTRODUCTION

Operating ground-based interferometers is not far from

reaching the sensitivity to detect the stochastic gravitational

wave background (SGWB) from unresolved astrophysical

sources [1,2]. On the other hand, future space-based

gravitational wave detectors, like LISA [3] and DECIGO

[4], and earth-based gravitational wave detectors, like the

Einstein Telescope [5] and Cosmic Explorer [6], may be

able to detect a stochastic background of cosmological

origin, generated by early Universe mechanisms of pro-

duction of gravitational waves (GWs) [7–13]. The most

immediate way to differentiate the two backgrounds is by

their frequency profiles [14]. However, given that the

SGWB is the sum of different contributions whose profiles

are not fully known, it is important to also develop other

means to characterize them. In this work, we study the

statistics of the angular anisotropies in the energy density of

the GWs, which are either produced primordially or

imprinted in the GWs as they propagate in the perturbed

Universe [15–20].
This approach has several analogies with the well

established formalism developed for cosmic microwave

background (CMB) anisotropies. Following [16], we study,
as is commonly done for the CMB, the GW phase-

space distribution function f, which can immediately be

related to their energy density. We solve the collisionless
Boltzmann equation for this distribution and compute

the two-point and three-point correlators of the GW energy
density anisotropies on our sky. We focus on one crucial

difference from the CMB: while the CMB temperature

anisotropies are generated only at the last scattering sur-
face, or afterward, the Universe is instead transparent to

GWs at all energies below the Planck scale. Therefore, the

SGWB provides a snapshot of the Universe right after
inflation, and its anisotropies retain precious information

about the primordial Universe and the mechanisms for

the GW formation. In particular, the primordial signal may
be characterized by a significant (i.e., order 1) dependence

of the anisotropies on frequency. On the contrary, this
dependence is very small in the CMB case since any initial

condition is erased by collisions before recombination,
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and any frequency dependence of the anisotropies is
generated only at second order in perturbations [21–23].
We show, through a representative example of sourced
GWs during axion inflation [24,25], that a primordial GW
signal visible at interferometer scales can indeed lead to
anisotropies with a large frequency dependence.

Secondly, we study another important tool to character-

ize the cosmological SGWB—namely, its non-Gaussianity.

Recent works, starting with [26], have investigated whether

the GW three-point function hh3i can be tested at inter-

ferometers. The measurement of this signal requires the

measurement of phase correlations of the GW wave

functions. As shown in [27,28], two effects make such a

measurement unfeasible: (i) the GW propagation in the

perturbed Universe destroys any hh3i correlation possibly

present in the primordial signal, and (ii) modes of nearby

frequencies get confused with one another due to the finite

duration of the experiment, also resulting in a large phase

decorrelation. There is, however, another type of non-

Gaussianity that can be observed, and it is the one present

in the spatial distribution of the GW energy density. This

does not involve initial phase correlation of the GW field

itself: here we present the first steps for the computation

and study of the three-point function (the bispectrum) of the

GW energy density. Notice that Planck set the tightest

limits from CMB data on deviations from Gaussian

statistics for cosmological fluctuations [29]. Still, this does

not rule out the possibility of primordial non-Gaussian

signatures: the observable we discuss (the angular bispec-

trum of GW energy density anisotropies) relies on future

measurements that might be sensitive enough to probe

primordial non-Gaussian signals. It might be the case for

models of inflation (like those where the inflaton interacts

with additional fields), producing a GW signal with a peak

at interferometric scales (see [9]) which would favor the

measurement of the two- and three-point angular correlators.

For brevity reasons, this paper contains results under the

simplest conditions only. In a companion paper [30], we

shall present the details of these computations, extend them

to include the GW propagation to second order in pertur-

bations, and develop a more extended analysis of the GW

bispectrum.

II. BOLTZMANN EQUATION FOR GWs

We consider a distribution f ¼ fðη; xi; q; n̂iÞ of GWs as

a function of their position xμ and momentum pμ ¼
dxμ=dλ, where λ is an affine parameter along the GW

trajectory. This distribution obeys the Boltzmann equation

L½f� ¼ C½fðλÞ� þ I ½fðλÞ�, where the Liouville term is

L≡ d=dλ, while C and I account, respectively, for the

collision of GWs along their patch and for their emissivity

from cosmological and astrophysical sources [16]. The

collision among GWs affects the distribution at higher

orders (in an expansion series in the gravitational strength

1=Mplanck) with respect to the ones we are considering,

and it can be disregarded. The emissivity may be due to

astrophysical processes (such as black holes merging) in

the relatively late Universe, as well as cosmological

processes, such as inflation or phase transitions. In this

work, we are interested only in the stochastic GW back-

ground of cosmological origin, so we treat the emissivity

term as an initial condition on the GW distribution (see [31]

and the references therein for a discussion of collisional

effects involving gravitons). This leads us to study the

free Boltzmann equation, df=dη ¼ 0, in the perturbed

Universe. Specifically, we consider scalar (Φ and Ψ) and

tensor (hij; taken to be transverse and traceless) perturba-

tions in the so-called Poisson gauge, around a homo-

geneous and isotropic background, giving the line element

ds2 ¼ a2ðηÞ½−e2Φdη2 þ ðe−2Ψδij þ hijÞdx
idxj�; ð1Þ

where aðηÞ is the scale factor, and η is conformal time.

Dividing the free Boltzmann equation by p0 leads to

∂f

∂η
þ

∂f

∂xi
dxi

dη
þ
∂f

∂q

dq

dη
þ

∂f

∂ni
dni

dη
¼ 0; ð2Þ

where n̂≡ p̂ is the direction of motion of the GWs, while

q≡ jp⃗ja is the comoving momentum that we use (as

opposed to the physical one that was used in [16],

following the standard computation done for the CMB

photon propagation [32]), as it simplifies Eq. (3). The first

two terms in Eq. (2) encode free streaming, that is, the

propagation of perturbations on all scales. At higher order,

this term also includes gravitational time delay effects.

The third term causes the redshifting of gravitons, includ-

ing the Sachs-Wolfe (SW), integrated Sachs-Wolfe (ISW),

and Rees-Sciama effects. The fourth term vanishes to first

order and describes the effect of gravitational lensing.

We shall refer to these terms as the free-streaming, redshift,

and lensing terms, respectively, in a way similar to CMB

physics. Keeping only the terms up to first order in the

perturbations, Eq. (2) gives

∂f

∂η
þ ni

∂f

∂xi
þ

�

∂Ψ

∂η
− ni

∂Φ

∂xi
þ
1

2
ninj

∂hij

∂η

�

q
∂f

∂q
¼ 0: ð3Þ

In analogy to the split in Eq. (1), we also assume that the

GW distribution has a dominant, homogeneous, and

isotropic contribution, with distribution function f̄, plus
a subdominant contribution δf. The two functions are

obtained by solving Eq. (3) at zeroth and first order in

perturbations. Doing so, one immediately finds that any

function f̄ðqÞ of the comoving momentum solves Eq. (3) at

zeroth order. As a consequence, the associated number

density n ∝
R

d3pf̄ðqÞ is diluted as a−3 as the Universe

expands. This is also the case for CMB photons, whose

distribution function f̄CMB ¼ ðep=T − 1Þ−1 is controlled

only by the ratio p=T ∝ pa ¼ q, where T is the
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temperature of the CMB bath. This is a consequence of the

free particle propagation in an expanding background, and

it does not rely on the distribution being thermal.

The subdominant anisotropic component δf can be

present as an initial condition. However, even if it is

initially absent, Eq. (3) shows that this anisotropy is

produced by the propagation of the isotropic component

f̄ in the perturbed background. Assuming that ∂f̄=∂q ≠ 0

(otherwise the solution of δf also becomes trivial), it is

convenient to rescale the perturbed part of the distribution

function as

δf ≡ −q
∂f̄

∂q
Γðη; x⃗; q; n̂Þ: ð4Þ

In this variable and in Fourier space, Eq. (3) gives

Γ
0 þ ikμΓ ¼ Sðη; k⃗; n̂Þ; ð5Þ

where from now on prime will denote a derivative with

respect to conformal time, μ is the cosine of the angle

between k⃗ and n̂, while the source function is S ¼ Ψ
0−

ikμΦ − 1

2
ninjh0ij. As we now show, the quantity Γ can be

immediately related to the anisotropic component of the

GW energy density, ρGW ≡
R

d3ppf. It is customary to

parametrize the GW energy density measured at the time η

at the location x⃗ in terms of its fractional contribution ΩGW

through

ρGWðη; x⃗Þ≡ ρcrit

Z

d ln qΩGWðη; x⃗; qÞ; ð6Þ

where ρcrit ¼ 3H2M2
p is the critical energy density of the

Universe, and H is the Hubble rate. Nearly all studies

assumeΩGW to be homogeneous. Since we are interested in

its inhomogeneous and anisotropic component, we have

allowed ΩGW to depend on space. We account for the

anisotropic dependence by defining ωGW through ΩGW ¼
R

d2n̂ωGWðη; x⃗; q; n̂Þ=4π, and by introducing the density

contrast δGW ≡ δωGWðη; x⃗; q; n̂Þ=ω̄GWðη; qÞ. Using Eq. (4),
one then finds that

δGW ¼

�

4 −
∂ ln Ω̄GWðη; qÞ

∂ ln q

�

Γðη; x⃗; q; n̂Þ; ð7Þ

with Ω̄GW being the homogeneous, isotropic component

of ΩGW.

In the CMB case, by inserting definition (4) into the

Planck distribution and expanding to first order, one finds

that ΓCMB ¼ δT=T. The main difference between the CMB

and the GW case is that, before recombination, the collision

term between photons and baryons suppresses any existing

temperature anisotropy, thus removing any memory of the

initial state. The observed temperature anisotropies δT=T
arise since recombination, following an equation analogous

to Eq. (5), with a source that, to first order, is independent

from the energy of the CMB photons. While in the CMB

this dependence arises only to second order in perturba-

tions, a significantly greater dependence can be present in

the GW distribution as an initial condition. In the follow-

ing, we first compute and discuss the cosmological corre-

lators of the GWanisotropies, then show through a concrete

example that they can indeed have a significant dependence

on frequency.

III. CORRELATORS OF GW ANISOTROPIES

AND NON-GAUSSIANITY

As is standard [32], we express each of the sources

appearing in Eq. (5) as a mode function times an initial

variable that is constant at large scales, assuming for

simplicity adiabatic scalar perturbations, and whose stat-

istical properties have been set well before the propagation

stage that we are considering (for instance during inflation,

or during an early phase transition). Therefore, the scalar

modes are (disregarding anisotropic stresses as, for exam-

ple, those due to the relic neutrinos) Ψ ¼ Φ≡ TΦðη; kÞ

ζ̂ðk⃗Þ; we then decompose the tensor modes as hij ≡
P

λ¼�2 eij;λðk̂Þhðη; kÞξ̂λðk
iÞ, where the sum is over right-

and left-handed (respectively, λ ¼ �2) circular polariza-

tions, and the polarization operators are constructed as in

[26]. We insert these expressions in the source function

into Eq. (5) and solve for Γ. We then follow the treatment

done for CMB perturbations, and we expand the solution in

spherical harmonics, Γðn̂Þ ¼
P

l

P

l

m¼−l ΓlmYlmðn̂Þ,
where we recall that n̂ is the direction of motion of the

GWs, and thus the direction at which the GWs arrive at our

sky. The multipoles Γlm are the sum of three contributions.

The first contribution arises from the initial conditions,

Γlm;IðqÞ

4πð−iÞl
¼

Z

d3k

ð2πÞ3
Γðηin; k⃗; qÞ × Y�

lmðk̂Þjl½kðη0 − ηinÞ�;

ð8Þ

where η0 denotes the present time, and we set our location

to x⃗0 ¼ 0. We also remark that this term in general depends

on q. The second contribution is due to the scalar sources in
Eq. (5),

Γlm;S

4πð−iÞl
¼

Z

d3k

ð2πÞ3
ζðk⃗ÞY�

lmðk̂ÞT
ð0Þ
l
ðk; η0; ηinÞ; ð9Þ

where the scalar transfer function T
ð0Þ
l

is the sum of a term

analogous to the SW effect for CMB photons, TΦðηin; kÞ
jl½kðη0 − ηinÞ�, and the analog of the ISW term,

R

η0
ηin
dη0

½T 0
Ψ
ðη; kÞ þ T 0

Φ
ðη; kÞ�jl½kðη − ηinÞ�. Finally, the third con-

tribution Γlm;T is due to the tensor modes in Eq. (5), and it

is formally analogous to Eq. (9), with the product ζ̂Y�
lm

replaced by the combination
P

λ¼�2 ξ̂λðk⃗Þ−λY
�
lmðΩkÞ,
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involving the spin-2 spherical harmonics, and with the

scalar transfer function replaced by the tensor one

T
ð�2Þ
l

ðk; η0; ηinÞ, given by

T
ð�2Þ
l

¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þ!

ðl − 2Þ!

s

Z

η0

ηin

dηh0ðη; kÞ
jl½kðη0 − ηÞ�

k2ðη0 − ηÞ2
: ð10Þ

We are interested in statistical correlators of the anisotro-

pies. Under the assumption of statistical homogeneity

and isotropy, the two-point and three-point correlators of

ζ̂ are expressed in terms of, respectively, the scalar power

spectrum and bispectrum through hζðk⃗Þζ�ðk⃗
0
Þi0¼ð2π2=k3Þ

Pð0ÞðkÞ and hζ3ðk⃗iÞi
0 ¼ Bð0ÞðkiÞ [we use the standard

notation of the prime to eliminate the momentum

conservation Dirac delta and the ð2πÞ3 coefficient].

Analogously, correlators PðλÞ and BðλÞ can also be defined

for the two tensor polarizations. Moreover, we impose

correlators of the same structure for the initial conditions—

namely, hΓðηin; k⃗; qÞΓ
�ðηin; k⃗

0
; qÞi0 ¼ ð2π2=k3ÞPðIÞðkÞ—

and for the bispectrum BðIÞ. In this work, we assume that

the different contributions are uncorrelated. Under these

assumptions, one obtains hΓlmΓ
�
l0m0i≡ δll0δmm0C̃l ¼

δll0δmm0 ½C̃l;IðqÞ þ C̃l;S þ C̃l;T �, where we denote the

correlators with a tilde to distinguish them from the

CMB case. The contribution from the initial condition

reads

C̃l;IðqÞ

4π
¼

Z

dk

k
PðIÞðq; kÞj2

l
½kðη0 − ηinÞ�; ð11Þ

where again we stress the possible frequency dependence.

The other two terms are

C̃l;S þ C̃l;T

4π
¼

X

α¼0;�2

Z

dk

k
PðαÞðkÞT

ðαÞ2
l

ðk; η0; ηinÞ: ð12Þ

At large scales, this contribution is dominated by the term

proportional to the initial value of Φ in T
ð0Þ
l

(the analog of

the SW contribution for the CMB). For modes that reenter

the horizon during matter domination (as is the case for

those that give the large-scale anisotropies that we are

considering), TΦ ¼ 3=5 at early times [32]. So, for scale

invariant power spectra,

C̃l ≃ C̃l;IðqÞ þ C̃l;S ≃
2π

lðlþ 1Þ

�

PðIÞðqÞ þ

�

3

5

�

2

Pð0Þ

�

:

ð13Þ

The second term can be compared to the SW contribution

to the CMB anisotropies. In that case, the final temperature

anisotropy is 1=3 times the scalar perturbation at the last

scattering surface, while Φ at that moment decreased by a

factor 9=10 in the transition from radiation to matter

domination [32]. Therefore, C̃l;S ¼ ð10=3Þ2CSW
l

. If instead

the initial condition term ΓI and the scalar propagation term

ΓS are correlated (as for instance under the assumption that

ΓI is controlled by the adiabatic scalar perturbation) then

the sum of both terms should be compared to the SW for

the CMB.

The structure of the bispectrum is forced by statistical

isotropy to be the product of an li-dependent term and

Gaunt integrals [33], h
Q

3

i¼1
Γlimi

i≡ b̃l1l2l3G
m1m2m3

l1l2l3
. The

initial condition term leads to

b̃l1l2l3;I ¼

Z

∞

0

drr2
Y

3

i¼1

�

2

π

Z

dkik
2
i jli ½kiðη0 − ηinÞ�

× jliðkirÞ

�

BðIÞðq; k1; k2; k3Þ: ð14Þ

The scalar term b̃l1l2l3;S is analogous, with the first

spherical Bessel function replaced by the transfer func-

tion T
ð0Þ
li
, and with the scalar bispectrum Bð0Þ as the

last term. In particular, for a primordial bispectrum of

the local form [34], Bð0Þðk1; k2; k3Þ ¼ ð6fNL=5Þ½ð2π
2Þ2=

ðk3
1
k3
2
ÞPð0Þðk1ÞP

ð0Þðk2Þ þ 2 perm:�, when applied to the

CMB result [34,35], the same rescaling done after

Eq. (13) gives the dominant SW contribution at large

scales:

b̃l1l2l3;S ≃ 2fNL½C̃l1;S
C̃l2;S

þ 2 perm:�: ð15Þ

Finally, the tensor term reads

b̃l1l2l3;T

4π
¼

�

Y

3

i¼1

Z

k2i dki

ð2πÞ3
T T
l;iðkiÞ

�

X

λ¼�2

X

mi

G̃
m1m2m3

l1l2l3

×

	

Y

3

i¼1

4πð−iÞli

2li þ 1

Z

dΩki−λ
Y�
limi

ðΩki
Þξλðk⃗iÞ




;

ð16Þ

with the Wigner 3-j symbols being employed in defining

G̃
m1m2m3

l1l2l3
≡

�

l1 l2 l3

0 0 0

�

−2

G
m1m2m3

l1l2l3
: ð17Þ

For the case of purely adiabatic fluctuations, the formalism

developed here allows us to determine consistency relations

for the squeezed limit of the bispectrum Bδðk⃗1; k⃗2; k⃗3Þ ¼

hδGWðk⃗1ÞδGWðk⃗2ÞδGWðk⃗3Þi
0. Such a squeezed limit is

determined by nonlinear effects coupling long and short

modes, and it can be computed using well-known tech-

niques developed in the context of cosmic inflation [36]
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and the CMB [37–39]. Focusing on a matter dominated

Universe, neglecting second-order tensor fluctuations, and

considering for simplicity only isotropic contributions to

the density contrast, we find that

Bδðk⃗1; k⃗2; k⃗3 → 0Þ

8π4

¼

�

3

5

∂ ln f̄ðqÞ

∂ ln q

�

3 Pð0Þðk1ÞP
ð0Þðk3Þ

k3
1
k3
3

×

�

∂ lnPð0Þðk1Þ

∂ ln k1
þ
2

5

∂ ln q

∂ ln f̄ðqÞ

∂2f̄ðqÞ

∂ðln qÞ2

�

: ð18Þ

Hence the squeezed limit of the bispectrum, in this specific

situation, depends on the tilt of the scalar fluctuations, and

also on derivatives of the background distribution function

f̄ðqÞ, which is modulated by long modes. We plan to

further explore this subject in [30].

IV. ANISOTROPIES IN THE PRIMORDIAL SGWB

AND THEIR FREQUENCY DEPENDENCE

Several mechanisms for the generation of a cosmological

GW signal visible at interferometer scales have been

studied in the literature [8–10]. Here we comment on a

specific mechanism where an axion inflaton ϕ sources

gauge fields, which in turn generates a large GW back-

ground. The amount of GWs sourced in this mechanism is

controlled by the parameter ξ≡ ð _ϕ=2fϕHÞ, where fϕ is the
decay constant of the axion inflaton. The inflaton back-

ground value then results in a background ξ̄, and thus in a

homogeneous and isotropic GW component. The inflaton

fluctuations result in a perturbation δξ, and thus in the

inhomogeneities of the primordial GW background. The

anisotropy in the GW energy density arriving today at our

location from a direction n̂ is controlled by the value

assumed by the parameter ξ during inflation at the position

x⃗0 þ n̂d, where d is the distance traveled by the GWs from

their production during inflation to today. GW modes

observable at interferometers reentered the horizon during

the radiation-dominated era. The present fractional energy

density ΩGW of these modes is equal to their primordial

power spectrum PGW times a q-independent factor.

Then, by linearizing the primordial power spectrum in

δξ, relation (7) can be recast in the form ΓIðη0; x⃗0; q; n̂Þ ¼
F ðq; ξ̄Þδξðx⃗0 þ dn̂Þ, with

F ≡

�

4 −
∂ ln ½PGWðq; ξ̄Þ�

∂ ln q

�

−1 ∂ ln ½PGWðq; ξ̄Þ�

∂ξ̄
: ð19Þ

We have then provided an immediate criterion for evalu-

ating whether and how much the GW anisotropies depend

on frequency (as, in principle, one could imagine a GW

power spectrum for which the dependence on q of F

vanishes, or is extremely suppressed). This conclusion

assumes only that the primordial GW signal is a function

of some additional parameter ξ which has small spacial

inhomogeneities, and therefore it likely applies to several

other mechanisms. For axion inflation, we consider the

specific evolution shown in Fig. 4 of [25], where the

inflaton potential is chosen so as to lead to a peak in

the GW signal at LISA frequencies, without overproducing

scalar perturbations and primordial black holes. We show

in Fig. 1 the corresponding evolution of the parameter F.

We see that this quantity indeed presents a nontrivial scale

dependence, and therefore the correlators of the anisotro-

pies will be different at different frequencies.

V. FUTURE WORK

We plan to extend the results presented here to analyze

several additional physical effects, including the effects of

neutrinos on the GW amplitude [40], the possible direct

dependence of ΓI on n̂, tests of nonstandard expansion

in the early Universe, possible mixed bispectra among

the three contributions to Γ that we have discussed, and the

feasibility of measuring the frequency dependence of the

two-point function and the bispectra at GW interferometers.
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FIG. 1. Quantity F as a function of the frequency f ¼ q=2π of

the GW signal for the model of axion inflation described in

the text.
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