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Anisotropy and Magnetic Field Effects on the Entanglement
of a Two Qubit Heisenberg XY Chain

G. Lagmago Kamta and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, 116 Brace Laboratory, Lincoln, Nebraska 68588-0111

(Received 28 September 2001; published 26 February 2002)

We investigate the entanglement of a two-qubit anisotropic Heisenberg XY chain in thermal equi-
librium at temperature T in the presence of an external magnetic field B along the z axis. By means
of the combined influences of anisotropic interactions and a magnetic field B, one is able to produce
entanglement for any finite T , by adjusting the magnetic field strength. This contrasts with the isotropic
interaction or the B � 0 cases, for which there is no entanglement above a critical temperature Tc that
is independent of the external B field.

DOI: 10.1103/PhysRevLett.88.107901 PACS numbers: 03.65.Ud, 03.67.–a, 05.50.+q, 75.10.Jm

Entanglement is a nonlocal correlation between quan-
tum systems that does not exist classically. Entangled pairs
of quantum systems remain strongly correlated even if they
are well separated spatially; observing the state of one
fixes with certainty the state of the other. In recent years,
quantum entanglement has become recognized as crucial
in various fields of quantum information, such as quan-
tum cryptography [1], teleportation [2], and computation
[3]. Potential applications of entanglement in these fields
have stimulated research on ways to quantify and control
it. Considerable attention has been devoted to interact-
ing Heisenberg spin systems, which may be used for gate
operations in solid state quantum computation processors
[4–6]. Entanglement in isotropic Heisenberg spin chains
has been studied both in the absence [7–9] and in the pres-
ence [8,9] of an external magnetic field B (along the z
axis). The magnetic field provides an additional parameter
(besides the temperature T) for controlling entanglement.
The concurrence (a measure of entanglement; see below)
of a two-qubit isotropic Heisenberg system decreases with
increasing T and vanishes beyond a critical value T � Tc

[8,9], which is independent of B. Also, the concurrence of
a two-qubit isotropic Heisenberg chain decreases mono-
tonically with increasing B for any finite T and vanishes
exponentially with increasing B [8,9]. The corresponding
anisotropic case has been investigated, but only for B � 0
[9]; increasing the anisotropy in this case is also found to
reduce monotonically the system’s concurrence for any fi-
nite T and to decrease the critical temperature Tc beyond
which the concurrence vanishes. In this work, we investi-
gate the influence of anisotropy on the entanglement of a
two-qubit Heisenberg system in the presence of an exter-
nal B field at thermal equilibrium. We demonstrate that the
anisotropy and the magnetic field strength may together be
used to control the extent of entanglement and, in particu-
lar, to produce entanglement at any finite T .

The Heisenberg Hamiltonian for a chain of N spin 1
2

systems having nearest-neighbor interactions is [10]

H �
NX

n�1

�JxSx
nSx

n11 1 JySy
nSy

n11 1 JzSz
nSz

n11� , (1)

where Sa
n �

1
2sa

n �a � x, y, z� denotes the local spin 1
2

operator at site n, sa
n are the Pauli matrices at site

n, and the periodic boundary condition SN11 � S1
applies. The Ja’s are real coupling constants for the
spin interaction. For arbitrary Ja’s, the Heisenberg chain
is often called the XYZ model, and the special cases
Jx � Jy fi Jz (partial anisotropy) and Jx � Jy � Jz

(isotropy) are termed the XXZ and XXX models, re-
spectively. The chain is said to be antiferromagnetic for
Ja . 0 and ferromagnetic for Ja , 0. The Heisenberg
interaction has been studied extensively in statistical
physics (see, e.g., [11] and references therein) and mathe-
matical physics [12], largely because of applications in
solid state physics. Interest in this system has been re-
vived recently by several proposals for realizing solid state
quantum computation processors using localized electron
spins as qubits, in which basic gate operations involve
various forms of the Heisenberg Hamiltonian [4–6]. The
XY �Jz � 0� and the Heisenberg-Ising �Jy � Jz � 0�
interactions are analyzed in the context of quantum gate
operations in Refs. [5,6].

Consider now the Hamiltonian H for the anisotropic
two-qubit Heisenberg XY chain in an external magnetic
field B (along the z axis) in terms of the raising and low-
ering operators S6 � Sx 6 iSy ,

H � B�Sz
1 1 Sz

2� 1 J�S1
1 S2

2 1 S2
1 S1

2 �
1 Jg�S1

1 S1
2 1 S2

1 S2
2 � , (2)

where J � �Jx 1 Jy��2 and g � �Jx 2 Jy���Jx 1 Jy�.
The parameter g �21 # g # 1� measures the anisotropy
of the system and equals 0 for the isotropic XY model
and 61 for the Ising model. The eigenvalues and
eigenvectors of H are given by HjC6� � 6JjC6� and
HjS6� � 6hjS6�, where jC6� �

1
p

2
�j01� 6 j10��

and jS6� � N6�j00� 6
Jg

h7B j11��, h �
p

B2 1 �Jg�2,
and the normalization constants are N6 � �h 7 B��p

�Jg�2 1 �h 7 B�2. When g fi 0, the eigenvectors
represent entangled states; also, when B � 0, jS6� �
jF6� � 1

p
2
�j00� 6 j11��, so that jC6� and jS6� are the

four maximally entangled Bell states.
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Many measures of entanglement have been introduced
and analyzed [13–17], but the one most relevant to this
work is the “entanglement of formation” E [13]. For a sys-
tem in equilibrium at temperature T , the density operator is
r � Z21 exp�2H�kBT�, where Z � tr�exp�2H�kBT�� is
the partition function and kB is Boltzmann’s constant. For
a pair of qubits, 1 and 2, E � h� 1

2 1
1
2

p
1 2 C2�, where

h is the binary entropy function h�x� � 2x log2x 2 �1 2
x� log2�1 2 x�. C denotes the concurrence, defined as
[13,14]

C � max�l1 2 l2 2 l3 2 l4, 0� , (3)

where the li �i � 1, 2, 3, 4� are the square roots of
the eigenvalues in decreasing order of magnitude
of the “spin-flipped” density matrix operator R �
r�sy ≠ sy �r��sy ≠ sy �, where the asterisk indicates
complex conjugation. Like E, the concurrence C ranges
from 0 (no entanglement) to 1 (maximum entanglement)
and is a monotonically increasing function of E, so that
C is itself a measure of the entanglement [14]. As r�T�
describes a thermal state, such entanglement is referred to
as thermal entanglement [8].

Using the Hamiltonian (2) one obtains the four eigen-
values of R, �li�2, as

�l1,2�2 � Z22 exp�62J�kBT � , (4)

�l3,4�2 �
1
Z2

Ω
1 1

2b2

h2 sinh2

µ
h

kBT

∂

6
2b

h
sinh

µ
h

kBT

∂s
1 1

b2

h2 sinh2

µ
h

kBT

∂æ
,

(5)

where b � Jg, Z � 2�cosh�h�kBT� 1 cosh�J�kBT �	,
and l1,3 take the “1” sign in Eqs. (4) and (5), while
l2,4 take the “2” sign. The li are in arbitrary order.
Since their relative magnitudes depend on the parameters
involved, they cannot be ordered by magnitude unless
the parameter values are known. This prevents one from
writing a more specific analytical expression for C than
(3). For particular parameters, C can be evaluated numeri-
cally or even analytically; e.g., for B � 0 and g � 0 the
above expressions for li yield the concurrences obtained
in Ref. [9]. Note that C vanishes in the limits B ! ` or
T ! `. The concurrence derived from Eqs. (3)–(5) is
invariant under the substitutions J ! 2J, which indicates
that the entanglement is the same for the antiferromagnetic
and ferromagnetic cases. The concurrence is also the same
for g and 2g. Therefore, we restrict our considerations
to J . 0 and 0 # g # 1.

For anisotropy parameters g � 0, 0.3, 0.6, and 1, plots
of the concurrence C as a function of both kBT and B are
given in Figs. 1 and 2. Note the qualitative similarity of
the present results for C in the isotropic case [Fig. 1(a)]
to the entanglement of formation E for the isotropic XYZ
model presented in Fig. 1 of Ref. [8]. The results for

g � 0, 0.3, and 0.6 have the similar feature that C is
maximal when T � 0 and B � 0. This is because at T �
0 the system is in its ground state, which is the maximally
entangled Bell state jC2�.

Consider first the isotropic case [Fig. 1(a)] at T � 0.
With increasing B, the concurrence is constant and maxi-
mal, but it drops suddenly and vanishes as B crosses the
critical value B � J. Indeed, for B . J, the ground state
for this case is the unentangled state j00�. At the critical
point (T � 0, B � Bc � J), the entanglement becomes a
nonanalytic function of B and a quantum phase transition
[18] occurs. Such transitions have been found also in the
isotropic XY [9] and XYZ [8] models.

The anisotropic cases in Figs. 1(b) and 1(c) show
novel features, which we consider first for T � 0. As B
increases, C is initially constant and equal to its maximum
value. It then decreases suddenly as a critical field Bc is
reached, similarly to the isotropic case. However, instead
of vanishing for B . Bc, the concurrence persists and, for
sufficiently large g, undergoes a revival (i.e., an increase
in magnitude) before decreasing to zero. For T � 0,
Eqs. (3)–(5) allow C to be written analytically as

(c)

C
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(b)

C
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FIG. 1. Concurrence C in the Heisenberg XY chain of two
qubits plotted vs kBT (the Boltzmann constant times tempera-
ture) and B (the external magnetic field), for various values of the
anisotropy parameter: (a) g � 0, (b) g � 0.3, and (c) g � 0.6.
The coupling constant is J � 1.
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FIG. 2. Same as Fig. 1 for g � 1.0 (Ising model).

C�T � 0� �

8<
:

1 for h , J ,
�1 2 jgj��2 for h � J ,
jJgj�h for h . J .

(6)

It follows that the critical field Bc at which C becomes
a nonanalytic function of B is given by h � J or
Bc � J

p
1 2 g2. Therefore a quantum phase transi-

tion also occurs in the anisotropic XY chain at T � 0
for B � Bc, but without the entanglement vanishing.
Moreover, for g .

1
3 there occurs a revival of the

entanglement for magnetic fields B * Bc, as C�B�
becomes larger than its value at B � Bc [cf. Fig. 1(c) for
g � 0.60]. Figure 3 shows the concurrence at T � 0
for g � 0, 0.33, 0.60, 0.80, and 1.0. For g � 0.33,
C drops sharply to a finite value for B � Bc; for

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Magnetic field B

γ =0

γ =0.33

γ =0.60

γ =0.80

γ =1.0

T=0

C

FIG. 3. Concurrence C vs the magnetic field strength B at zero
temperature for various values of the anisotropy parameter g,
with J � 1. Note that for g � 1.0, C�B � 0� � 0. Note also
the revival in C for values of g . 0.33 for B * Bc , where
Bc � 0.8, 0.6, 0 for g � 0.60, 0.80, 1.0, respectively.

B . Bc, C decreases monotonically. For g . 1�3, C
drops sharply at B � Bc, but for B * Bc, C exhibits a
revival before decreasing to zero asymptotically (cf. Fig. 3
for g � 0.60 and g � 0.80).

The system’s behavior at the quantum phase transition
point B � Bc may be determined from the density matrix
at T � 0, at which the system is in its ground state. When
h , J the ground state of the system is the maximally
entangled state jC2�, and when h . J, the ground state
of the system is jS2�, which is also entangled. On the
other hand, when h � J, jC2� and jS2� have the same
energies, equal to the lowest energy of the system. It
follows that in general, the system at T � 0 is a statistical
mixture of jC2� and jS2� and can be described using the
mixed state density operator

r � PCjC2� 
C2j 1 PSjS
2� 
S2j , (7)

where PC and PS (with PC 1 PS � 1) are the probabili-
ties of the two states. This density operator yields

C�T � 0� � max�0, jPC 2 PS�jJgj�h�j� . (8)

For the h , J and h . J cases, respectively, which
correspond to �PC � 1, PS � 0� and �PC � 0, PS � 1�,
Eq. (8) leads to C � 1 and C � jJgj�h. At the
critical field B � Bc (where h � J), Eq. (6) gives
C � �1 2 jgj��2. Comparing with Eq. (8) one sees that
there is equality for PC � PS � 1�2. Thus the quantum
phase transition occurs at T � 0 when the ground state
of the system is an equal mixture of jC2� and jS2� and
has a nonzero entanglement. As B crosses Bc, the system
switches isothermally from the statistically mixed ground
state to the pure state jS2�. For g #

1
3 , C does not

increase for B * Bc; for g .
1
3 , however, C exhibits a

revival, i.e., it increases for B * Bc, reaches a maximum,
and then decreases. One sees from (6) that C decreases as
h21, which implies C�B� � B21 asymptotically.

In the Ising case �g � 1�, shown in Fig. 2, there is
no entanglement for B � 0 [9], i.e., entanglement exists
solely because of the magnetic field. In fact, one sees
from Figs. 1 and 3, that, with increasing anisotropy
parameter g, the phase transition point at T � 0 moves
toward lower fields and that for g � 1, Bc � 0. There-
fore for B � 0 and T � 0, the Ising system is in a
state whose entanglement is zero because it is an equal
mixture of the two Bell states jC2� and jF2�. One
may confirm this by showing that the density matrix,
r �

1
2 jC

2� 
C2j 1
1
2 jF

2� 
F2j, which describes this
equal mixture, can be rewritten as r �

1
2 jc�1�� 
c�1�j ≠

jf�2�� 
f�2�j 1
1
2 jf�1�� 
f�1�j ≠ jc�2�� 
c�2�j, where

jc� �
1
p

2
�j0� 1 j1��, jf� �

1
p

2
�j0� 2 j1��, and where

the arguments �1� and �2� refer to the spins 1 and 2. The
latter form of r is separable, as it is expressed as a sum
of products of reduced density matrices pertaining to
each of the spins 1 and 2, weighted by their probability
distributions. This separability of the density operator
indicates that the mixture is in fact not entangled [16,19].
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More generally, one may show similarly the unexpected
result that any equal mixture of two maximally entangled
Bell states is factorizable, i.e., not entangled.

Consider now the case T . 0, for which no quantum
phase transition occurs [18]. In this case, C cannot be
written analytically in as simple a form as Eq. (6); rather,
one must obtain C numerically using Eqs. (3)–(5). As T
increases for B , Bc the entanglement decreases mono-
tonically as the maximally entangled ground state jC2�
becomes mixed with other states, and similarly for B .

Bc as jS2� becomes mixed with other states. In every
case (cf. Figs. 1 and 2) there exists for any B a temperature
above which the entanglement vanishes identically. This
critical temperature Tc is independent of B in the isotropic
case [Fig. 1(a)] and is given by kBTc � 1.1346J [9]. In
contrast to the isotropic case, Tc in the anisotropic case is
a function of J, B, and of g. This is illustrated in Fig. 4,
which is a contour plot extracted from Figs. 1 and 2. It
shows at what temperature C vanishes as a function of the
magnetic field B. On this plot, when there are two val-
ues of T (for fixed B) for which C vanishes, there is a
revival of C as a function of T , with C vanishing above
the highest value of T . Correspondingly, for fixed T , when
there are two critical values of B for which C vanishes, C
is zero for B between these two values; for B above the

0

0.5

1

1.5

2

2.5

3

3.5

kBT

0 2 4 6 8 10

B

FIG. 4. Temperature at which the concurrence C vanishes,
plotted as a function of the magnetic field strength for various
values of the anisotropy parameter: g � 0 (dot-dashed line),
g � 0.4 (solid line), g � 0.8 (dotted line), and g � 1 (dashed
line). In each case, C � 0 in the region bounded by (and gener-
ally above) the relevant curve. Note that for any finite T , there
is a B for which C . 0.

second critical value, C undergoes a revival and a smooth
decay (as B21 for large B, in contrast to the exponential
decrease with B for g � 0). For fixed T . Tc �B � 0�,
for which C � 0 in the absence of a magnetic field, suf-
ficiently large values of B induce entanglement �C . 0�,
as shown in Figs. 1, 2, and 4 for kBT * 1.2. As shown in
Fig. 4, for sufficiently large B, Tc increases with both g

and B. If fact, one may show analytically that for large B,
the critical temperature Tc at which C vanishes is given by
kBTc � B� log�4 1 2B�b�. These results show that the
anisotropy permits one to obtain entangled qubits at higher
T and higher B than is possible in the isotropic case. In
the Ising case, where Bc � 0, for T , Tc the entangle-
ment increases (from zero for B � 0) up to a maximum
and then decreases analytically to zero.

In conclusion, our study of the anisotropic two-qubit XY
model in an external magnetic field B reveals the strong
combined influence of the anisotropy parameter g and the
magnetic field on the entanglement. g and B produce
entanglement in regions of �B, T� parameter space where
none exists in the isotropic case. Most importantly, they
provide the means to control and produce entanglement in
two spin systems for any finite T.

This work was supported by the Department of En-
ergy, BES, Division of Chemical Sciences, under Grant
No. DE-FG03-96ER14646, and by the Nebraska Research
Initiative.
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