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Anisotropy of long range interactions between linear molecules:
H,-H, and H,-He*

FRED MULDER, AD VAN DER AVOIRD and PAUL E. 5. WORMER

[nstitute of T'heoretical Chemistry, University of Niymegen,
Toernooiveld, Niyymegen, The Netherlands

(Received 20 April 1978)

We derive a closed expression for the orientation dependence of the
long range interaction coefficients of X state linear molecules and then
calculate the dispersion and induction multipole interaction coefficients for
the systems H,—H, and H,—He up to R '° terms inclusive. The monomer
states are described by SCF-LCAO wave functions with polarization func-
tions optimized with respect to the different multipole polarizabilities.
The anmisotropy factors y4 and y,,, describing the orientation dependence of
the R % and R ' terms, are approximately equal and much larger than vy,
due to the occurrence of the (completely anisotropic) mixed-pole terms.

1. INTRODUCTION

For a relatively long time the attempts to determine accurate van der Waals
interaction potentials were mainly concentrated on rare gas atoms [1], but now
the interest of both theorists and experimentalists 1s being focused on (small)
molecules. Of particular interest 1s the anisotropy in the interaction potential
between molecules, which leads, for instance, to rotational energy transter in
gas phase collisions and to the occurrence of librational phonon modes 1n
molecular solids. Although experiments are being performed [2-5] which
probe this anisotropy rather sensitively, the extraction of potential parameters
from these measurements 1s only possible at the expense of using simplified
model potentials. Therefore, 1t 1s useful that for very small molecules the
van der Waals potentials, and also their anisotropy, can be obtained from
ab initio calculations. For somewhat larger molecules, where the ab initio
calculation of the complete potential energy surface 1s not yet practical, the
theoretical information can still be used to improve the (semi-empirical) model
potentials. For example, the determination of the isotropic and anisotropic
long range part of some recently proposed, rather sophisticated, model potentials
[5-10] depends on the availability of theoretically calculated multipole interac-
tion coetficients.

As the simplest systems in which anisotropic interactions are present, much
attention 1s focused on the dimers H,~He and H,-H,. Ab initio calculations of
the entire van der Waals potentials for H,~He were performed by I'sapline and
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Kutzelnigg [11], by Geurts et al. [12] and by Hartharan and Kutzelnigg [13],
for H,~H, by Kochanski [14] and by Gallup [15]. Meyer [16] has computed
the 1sotropic long range dispersion interaction coefficients Cy, Cg and ', and
the anisotropy factors v, and y4 in He-He, H,~He and H,-H,. In contrast
with the calculations of the complete H,~H, potential [14, 15] which use only
s and p type functions in the basis set, and with the older H,~He and H,~H, long
range calculations [17-20], Meyer’s computation yields accurate values for Cg
and (";,. The calculated y4, however, 1s much too small, because the so-called
cross (or mixed-pole) terms, which have a drastic effect on the anisotropy of the
interaction of molecules [21, 22] were omitted. 'T'hakkar [23] has shown by an
approximate calculation that the inclusion of cross terms increases y, for H,—He
by a factor of about 3-3, and a similar result was found by us on the basis of a
non-empirical Unsold computation [24].

Therefore, we present here for H,~He and H,-H, the complete set of aniso-
tropy factors yg, vg and y,,, originating from dispersion and induction interac-
ttons. T'hese are obtained from ab imitio computations by three different
perturbation methods with a basis of monomer Hartree-Fock wave functions
using optimized atomic orbitals. For H,—H,, where the information about the
long range interactions (and their anisotropy) 1s also important for crystal lattice
dynamics [25-27], we have compared the second-order anisotropic coetficients
with the first-order electrostatic interaction coettficients Cy, C, and C,.

2. THEORY : ORIENTATIONAL DEPENDENCE OF THE INTERACTION ENERGY BETWEEN
LINEAR MOLECULES

In the Born-Oppenheimer approximation, with or without averaging over
the molecular vibrations, the anisotropy of the interaction energy between two
linear molecules A and B, in a X state can be expressed in the following very
general way. lLet7,=(0,, ¢,) and 7, =(0p, ¢) define the orientations of the
molecular axes and R= (R, 0, ¢) the vector which connects the molecular centres
of mass (pointing from A to B). All variables are measured relative to the same
arbitrary coordinate system. Because the interaction energy 1s invariant under
rotations of this coordinate system, 1t can be expanded in terms of a complete
set of scalar-valued angular dependent functions :

~

AE(i:.-\’ flh R) T3 Z AEI,.\I,uL(R)AL..\I,nl,(i:.’\’ flh R)’ (1)

L Tl
with
Ay, Lur(F Ay T R): JUA.;u M(“ 1)"(Lx, My 5 Ly, ﬂ’113|L» M)
| X Cp,, ma(2)ClLy, Mu(fli)CL,—Jl(R)’ (2)
where (L, M, ; Ly, My|L, M) is a Clebsch-Gordan coefficient and C,,(7) is

a Racah spherical harmonic [28],

y . Ny,
C‘l,m(r)= (21+ 1) ¥ l,m(r)°

In general the expansion coefficients AE; ; ;(R) are very hard to calculate,
but for large distances R it 1s possible to expand the interaction operator J/AB
in a multipole series and one can use this operator in first- and second-order
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perturbation theory. If the multipole expansion 1s written in terms of spherical
tensors [28, 29], the derivation of the first-order anisotropic interaction coeffi-
cients 1s straightforward for X state linear molecules, because the multipole
operators Q,,. = ), 2;7;' C;,.(#;) have non-zero expectation values for m=0

only (along the molecular axis). Therefore, the general rotation matrices
D!, ,.(w) occurring in the formula for arbitrary molecules (formula (5) of [30])

can be replaced by spherical harmonics and, by equating this formula to formula
(1), we arrive directly at the resultf :

P41 B oA RN e S M S
AEQ,ZLBL(R) x 8L,\ + L, L( = I)LB ( ‘\ZL B) R S
A

X <O.-\|QL,\,OIOA><OUIQL"» 0|OB>° (3)

T'he second-order energy 1s more complicated, but again we can derive a
closed formula rather easily for the anisotropic multipole interaction coetficients
for linear molecules of the form of formula (1). This result 1s actually achieved
because 1n the derivation of the general expression [29, 30], which we apply to
l[inear molecules 1n this paper, a recoupling scheme has been used : the original
(I,ly) and (/," l3") coupling between the transition moments on the molecules
A and B via the multipole interaction tensors 1s replaced by a scheme which first
couples the transition moments within the same molecule :

((}::;e,:\')L,\, .\I,\ — Z ("":.O.'\ l Ql,\, M A k-\/\)/: A IQ[,\', m,\' IO.‘\ >([;\’ ”Z-\ ; l.‘\” m;\’ IL;\’AJ;\)

Mma, m,\'

with
LA == |1.'\ > [.-x'

y Nl =11 +2, ..., Ly + 1. (4)

The labels 0, and &, denote ground and excited states of A with energy dif-
ferences AE"***; an analogous formula holds for B. These coupled transition
moments 774*4, and 7}/**3, have only non-zero components for M, =0 and
My,=0(m,"=—m, and my'= —my), just as the permanent moments <Q; . >
and Q. ., and they transform in the same way as the latter under rotations.
Using these results the general formula (formula (8) of [30]) yields, for linear
molecules

(2) o [alA” Ipls’ —la—IA"—Ilp—1Ip"—2
AEY L .(R)= b o et Sk

LA LAY 0B iR

! , DAk, Opks\—1 Oak; Opk
X AR AR R A O Ea 0 L Ea0e )

Ra, RB
The coefficients &4 '#%" are purely algebraic ; they are given by [29, 30]
2L 12 s B2 2T A LY 2T 2 1)1]1/2

IAlA" IBlB" _ ( = )1u+ln'

| URIENICRIEN]
ks [y L,
x(ly+15,0; 1,+15',0(L,0)q Ig In Lge, (6)
Uatls L+l L]

+ Atomic units are used throughout this paper : 1 a.u. of length (bohr)=a,~5-291 77 x
101 m. 1 a.u. of energy=FEp~4-3598 x 1018 J ~2.6255 x 10% J/mol~'. 1 a.u. of electric
charge =e~1-602 19 x 10 C. 1 a.u. of quadrupole moment = ea,*~4-486 58 x 10~ C m*.
1 a.u. of dipole polarizability =4me a,* ~1:648 78 x 10~ C* m* J L.

5152




162 F. Mulder et al.

where the expression between curly bmckets 1s a Wigner 9-5 symbol [28].
In principle, the summations over /[, /', [, /" run independently from zero
to infinity, but because of the presence of the Clebsch-Gordan coefficients and
the 9-7 symbol in (6) a number of triangular conditions must be satisfied.

In actual calculations the use of an arbitrary space-fixed coordinate system
is usually not very convenient. A simplification of the formulae can be accom-
plished by choosing the z-axis to coincide with R. In such a system the angular
dependent functions defined 1n (2) reduce to

min (La, Ln)

A, or(fas 75, R) = \'1‘210 ’7?,{\1,“1, P“,{\(COS 0 )PLH(COS 01)
x cos M(py—ody), (7)
with
NLazsr =(—1)M(2—08p70)(La, M; Lp, —M|L,0)

(Ly— M)(Ly— M) Tr
x[(LA-kM)!(LBnLM)!_J |

(8)

The functions P;}(cos 0) are associated Legendre functions [28]. Inserting
this special formula into expression (1), we find for the first- and second-order
energies

min (La, Lg)
2
AE(I’?')(R, 0..\, ?5.»\, 91;» 9613): Z 2 G(LIALL\I(R)
O IR M=(

x P} (cos 0,)P}! (cos 8) cos M(by—dy), (9)

where
(1) LM —La—Lp—1
eLALn’U(R) CL:-F“LB-*-I R A 4 ) (10 a)

with

Crrdies1=(—1)"=*"(2-8,,,) :

(La+Lyg)!
L,+M)(Ly+M)!

X <OA|QL,\.OlO:\><OB|QLB.OIOB>’ (1Ob)

and
(2) e IAlA’ La: Islp’ L :M —la—=IA"=Ilp—=1Ip"—2
GLAL[;'\I(R) e Z Cl:-:l.\';-/uill‘u'*-nz R gl i ) (11 a)
LA LAy 1B, iB)
with
IAIA LA lnln’ Ly M [alA” [6lp’ / Oak, Opkp\—
Cl:+1A'+lli+l‘B’+2 T VR l:\A/},mI\;’ln Z (AE SR AE g B) ;
Ra, kB
OAkA Ol!kls
X T(IAIA')LA. T(lulu LR 0 (11 b)

The coefficients {3 3", which contain the algebraic coefficients (6) and (8)

IALA Inln’ [alA’ Islg’ M
LALsM = Z ‘fL,\LuL NLALsL) (12)

have been calculated for all combinations (1, /,’, I3, ") occurring in the multi-
pole expansion of AE®) to R-1° terms inclusive, using a computer program for

the calculation of the Wigner 3-5 and 9-; symbols [31]. The results are col-
lected in Appendix Al.
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Since the ‘ dynamical ’ factor in expression (11) does not contain M, the
ratios between the terms in €”); ,, with the same L,, Ly, Iy, [/, lg, I3’ but dif-
ferent M are system independent. 'These ratios can be obtained directly from
Appendix Al ; they have been calculated by Meyer [16] already for the quad-
ratic Cy and Cg terms. For comparison with experiment, 1t is convenient to
collect all terms in (11) with the same R-dependence, 1.e. [, +/,"+ [z + I3 +2=n.

Moreover, it 1s customary to express the anisotropic contributions in the series

& () == R CAP R, (13)

as fractions of the 1sotropic coefficients (anisotropy factors) :

,y,l;.aLnM = C,I;ALB."[/COOO. (14)

n

The angular dependent formula for the first-order energy (10) 1s equivalent
to the expression derived by Ng, Alnatt and Meath [32]. 'The second-order
result (11) 1s a generalization of Meyer’s [16] formula (4). 'This generalization
1s non-trivial since the inclusion of the mixed-pole terms, 1.e. the terms with
[,#1," or [+, necessitates a more complicated vector coupling scheme.
Actually, the recoupling of the transition moments in the second-order energy ex-
pression could be performed by Meyer in an ad hoc way by his transformation (7).

Obviously, if one of the interacting systems (say A) 1s an S-state atom or a
molecule 1n a J=0 state for which we average over the molecular rotations, the
only non-zero terms in (10) and (11) are those with L, =M =0.

3. OPTIMIZATION OF THE AQ BASIS SETS ; POLARIZABILITIES

The AO basis sets for He and H, which were used to compute the dispersion
interaction coefficients have been determined by maximization of the quadratic
polarizabilities defined as

Xir'm = 2 §, <O|Ql,m|k><k|Ql',—m |O>(Ek_ EO)—I’ (15)

with /=1 The ground state wave function |0) was fixed by first performing a
Hartree-Fock calculation. For the excited states |k) and the corresponding
energies E¥ occurring in the perturbation expression (15) we have chosen :

[. the (singly-excited) eigenvectors and eigenvalues of the Hartree-Fock hamil-
tonian, which are obtained directly from the Hartree—Fock calculation on the
ground state [0) (This method is equivalent to the Hartree-Fock partitioning
method of [14], and method c of [33].);

I1. the eigenvectors and eigenvalues of the matrix of the total hamiltonian over
the ground state |0) and all singly-excited configurations ; and

[II. the eigenvectors of the Hartree—-Fock hamiltonian and the corresponding
expectation values of the total hamiltonian (This method is equivalent to the
Epstein—Nesbet partitioning method of [14], and similar to method b of [33].).
For the methods I and II one can prove by using the Hylleraas variation prin-
ciple [34], that the best «,,.,, can indeed be obtained by a maximization of (15)
when varying the excited state functions |k>. In method III the expression
(15) is not strictly bound, but in a number of calculations this method has been
found to give results which are rather close to the experimental values, in con-

trast with method I [14, 21, 33].
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As variation parameters for the excited state functions |k)>, which are built
up from LCAO’s, we have used the scale factors { of the various p, d and f sets
of gaussian type atomic polarization functionst. So, the ratios of the ditferent
G'TO exponents within a particular set are fixed [35], by fitting the GTO’s to a
single STO. The results of these STO-GTO expansions obtained with the
criterion of maximum overlap [36] are listed in Appendix A2. 'T'his criterion
1s slightly preferable to the atomic energy criterion [35, 37] for determining the
optimal GTO exponents of polarization functions, since we found the resulting
SCF energy to be slightly lower for H, and for N, [38]. 'The polarization G'TO’s
are not contracted in the calculations of the polarizabilities and the van der
Waals coetficients.

al in %

s b

]00 ¢ \\\ PTe e e A TS T ”—.‘v——"——--““\s _________

\\\ \ Ry }\—a{lzll.[]au

' M=t 2

90 /a?:23La.u. al=133a.u.

/ m .
105 / —ar=223au
100 A I e R s -—-’ri—’-%
/// \\ \

N\

90 |- ‘ | =2

B5 0.131=1001a.u

v [ e /,/ /——agﬂ-.gmau

90 | =3 dashed lines : method
full lines : method II

80

70

1.00 1.22 1.L5 1.00 1.30 160 130 1.60 1.80 1.0 1.70 2.00

\

[6s,2(=1)pol fns ] [10s, 2 pol.fns ] [10s, Lpol.fns ] [105s, 5pol.fns ]
C for different AQ basis sets

Figure 1. Optimization of the AO basis set for He (maximization of the polarizability,
equation (15)). Pol. fns. stands for : polarization functions (p for dipole, d for
quadrupole, and f for octupole transitions). The 100 per cent levels on the vertical
scale correspond with the final optimal polarizabilities for the two methods II and
[11 (description, see § 3), which are indicated in the figure.

The optimization for He is shown in figure 1; method I is not included,
because the curves for methods I and II appear to be parallel. Method III
behaves differently and we observe clearly that the polarizability is not bound in
this method, so that extension of the virtual orbital set does not necessarily
cause an increase of the polarizability ; even for the largest basis sets used,
this method 1s still sensitive to the scale parameter { in contrast with the other
two methods. Using the dispersion interaction coefficients for the optimization

1 For the calculation of «7j;- = a9 of H, these polarization functions slightly mix into
the ground state wave function. The Hylleraas variation principle does not exactly hold
then, but in practice this did not affect our calculations.
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rather than the polarizabilities, we have found an increase of the optimal { for
the smallest basis set by about 10 per cent, while for the largest basis sets no
significant change could be observed. Finally, figure 1 shows the increasing
need for a high-quality ground state when calculating higher transition multi-
poles ; the reason 1s that the higher multipole moments are giving more weight
to the outer region of the ground state wave function.

For H, we first optimized the ground state wave function by minimizing the
SCF energy in a (10s, 3p, 1d) AO basis. The excited states of the ditferent
symmetries of interest were optimized by maximizing the quadratic polariza-
bilities o 13="0"11; Cons = 0t'5a ‘ANd' <0laga = ocPaa AN AQ) 'basis™ sets® ol (Ip))=, (2d);

PSR R

and (2f), respectively. Extending the (3p), to a (4p), basis set increased the
optimal «7,; by only 0-1 per cent, whereas «’,, improved by not more than
0-5 per cent when adding one extra d function. So these quadratic polariza-

bilities are sufficiently well described by these basis sets, which 1s confirmed

n -
all‘ In o/o
]25 0"'“0.\ =
> | G /
120 2, aty = b./3a. .
\ T . 1593 '
Method L 37 |
etno ‘D TE !
]]0 033' i2g 9280 |
al, = 2.9Lau ,
|
x ==-~- W om e P ol kg
100 R T e
= O A ALY ,
T SAICE Sl 15
/' » \\ "\ J--'
-7 v > i l
90 // \\\ ”-v\ < \\ ‘
/ \D v \ \ |
SN \ \ |
s PR o [ i \ \ |
30 T S A
\ \ \ |
Y X /i \ [
' A A \ /
0- \\o’/
70 fora,y, : x
for azz W o
. rt X
120 forazy @ v ay, = L.9Gau

fora,; : o O/D\ ay,= 17.26a.u.
TNOE: & aff,=125.83a.u

Method II al, = 2.71au /
100ck% _ | —

)

x x x 6
5> B——o0—o0 2F k%
TR °
90 '

|
’ G

70

123 085 097 115 075 090 1.05 070 097 130 070 0.85 1.00
T e e

[3p)n [3p.1f]y [3p1d]q [3p.2f]n (3p.2d]
C for different A0 basis sets

Figure 2. Optimization of the = AO basis set for H, (see also caption figure 1). The 0 AO
basis is fixed : (10s, 3p, 1d) —[4s, 3p, 1d]. The { scale applies to the underlined
p, d or f functions. Note that the optimal value for «7;; i1s slightly larger in the
[3p, 2f], basis than in the [3p, 2d], basis, which we have used, but the latter basis

yields a better result for «”,, (in method 11).
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by the value of 1-00 of the completeness ratios (CR) tfor the corresponding multi-
pole operators. 'T'he completeness ratio 1s defined by [21]

CRll'm:STI\/III'IN/CI\/IH'M’ (16)
where
S5TM I'm = Z, 0 ' Ql, m Ik\ k l Ql —m IO\’ (16 (1)
k

(STM =sum over transition moments)

CM Wm — ° 0 | Q [, mOI' IO > — O | Ql, m I() 0 l Ql'.

o [0 (16 b)
(CM = closure moment).

For a complete basis this ratio equals 1, or, in other words, the sum rule
for S; ;. ,,(—1) 1s obeyed [34]. Because the completeness ratios CR,,,, CRy,,
CRj3, and CR,,, were still deviating too strongly from 1, we extended the o
and = AO basis sets. For the o basis this was achieved by adding one extra
(diffuse) d function. "T'he improvement of the = basis necessary to calculate
good oy, and «”,; could be obtained by taking a (3p, 2d), basis (figure 2).
T'he addition of only one d or f function appears to be insufficient for ogq; =™, ;
this also follows from the values of CRg,,: 0-89 for the (3p, 1d), and 0-93 for
the (3p, 1t), basis set. Iigure 2 1s an illustration of the fact that method 111 1s
not strictly obeying the Hylleraas variation principle; for instance, for {;=0-70
the dipole polarizability has decreased (!) by nearly 10 per cent as compared

Table 1. Optimized AO basis sets for He and H,t ; SCF energies and permanent multi-
pole moments for H, (ru-u=re=1-4 a.u.).

—

He H,

10s reference [35] o 10s reference [35] ({=1-20)]
(Escr= —2-8616692 a.u.) 3p (=148
S5p: L=:1:88 Id (£=3-61
4d (=1-60 1d® (=0-85
4f (=1-49 (Escrp= —1:1335949 a.u.,
J5,0=0-4940 a.u.,
s0=0:3218 an:,
De.0=0-1849 a.u.)§
7 3pw ub=123
2d £=1:00
o0 2d £=1:06
d 28 =0-97

T All cartestan GTO’s are contracted to tesseral harmonics [39, 21]. The GTO
exponents «; can be obtained from Appendix A2 by using the scaling relation [35]: «;=
£ Xt

I The primitive (10s) basis has been contracted to [4s] via a <5, 2, 2, 1> scheme ;
the contraction coefficients were taken from the SCF result for the optimized uncontracted
(10s, 3p), AO basis set.

§ The best values for Q,, and Q, , obtained with correlated wave functions, are :

0-4574 and 0-2826 a.u. [40].
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with the value for the (3p), basis set. 'T'he cross polarizabilities, of which «7,,
1s plotted in figure 2, are not bound 1in any method and show a much larger
sensitivity to the variation parameters than the quadratic polarizabilities. It
appears that a calculation of the cross polarizabilities at the same level of accuracy
as the quadratic polarizabilities would require a still larger AO basis set.

Table 2. Average ratios o;'m!'/ai'm!'! and oy m!'!'/a'm!'! and their deviations (in paren-
theses), estimated from the results for the different AO basis sets used 1n this paper.

He

1" mt S0 w LT1 )T RS 2 TIT o T

1 1m 0-66 (+ 0-00) 0-94 (+0-02) 0-71 (+0-00) 0-94 (+0-02)
13m 0-68 (+0-00) 1-06 (+0-16) — —

1 Sm 0-71 (+0-01) 1-20 (+0-37) — —

22m 0-72 (+0-00) 0-95 (+0-02) 0-77 (+0-00) 0-95 (£0:02)
24m 0-72 (+0-01) 0-95 (+0-02) — —

33m 0-78 ( +0-00) 0-99 (+0-02) 0-82 (+0-00) 0-97 (+0-01)

+ The dependence on m has also been considered in the resulting deviations.

The final “optimum’ AO basis sets are listed in table 1, which also contains
the SCF energies and the calculated permanent moments for H,. From table 2
one can observe that the ratio «!/«!!) although different for H, and He and for the
different (/') combinations, 1s constant for the ditferent m-components of a
particular «,,;. and, moreover, for the different AO basis sets. 5o, 1t 1s justified
to perform the optimization of the AO basis in method I, which 1s by far the
least computer time consuming of the three methods. The absolute values of
the polarizabilities are much too low in method I, however, in comparison with
experimental values. The variation in the ratios o!'!/a!! is larger, only shightly
for the quadratic polarizabilities, but substantially for the cross polarizabilities
(table 2). The calculated polarizabilities as well as the completeness ratios are
collected and compared with values from the literature, as far as available, 1n
table 3. We also have performed calculations of the polarizability at ry 4 =
r>=1-449 a.u. [43], the mean internuclear distance for v=0, which 1s a very
good approximation to the computation of the vibrationally averaged polariza-
bility [16] : the quadratic polarizabilities become larger by a factor of 1-04-1-09,
the cross polarizabilities increase by a factor of 1-12-1-16. 'T'he deviations from
the experimental values (for the dipole polarizability) also increase then, which
must be corrected for by taking correlation into account [16]. Although the
best agreement with the experimental dipole polarizability 1s obtained for method
[11, in general we prefer the results of method 11, because of its better theoretical
basis and because in practice this method appears clearly to be more stable.
The results of both methods do not differ drastically, except for the calculated
cross polarizabilities, which are probably better in method 11.
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Table 3. Polarizabilities (in a.u.) and completeness ratios for He and H, rm_ua=rc¢=

1-4 a.u.).
[l'm CRT all] alllY x (Meyer) §
o5 22
110(0) 1-00 7-33 6-76 6-44
111(7) 1-00 4.93 4-70 4-57
11 1S0tE: 5-73 5-39 5-19
130(0) 1-00 3-93 3-53 —
131(7) 1-03 2-88 3-53 —
150(o) 1-14 1-49 1-24 -—
151(=) 1-19 1-59 2-49 -
220(0) 0-99 17-99 17-08 17-78
221(7) 1-00 17-13 15-87 16-97
222(9) 1-00 14-33 13-86 13-85
22, 1sotr. 16-18 15-31 15-90
240(0) 0-91 19-45 18-78 —
241 (=) 1-05 18-89 17-59 —
242(9) 1-24 12-69 12-21 —
330(o) 0-98 125-50 123-88 115-8
331(7) 0-98 121-29 122-06 119-9
332(9) 0-99 113-69 b2 113-0
333(¢) 0-99 103-86 100-94 93-7
33, 1sotr. 114-74 113-33 109-8
He
11(p) 1-00 1-38 1-33 1-38
22(d) 1-00 2:-34 2:23 2:41
33(f) 1-00 10-01 9-66 10-09

t CR 1s the completeness ratio as defined by (16).

I Methods II and I11 are described in the test (paragraph 3).

§ Reference [16]. These values are obtained with correlated wavefunctions in slightly
less-quality AO basis sets. Meyer has also presented the vibrationally averaged values,
which are systematically larger: a;;=5'43 a.u., a,,=17-06 a.u., az;;=120-1 a.u. [16].
This improves the agreement with the experimental «;,. Our corresponding results are :
a;, =6-00 a.u., a,,=17-24 a.u., a;;=125-0a.u. The experimental values for the dipole
polarizability are: H,: a,;=544a.u.; oy;0=6-94a.u.; a«;,;,=4-82 a.u., measured at a

wavelength of 6328 A [41]; He: «,,=1-38 a.u., from refractive index data [42].

4. ].ONG RANGE INTERACTION COEFFICIENTS

The calculated 1sotropic dispersion and induction interaction coefficients
and their anisotropy factors are listed for method 11 in table 4. The results for
method I are essentially the same for the anisotropy factors, while the isotropic
dispersion interaction coefficients are smaller by factors of 0-70 (Cy), 0-72 (Cy),
and 0-75 (C,,) for Hy-He ; 0-67 (C;), 0-70 (Cg), and 0-73 (C,,) for H,-H, (a
similar result has been found for the polarizabilities, table 2). Fractions of
about 0-7 have also been found for the ethylene dimer [21]. The anisotropy
factors up to L, Ly values of 2 inclusive, computed with method III, are also
very close to the tabulated results, whereas for higher L values deviations occur,
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Table 4. The 1sotropic dispersion and induction interaction coefficients (in a.u.) and their
anisotropy factors, calculated with method Il (rg_ p=re=1-4 a.u.).

Cy Cy Cio
Calculated quantityt Dispersion Dispersion]  Induction Dispersion]  Induction
He-He
Cn (1sotropic) 1-541 14-06 - 177-3 =
H,-He
C" (1sotropic) 4-464 56-39 0-506§ 9889 3-990
Yn* 0-114 ()-286 1-143§ 0-306 1-414
yn' — 0-0058 0-857 § 0-0075 )-809
vn® — — — —0-000019 0:-175
H,-H,
Cr""° (1sotropic) 14-18 223-9 4-194 4799-0 55-29
yn="" 0-120 0-250 0-627 ()-269 (-832
yn**? 0-044 0-051 0-200 0-075 0-506
Yt —0-0099 —0-0069 —0-040 —0-0081 —0-052
Yn*** 0-0012 0-00012 0-010 0-00013 —0-0013
yn00 — 0-0046 0-429 0-0068 (0-355
yn' =0 — 0-0021 (-263 0-0019 0-214
yn' 2t — —0-00027 —0-036 —0-00017 —0-021
Yn e — 0:13:5¢104 0-0020  0:26 x 10-° 0-00057
Y b — — —- —0-55x10 0-052
yn®20 —y - — —0-85x10-° 0-040
521 c i — —0:-04 x 10— —0-0038
vn8® — —- - 0-09 x 108 0-00014
yn' 10 — — — 0-00014 0-037
il - — - - —0-11 x10 —0-0030
yni1° — - — 0-03 x 10-° 0-83 x 10
o — - - - —0-01 x10% —0-15%x10-°
vt - - -— <=10=" —0-01 x10-°

1+ Defined 1n equations (13) and (14).

1 Isotropic results for r=r¢, obtained by Meyer [16] : He-He: Cr=1-456, 13-90,
175-4 a.u., H,-He : C,°=3-904, 53-12, 940-5 a.u., H,—H, : C;%°=11-40, 196-7, 4303-0 a.u.
(n=6, 8, 10). Our values for rg_g=<r) are: H,—He: Cn°=4-613, 59-:02, 1051-6 a.u.,
H,-H, : C,°°°=15-24, 245-0, 5365-0 a.u., which can be compared with Meyer’s vibrationally
averaged analogues [16] : H,—He : Cp°=4-016, 55-65, 1001-1 a.u., H,-H, : C,"*=12-14,
215-2, 4813-9 a.u.

§ Comparative results, obtained by Thakkar [23] using Meyer’s results : Cyg ina" =
0-483 a.u.; vg.ind> and yg.ina® are exactly the same as our values, because they are purely
algebraic, just as the quadratic part of y,,,ind.

which in some cases are very drastic (even changes of sign); the ratios of the
isotropic interaction coefficients for methods III and II are: 0-95 (ESTER)
and 0-96 (C,,) for H,~He, and 0-94 (C;, Cy) and 0-96 (C,,) for H,-H,. Calcula-
tions at r_y = {r)> instead of r, enlarge all results by 5-10 per cent.

Table 5 shows the relative contributions of the different quadratic and cross
terms to the anisotropy factors for the dispersion energy up to L, Ly values of 2
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Table 5. Relative contributions of the different multipole terms to the lowest L. dispersion
anisotropy factors, calculated with method II for rg_n=re (notation: (22; 11)
stands for the sum of the (1aAla, 2325) and the (2424, 1311) contributions, etc.).

Cet Cygt Cio
H,—-He
vn® 0-114 ()-286 0-306
(0-093) R A T R A T Slerreatnoay o)
(22050009 (1371119 (33 :..118) (22, 22) “:quadry;
“ quadr ‘ cross’ 0-052 0-024 0-076
0-089 0-197 (13:'22) (24, 11) ICTOSSH:
(0-091) 0-084 0-146 0-230
H,-H,
" 200 0-120 ()-250 0-269
(0-100) Y N A e W AR ST T
(2270 ~(18% AL (33! 11 (22:22) *quadrsy
“iquadr:”’ “cross” 0-051 0-027 0-078
0-091 0-159 L3 s 2208 W24 1) =Sleross s
(0-089) 0-097 0-094 0-191
vn 220 0-044 0-051 0-075
(0-031) R R S e e e st T
(220501 (185 1) (333 0y (22,22) - “%guadr
“ quadr Cross 0-006 0-003 0-009
0-013 0-038 (13139 (13.:31)
(0-012) 0-023 0-008
(13534 22 (2420090 - “icrosss
0-017 0-018 0-066

1 "T'he values in parentheses, which describe the quadratic anisotropy only, are obtained
by Mevyer [16] (see also note T table 4).

inclusive.  T'he anisotropy factors arising from the quadratic terms are in good
agreement with Meyer’s results. The contributions of the cross terms are very
pronounced (65-90 per cent). For the induction energy coefficients the mixed-
pole contributions to €'}, vary from 28 per cent (y,,%, H,-He) to 100 per cent
(y10°, Ho-He). The assumption of Tang and Toennies [5] that y¢2=1y,,2 for
H,-He, which was based on our preliminary results, appears to be justified,
also for Hy-H,. Our calculated values (yg2=0-29, y,,2=0-31) are close to the
value y¢*=0-33 [23, 44], which has been used with success by Tang and Toennies
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[5] in their model potential for interpreting the measurements of Zandee and
Reuss [3, 4]. These latter authors have measured the orientation dependence
of the total cross section for a beam of state selected H, molecules in collisions
with He and other rare gas atoms. Our 1sotropic dispersion interaction
coefficients differ shightly from Meyer’s coefficients, which 1s partly due to the
different quality of the AO basis sets (1n particular for H, ours seems to be slightly
better). The main source of this difference 1s the electron correlation, which
has been taken into account by Meyer and therefore his 1sotropic coetficients
should be preferred. Moreover, his calculated Cy tor H,~He and H,-H, are
closer to the empirical values [17, 18] which can be determined rather accurately
from spectroscopic data.

The convergence of yZaled s very fast for the dispersion energy (table 5),
so that the (L,, Ly, M) series for the anisotropic interaction can be truncated
safely at L, =Ly=2. 'This 1s a fortunate circumstance, because the higher L
anisotropy factors are less accurate. 'T'he induction anisotropy factors converge
more slowly, but the induction energy in these systems can be neglected 1in com-
parison with the dispersion energy.

From figure 3 one can get an impression of the convergence of the C, R™
series for H,—He. In the isotropic van der Waals minimum (R~ 6-5 a.u. [12, 5]),
the isotropic long range interaction increases by 43 per cent by adding (Cg" R~ +
C,,° R71%) to C¢® R-%. For the anisotropic L, =2 contribution this increase 1s
much larger : 112 per cent, which of course 1s due to the anisotropy of C and
C,, being substantially larger than the anisotropy of Cy. 'This modification of
the convergence behaviour by the anisotropic contributions i1s shown in figure 3.

) CaR/CgRE

n=56,6,10

14 1.7

16 16
1=0,2

1.5 R=65£aU{ 15

0° 30° 60° 30°
O

Figure 3. Convergence of the multipole expanded dispersion energy for H,-He, both
isotropic (L =L a=0) and including anisotropic terms (L =LA=0, 2).
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We have also calculated the dispersion interaction coefficients in the AO basis
which was used in [12] for the calculation of the complete van der Waals potential
for H,—He by the multi-structure valence bond method. The results: C.°=
434 a5 ye<=0:-115; CP=52:38 a:uy, 532=10:323; give-rise to: the same conclu-
sions. T'herefore, contrary to some CI‘lthlSITl [16], the original conclusion of [12]
that y4 1s substantially larger than 'yG 1S certainly valid. It must be stressed,
however, that the values of Cy° Cy° y¢° and y,* presented in [12], which seem
to disagree with the present rcsults at first sight, were not obtained from a direct
computation using perturbation theory but rather by fitting the valence bond
(VB) results for large distances. 'The 1sotropic coefficients are essentially the
same, but y4% obtained by fitting the VB results, 1s larger, because it necessarily
contains the contributions of higher multipole cross terms, e.g. the (strongly
anisotropic) Cg (13 ; 11). Similarly y4* 1s smaller because 1t lacks this contribu-
tion Cg (13; 11); on the other hand it contains the contributions of the higher
multipole cross terms C;, (13 ; 22) and C,, (24 ; 11), thus yielding a y4% which
1s still larger than the value arising from Cy (11 ; 22) alone.

IFor H,~H, the higher multipole dispersion terms are relatively more 1m-
portant than for H,~He. For example, in the i1sotropic van der Waals minimum
(2265 a0 461 the raties: (E: 2% Re% +1C 2% R IC 10 R8and (€2 R-54
Cs™" R 4+:C57™ RN CPY R are 1:37 .and -1-56 respectively.. “Lhis:is:even
more striking for the corresponding anisotropic ratios, e.g. for (L LgM)=(200)

the ratios are 1-78 and 2-20 respectively.

interest in relation to Gallup’s
T'he restriction of his CI calculations to an (s,

T'his observation 1s of particular

calculation of the H,~H, complete potential [15].
P) AO basis set and a (05105, :975,)

AEin 10 au.
"LU R:B.Sa.U. -LO
- 36 -36
- 32 =32
43
-28 -28
/Z
29 Lmom +(2.0,0)+(0.2.0 3 = -2,
10,0,0)+(2.0.0)+(0.20) z(zzy
|
-16 . -16
|
60)°=—3(° 60°=— 30° 30° — 60° 30°—60°
t Og Oa 0,=0g P
1 i I ¥ v
0,=90°, 65=90° ©,=90°65=0° ©y=0° B8g=0° 6, =90°65=90° 9,=90°65=90°
P=30° v=90°(0°) Wl P=[° P =90°
l. / I 2 e 12, SO I 1 } ..... o/

Figure 4.  Anisotropic long range interaction energy AE = AE®? (equation (9)) for H,—H,
at R=6-5a.u. 'The different contributions to the energy are indicated in the figure
by (La, Ls, M); (q—q) denotes the pure quadrupole—quadrupole interaction
€200 1) + €20, 1) + €20.1) (equation (10)).
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MO basis set will cause a rather large underestimate of the Cy"°° and C,,°"
1sotropic contributions, and, probably more pronounced even, of the (" and
C',*"" anisotropic contributions to the interaction energy. 'I'his applies equally
to the perturbation type calculations of Kochansk: et al. [14], which are also
restricted to (s, p) AO basis sets. Gallup noticed that the (22M) anisotropic
interaction 1s quite close to the electrostatic quadrupole—interaction over the
whole range. 'T'his conclusion, which was also drawn by Ng et al. [32] in their
elegant study of charge penetration in the H, dimer, 1s contirmed by our study
since at R=6-5 a.u. the (220) C;R~® dispersion energy 1s smaller than the (220)
electrostatic energy by a factor of 15-2.  When adding the C and (', contribu-
tion to C' R this factor decreases to 8:6. A much more pronounced modifica-
tion of the anisotropic interaction arises, however, from the (200) dispersion
terms. T'his 1s illustrated by figure 4 which shows the anisotropy of the first-
and second-order interaction energy up to L, Ly values ot 2 inclusive for R =6-5
a.u. (the higher L anisotropy has been omitted because 1t 1s not significant). "T'he
substantial difference between this curve and the curve composed of the 1sotropic
dispersion energy and the (anisotropic) quadrupole—quadrupole interaction
(figure 4) 1s reduced for larger distances, though. 'T'he apparent existence of
two competitive stable dimer structures (perpendicular and shifted parallel),
which we observe 1n figure 4, has been reported for similar quadrupole molecules
(22, 46, 47], including H, [46]. Furthermore, 1t i1s interesting to note that the
H, molecule can be considered as an ‘i1deal point quadrupole ’, which 1s 1llus-

—

trated by considering the multipole moments as dimensionless numbers :

Q‘“’, —=0:252> Qa0 —0-084 > Q“'“,-:o-ozs.
) 4 ¥
e 'H=H E=H

Consequently, the C,R~7 term 1s not more than 50 per cent of the C;R° term tor
orientation 111, even at the very short distance of 1-80a.u., where the multipole ex-
pansion result 1s, of course, meaningless because of charge penetration [32].  As
stated before, this very fast convergence does not apply to the dispersion energy.

5. THE H,—~He INTERACTION POTENTIAL

A first analytical representation of the H,~He interaction potential [12, 4],
which was obtained as a fit to the VB results of Geurts ef al. [12], was found by
Zandee to be in good agreement with the observed orientation dependence of
the total cross section of H,~He [4, 48]. Using the presently calculated values
for the long range interaction coefficients as well as some extra first-order [49]
and VB [50] calculations, which have been performed for shorter distances
(R=3-0-4-5a.u.), we are able to provide an updated version of the H,-He
interaction potential

V(R, 0)=10-3(1+0-277P,(cos 0)) exp (13-335—1-5643R — 0-051136R?)

4464 _ 56-39
7T + (1 +0-286P,(cos 0)) 8

— [(1 +0-114P,(cos 0))

9889
| )
F(R)=1—exp [—-047(R—2-97)] for R2>2-97 a.u.
= () for R<2:97 a.u. (17)

+(1+0-306P,(cos 0))

with
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A preliminary version of the latter potential, which 1s slightly different only
because 1ts long range part 1s constructed from Cy, 4, Cg and y4 calculated 1n
the AO basis of [12], has been discussed and compared with other potentials
‘11, 13, 51] by Tang and Toennies [5] in relation to the experiment of Zandee
3, 48]. The damping function F(R), which corrects the multipole expanded
dispersion energy for penetration and exchange effects, has been obtained by
comparing the present multipole results with the ab initio VB results for the
second order energy.

6. CONCLUSIONS

For both systems, H,~He and H,—H,, we can draw the following conclusions :

(a) the anisotropy of the dispersion (and of the induction) interaction 1s sub-
stantially increased by the mixed-pole or cross terms, yielding anisotropy factors
ve and y,, which are definitely larger than v, (tables 4 and 5). 'T'’he assumption
that yg~vy,, [S] seems to be justified ;

(b) the convergence of the anisotropy factors y#afed with respect to L, and L,
1s very fast for the dispersion energy, but slow for the induction energy. The
induction energy itself 1s negligible, however (table 4) ;

(c) because of (b) and the fact that H, can be considered as an ‘1deal point
quadrupole ', one can truncate the anisotropic interaction energy series (9)
sately at L, L, values of 2 (results: figures 3 and 4). The anisotropic dis-
persion interaction cannot be neglected in comparison with the (anisotropic)
quadrupole—quadrupole interaction for H,—H,, at the van der Waals minimum

(figure 4) ;

(d) higher multipole dispersion terms cause a substantial lowering of the van der
Waals minimum (figure 3) ;

(¢) Furthermore we mention the result that methods I, Il and III show a
stmilar behaviour under optimization of the polarizability, in particular methods
[ and II (table 2). Consequently, the cheaper method I, although it yields too
small polarizabilities, can be used for optimizing the AO basis set. This
optimized basis can then be employed for the final calculations with method I1
or IIl. "The latter method has the theoretical and practical drawback that « 1s
not strictly variationally bound (figures 1 and 2).

We thank Gerard van Dk for his assistance with the calculation of the
anisotropic induction energy and Rut Berns for his contribution to the determina-
tion of the analytical potential for H,~He (equation (17)).

Note added 1n proof : After submitting this article it came to our attention
that the formulae (3) and (5), which we have derived as specializations of our
results in reference [30], have been obtained directly in a recent paper by Koide
[52].
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Appendix Al. Table of the algebraic coetficients (AUAlls which occur in the second order energy expression (11);  is defined by the formulae

S LalpM
(6), (8) and (12). The list is complete up to N =10 inclusive (N=[a+Ua+I8+1's+2).

N [Al’ A, [Bl'B LaLsM
000 200 220 221 222
6 1, 11 ) _(2)} 3 P T
100 120 121 300 320 321 322
7 21, 11 3 (&) —3 (2)} L(3) =4i(3)" 7(3)* -3 (i) s (3%)"
000 200 020 220 221 222 400 420
8 22511 —(15)* 4(3)* 2 (8)* =3 H)" (7)° =3 2) =) 22 (3'5)"
421 422
-3 (3%)" 3 (103)"
110 111 310 311 330 331 332 333
8 21, 21 — 329 18 8(6)* -2 (3)¢ = 50" —1i8 360
110 111 310 311 330 331 332 333
8 21, 12 = = 5 (6)* =) =% 5 ~30 0
200 220 221 222 400 420 421 422
8 31, 11 12 (7)* —6(3)* 5 () s (15)* —10 (5%)* 19 (3%)* -5 (3%)° i (%)
010 210 211 030 230 231 232 410
9 9991 6 (2)* —48 (5%%)" 6 (3%)° —(12)? 2 (4R)s =13(z1a)* 2 ()t 12 (7)*
411 430 431 432 433
-2 (%) —2 (42) 5 (3%)° — %0 (3%)"* 720 (%)

IH-H CH-°H suo1oviajur asuv. suoj 21dosjosif

SLIT



Appendix Al continued

N  [Al'A, [Bl's LaLsM
100 120 121 300 320 321 322 500
9 32, 11 — 4 (15)! 8 (5%)* — (%)} 2 (5)* —7(E) = Glo) -1 ()" —=21(SE)
520 521 522
10 (3)’ =35 (=)' i (35)°
210 211 230 231 232 410 411 430
9 31,21 6 (%) 2 (82) 8 (3): —(5)? 0 5 (1.0)} —17 (1) —10 (15)?
431 432 433
 (703)’ —3slTE)" " szt
210 P41 230 231 252 410 411 430
9 31,12 —18 (3%)’ ~4(5s) 24 (4'5)"* —3 (35)° — 0 (3%)° 3 (%) -3 (76)"* =6i(E)7
431 432 433
5 (1035)’ —1 (703)* 0
300 320 521 322 500 520 521 522
) 41, 11 10 (3)* =5 ()} ¢ (6)° 17 (5)’ -2 (3)! 4321 —3F (Jo)d 1 (%)
000 200 220 221 222 400 420 421
10 22, 22 14 10 (10)! 02 _ 16 g 9 (2)! 30 (5) 1 (5)
422 440 441 442 443 444
= (5)8 181 -5 W' 750 20150

9L1

o 712 1P[OIA "]



Appendix Al continued

AN

N [Al’ A, [Bl'B LaLsM

000 200 020 220 221 222 400 420
10 33, 11 e ; —10 (F)* — 3(3)* (i) 18 (%) —30 (5%)*

421 422 600 620 621 622

4 (5 — (z31)* =4 (v5)* -4 (7%) : (753)"°

220 222 420 421 422 440 441
10 31, 31 14 > (3)* 7 (3)! - 37 (3)° = =25

442 443 444

S Sigon
504 20160

220 222 420 421 422 440 441
10 31, 13 13 - (3)* 7 (3)! 75 (3) o —3

442 443 444

()

200 220 221 222 400 420 421 422
10 31,29 —10 ( ) (6)? —10 (2) 6 (%) —432 (2)1 (2! — o5 (2)1

240 242 440 441 442 443 +44

— 47 (30) 34 (8)"* 4 (10)} — 3% (7%)" 51(16)* — 336(19)" 0

110 310 130 131 330 331
10 32, 21 30 ( A5 —5(6)! 5 (1)} ~10 (2)! 5 (3)? 10 _s

332 333 510 530 531 532 533

10 (3)! —40 (7)* 5 (7)1 6o (i) 180 (79)"

IH-CH CH-°H suonov.iajur asuv.i suo) 31do.4josiuf

LLT



Appendix Al continued

N [Al’A, [B]'R LALsM
110 310 311 130 131 330
10 32,12 24 (3 —4(6)* (5)* -8 (7)* () 3
332 833 510 511 530 531 532 533
360 8(7)" =) - 32 (%)} 2% (3%) =N\ 760 (1)
200 220 221 222 400 420 421 422
10 42, 11 —25 (; -3 (&%) -1z (7%)} 12 (33)° 9(77)° (70)° -1 (7%9)"
600 620 621 622
-7 (3%)* 19 (3 =% (&) 3 (153)°
310 330 331 332 333 510
10 41, 21 —6 (10)* 3 (2)* 8 (%) i (15)°8 0 117 (15)° 6 (2)* = #(%)*
530 532 933
— 38 (; — 10(3)’ 360 (3)°
310 330 331 332 333 510
10 41,12 —3(10)* —(2)* 4(3)* —g{3)" - 15 (15) 0 3 (2)°
530 532 533
=191 — 30 (3)"* 0
400 420 421 422 600 620 621 622
10 >1, 11 -3 (11)° (%) : (339)° —7{5%)" 29 (5'7)* =3l iz (31

8LI

J0 12 IPINIAl “Hq
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Appendix A2. STO-n(GTO) expansions of 2p, 3d and 4f Slater functions with exponents
(=1-007.
No. 2p 3d 4f
n Exponents Coefficients Exponents Coefficients Exponents Coefficients
1 0-176068 1-0 0-130272 1-0 0-103388 1-0
(S=0-975884) (S=0-974636) (8=0-973893)

2 0-432603 0-452304 (0-278345 0-465498 0-200666 0-476917

0-106913 0-671384 0-083484 0-665606 0-068657 0-658743
(S =0-998453) (S =0-998508) (S =0-998556)

3 0-917879 0-161987 0-564903 0-147163 0-348326 0-173495
0-236956 0-562813 0-176130 0-558274 0-125124 0-596123
0-080548 0-425790 0-067659 0-452630 0-053593 0-394342

(S =0-999866) (S =0-999873) (S =0-999900)

+ 1-864486 0-053971 0-926279 0-057171 0-569633 0-058918
0-481655 0-275794 0-293518 0-303518 0-207617 0-318839
0-168824 0-551809 0-118903 0-562625 0-093042 0-564051
0-066743 0-276269 0-052757 0-242726 0-044754 0-228825

(S =0-999985) (S =0-999989) (S=0-999992)

5 3-653832 0-017855 1-:639533 0-017712 0-901197 0-019488
0-934948 0-111998 0-523810 0-118686 0-331898 0-135647
0-326000 (0-355392 0-215016 (0-371455 0-151474 0-402190
0-132100 0-496813 0-098836 0-493830 0-076163 0-475243
0-057317 0-177955 0-047291 0-166067 0-039435 0-139715
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(S =0-999999)

(S =0-999998) (S5'=0-999999)

+ These expansions have been obtained with the aid of the computer program GTOFI'T
(Wachters, A. J. H., Van der Velde, G. A., 1968), using the criterion of maximum overlap
[36]. In parentheses the values of the resulting overlap integrals S are given. The GTO
exponents «; for a Slater exponent { different from 1-:00 can be obtained from the scaling
relation [35]: «i=1{* yi, where yxi are the tabulated G'T'O exponents ; the expansion co-
efficients C; are the same as the tabulated ones. Note added in proof.—Similar expansions

have been made earlier by Stewart [53].
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