
564 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 2, APRIL 2021
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Abstract— In recent decades, there has been an increasing
interest in the use of robotic powered exoskeletons to assist
patients with movement disorders in rehabilitation and daily
life. Providing assistive torque that compensates for the user’s
remaining muscle contributions is a growing and challenging
field within exoskeleton control. In this article, ankle joint
torques were estimated using electromyography (EMG)-driven
neuromusculoskeletal (NMS) model and an artificial neural
network (ANN) model in seven movement tasks, including fast
walking, slow walking, self-selected speed walking, and isokinetic
dorsi/plantar flexion at 60◦/s and 90◦/s. In each method, EMG
signals and ankle joint angles were used as input, the models
were trained with data from 3-D motion analysis, and ankle joint
torques were predicted. Six cases using different motion trials as
calibration (for the NMS model)/training (for the ANN) were
devised, and the agreement between the predicted and measured
ankle joint torques was computed. We found that the NMS model
could overall better predict ankle joint torques from EMG and
angle data than the ANN model with some exceptions; the ANN
predicted ankle joint torques with better agreement when trained
with data from the same movement. The NMS model predicted
ankle joint torque best when calibrated with trials during which
EMG reached maximum levels, whereas the ANN predicted
well when trained with many trials and types of movements.
In addition, the ANN prediction may become less reliable when
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predicting unseen movements. Detailed comparative studies of
methods to predict ankle joint torque are crucial for determining
strategies for exoskeleton control.

Note to Practitioners—In exoskeleton control for strength
augmentation applied in military, industry, and healthcare appli-
cations, providing assistive torque that compensates for the user’s
remaining muscle contributions, is a challenging problem. This
article predicted the ankle joint torques by electromyography
(EMG)-driven neuromusculoskeletal (NMS) model and an artifi-
cial neural network (ANN) model in different movements. To the
best of our knowledge, this is the first study comparing joint
torque prediction performance of EMG-driven model to ANN.
In the EMG-driven NMS model, mathematical equations were
formulated to reproduce the transformations from EMG signal
generation and joint angles to musculotendon forces and joint
torques. A three-layer ANN was constructed with an adaptive
moment estimation (Adam) optimization method to learn the
relationships between the inputs (EMG signals and joint angles)
and the outputs (joint torques). In the experiments, we estimated
ankle joint torques in gait and isokinetic movements and com-
pared the performance of methods to predict ankle joint torque,
relating to how the methods have been calibrated/trained. The
detailed analysis of the methods’ performance in predicting ankle
joint torque can significantly contribute to determining which
model to choose, and under which circumstances, and, thus, be of
great benefit for exoskeleton rehabilitation controller design.

Index Terms— Adaptive moment estimation (Adam), hill-type
muscle model, musculotendon kinematics, OpenSim.

I. INTRODUCTION

P
HYSICAL changes as a result of neurological disorders,
for example, muscle weakness, poor coordination, and

loss of sensation, affect daily activities, such as locomotion in
a large number of people [1]. The rehabilitation of locomotion
has always been a key priority for patients with movement
disorders [2]. Devices have been developed to restore motor
function and facilitate locomotion rehabilitation in individu-
als with spinal cord injury (SCI) and stroke, for instance.
One such device is a powered exoskeleton [3], [4]. During
exoskeleton-assisted rehabilitation, patients’ active participa-
tion is essential in facilitating neuromuscular recovery [5].
However, despite the development in mechatronics and bio-
electricity, exoskeleton control methods that involve the active
participation of neurologically affected patients are still few,
which limits the possibilities of inducing activity-driven neu-
roplastic changes that are needed for recovery [6].
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During exoskeleton-assisted rehabilitation training, many
control algorithms have been designed to increase patients’
muscle strength, brain plasticity, and movement enhance-
ment [7]. Neuhaus et al. [8] presented a robotic orthosis
“Mina” for assisting mobility using recorded angle trajectories
from an able-bodied individual for people with paraplegia.
Farris et al. [9] proposed a powered lower extremity orthosis,
which could provide assistive torque in the sagittal plane at
hip and knee joints in persons with SCI in gait, based on
joint angle trajectories from an able-bodied subject. However,
these control algorithms used reference trajectories that were
predefined for the complete gait cycle. Predefined trajecto-
ries do not facilitate the body’s natural movement, nor do
they consider how human muscles coordinate. In addition,
individual adaptation is very difficult since it is not possible
to smoothly transfer movement trajectories from one gait
pattern to another. Therefore, designing exoskeleton control
algorithms that enable the user’s intentions instead of reference
trajectories is in great demand.

Designing exoskeleton control algorithms based on the
user’s intention requires accurate and robust decoding of
motor function, for instance, by recording underlying neu-
romuscular activities, such as the brain, nerve, and muscle
electromyography (EMG) signals from the central nervous
system (CNS) [10]–[13]. EMG signals are relatively easy
to acquire and process and provide essential information on
human motion compared with brain and nerve signals. EMG
signals are nonlinearly related to muscle force and joint
torque [14]. A model is needed to relate muscle activation
and joint torque, for example, neuromusculoskeletal (NMS)
models with modified Hill-type muscle model have been
employed extensively [15], [16]. EMG-based modeling has
also been integrated into various human–machine control
strategies for exoskeleton actuators. Yao et al. [5] proposed an
adaptive admittance control scheme for an ankle exoskeleton
by utilizing an EMG-driven musculoskeletal model and tested
on eight able-bodied subjects. They were able to achieve
compliant joint assistance according to the real-time stiffness
estimation of the ankle joint. Durandau et al. [6] developed a
patient-specific computational NMS model with EMG signals
to control a lower limb exoskeleton that assisted patients
with paresis, resulting in a reduction in muscle activation and
required physiological torque to perform a motor task with an
increased level of exoskeleton assistance. Ronsse et al. [17]
introduced a real-time estimate of velocity and acceleration
based on an able-bodied subject’s joint position using adap-
tive oscillators that could be applied as an impedance-based
walking assistance strategy. Karavas et al. [18] presented a
novel teleimpedance controller for a knee exoskeleton that
provided assistance to an able-bodied subject based on the
user’s intention and joint stiffness. There is an obvious value
in expanding these studies to develop an exoskeleton con-
troller based on patients’ neuromuscular abilities, taking into
account the complex dynamics that involve both biomechani-
cal and neurophysiological aspects. Therefore, constructing an
EMG-driven NMS model to predict the user’s physiological
torque is of great importance in designing exoskeleton control
strategies.

In recent years, artificial neural network (ANN) technol-
ogy has been widely applied in classification, prediction,
identification, and optimization problems [19]–[22] and has
demonstrated power in many domains of modern society,
such as marketing, agriculture, and healthcare [23]. Tradi-
tional myoelectric control strategies of exoskeleton assistive
strategies require carefully constructed and chosen features.
For example, an EMG-driven NMS model consists of com-
plex calibration procedures and requires constructing com-
plex relationships among different variables, such as EMG
signals, muscle geometries, motion data, and joint torque.
Alternatively, the ANN model can extract features on multiple
levels of representation and predict very complex functions
with a composition of enough representation layers without
explicit descriptions of the complex relationships between
variables. ANN methods have been applied to estimate lower
limb joint torque during a vertical jump [24], isokinetic knee
contractions [25], and elbow flexion movements [26]. ANN
is, thus, a possible alternative to using an EMG-driven NMS
model to map EMG signals to joint torque.

The objective of this study was to estimate ankle joint
torque using an EMG-driven NMS model and an ANN model
simultaneously. The agreement between the predicted and
measured joint torque using two methods was compared and
analyzed. Our hypotheses were that the ANN model would
have a better overall performance than the EMG-driven NMS
model, particularly when trained on a large amount of data,
but that an EMG-driven NMS might have a better agreement
when calibrated and tested on movements involving the similar
muscle contraction coordination.

II. METHODS

A. Experimental Setup

Ten able-bodied adults (age: 26 ± 2.86 years; weight:
70.36 ± 11.49 kg; height: 175.06 ± 8.45 cm; and sex:
4F/6M) were recruited. All participants provided informed
written consent. Collection of the data was accomplished
at the Biomechanics and Motor Control (BMC) Laboratory,
Swedish School of Sport and Health Sciences (GIH),
Stockholm, Sweden, and the study was approved by the
regional ethics committee, Karolinska Institutet, Stockholm.
Surface EMG electrodes were placed on the soleus (SOL),
tibialis anterior (TA), and gastrocnemius medialis (GM)
muscles of the right leg based on European recommendations
for surface EMG [27].

A 3-D motion capture system (Qualisys, Gothenburg,
Sweden) was used to record the trajectories of the markers
placed on the subjects according to a conventional marker
set (Plug-in Gait/CGM1) protocol [28], [29]. The experiments
include gait analysis and ankle isokinetic dorsi/plantar flexion
tests. The experiment setup is shown in Fig. 1. The subject
was asked to first walk at a self-selected speed and then
to synchronize steps to a metronome at 120 cadences/min
and 100 cadences/min each for three times. Ground reaction
forces (GRFs) were measured by two force plates (Kistler,
Winterthur, Switzerland).

During isokinetic ankle movements, the subjects lay in a
prone position with their right knee flexed at 20◦ and right
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Fig. 1. Experimental setup. (a) Gait. (b) Isokinetic dorsi/plantar flexion
movements.

foot fixed to a footplate attached to an isokinetic dynamometer
(IsoMed 2000, D & R GmbH, Hemau, Germany). The ankle
joint angle and torque were recorded simultaneously. Each
subject was encouraged to plantarflex with maximal effort,
while the ankle was plantarflexed, and likewise, while the
ankle was dorsiflexed, five consecutive times at a velocity
of 60 and 90◦/s within a range of motion of −20◦ plantarflex-
ion and 15◦ dorsiflexion.

B. Data Processing

1) Gait: Marker trajectories were captured at 200 Hz,
and GRFs were recorded at 3000 Hz. GRFs were low-pass
filtered, and filtering was only applied to nonzero values.
EMG signals were recorded at 3000 Hz, then high-pass fil-
tered (20–500 Hz), rectified and low-pass filtered (6 Hz), and
normalized to the maximum processed EMG value recorded
across all trials [30]–[32]. Marker trajectories, GRFs, and
EMG Data processing were performed in MOtoNMS tool-
box [33], which processes experimental data, including marker
trajectories, GRFs, and EMG Data, from C3D files in dif-
ferent motion capture systems and produces input data for
NMS modeling software, for instance, OpenSim (SimTK,
Stanford, USA). Joint angles and torques were computed in
an open-source musculoskeletal modeling software (Open-
Sim 3.3). A generic musculoskeletal model (OpenSim gait
2354) was scaled using marker trajectories to fit each individ-
ual’s anthropometry. The scaled model was then used to recon-
struct the 3-D joint angles and torques in terms of the marker
trajectories and GRFs captured during dynamic movements by
solving inverse kinematics and inverse dynamics [30]. Inverse
kinematics solves a weighted least square problem to minimize
the distance between experimental x

exp
i and corresponding

marker on the model xi , as follows [34]:

min
q

(

N
∑

i

θi‖x
exp
i − xi‖

2

)

(1)

where q is generalized coordinates of the model and θi is the
weights of the i th marker.

Inverse dynamics calculate the forces and torques of joints
by solving dynamic equation of motion, as follows [35]:

M(q)q̈ + C(q, q̇) + G(q) = τ (2)

where q, q̇, and q̈ are the position, velocity, and acceleration
of the generalized coordinates. M(q) is mass matrix, C(q, q̇)

Fig. 2. Schematic of an EMG-driven NMS model. It consists of four com-
ponents: A1—the model’s musculotendon kinematics were used to calculate
musculotendon lengths and moment arms; A2—muscle activation dynamics
were employed to calculate the level of muscle activation involved in the
processed EMG signals; A3—muscle contraction dynamics according to a
Hill-type muscle model were applied to predict musculotendon force using
the calculated musculotendon length and muscle activation as inputs; and
A4—joint dynamics was used to compute joint torques using the calculated
musculotendon forces and moment arms as inputs.

is the centripetal and Coriolis forces matrix, G(q) is the
gravitational forces matrix, and τ is the vector of unknown
generalized forces.

2) Isokinetic Ankle Dorsi/Plantarflexion: The ankle joint
angle and torque were recorded at 5000 Hz during ankle
isokinetic dorsi/plantarflexion tasks and then filtered with a
fourth-order Butterworth low-pass filter with a cutoff fre-
quency of 6 Hz. The EMG signals were processed in the
same way as in gait. Ankle joint angles, torques, and EMG
data were processed in MATLAB (MatlabR2017a, MathWorks
Inc., Natick, MA, USA).

C. EMG-Driven Neuromusculoskeletal Model

A previously developed EMG-driven NMS model [15] was
used in this study. It reproduces the transformations from
EMG signal generation and joint angles to musculotendon
forces and joint torques. The EMG-driven NMS model con-
sists of four components: musculotendon kinematics, muscle
contraction dynamics, muscle activation dynamics, and joint
dynamics [36] (see Fig. 2).

The musculotendon kinematics component used the 3-D
joint angles to calculate musculotendon lengths and moment
arms of individual musculotendon units (MTUs) through a
musculoskeletal model. The muscle activation dynamics com-
ponent calculated muscle activation based on filtered EMG
signals. The relation between neural activation u(t) and filtered
EMG signal e(t) was represented by a recursive filter [37] as
follows:

ui (t) = αei (t − d) − β1ui(t − 1) − β2ui(t − 2) (3)

where ei (t) is the linear envelope of the EMG signal of the i th
muscle; ui (t) is the neural activation of the i th muscle; d is
the electromechanical delay; α is the muscle gain coefficient;
and β1 and β2 are the recursive coefficients and are subject
to the following constraints to obtain a stable solution [15],
[37], [38]: β1 = C1 + C2 and β2 = C1 · C2, where |C1| < 1,
|C2| < 1, and α − β1 − β2 = 1
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A nonlinear relationship from neural activation to mus-
cle activation was formulated to describe muscle activation
dynamics as follows:

ai(t) =
eAi ui (t) − 1

eAi − 1
(4)

where ai(t) is the i th muscle activation; Ai is the nonlinear
shape factor of i th muscle and subjected to the interval
(−3, 0), with zero representing a linear relationship, and
negative values introduce a nonlinear relationship between
neural activation and muscle activation [32], [38].

Musculotendon forces were computed through muscle con-
traction dynamics based on a three-element Hill-type muscle
model: a series elastic element (SE), a contractile element
(CE), and a parallel elastic element (PE). Each MTU’s force
(Fmt ) could be represented as a function of muscle activation
and muscle kinematics as follows:

Fmt = Fm
0

[

fa

(

l̃m

)

· fv(ṽm) · a + f p

(

l̃m

)

+ dm ṽm

]

cos(φ) (5)

where Fm
0 is the maximum isometric muscle force; fa(l̃m) is

the active force–length relationship that describes the ability of
muscle fibers to generate forces at different lengths; l̃m is the
fiber length normalized with the optimal fiber length; fv(ṽm) is
the force–velocity relationship that represents the muscle fiber
force contribution of the fibres’ contraction velocity (ṽm), and
the velocity was normalized with maximum contraction veloc-
ity and optimal fiber length; f p(l̃m) is the passive force–length
relationship that expresses the force response to the fibers to
strain; dm is the muscle damping coefficient that represents the
muscle damping characteristics; and φ is the pennation angle
of the fibers.

Joint torques were then estimated by the product of muscu-
lotendon forces Fmt and moment arms rmt through the joint
dynamics component as follows:

M = rmt × Fmt . (6)

The EMG-driven NMS model was implemented in Open-
Sim through the calibrated EMG-informed NMS modeling
toolbox (CEINMS) [15]. OpenSim was also used to calculate
musculotendon lengths and moment arms using joint angles
through the scaled musculoskeletal model [39]. CEINMS was
then employed to calibrate a subject-specific EMG-driven
NMS model to predict joint torques.

Detailed parameter configuration of the EMG-driven NMS
model followed the recommendation by Pizzolato et al. [15].
For each subject-specific EMG-driven NMS model, optimal
fiber of length lm

0 and tendon slack of length l t
s of each MTU

were bounded within ±15% from their initial values, and
muscle activation dynamics parameters A, C1, and C2 were
calibrated globally. The shape factor A was bounded between
−3 and 0, and the coefficients C1 and C2 were bounded
between −1 and 1. A strength coefficient constrained between
0.5 and 2.5 was assigned to each MTU and was used to
calibrate maximum isometric force. During the calibration,
these subject-specific parameters were refined by an optimiza-
tion algorithm to minimize the error between estimated and
measured/actual ankle joint torques.

Fig. 3. Three-layer ANN architecture with k input neurons (k = 4, including
EMG recordings from three muscles and ankle joint angle), two hidden layers
with i and j neurons, respectively (i = 10 and j = 10), and one output neuron
of the predicted ankle joint torque Y .

D. Artificial Neural Network Model

The ANN model that was used to estimate ankle joint torque
consists of an input neural layer (experimentally measured
data as the input variables), an output neural layer (where the
predicted ankle joint torque was determined), and two hidden
layers (where the convergence work of the neural network was
facilitated).

At the input layer (see Fig. 3), each neuron represented input
variables (X1, . . . , Xk), including EMG recordings and ankle
angle (k = 4). The input variables spread to the hidden layer
by the propagation rule as follows:

Si =

N
∑

k=1

Wki Xk + bi (7)

where Si is the i th output in the first hidden layer (i = 10),
Wki is the weight value of the connection between neurons k

from the input layer and neurons i from the first hidden layer,
and bi is the value of the bias value associated with neuron i .
For the second hidden layer with j neurons ( j = 10), output
from the previous layer output was set as input and spread to
the next layer.

Each neuron in the hidden layer used a rectifier linear unit
(ReLU) Si = max(Si , 0) as its activation function. In practice,
training of a ReLU network outperformed other activation
functions, such as sigmoid and tanh, with respect to the
statistical performance and the computational cost [40], [41].
The output layer that predicted ankle joint torque is a linear
combination of weighted hidden layer outputs with biases of
the ANN.

In the training process of the ANN model, a mean square
error (mse) between the predicted and measured ankle joint
torque was used as the loss function L, as shown in the
following equation:

L = 1/n

n
∑

i=1

(

yi,predict − yi,measure)
)

(8)

where n is the number of data samples; ypredict and ymeasure are
the predicted and measured ankle joint torque, respectively.
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The trained ANN aimed to achieve a globally optimal solution
by using an adaptive moment estimation (Adam) optimization
method. The Adam was proposed by Kingma and Ba [42]
and is currently one of the most popular step size methods
in the area of ANNs [43]. Adam adjusts the learning rate
automatically for each weight based upon the first and second
moments of the gradients (the mean and uncentered variance)
for that weight.

To train an eligible ANN model with a low loss [computed
from (8)], a “coarse-to-fine” random search was utilized to
obtain the parameters included in the model. Two hidden fully
connected layers with ten neurons were applied, and the ReLU
activation function was used. The learning rate of the Adam
optimizer was tuned to 0.0009. The batch size of the ANN
was set to 20. A Xavier weight with zero bias initializer was
chosen, and 500 epochs were used.

E. Evaluation Protocol

To investigate and compare the efficiency and accuracy of
predicting ankle torque through the EMG-driven NMS model
and the ANN, six different cases were formed, using different
types of trials to calibrate (NMS model) or train (ANN) the
model. After calibrating (training), the parameters for the
NMS model were obtained, including optimal fiber length and
tendon slack length of each MTU, muscle activation dynamics
parameters, and maximum isometric force; the parameters for
the ANN model were also acquired, including hidden layer
neurons, learning rate, batch size, initializer, and the number
of epochs. The calibrated and trained models were each then
tested on the remaining trials. The six different cases were cho-
sen to validate the proposed hypotheses that the ANN model
would have a better overall performance than the EMG-driven
NMS model, but an EMG-driven NMS might have a better
agreement when calibrated and tested on movements involving
the same muscle contractions. Calibration/training data are as
follows.

Case 1: Three trials from slow walking at 100 cadences/min.
Case 2: Three trials from isokinetic plantarflexion at 90◦/s.
Case 3: Three trials from dorsiflexion at 90◦/s.
Case 4: Three trials from dorsiflexion at 60◦/s and three

trials from plantarflexion at 60◦/s.
Case 5: Two trials from (each) slow walking at

100 cadences/min, self-selected walking speed,
dorsiflexion at 60◦/s, dorsiflexion at 90◦/s,
plantarflexion at 60◦/s, and plantarflexion at 90◦/s,
separately.

Case 6: Three trials that included maximum signal processed
EMG magnitudes across all trials of the SOL, GM,
and TA muscles.

The root mse (RMSE) Erms between the measured
(computed from inverse dynamics) and predicted ankle joint
torque (normalized by body mass) is used to evaluate the
agreement of each model. RMSE was computed for each
subject and then averaged across the ten subjects

Erms =

√

√

√

√1/N

n
∑

i=1

(

yp − ya)
)

(9)

where yp and ya are the predicted and actual ankle joint
torques, respectively. A paired t-test was applied to inves-
tigate the agreement between the measured and predicted
joint torques by the NMS model and ANN (at 5% level of
significance).

III. RESULTS

In Case 1, the predicted torque from both the NMS model
and the ANN agreed better with measured torque in gait than
in the isokinetic ankle movements, among which agreement
was somewhat better in the plantarflexor movement. Com-
pared with NMS, the ANN-predicted torque agreement was
found significantly better in calibrated/trained slow walking
movement (p < 0.01). No significant differences were found
between two methods in other movements (see Fig. 4). The
mean and SD of RMSE across ten subjects were shown
Table I.

In Case 2, torques predicted by both the NMS model and
the ANN agreed better with measured torques in plantarflexion
movements than in gait and dorsiflexion movements, with the
poorest agreement in dorsiflexion movements. Compared with
NMS, the ANN-predicted torque agreement was significantly
better in plantarflexion tasks (p = 0.01 and p = 0.03) but
significantly worse in gait (p = 0.05, p = 0.01, and p =

0.04). Although the RMSE of torque prediction was lower
in NMS model in dorsiflexion tasks, the differences were not
significant (p = 0.15 and p = 0.10).

In Case 3, torques predicted by both the NMS model and
the ANN agreed better with measured torques in dorsiflex-
ion movements than in gait and plantarflexion movements.
Compared with NMS, the ANN-predicted torque agreement
was significantly better in dorsiflexion tasks (p < 0.01)
but significantly worse in gait (p = 0.02, p = 0.01, and
p < 0.01). Although the RMSE of torque prediction was lower
in the NMS model in plantarflexion tasks, the differences were
not significant (p = 0.11 and p = 0.07). In total, the RMSE
of torque prediction from the NMS model was significantly
lower than in ANN ( p = 0.03).

In Case 4, torques predicted by both the NMS model
and the ANN agreed better in dorsiflexion and plantarflexion
movements than in gait. Compared with NMS, the ANN-
predicted torque agreement was significantly better in the
calibrated/trained plantarflexion and dorsiflexion movements
(p < 0.01). Although the RMSE of torque prediction was
lower in NMS model in gait, the differences were not signif-
icant (p = 0.44, p = 0.63, and p = 0.33).

In Case 5, compared with the first four cases, predicted
torques by both the NMS model and the ANN agreed better
overall. The ANN-predicted torque agreement was better than
NMS-predicted torque in all movements. The overall RMSE
of torque prediction was significantly lower in ANN than in
the NMS model. There was a significant difference between
the RMSEs estimated by the NMS model and ANN in gait
(p < 0.01) and 90 ◦/s plantarflexion ( p = 0.03) and 90 ◦/s
dorsiflexion (p < 0.01) movements. Although the RMSE of
torque prediction was lower in the ANN model in 60 ◦/s
dorsiflexion and 60 ◦/s dorsiflexion movements, the differences
were not significant (p = 0.05 and p = 0.37).
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Fig. 4. Ankle joint torque estimated via inverse dynamics, EMG-driven NMS model, and ANN, shown as mean ± 1 standard deviation (SD) of all subjects
and trials. Results of gait are shown during the stance phase. The isokinetic dorsi/plantarflexion movements are shown as a function of the movement cycle.
Six different cases using different types of trials for calibration (NMS) or training (ANN), tested on the remaining trials, were created. The trials used for
calibration/training trials are circled. Case 1: three trials from slow walking at 100 cadences/min. Case 2: three trials from plantarflexion at 90 ◦/s. Case 3:
three trials from dorsiflexion at 90 ◦/s. Case 4: three trials from dorsiflexion at 60 ◦/s and three trials from plantarflexion at 60 ◦/s. Case 5: two trials from
slow walking at 100 cadences/min, self-selected walking speed, dorsiflexion at 60 ◦/s, dorsiflexion at 90 ◦/s, plantarflexion at 60 ◦/s, and plantarflexion at
90 ◦/s, separately. Case 6: three trials containing the maximum EMG value from all trials of the SOL, GM, and TA muscles. The agreement of predicted ankle
torque (normalized by body mass) from each model with the observed value (inverse dynamics) was computed as the RMSE. The RMSE was calculated for
each subject, and an average was computed, as illustrated in the column plots. ∗ and # indicate that the RMSE estimated by ANN was significantly lower
and higher than the NMS model, respectively, based on a paired t-test.

In Case 6, compared with the results in Case 5, predicted
torques by the NMS model agreed better with measured
torques, whereas those predicted by the ANN were somewhat
worse. There was a significant difference between the RMSEs
predicted by the NMS model and ANN in gait (p = 0.02, p =

0.02, and p = 0.04). No significant differences were found
between the two methods in other movements.

IV. DISCUSSION

We estimated the ankle joint torques using two relevant,
but fundamentally different methods: an EMG-driven NMS
model and an ANN. This article is the first study comparing
joint torque prediction performance of an EMG-driven NMS
model to ANN in different movements, using different training
data as input. We found that the NMS model had a better
agreement in ankle joint torque prediction than the ANN
model with some exceptions; the ANN predicted ankle joint
torques with better agreement when trained with data from the

same movement type. The NMS model predicted ankle joint
torque best when calibrated with trials during which EMG
reached maximum levels, whereas the ANN predicted well
when trained with many trials and types of movements. In this
article, the detailed comparative performance of methods to
predict ankle joint torque, relating to how the methods have
been calibrated/trained, can significantly contribute to deciding
which model to choose in which circumstances and, thus, be of
large benefit for exoskeleton rehabilitation controller design.

Both the EMG-driven NMS and ANN model-based methods
have been commonly applied in limb joint torque estimation,
but their respective advantages in prediction were not well
investigated. Ankle joint torques and joint stiffness predicted
by an EMG-driven NMS model were used as the inputs of an
ankle exoskeleton controller [5]; a significant correlation was
reported between the predicted and measured ankle joint stiff-
ness, as well as torque, respectively. Meyer et al. [44] proposed
an EMG-driven modeling approach that can automatically
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TABLE I

MEAN AND SD OF RMSE ACROSS TEN SUBJECTS IN ANKLE JOINT TORQUE ESTIMATION

modify surrogate representations of the user’s musculoskele-
tal geometry and improve the accuracy of lower limb joint
torques prediction in gait. The EMG-driven NMS model uses
mathematical equations to reproduce the transformations from
EMG signal generation and joint angles to musculotendon
forces and joint torques. Subject-specified EMG-driven model
calibrated with personalized musculoskeletal geometry, such
as moment arms and muscle characteristics, could improve
its reliability in joint torque prediction. However, the EMG-
driven NMS model consists of complex calibration procedures
and requires the construction of complex relationships among
different variables, such as EMG signals, muscle geome-
tries, motion data, and joint torque. Alternatively, ANN can
extract features and store information on the entire network
and predict very complex functions, with a composition of
enough representation layers without explicit descriptions of
the complex relationships between variables. Hahn [25] used
a three-layer ANN model to estimate knee torques in 30 and
60 ◦/s isokinetic extension/flexion, and their results showed
that the ANN model had a more accurate torque prediction
compared with the stepwise regression model. Jali et al. [26]
applied a three-layer ANN to estimate joint torque during
elbow flexion movements. Their results illustrated that ANN
could well-demonstrate the EMG-torque relation and could be
utilized in the torque control in arm rehabilitation devices.
Liu et al. [24] used a three-layer ANN to estimate lower
limb joint torques during a vertical jump using GRF data
as inputs, and their study revealed that ANN could estimate
the nonlinear relation between GRF data and lower limb
joint torques during a vertical jump. However, ANN could
be used to map the relations between inputs and outputs,
but it does not explain the behavior of the network and,
thus, reduces its reliability in the network. There are both
advantages and disadvantages in the EMG-driven NMS model
and the ANN model; however, a comparison between ankle
torques predicted by an EMG-driven NMS and an ANN model
has not been performed.

The ANN prediction performed well when trained on data
from similar movements but might become less reliable when
predicting unseen movements. In Cases 1–4, a lower RMSE
from ANN was found in the gait, plantarflexion, dorsiflex-
ion, and dorsi/plantar flexion tasks, respectively, compared
with the EMG-driven NMS model when the same motions
were included in calibration/training the model. Particularly,
in Case 5, a lower RMSE was found in all tasks in the ANN
model, and the overall RMSE from ANN was significantly
lower than the NMS model when all types of movements
were included in the training process. In the ANN model,
a three-layer neural network with two hidden layers was
constructed. The input variables spread data features to hidden
layers. Two hidden layers were commonly chosen and stated
to be sufficient to express most of the relations in society
[45]. More hidden layers would construct a more complex
neural network than needed and likely cause overfitting [46].
The data amount in this study might not be large enough
to build a complex neural network with more hidden layers.
The neurons in hidden layers learn a different set of weights
and biases to represent different functions over the input
data. The ReLu activation function was applied independently
to each element of the hidden layer to add a nonlinear
property to the neural network and, thus, learn more complex
relationships and patterns in the data. The Adam optimization
method trained the ANN model to achieve a globally optimal
solution, while other parameters were chosen by “coarse-
to-fine” random search based on trial and error to have a
lower loss when training the ANN model. With the similar
movements’ data, the constructed ANN model could extract
the complex nonlinear relationship between EMG signals
and joint torque and, thus, has a better agreement in torque
prediction in similar movements compared with the NMS
model. Therefore, ANN is superior to the NMS model in
estimating the limb joint torque in the same types of movement
as in the training process. However, the ANN prediction might
become less reliable when encountering unseen movements.
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For example, ANN-predicted torque agreement was worse and
had a larger SD in isokinetic plantarflexion in Cases 1 and 3
and dorsiflexion in Cases 2 and 6 than in the NMS model
when the movements were not included in the training process.
This could be explained that ANN learns the relationships
between inputs and outputs with training movements’ data
as a black box, resulting in the unexplained behavior of the
network. The trained ANN model probably did not learn
the relations between variables in unseen tasks and became
unpredictable; thus, they have a worse prediction agreement.
Therefore, the overall RMSE might have been lower at times,
but the larger variability probably makes it less reliable when
encountering unseen movements.

It is important to note that the ANN model only learns
the relationships between inputs (EMG signals and ankle
angle) and output (ankle torque) through its hidden layers;
no other relevant information about muscle or joint contact
forces, for example, is explicitly computed. It is, thus, only
suitable to predict the specifically designated outputs. The
NMS model, in contrast, has intermediate steps in which
relevant information is computed and can be useful in other
contexts. Computed muscle forces, for instance, are computed
in intermediate steps and could be used to compute joint
stiffness and as input for an ankle exoskeleton controller, for
instance, as seen in the work by Yao et al. [5].

Trained EMG-driven NMS model, however, overall pre-
dicted ankle torques better than the ANN, in movements
that have similar muscle contraction as in the calibration
movements. For instance, in Case 2, the EMG-driven NMS
predicted joint torques were significantly better in gait and in
isokinetic plantarflexion than in isokinetic dorsiflexion. This
can be attributed to the observation that, in gait and isokinetic
plantarflexion, SOL and GM both worked as dominant muscles
for movements and possibly have similar muscle coordination
patterns. In the EMG-driven NMS model, muscle coordina-
tion in terms of relative timing and relative magnitude [47],
[48] were explicitly taken into account during the calibration
procedure, so, if the unseen movements have similar mus-
cle coordination patterns, the EMG-driven NMS model will
work better. Therefore, the EMG-driven model had a better
performance in predicting limb joint torque of unseen tasks
that involve similar muscle contraction coordination as in the
calibration task.

Calibrating on a large number of trials did not in general
improve the performance of the NMS in predicting joint
torques but did improve the performance of the ANN. The
overall RMSE of ANN-predicted torques in Case 5 was signif-
icantly lower than those of NMS-predicted torques. The ANN
model utilized self-selected neurons and neural network layers
to estimate the nonlinear relationships between input signals
and regression outputs. With a large amount of data, ANN
could learn more essential properties associated with the rela-
tionships between EMG signals and joint torques. In contrast,
the NMS-predicted torques agreed with measured torques best
in Case 6. In the EMG-driven NMS model, mathematical equa-
tions were formulated to represent the nonlinear relationships
between EMG signals and torques, and optimization algo-
rithms were used to calibrate other MTU-specific parameters,

such as optimal fiber length and maximum isometric force.
With high EMG magnitude, a large range of muscle force–
length, force–velocity, and tendon force–strain relationships
are included in the calibration process and, thus, well-calibrate
MTU-related parameters. As such, the calibration was more
reliable when performed on trials containing relatively high
EMG magnitude.

It is important to note that we only tested only one
ANN and one NMS model. Other NMS models and even
different parameters in the currently used NMS may have
shown different results. There are likewise many other ANNs
and machine learning models that have different structures
and would likely have yielded different results. Our findings
should be considered in this context. Another limitation of this
study was that only ankle joint torque prediction performance
using the two methods was compared. Only TA, GA, and
SOL EMG signals and ankle joint angles were available.
Knee and hip joint torque can be predicted, and comparative
results could be more informative and robust if EMG data
of more lower limb muscles were recorded in more different
movements.

V. CONCLUSION

In this article, we presented detailed comparisons of ankle
joint torque prediction between an EMG-driven NMS model
and an ANN. In our study protocol, the EMG-driven NMS
model better predicted joint torque from EMG and joint
angle data with some exceptions; the NMS predicted ankle
torques better when calibrated on trials involving a high
degree of muscle activation, whereas the ANN predicted
ankle torques somewhat better when trained on a large and
varied set of trials. The detailed analysis of the methods’
performance in predicting ankle joint torque can signifi-
cantly contribute to determining which model to choose, and
under which circumstances, and, thus, be of large benefit
for exoskeleton rehabilitation controller design. As there are
other NMS models and very many other machine learning
algorithms, further investigation with other NMS models and
machine learning algorithms are warranted to determine which
approach is preferable to predict joint torque in different
situations.
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