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RESUMO

CAMPO, J. Estimativa de torque no tornozelo para reabilitação robótica de

membros inferiores. 2018. 57p. Dissertação (Mestrado) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2018.

Em terapias de reabilitação robótica, o conhecimento dos torques da articulação humana

é importante para a segurança do paciente, para fornecer dados conĄáveis na avaliação

clínica e aumentar o desempenho de controle do dispositivo, no entanto, sua medição pode

ser complexa ou costoso de implementar. A maioria das técnicas de estimativa de torque

tem sido desenvolvidas para dispositivos de reabilitação robótica de membros superiores,

além disso, eles normalmente requerem modelos antropométricos e musculoesqueléticos

detalhados. Nesta dissertação é apresentada a estimativa do torque do tornozelo no robô

Anklebot, a estimação utiliza um modelo dinâmico tornozelo + Anklebot o qual considera

a medição da posição e velocidade angular do tornozelo, os parametros de impedancia

mecânica do tornozelo são obtidos por meio de um modelo simples de segunda ordem e são

identiĄcados os torques gravitacionais e de atrito. Três abordagens para a estimativa de

torque de tornozelo foram propostas para serem implementadas, o momento generalizado, o

Ąltro de Kalman e, Ąnalmente, uma abordagem que combina tanto o momento generalizado

e o Ąltro de Kalman. A validação de tais abordagens foi desenvolvida primeiro em um

mock-up físico conĄgurado para reproduzir o movimento articular do tornozelo humano,

avaliando seus desempenhos. A segunda abordagem proposta foi selecionada para ser

implementada em um usuário voluntário. Um conjunto de experimentos foi realizado

considerando a atividade física que o sujeito pode realizar ao interagir com o Anklebot, a

estimativa desenvolvida de torque de tornozelo demostrou ser bem sucedida para o torque

passivo e na maioria dos cenários propostos onde o torque ativo é realizado.

Palavras-chave: Torque no tornozelo, Algoritmos de estimação, Reabilitação Robótica,

Estratégias de Controle,Interação humano-robô.



ABSTRACT

CAMPO, J. Ankle torque estimation for Lower-Limb Robotic Rehabilitation.
2018. 59p. Dissertation (Master) - São Carlos School of Engineering, São Paulo University,
São Carlos, 2018.

In robotic rehabilitation therapies, knowledge of human joint torques is important for

patient safety, to provide a reliable data for clinical assessment and to increase control

performance of the device, nevertheless, its measurement can be complex or have a high-

cost implementation. The most of techniques for torque estimation have been developed

for upper limb robotic rehabilitation devices, in addition, they typically require detailed

anthropometric and musculoskeletal models. In this dissertation is presented the ankle

torque estimation for the Anklebot robot, the estimation uses an ankle/Anklebot dynamic

model that consider the ankle joint angular displacement and velocity measurement, its

mechanical impedance parameters are obtained through a second-order modeled mechanical

impedance of the ankle and an identification of frictional and gravitational torques. Three

approaches for the ankle torque estimation were proposed to be implemented in the

Anklebot robot, the Generalized Momentum, the Kalman filter and finally a combination

of both the above mentioned approaches. The validation of such approaches was developed

first on a physical mockup configured to reproduce the human ankle joint movement, by

assessing its performances, the Kalman filter approach was selected to be implemented on

a voluntary subject. A set of experiments were performed considering the physical activity

that the subject may realize when interacting with the Anklebot, the developed ankle

torque estimation proved to be successful for passive torque and in most of the proposed

scenarios where active torque is performed.

Keywords: Ankle Torque, Estimation Algoritms, Robotic Rehabilitation, Control Strate-

gies, Human-Robot Interaction.





LIST OF FIGURES

Figure 1 – The discrete Kalman filter cycle. . . . . . . . . . . . . . . . . . . . . . 21

Figure 2 – The Anklebot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3 – Sagittal plane representation of the Anklebot. . . . . . . . . . . . . . . 26

Figure 4 – Geometric comparison between Anklebot shoe and customized foot-plate. 26

Figure 5 – Schematic representation of the Anklebot Impedance control. . . . . . . 27

Figure 6 – Proposed model for Anklebot friction. . . . . . . . . . . . . . . . . . . 28

Figure 7 – Friction parameter characterization. . . . . . . . . . . . . . . . . . . . . 29

Figure 8 – Friction time responses. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 9 – Control block diagram for Ankle/Anklebot Dynamics identification.

Adapted from ??). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 10 – Frequency Response Estimation of the closed-loop mechanical impedance

for the ankle/Anklebot system . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 11 – Free-body diagram of the set ankle and foot-plate. . . . . . . . . . . . . 34

Figure 12 – Schematic diagram of the experimental setup . . . . . . . . . . . . . . 37

Figure 13 – Physical mock-up to validate the torque estimation. . . . . . . . . . . . 38

Figure 14 – Load cell characterization. . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 15 – mock-up/Anklebot mechanical impedance in frequency domain . . . . . 40

Figure 16 – Time responses of the impedance control for Test 1 . . . . . . . . . . . 41

Figure 17 – Disturbance torque estimation by the generalized momentum approach 42

Figure 18 – Torque estimation obtained by the generalized momentum approach . . 42

Figure 19 – Process input noise for Kalman filter approach . . . . . . . . . . . . . . 43

Figure 20 – State estimation result for the Kalman filter approach . . . . . . . . . . 44

Figure 21 – Process input noise for Kalman-based momentum approach . . . . . . 45

Figure 22 – State estimation result for the Combined Kalman and Generalized

momentum approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 23 – Time responses of test 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 24 – Torque estimation results for test 2. . . . . . . . . . . . . . . . . . . . . 47

Figure 25 – Configuration for ankle torque estimation. . . . . . . . . . . . . . . . . 49

Figure 26 – Ankle torque estimation for test 1. . . . . . . . . . . . . . . . . . . . . 51

Figure 27 – Ankle torque estimation for test 2. . . . . . . . . . . . . . . . . . . . . 52

Figure 28 – Ankle torque estimation for test 3. . . . . . . . . . . . . . . . . . . . . 52

Figure 29 – Ankle torque estimation for test 4. . . . . . . . . . . . . . . . . . . . . 53





LIST OF TABLES

Table 1 – Anthropometric data for the ankle-foot-plate set . . . . . . . . . . . . . 35

Table 2 – Configuration of test for performance assessment . . . . . . . . . . . . . 46

Table 3 – Comparison of torque estimation performance . . . . . . . . . . . . . . . 47

Table 4 – Configuration of tests for ankle torque estimation. . . . . . . . . . . . . 50





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 State of art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 TORQUE ESTIMATION APPROACHES . . . . . . . . . . . . . . . 17

2.1 Generalized momentum observer approach . . . . . . . . . . . . . . . 17

2.2 Linearized Kalman filter approach . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Augmented state-space system . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Discrete Kalman filter algorithm . . . . . . . . . . . . . . . . . . . . . 19

2.3 Combined Kalman filter and Generalized momentum approach . . . 21

3 SYSTEM MODELING . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 The Anklebot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Anklebot Impedance Control . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Ankle/Anklebot inverse dynamic model . . . . . . . . . . . . . . . . 28

3.3.1 Experimental identification of the Anklebot friction torque . . . . . 28

3.4 Ankle/Anklebot inverse dynamic model identification: a case study 30

3.4.1 Passive Ankle Impedance and Anklebot dynamics . . . . . . . . . . . 31

3.4.2 Gravitational Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 EXPERIMENTAL VALIDATION . . . . . . . . . . . . . . . . . . . . 37

4.1 Mock-up and Anklebot dynamics . . . . . . . . . . . . . . . . . . . . 39

4.2 Test 1: Tuning of estimators parameters . . . . . . . . . . . . . . . . 40

4.2.1 Generalized momentum approach . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Linearized Kalman filter approach . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Combined Kalman and Generalized momentum approach . . . . . . 44

4.3 Test 2: Performance assessment between estimation approaches . . 46

4.4 Conclusions of experimental validation and outlook . . . . . . . . . . 47

5 ANKLE TORQUE ESTIMATION . . . . . . . . . . . . . . . . . . . 49

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Test 1: passive - active-1 operation mode and Kv = 30 N-m/rad . 50

5.3 Test 2: passive - active-1 operation mode and Kv = 60 N-m/rad . 51

5.4 Test 3: passive - active-2 operation mode and Kv = 30 N-m/rad . 52

5.5 Test 4: passive - active-3 operation mode and Kv = 0 N-m/rad . . 53



5.6 Conclusions of ankle torque estimation . . . . . . . . . . . . . . . . . 53

6 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . 55

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



13

1 INTRODUCTION

1.1 Motivation

Over time, advances in the development of rehabilitation robots have helped therapists

in their efforts to facilitate the patients functional recovery, since these robots must have

direct physical interaction with patients, safety is a critical concern. Most rehabilitation

robots initially only provided training in passive mode, that is, the robot guides the

patient’s extremities along a desired trajectory (PRANGE et al., 2006). In recent years,

many researchers have insisted that robotic assistance should be adaptable according to

the patient’s contribution to more effective and optimal training (RIENER et al., 2005;

CAI et al., 2006).

Therapists support the Assist-As-Needed rehabilitation paradigm, which states that robotic

interventions must be tailored to the requirements of each subject and their use minimized

only to situations for which the subject truly requires them (PRIETO GUILLERMO, 2014).

According to Riener et al. (2005), in robotic therapy the muscular effort quantification is

important to make adaptable the robot behavior and to inform about the patient progress

in a training. The joint torque, as well as other biomechanical parameters, are related to

the muscular effort expended in a physical activity (ANDREWS, 1983), Thus, knowing

the joint torque is essential to quantify the patient’s contribution in a physical therapy

(LUNENBURGER; COLOMBO; RIENER, 2007).

1.2 State of art

Strength which is directly associated with torque, has been measured using manual muscle

testing (MMT) or isokinetic torque measurement systems. MMT is easy to perform as it

does not require any specific equipment but it has a low reliability (ESCOLAR et al., ) and

low sensitivity (BOHANNON, 2005). By using isokinetic/isometric measurement systems

it is possible to assess strong functions more reliably, but they have the disadvantage

of being rather expensive. To summarize, depending on the robotic system, the above

mentioned measurements can be technically difficult to realize or could be very expensive

to implement. Currently in the research field of robotic rehabilitation, there exists the

interest in finding alternative approaches to estimate the patient torque based on others

measurements that simplify this task.

Due to the complex interaction between the mechanical characteristics of a muscle and its

electrical activity, electromyography (EMG) has been a well-studied methodology to esti-

mate the patient’s torque during rehabilitation therapy (PEñA; JAUREGUI; SIQUEIRA,
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2015; LLOYD; BESIER, 2003; KOMADA et al., 2009; ERDEMIR et al., 2007). Although

the measurement of EMG signals has advantages in terms of detecting the user’s inten-

tions with precise time, it has practical limitations, for example, electrode fixation is

time-consuming, also complex signal processing and calibration measurement are required.

In Hussain, Xie e Jamwal (2013), the interaction torques between a robotic orthosis and

its user were identified through load cells, where a model of inverse dynamics of the

human-robot system was used to isolate the active torque component from the passive

effects and kinetic modeling. In Kim et al. (2014), Lenzi et al. (2011) and Khan et al.

(2015) similar procedures are developed by pressure sensors to measure interaction torques.

Some methods for force estimation and sensorless force control have been developed for

robotic manipulators. The Disturbance Observers (DOB), originally presented in Ohnishi

(1987), has been used to estimate external forces and torques of a manipulator by using

only encoders (MURAKAMI; YU; OHNISHI, 1993), (EOM et al., 1998) and more recently

(MAQUIN et al., 2015). The DOB idea is to consider a dynamic system with external

disturbances and use a state observer to estimate and compensate for disturbances within

a control system. The DOB has the advantages of requiring only joint angle measurement

and actuator signals (current, voltage and torque in the motor), furthermore eliminates

the need for acceleration measures and does not require inversion of the inertia matrix

of the dynamic system robotic. The DOB has already been used in estimating torque in

robotic systems of rehabilitation for upper limbs (ABHISHEK; K., 2010; UGURLU et al.,

2012; UGURLU et al., 2015) showing acceptable results, however, the effectiveness of the

estimation depends on accurate mathematical modeling of the human-robot system as

well a good compensation of the frictional forces and other non-linear effects.

An alternative approach was proposed in Luca e Mattone (2003a) to estimate disturbance

torques in robotic manipulators. It generates diagnostic signals named as residues in corre-

spondence with potential faults (disturbances) that can affect the system. This approach

takes advantage of the mechanical property of the generalized momentum of the robot,

which has the advantage of decoupling the torque from the disturbance with respect to

the dynamic system. Therefore, this method works independently of the nominal torque

generation scheme. In addition, it does not need to reverse the inertia matrix which makes

it possible to incorporate linear control techniques while fully utilizing system nonlinearities.

Another approach has proven to be very efficient in robotic manipulators is the Kalman

filter which was used in Park e Chung (2013) to estimate external torques in the joints in

a robotic system. The Kalman filter is a recursive algorithm that estimates the complete
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state vector of a dynamic system disturbed by Gaussian white noise from partial state

measurements. In (JUNG; LEE; HUH, 2006), an extended structure of the Kalman filter

is combined with the Lyapunov’s law of adaptation to estimate the contact force of a

nonlinear model for the manipulator robot. In Wahrburg et al. (2015) the external torque

of a 7-DoF manipulator is estimated by using an approach that combines the Kalman

filter based and the Generalized momentum, the estimated torque was modeled as a linear

system.

Some estimation strategies like the non-linear disturbance observer (STEFAN; NATHAN;

HENK, 1993) and extended Kalman Filter (RADKE; GAO, 2006; KIM; CHO; CHOI,

2016) have been implemented to estimate external torques in robotic manipulators and

even in robotic devices for upper limb rehabilitation. Nevertheless, there exists a lack of

applications of this estimation strategies in the lower limb robotic rehabilitation field.

This thesis is focused in the development of a nominal estimation approach on a robotic

device for lower limbs rehabilitation, The developed torque estimation is a good starting

point in the search for future robust estimation methods.

1.3 Objectives

The main goal of this thesis is to develop an ankle torque estimation to be used in

robotic rehabilitation therapies. The estimation will be implemented on the Anklebot

which is a robot device for ankle rehabilitation. This robot will be delimited to operate in

dorsi-plantar flexion.

The following estimation approaches are discussed in the thesis:

1. Generalized momentum;

2. Kalman filter;

3. Combined Kalman filter and Generalized momentum.

Before estimating the ankle torque of a subject wearing the Anklebot, the approaches

needs to be validated, hence, they are tested first on an physical mock-up assembled

to replicate the human ankle movement in the sagittal plane. In order to perform the

torque estimation, a detailed ankle/Anklebot dynamic model is required. This model

is developed considering the mechanical impedance parameters of the whole Ankle and

Anklebot system, including the gravitational and frictional torques.

1.4 Thesis Outline

Chapter 2 provides the background for the proposed approaches for ankle torque estimation.

Chapter 3 describes a system modeling of the Anklebot/ankle dynamics. Chapter 4 shows
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the validation and performance assessment for the selection of the appropriate approach.

Finally in chapter 5, the implementation of the Kalman filter approach to estimate the

ankle torque of a voluntary subject is presented.
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2 TORQUE ESTIMATION APPROACHES

This chapter presents the methods proposed for ankle torque estimation. They are formu-

lated under the concept of observing the disturbance input of a feedback control system.

In this work the ankle torque is considering as the disturbance to be estimated.

2.1 Generalized momentum observer approach

The generalized momenta observer approach (DAMME et al., 2011) assumes the presence

of a disturbance torque, τd, in the robotic device joints as result of the interaction of the

robot with its environment (LUCA; MATTONE, 2003b; LUCA; MATTONE, 2005; LUCA

et al., 2006).

Conventionally, the inverse model of robotic systems are given in the form:

M(θ)θ̈ + C(θ̇, θ)θ̇ + G(θ) + τfric(θ̇) = τr − τd (2.1)

where θ ∈ R
n denotes the vector of joint angles, n is the degree of freedom (DoF) of the

robot system; M ∈ R
n×n is the positive definitive inertia matrix; the term C(θ̇, θ)θ̇ ∈ R

n

joins the Coriolis and conservative torques, and G(θ) ∈ R
n represent the gravitational

torques. The torques acting at the joints are the applied by the actuator τr ∈ R
n, the

friction torque τfric and the disturbance torque τd ∈ R
n due to interaction a physical

environment.

According to (SICILIANO et al., 2009), the matrix C(q, q̇) can be expressed by:

Ṁ(θ) = C(θ, θ̇) + CT (θ, θ̇). (2.2)

The proposed disturbance observer is based on the generalized momenta, defined as:

p = M(θ)θ̇. (2.3)

Its time derivative is given by:

ṗ = M(θ)θ̈ + Ṁ(θ)θ̇. (2.4)

Substituting (2.1) and (2.2) into (2.4), one obtains:

ṗ = τr + CT (θ, θ̇)θ̇ − G(θ) − τfric(θ̇) − τd. (2.5)

This equation demonstrates the advantage of using the generalized momenta, since the

evolution of p is decoupled from the torque disturbance, and the i-th component of ṗ only

depends on the i-th component of τd.
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At this point, it is assumed that the objective is to develop an observer to p instead of

τd. Thus, ignoring the term τd for not being a measurement information, and inserting an

entry containing the prediction error e = p − p̂, where p̂ is a predictor of p, the dynamics

of the observer is given by:

˙̂p = τr + CT (θ, θ̇)θ̇ − G(θ) − τfric(θ̇) + KIe, (2.6)

where KI is a positive-definite diagonal gain matrix.

Provided there are no uncertainties in system modeling, it is verified that KIe corresponds

to τd. Writing r = KIe, by means of (2.5) and (2.6), one obtains:

ṙ = KI(ṗ − ˙̂p) = KIτd − KIr. (2.7)

Finally, an estimation for the disturbance torque can be computed as:

τ̂d =
ṙ

KI

+ r. (2.8)

The estimated disturbance torque can be expressed in the Laplace domain:

r(s) =
KI

s + KI

τd(s), (2.9)

That is, r is the result of applying the disturbance torque through a first-order low pass

filter, namely, r is a smoothed version of τ̂d.

2.2 Linearized Kalman filter approach

2.2.1 Augmented state-space system

From the system dynamic model (Equation 2.1) an expression defining the angular

acceleration can be obtained:

θ̈ = M(θ)⊗1
[

τr − τd − C(θ̇, θ)θ̇ − G(θ) − τfric(θ̇)
]

. (2.10)

For notation simplicity, (2.10) is rewritten as:

θ̈ = M⊗1
[

τr − τd − Cθ̇ − G − τfric

]

, (2.11)

and represented as a continuous-time state-space equation:




θ̈

θ̇



 =




−CM⊗1 −GM⊗1

0 0








θ̇

θ



+




M⊗1

0



 τr −




M⊗1

0



 τd −




M⊗1

0



 τfric. (2.12)
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A common approach for disturbance rejection in control systems design, is to assume that

the structure of the disturbance is known (RADKE; GAO, 2006; MUSKE; BADGWELL,

2002). If the disturbance has a sinusoidal behavior, then, the mathematical model generating

such a signal is given by:

τd = Ad sin(ω0t) (2.13)

and its derivative and integral functions:

τ̇d = Adω0 cos(ω0t), (2.14)
∫

τd = −
Ad

ω0

sin(ω0t). (2.15)

Therefore, the disturbance model can be rearranged in state space form:




τ̇d

τd



 =




0 −ω2

0

1 0








τd
∫

τd



 (2.16)

It is worth notice that the physical meaning of torque integral is the angular impulse

(kg m2/s units). By augmenting the system (2.12) with the state-space model (2.16), the

disturbance and its integral value can be regarded as state variables:










θ̈

θ̇

ˆ̇τd

τ̂d










=










−CM⊗1 −GM⊗1 −M⊗1 0

1 0 0 0

0 0 0 −ω2
0

0 0 1 0










︸ ︷︷ ︸

Ac










θ̇

θ

τ̂d
∫

τ̂d










︸ ︷︷ ︸

x

+










M⊗1

0

0

0










︸ ︷︷ ︸

Bc

(τr − τfric)
︸ ︷︷ ︸

u

, (2.17)

where Ac and Bc are the continuous state transition and input matrices respectively, x

the state vector and u the input system. Since θ and θ̇ are the measurable variables of the

state vector, an output system equation is defined as:

y =




1 0 0 0

0 1 0 0





︸ ︷︷ ︸

H










θ̇

θ

τd
∫

τd










︸ ︷︷ ︸

x

. (2.18)

2.2.2 Discrete Kalman filter algorithm

Is important to note that the augmented model described by Equations (2.17) and (2.18)

has nonlinear components, then it can be expressed as a function:

ẋ = f(x(t), u(t), t), (2.19)
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thus, a linearization of the process model about an equilibrium point x̄ that satisfy

f(x̄, ū) = 0 where ū is the corresponding equilibrium input, yield the constant matrices:

A =
∂f

∂x

∣
∣
∣
∣
∣
x=x̄,u=ū

B =
∂f

∂u

∣
∣
∣
∣
∣
x=x̄,u=ū

. (2.20)

An important aspect for the discrete kalman filter implementation is that the transition

matrix A of the linearized model is calculated at each time with the most recent state

estimate, which is assumed to be the corrected estimated.

Now, the linearized augmented model can be discretized resulting in the time-varying,

discrete-time linear system in the form:

xk = Akxk⊗1 + Bkuk + wk⊗1, (2.21)

zk = Hxk + vk. (2.22)

The discrete Kalman filter explained in this section is a summarized version of the presented

in Welch e Bishop (2001). The Kalman filter addresses the general problem of trying to

estimate the state x ∈ R
n of a discrete-time controlled process that is governed by the

linear stochastic difference equation (2.21). with a measurement z ∈ R
m (Equation 2.22).

The random variables wk and vk represent the process and measurement noise respectively.

They are assumed to be independent (of each other), white, and with normal probability

distributions

p(w) ∼ N(0, Q), (2.23)

p(v) ∼ N(0, R). (2.24)

where Q and R are the process noise and measurement noise covariance matrices.

The Kalman filter estimates a process by using a form of feedback control: the filter

estimates the process state at some time and then obtains feedback in the form of (noisy)

measurements. As such, the equations for the Kalman filter fall into two groups: time update

equations and measurement update equations. The time update equations are responsible

for projecting forward (in time) the current state and error covariance estimates to obtain

the a priori estimates for the next time step. The measurement update equations are

responsible for the feedback i.e. for incorporating a new measurement into the a priori

estimate to obtain an improved a posteriori estimate. Indeed the final estimation algorithm

resembles that of a predictor-corrector algorithm for solving numerical problems as shown

below in Figure (1).
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Figure 1: The discrete Kalman filter cycle.

The specific equations for the time update are:

x̂⊗

k = Ax̂k⊗1 + Buk (2.25)

P ⊗

k = APk⊗1AT + Q (2.26)

Notice how the time update equations project the state and covariance estimates forward

from time step k − 1 to step k. A and B are from equation (2.21), while Q is from equation

(2.23). Initial conditions for the filter are discussed in the earlier references.

The specific equations for measurement update are:

Kk = P ⊗

k HT (HP ⊗

k HT + R)⊗1 (2.27)

x̂k = x̂⊗

k + Kk (zk − Hx̂⊗

k ), (2.28)

Pk = (I − KkH)P ⊗

k (2.29)

The first task during the measurement update is to compute the Kalman gain, Kk. The

next step is to actually measure the process to obtain zk, and then to generate an a

posteriori state estimate by incorporating the measurement as in equation (2.28). The

final step is to obtain an a posteriori error covariance estimate via equation (2.29).

After each time and measurement update pair, the process is repeated with the previous a

posteriori estimates used to project or predict the new a priori estimates.

2.3 Combined Kalman filter and Generalized momentum approach

The third approach proposed to estimate the ankle torque, involves a combination of

the generalized momentum described in section 2.1 and the Kalman filter in in section

2.2.2. This combined approach was originally proposed in Wahrburg et al. (2015) to

estimate external forces of a 7-DoF manipulator. In addition to the advantage of just

require the available motor signals (currents, angles, speeds), the authors remarks that this

approach allows improving the force estimation quality compared to existing approaches

by exploiting additional information regarding uncertainty in the joint friction estimates.
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As described in Section (2.1), the robotic dynamic model (Equation 2.1) can be rewritten

as:

ṗ = τr + CT θ̇ − G − τfric − τd. (2.30)

Focusing on estimating the external torque, thus, unlike Section (2.1) where the friction

model is modeled, here τ̂fric is assumed to be available, where uncertainties in friction

estimates (considered to have highest significance for the dynamic system) are modeled as

random variables, i.e.

wp = τ̂fric − τfric ∼ N(0, Qc,p) (2.31)

Introducing the abbreviation τ̄ = τr + CT θ̇ − G − τfric the dynamics equation (2.30) is

then expressed as:

ṗ = τ̄ − τd + wp, (2.32)

where wp is a noise term. For an accurate model, the term wp will be dominated by

uncertainties in the friction model. Such model is modeled as wp ∼ N(0, Qc,p).

The key idea is to combine the description of the manipulator dynamics based on the

generalized momentum with well known disturbance observer approaches. To this end, the

external torque is modeled as:

τ̇d = Adτd + wd, (2.33)

where Ad determines the dynamics assumed of the external torque, its subscript refers

that the torque is considered as a disturbance. If Ad is chosen as 0, the external torque

is considered to be constant with its derivative being subject to noise (wd in Equation 2.33).

Defining the state vector x = [pT τT
d ]T and combining the noise equations as w =

[wT
p wT

d ]T , equations (2.30) and (2.33) can be rearranged to form the augmented system:




ṗ

τ̇d





︸ ︷︷ ︸

ẋ

=




0 −1

0 Af





︸ ︷︷ ︸

Ac




p

τd





︸ ︷︷ ︸

x

+




1

0





︸ ︷︷ ︸

Bc

+ τ̄
︸︷︷︸

u

+w. (2.34)
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taking into account that the momentum can be measured as p = Mθ̇, and assuming

measurement noise v ∼ N(0, Rc), the output equation of the augmented system can be

written as:

p = [1 0]
︸ ︷︷ ︸

H




p

τd





︸ ︷︷ ︸

x

+v. (2.35)

Once an augmented system is defined, the discrete Kalman algorithm of Section (2.2.2)

can be implemented to estimate both the measured momentum and the unknown external

torque (considered as disturbance).
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3 SYSTEM MODELING

3.1 The Anklebot

The Anklebot (??) is a backdriveable robot with low intrinsic mechanical impedance,

designed to help people who have suffered from brain damage in restoring the range of

motion, passive stiffness and strength of the ankle. During robotic therapy, the Anklebot

is attached to the patient’s affected leg with a knee pad and a generic orthotic shoe.

Figure 2: The Anklebot. Font: ??).

Two linear actuators mounted in parallel to the leg move the ankle joint in the three

degrees of freedom, where the dorsiflexion-plantarflexion (DP) and inversion-eversion (IE)

movements are actuated. The ankle robot allows 25◇ of dorsiflexion, 45◇ of plantarflexion,

25◇ of inversion, 20◇ of eversion, and 15◇ of internal or external rotation. The Anklebot

can apply torque of up to 23 N/m for DP and 15 N/m for IE. The Anklebot is provided

by two types of encoders; a a set of Gurley R119 rotational encoders mounted coaxial with

the motors with a resolution of 8,78 x 10 ⊗3 ◇ and a set of Renishaw incremental linear

encoders mounted on the traction drive with a resolution of 5 x 10⊗6 m.

The schematic of the Anklebot in sagittal plane is presented in Figure 3. To determine

the angular position θDP and the actuator torque, τDP , it uses a linearized mathematical

and geometric model of the leg-ankle-foot system based on average anthropometric values

and measurements of the linear position sensors, XL and XR, as well as the linear force

sensors, FL e RR:

τDP = (FR + FL)xlength (3.1)

θDP = θDP,offset + tan⊗1

(

XR + XL

xlength

)

(3.2)

where the sub-indexes R and L refers to the left and right individual actuators, respec-

tively, xlength is the distance between the line of action of actuator force and the point of
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Figure 3: Sagittal plane representation of the Anklebot.
Adapted from ??).

attachment between the ankle and the robot in the sagittal plane. The torque τDP and the

ankle angles θDP,offset and θDP are estimated from a kinematic model of the relationship

between the actuator displacement and the ankle angular position.

Figure 4: Geometric comparison between Anklebot shoe and
customized foot-plate.

When operating the Anklebot, the shoe introduces inertia components and gravitational

forces that affect the torque estimation algorithms. Therefore, the shoe was replaced with

a orthotic foot-plate, this solution not only allows to release the torque estimation from an
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extrinsic load, but also reduce the physical effort done by the user to move his ankle. 3D

printed brackets were designed for the foot-plate and coupled considering the geometric

relation between the ankle joint and the end effector of the Anklebot (see Figure 4).

3.2 Anklebot Impedance Control

The Anklebot uses a strategy called impedance control which is an approach that establishes

a dynamic relation between the force exerted by the actuator and its velocity. In according

with (??), the dynamic physical interaction of a robot device with its environment can

be seen as admittance functions, (Y (s)), which accepts force inputs and yield motion

outputs, or impedances functions, (Z(s)), which accepts motion inputs and yield force

outputs. These two concepts are frequently regarded as equivalent and interchangeable

representations of the same system.

Y (s) =
F (s)

V (s)
and Z(s) =

F (s)

V (s)
(3.3)

In Equation 3.3, F (s) and V (s) refers to force and motion functions respectively.

Figure 5: Schematic representation of the Anklebot
Impedance control.

Figure 5 shows the impedance control system of the Anklebot, in this, the plant dynamics

block represents an admittance function that can be represented as a second order system:

Y (s) =
1

Iabots2 + Babots
, (3.4)

where Iabot, Babot are the inertia and damping of the Anklebot respectively.

To accomplish determined desired trajectory of the Anklebot (θd), the impedance control

block regulate its torque (τabot) according to a linear combination of position error and

velocity in the form:

τabot = (θd − θ)
︸ ︷︷ ︸

eθ

Kv + θ̇Bv, (3.5)

where θd and θ are the desired and angular position, eθ is the position error, the term Kv

is called virtual stiffness and describes the relationship between the torque exerted by the
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actuator and its angular position, and the term Bv is called virtual damping and describes

the relationship between the torque exerted and the angular velocity.

3.3 Ankle/Anklebot inverse dynamic model

The ankle torque estimation approaches proposed in this thesis are designed to be imple-

mented in the Anklebot robot, they require an inverse system model that involves both

the ankle and robot dynamics.

Since the Ankebot was delimited to operate in dorsi-plantar flexion, its degree of freedom

becomes n = 1 and the inverse dynamic model for the ankle-Anklebot system is given by:

Iankle+abotθ̈DP + Bankle+abotθ̇DP + τG(θDP ) + τfric

(

θ̇DP

)

= τabot + τankle (3.6)

In comparison with (2.1), M(θ) and C(θ̇, θ) were reduced to a scalar inertia (I) and a

damping (B) components, the subscript ankle+abot refering to the combination between the

ankle and robot dynamics, τG(θDP ) represents the gravitational torque due to the ankle

and shoe weight, τabot is the torque provided by the actuator (τDP in Equation (3.1)) and

τankle is the ankle active torque considered as a disturb.

3.3.1 Experimental identification of the Anklebot friction torque

Although the Anklebot is a backdrivable robot, during its operation was observed a

frictional force that opposes the movement of the linear actuators and that varies with the

speed, then, a torque, τfric, product of that force was included in the model. Therefore, a

function describing τfric, based on (????) is presented here.

Figure 6: Proposed model for Anklebot friction. Font:

??)

In figure 6 is depicted the selected model for τfric, where δ is the boundary lubrication

velocity. The friction torque is modeled as a nonlinear function including static (τs),
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Coulomb (τc), and viscous friction (τv):

τfric(θ̇DP ) =







τs if θ̇DP ≤ δ and |τabot| < τs

τc sgn(θ̇DP ) if θ̇DP ≤ δ and |τabot| ≥ τs

τc sgn(θ̇DP ) + τv θ̇DP otherwise

(3.7)

An experimental procedure based on ??) is reproduced here to measure the frictional

components described in Equation 3.7, for this, an open-loop control was implemented on

the Anklebot to drive the ramp signal :

τabot(t) = m t, t > 0 (3.8)

where t denotes the time and m > 0 is the ramp slope. Figure 7b is shows the commanded

Anklebot torque for a configured slope m = 10 N-m/s, and Figure 7a the corresponding

angular velocity.

Figure 7: Friction parameter characterization. (a) The Anklebot was

commanded to track a ramp reference, (b) when torque achieve the static

friction, the velocity actuator begins to increase linearly, the key features b,

a/b and a/1 are to calculate identified to calculate τv and τc. (c) The boundary

lubrication velocity, δ, is calculated graphically by looking the angular velocity

when τv begin.

A linear model was superimposed to fit with the angular velocity data (red line in Figure

7a), its slope, as well as the asymptotes that intercept with θ̇ and time axis, are used to
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compute the viscous and coulomb parameters:

τv =
m

a
=

10 N-m/s

16.36 rad/s2
= 0.61

N-m s

rad
(3.9)

and

τc =
b

a
m =

6.158 rad/s

16.36 rad/s2
10N-m/s = 3.76 N-m (3.10)

the static friction component (τs) is calculated as the torque at moment when the velocity

is large enough to star moving the end effector (see Figure 7b):

τs ≈ 3.88N-m. (3.11)

Finally, Figure 7c shows the Anklebot torque in terms of its angular veolcity where the

boundary lubrication veolcity can be approximate as δ ≈ 0.05 rad/s.

Figure 8 shows the results of an experimental verification of the developed friction model.

The procedure consists in control the Anklebot angular displacement to follow a desired

reference θd
DP (degrees) = 10 sin(2πft), with f = 0.25 Hz. The corresponding controller

is a PD control with programmed gains of Kv = 90 N-m/rad and Bv = 5 N-m-s/rad for

virtual stiffness and damping respectively. As can be seen the friction torque (bottom

plot) alternates between an approximate range of [4 -4] N-m, these values are nearly close

to the static friction. Notice that when the angular velocity overcomes the lubrication

boundary velocity (red box in angular velocity plot), the friction torque has a stick-slip

behavior(zoom circle in friction torque plot) which is an effect of the viscous component.

Notice that at low velocities the friction torque cannot be identified with accuracy, that

is because a formulation of the stribeck effect was no considered for the friction model.

Nevertheless, the developed model can be considered a close approximation to the real

friction torque presented in the actuator.

3.4 Ankle/Anklebot inverse dynamic model identification: a case study

The ankle/Anklebot inverse dynamic model (Equation 2.1) depends of the variation of

ankle and Anklebot mechanical impedance parameters. The inertia, damping and stiffness

components of ankle impedance varies from user to user, thus, the estimation approaches

will require to identify the inertia and damping of the compound ankle/Anklebot system,

i.e., Iankle+abot and Bankle+abot, as well as the gravitational torque τG for any user wearing

the Anklebot before estimating the ankle torque.
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Figure 8: Friction time responses.

This section develops the ankle-Anklebot system identification for a case study, consisting in

a voluntary subject without neuromuscular disorders wearing the Anklebot. The resulting

ankle/Anklebot system will be the used for the ankle torque estimation experiments

described in chapter 5 (page 49).

3.4.1 Passive Ankle Impedance and Anklebot dynamics

For identification of the dynamic plant formed by the Passive Ankle Impedance (when

subject does not performs muscle activation) and the Anklebot, an experiment based on

the described in section 3.4 of ??) is carried out on the Anklebot, the subject is instructed

to relax its muscles while the Anklebot control his ankle movement. The control system

maintains the foot in a 0◇ reference when a random torque perturbation signal (in DP

flexion) with ± 7.7 N-m of amplitude and 100 Hz of bandwidth is applied during 60

seconds (see Figure 9). The impedance control was programmed with Kv = 5 N-m/rad
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(virtual stiffness) and Bv = 0 N-m-s/rad (virtual damping).

Figure 9: Control block diagram for Ankle/Anklebot Dynamics
identification. Adapted from ??).

The ankle/Anklebot dynamics can be expressed by the admittance function:

G(s) = Yankle+abot(s) =
1

Iankle+abots2 + Bankle+abots + Kankle

, (3.12)

where the term Kankle refers to the ankle joint stiffness. Notice that due to the back-

driveability property, the stiffness actuator is neglected. The closed-loop transfer function

between random torque perturbations to the actuator (τrand) and the corresponding angular

displacement (θDP ) is represented as:

YCL(s) =
θDP (s)

τrand(s)

∣
∣
∣
∣
CL

=
Yankle+abot(s)

1 + (Kv + Bvs)Yankle+abot(s)

=
1

Iankle+abots2 + (Bankle+abot + Bv)s + (Kankle + Kv)
(3.13)

and the corresponding closed loop mechanical impedance:

ZCL(s) = Y ⊗1
CL (s) = Iankle+abots

2 + (Bankle+abot + Bv)s + (Kankle + Kv) (3.14)

After developing the control experiment, the random input torque and the resulting angular

trajectory were recorded to generate a response in the frequency domain of the closed-loop

transfer function described in (3.13). Figure 10 shows the corresponding frequency response

of Equation 3.13, it was obtained by using the MATLAB’s tfestimate function. Such a

function is based on the Welch’s averaged periodogram method which consists in broke

the input and output signals into sections or data blocks, and then compute the averaged

periodograms (the estimate of the spectral density of the signal) of each section. The

coherence of the estimated transfer function presented considerable variability (see bottom

plot in Figure 10 ), nevertheless, up to the 6 Hz frequency it exhibit averaging values

about 0.81 which satisfy the frequency range of interest for studies of the biomechanics of

the ankle (??).
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Figure 10: Frequency Response Estimation of the closed-loop
mechanical impedance for the ankle/Anklebot system

At low frequencies the impedance magnitudes approach to constant asymptotes, its DC

amplitudes represent the stiffness of the systems. An approximate value for the ankle-

Anklebot system was 16.807 N-m/rad (24.51 dB), then by subtracting the stiffness control

gain (Kv), the ankle stiffness (Kankle) was estimated as 11.807 N-m/rad. This value is

consistent with the ankle stiffness under relaxed muscles conditions founded in (??).

Once the stiffness was defined, a linear second order model was superimposed for the

mechanical impedance response (dashed lines in magnitude and phase plots in Figure 10).

In order to fit with the frequency function estimation, the parameters values of the linear

second order model was adjusted taking into account the damping and inertial ranges of

the ankle founded in (??). The resulting values that best fit with Iankle+abot, Bankle+abot

and Kankle were 0.04 kg-m2, 1.992 N-m-s/rad and 29.78 N-m/rad respectively. This values

are in concordance with data founded in the literature (??????).
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3.4.2 Gravitational Torque

The torque τG is defined as the moment due to the gravitational forces (see Figure 11),

its magnitude is calculated as the moment arm l times the tangential component of the

weight vector M g located at the center of mass (c.m.):

τG(θDP ) = l M g cos(θDP ) (3.15)

Figure 11: Free-body diagram of the set ankle and foot-plate.

where M is the mass combination of the ankle and foot-plate, g is the acceleration due

to gravity and l is the length (in the sagittal plane) from the ankle joint to the center

of mass of the set ankle-foot-plate . In according with ??) the foot mass is calculated

by mfoot = 0.0145 · mT , where mT is the total mass of human body, the ankle center of

mass in the x-axis is calculated as 50 % of the foot length, namely xfoot = 0.5 lfoot. The

foot-plate weighs 0.272 kg (mfp) and its center of mass in the x-axis (xfp) is 0.047 m from

the center of rotation.

The equivalent mass (M) and moment arm l for the ankle-foot-plate set are:

M = mfp + mankle,

l =
mfp xfp + mfoot xfoot

M
. (3.16)

Table 1 contains a calculation of M, mfoot, l and xfoot with lfoot = 0.253 m and mT = 68

kg. For the coming implementation of the estimator approaches on the mock-up/Anklebot

system, it will be necessary to modify the gravitational torque components to M = mfp

and l = xfp.
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Table 1: Anthropometric data for the ankle-foot-plate set

mfoot xfoot M l
0.986 kg 0.1265 m 1.258 kg 0.0505 m





37

4 EXPERIMENTAL VALIDATION

In this chapter, the above mentioned torque estimation approaches are implemented on

the Anklebot and tested with an physical mock-up assembled to replicate the human

ankle movement in the sagittal plane. The experimental setup objective is to estimate

the external torque transmitted from the mock-up to the Anklebot, this torque can be

measured with a load cell incorporated to the mock-up. The estimated torques are expected

to be equal to the measured one.

For the Anklebot control system, the external torque can be considered as a disturbance

input, the algorithms were programed on the Anklebot to estimate this disturbance torque

(see Figure 12). However, since compensation is out of scope, the disturbance estimation is

not feedback into the control strategy, and the algorithms operate simultaneously without

affecting the control system operation. Two tests are realized with this experimental setup.

The former is to tune the parameters of each approach in order to yield a proper estimation.

In this, the impedance control is programmed with fixed parameters to track a sinusoidal

reference for the Anklebot. The latter allows a performance assessment of the estimated

torques, for which, the impedance control is programmed too with a sinusoidal reference

but with variable parameters.

Figure 12: Schematic diagram of the experimental setup
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The physical mock-up is composed by an Ankle Foot Orthosis (AFO) and an spring

coupled on its backside, this device is equipped with a load cell (see Figure 13a) that

measures the force produced by the extension and compression spring forces product

of the dosriflexion and plantarflexion respectively. The leg brace and foot-plate of the

AFO are linked by a common hinge joint (see Figure 13b) that allows a dorsiflexion and

plantarflexion as the ankle joint. The foot-plate is practically the same designed in section

3.1 but with a 3D-printed support added on its back to place the load cell. The mock-up

is attached to the Anklebot conserving the same geometrical relation as in Equation (3.1)

which guarantees a complete transmission of the actuator torque.

Figure 13: Physical mock-up to validate the torque estimation.

When the Anklebot moves the foot-plate, a spring positioned before the load cell compress

or extends generating a force that is parallel to the orthosis axis (Figure 13b). The spring

force (Fs) is then measured by the load cell and converted to torque (τext) by:

τext = Fs · d, (4.1)

where d = 0.15 m is the perpendicular distance from Fs to the axis of rotation. The load

cell was calibrated by applying compression and extension forces corresponding to known

weight masses loaded on the sensor, then a data acquisition system amplify and register

the voltage output signals (Figure 14a). By doing a linear regression (see Figure 14b) of

the data sensor, a function describing the force sensor measurement (in Newtons) in terms

of the voltage (in volts), Fs(V ), was obtained as:

Fs(v) = 48.577 · V − 97.487, (4.2)
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Figure 14: Load cell characterization.

4.1 Mock-up and Anklebot dynamics

The dynamic model of the mock-up/Anklebot system is given by:

Imock+abotθ̈DP + Bmock+abotθ̇DP + τG + τfric = τabot + τext (4.3)

where the subscript mockup + abot refers to the combination of the mock-up and robot

dynamics, τext is the same torque described in Equation (4.1).

In the same way as Equation 3.14, a closed-loop transfer function describing the mechanical

impedance of the mock-up/Anklebot system can be defined:

ZCL(s) = Imock+abots
2 + (Bmock+abot + Bv)s + (Kmock+abot + Kv) (4.4)

The same procedure described in section 3.3.1 was carried out to obtain a frequency

response of the close-lop transfer function representing the mechanical impedance of the

mock-up/Anklebot system. Figure 15 shows the frequency response obtained for equation

4.4, blue lines represent the estimated data from the Power spectral density analysis

and red lines represent a second-order transfer function model whose parameters were

adjusted in order to approach with real data. As can be seen in the magnitude plot, at low

frequencies it can be observed an approximated value of 17.15 dB, this value corresponds

to 7.2 N-m/rad which is the sum of stiffness quantities Kmock+abot + Kv. Since Kv was

previously programed as 5 N-m/rad, it can be subtracted from 7.2 N-m/rad to obtain
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Kmock+abot = 1.2 N-m/rad which corresponds the spring stiffness. The parameters Imock+abot

and Bmock+abot were calculated as 0.0281 kg-m2 and 0.761 N-m-s/rad respectively, these

values are close to the found in (??).

Figure 15: mock-up/Anklebot mechanical impedance in fre-
quency domain. It is a frequency response estimation of the closed-

loop transfer function of equation 4.4.

As expected, for all frequencies the magnitude response for equation 4.4 was smaller than

that of the ankle/Anklebot system.

4.2 Test 1: Tuning of estimators parameters

The first of the two tests was performed in order to adjusts each estimation approaches, to

this, the impedance control was configured with Kv = 90 N-m/rad and Bv = 5 N-m-s/rad

constant gain parameters and commanded to track a sinusoidal reference with amplitude

and frequency equal to 0.174 radians (10 degrees) and 0.25 Hz respectively, during 12
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seconds. Figure 16 shows the time responses for Test 1, as can be seen , the angular

position is not totally reached, this is because the mechanical impedance properties of

the mock-up/Anklebot system, especially its stiffness . The bottom plot shows the torque

provided by the Anklebot and the measured by the load cell, this latter represents the

disturbance torque to be estimated by the algorithms.

Figure 16: Time responses of the impedance control for Test 1. Top: Reference

trajectory (dashed line) and angular displacement (blue line). Middle: Angular velocity.

Bottom : Atuator torque (black line) and external torque (blue line).

4.2.1 Generalized momentum approach

In Figure 17 is shown the time response of the estimated disturbance torque, τ̂d, obtained

by the generalized momentum. As can be seen, the resulting r signal is a smoothed version

of τ̂d, which is in concordance with the explained in section 2.1. During the implementation

it was observed that adjusting KI implies in a compromise between amplitude and phase

of the filtered signal r, i.e., the higher the observer gain, the closer in phase is r with

respect to τext, and conversely. Taking into account the above, for Test 1 the generalized

momentum approach was tested with two observer gain values set heuristically as KI = 4

and KI = 0.85 to see which parameter is more accurate in the external torque estimation.

Figure 18 shows the torque estimation results considering these two observer gains compared

with the external torque. Whereas for KI = 4 (red dashed line), r showed to be very close

in phase but distant in amplitude with respect to τext (blue line), for KI = 0.85 (green
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Figure 17: Disturbance torque estimation by the generalized momentum
approach. Red continuous line: Estimated torque. Red dashed line: filtered

signal.

dashed line) r was closer in amplitude but with a considerable time lag of 0.35 seconds on

the left and 0.75 seconds on the right with respect to τext.

Figure 18: Torque estimation obtained by the generalized momentum
approach. A greater KI = 4 gain produces a r signal that is close in phase but

a higher amplitude than τext, conversely, a lesser KI = 0.85 gains produces a

greater time lag and a better adjusted amplitude with respect to τext.

4.2.2 Linearized Kalman filter approach

The discrete Kalman filter implementation require the Mock-up/Anklebot model (Equation

4.3 on page 39) to be represented as an state space augmented system in the form:
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with output equation:
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Notice that the gravitational torque τG (Equation 3.15 on page 34) is the only non-lineal

component, thus, linearization of Ac just required the partial derivative:

∂θ̈
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∣
∣
∣
∣
∣
θ=θk

= −
1

Imock+abot

∂(τG)

∂θ
=

Mglsin(θ)

Imock+abot

(4.7)

After linearizing, Ac and Bc were discretized by using Ak = I + AcTs and Bk = TsBc

respectively, with time sample Ts = 0.5 ms. The linearization and therefore the discretization

are computed iteratively before the Kalman filter execution.

The covariance matrices for the process and measurement noise were adjusted as:

Q = diag{0.01, 0.01, 0.001, 0.0001} (4.8)

R = diag{1e−5, 1e−5, 1e−5, 1e−5} (4.9)

In Figure 19 are depicted the process input noises with zero-mean and normal distribution.

Figure 19: Process input noise for Kalman filter approach

Figure 20 shows the estimated estates of the Kalman filter implementation. Whereas

the observable states matched the measured signals (angular velocity on top-left and

displacement on top-right), the non-observable states showed certain differences with the
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real variables. The estimated torque τ̂d (bottom-left) turned out to be in phase with the

external torque τext. Finally, the estimated integral of the disturbance torque,
∫

τ̂d, is

showed on bottom-right plot, an off-line numerical integration of the external torque,
∫

τext,

was computed to verify the concordance of such estimated estate. Although these two

signals conserve similarity, there is a considerable amplitude difference.

Figure 20: State estimation result for the Kalman filter approach

4.2.3 Combined Kalman and Generalized momentum approach

As explained in section 2.3, the augmented state space model considered for this estimation

approach is given by:
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Unlike the Kalman filter approach of section 2.2.2 (page 19), the gravitational torque is

considered in the input vector instead of in the state transition matrix, thus, here there is

no need of linearization step. The model 4.10 was discretized by using Ak = I + AcTs and

Bk = TsBc and with time sample Ts = 0.5 ms.

The covariance matrices for the process and measurement noise were adjusted as:

Q = diag{2.5e−5, 4.5e−5} (4.11)

R = diag{2e−7, 2e−5} (4.12)
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Figure 21 show the process input noises with zero-mean and normal distribution.

Figure 21: Process input noise for Kalman-based momentum approach

Figure 22 shows the estimated estates in the implementation of the Combined Kalman and

Generalized momentum approach. As can be seen, the first estimated state matched the

angular velocity signal without much difficulty, this was expected since x̂1 is the observable

state.

Figure 22: State estimation result for the Combined Kalman and Generalized momentum
approach.

The second estimated state (bottom plot) i.e., the torque disturbance estimation, a similar

behavior of the discussed in section 4.2.1 for the filtered torque, r, was found. Nevertheless,

it showed a closer signal than the generalized momentum approach estimation for the

negative, presenting a time lag of 0.25 seconds on the left and 0.53 seconds on the right

and peak-to-peak difference of 7.81 N-m.
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4.3 Test 2: Performance assessment between estimation approaches

In order to make a comparative analysis of the implemented estimation approaches, a

second test in which the impedance control parameters are varied over time is developed

here. The purpose of this test is to evaluate the estimation performance when the mock-

up/Anklebot system undergoes different input torques. The test is realized in the same

experimental setup of Figure 12 (page 37), a sinusoidal reference with amplitude and

frequency equal to 0.174 radians (10 degrees) and 0.25 Hz respectively and a duration of

36 seconds was programmed. In contrast with test 1, the Kv parameter of the impedance

control was configured to variate over time in according with Table 2.

Table 2: Configuration of test for performance assessment

Phase Duration (s) Kv (N-m/rad)
1 [0 12] 30
2 [12 24] 60
3 [24 36] 90

Figure 23 shows the angular displacement (top) and Anklebot torque (bottom) time

responses of this experiment. Notice that the greater the Kv parameter is configured, the

better the desired sinusoidal trajectory is tracked.

Figure 23: Time responses of test 2. Phase 1: [0 12] (s). Phase 2: [12 24] (s). Phase

3: [24 36] (s).

Figure 24 shows the estimated torques and the measured by the load cell. It can be

seen that the three approaches had difficulty in estimating the torque during the first

phase, i.e., the first 12 seconds. On the other hand, as soon as the control parameters Kv

were increased, the estimation improved for all the approaches. The above mentioned is

evidenced in the zoom circles, note that right circle shows a closer tracking of the estimated



47

torques than the shown in left circle. In all the phases the τ̂d achieved by the Kalman

filter, approach appears to estimate the load cell torque, τext, better than the other two

approaches, this is in concordance with the Test 1 results.

Figure 24: Torque estimation results for test 2. Phase 1 (s): [0 12]. Phase 2 (s):

[12 24]. Phase 3 (s): [24 36]. Subscripts ext and d stands for the external and

disturbance torques respectively. The abbreviations in brackets Mom and Kal stands

for generalized momentum and Kalman respectively.

For quantitative assessment, the root-mean-square error (RMSE) between the estimated

disturbance torques and the torque measured by the load cell were calculated by:

RMSE =

√

1

N
ΣN

i=1

(

τ̂d − τext

)2

(4.13)

where N is the sample size. Table 3 shows the RMSE calculated separately for each phase

of the experiment.

Table 3: Comparison of torque estimation performance

Estimation RMSE (N-m) RMSE (N-m) RMSE (N-m)

approach (phase 1) (phase 2) (phase 3)

Generalized momentum 0.6353 1.1960 1.6097

Kalman filer 0.3697 0.3969 0.4052

Kalman based momentum 0.4791 0.9831 1.2149

4.4 Conclusions of experimental validation and outlook

In this chapter, the three proposed approaches for torque estimation have been implemented

on an experimental setup consisting in a physical mock-up attached to the Anklebot.

This mock-up provided a known external torque to the robot, thus, the purpose of the
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experiment was to estimate such known torque. In order to obtain a good dynamic

representation of the mock-up/Anklebot system, its inertia and damping were identified

by frequency response estimation. Then, the best possible estimated torque was obtained

for each approach by tuning its parameters.

The results of table 3 indicate that the Kalman filter approach presented the lower RMSE

for the overall experiment, presenting small variation throughout the phases. The reason

why the Generalized momentum and the combined Kalman-momentum approach presented

high RMSE values is because the time lag of each estimated torque, Note that the RMSE

for the generalized momentum approach presented always higher RMSE than that of the

combined Kalman-momentum approach, which is expected since the observed time lag in

the former approach was greater than the observed in the latter.

The Kalman filter is the approach that offers better reliability in the estimation torque,

thus this will be selected as the approach used for the ankle torque estimation described

in the next chapter.
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5 ANKLE TORQUE ESTIMATION

5.1 Experimental setup

Once the Kalman filter has been identified as the approach with best performance, it can

be implemented to estimate the ankle torque for the case study described in section 3.4

(page 30). In Figure 25a is depicted the experimental setup for this case. As in section 4,

the control system of the Anklebot is configured with a closed-loop control strategy that

tracks the angular trajectory (Figure 25b), this time the ankle torque is considered the

disturbance of the system. The control strategy was programmed to track a sinusoidal

reference trajectory with amplitude and frequency equal to 0.174 radians (10 degrees) and

0.25 Hz respectively.

Figure 25: Configuration for ankle torque estimation.
(a) Experimental Setup (b) Control system strategy.

In lower limb robotic rehabilitation therapies, robots are capable of assisting the motion

of patients in according with the configuration of its control strategy (??). In addition,

during robotic therapies, subjects joint torques can be split into “passive” torques resulting

from viscoelastic effects in the joint-surrounding tissue and “active” moments generated by

muscles (RIENER et al., 2005). Based on this, here are defined four operation modes to rep-

resent the physical activity that the user may realize when interacting with the Anklebot:

(1) passive mode, in which the user does not make any effort against the Anklebot move-

ment; (2) active-1 mode in which the user makes efforts against the Anklebot movement by

maintaining its ankle joint in a zero reference position; (3) active-2 mode in which the user

makes efforts against the Anklebot by realizing the opposite movement of the robot and (4)
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active-3 mode, in which the user makes efforts by cooperating with the Anklebot movement.

Four tests were performed in order to analyze the effect of varying the impedance control

parameters and the human-robot physical interaction above described. Table 4 shows the

configuration for each test.

Table 4: Configuration of tests for ankle torque estimation.

IC parameters Phase 1 Phase 2

T
es

t
1 Kv = 30 N-m/rad Duration (s): 12 Duration (s): 12

Bv = 5 N-m-s/rad Op. mode: passive Op. mode: active-1

T
es

t
2 Kv = 60 N-m/rad Duration (s): 12 Duration (s): 12

Bv = 5 N-m-s/rad Op. mode: passive Op. mode: active-1

T
es

t
3 Kv = 30 N-m/rad Duration (s): 12 Duration (s): 12

Bv = 5 N-m-s/rad Op. mode: passive Op. mode: active-2

T
es

t
4 Kv = 0 N-m/rad Duration (s): 12

Bv = 5 N-m-s/rad Op. mode: active-3

5.2 Test 1: passive - active-1 operation mode and Kv = 30 N-m/rad

In the first phase of test 1, the subject ankle torque is asked first to perform the passive

mode, by doing this, the subject will perform a passive ankle torque. After that, in phase

2 the subject is asked to perform the active-1 mode, thus, the subject will produce an

ankle torque equals but opposite to that of the Anklebot, in such a way that the angle

displacement will be zero.

Figure 26 show time responses for test 1. During first phase (0 to 12 seconds), the Anklebot

led the ankle joint through the desired position, the reason that reference angular position

is not reached, is because the programmed robot stiffness (Kv = 30 N-m/rad) is not

enough higher than the ankle stiffness identified in section 3.4 (Kankle = 29.78 N-m/rad).

Furthermore, the estimated ankle torque (red line in Figure 26) exhibited a signal periodic

with peak values around 1.2 N-m, this estimative can be understood as the passive ankle

torque due to its viscoelastic muscle properties.

Whit respect to phase 2, since the Kv of the robot was not greater enough, the user was

able to maintain the ankle joint in a zero reference position. The estimated ankle torque

was expected to be opposite in amplitude of that of the Anklebot, as can be seen, τ̂ankle

did not totally converge to the opposite amplitude of τabot. This can be evidenced if the

the error between the root mean square value of estimated ankle torque and Anklebot
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Figure 26: Ankle torque estimation for test 1. � Phase 1 Phase 2

torque is computed by using:

e =| RMSτ̂d
− RMSτabot

/RMSτabot
| ·100% (5.1)

thereby, during the active-1 operation mode, e, was 43.23 %.

5.3 Test 2: passive - active-1 operation mode and Kv = 60 N-m/rad

Unlike test 1, in test 2 the Kv parameter of impedance control was configured to 60

N-m/rad. By doing this, the subject will increase its ankle mechanical impedance (Iankle,

Bankle, and Kankle parameters) in order to make a greater physical effort in maintaining

the ankle joint in a zero reference position. Figure 27 show the temporal responses for test

2.

In phase 1 The ankle torque estimation (red line), namely, the torque in passive mode

operation, exhibited a signal periodic with peak values around 1.49 N-m, this estimate

is in accordance with the founded in test 1. As it was expected, during phase 2 the user

had more difficulty to maintain ankle joint position in zero reference, so the user dynamic

exerted a greater ankle torque.

The error between the estimated ankle torque and Anklebot torque was computed by using

Equation 5.1, thereby, during the active-1 operation mode, e, was 38.94 %. Compared with

test 1, this error decreased, that is, the estimation improved when the virtual stiffness and

ankle impedance became greater.
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Figure 27: Ankle torque estimation for test 2.

5.4 Test 3: passive - active-2 operation mode and Kv = 30 N-m/rad

In test 3 the subject was asked to perform a passive mode in its phase 1, and to perform

an active-2 operation mode for phase 2, The impedance control was configured with Kv

= 30 N-m/rad so that, the user is able to do the opposite ankle joint movement of that

imposed from the Anklebot. Figure 28 show the temporal responses for test 3.

Figure 28: Ankle torque estimation for test 3.
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The error between τabot and τ̂ankle was computed as 31.93 % by using Equation 5.1, namely,

the estimated ankle torque was closer to the Anklebot torque for this test than the others,

nevertheless, τ̂ankle was expected to be greater than τabot.

5.5 Test 4: passive - active-3 operation mode and Kv = 0 N-m/rad

In this test the Anklebot was configured to perform high backdriveability, so that the

user can move its ankle to follow the desired angular trajectory with the least possible

physical effort. The impedance control was configured with Kv = 0 N-m/rad and Bv =

5 N-m-s/rad, by doing this, the commanded Anklebot torque (Equation 3.5 on page 27)

becomes τabot = θ̇Bv. Figure 29 show the temporal responses for test 4.

Figure 29: Ankle torque estimation for test 4.

Note that angular displacement is easily tracked and that the estimated ankle torque (red

line) converges more closely to τabot than the other tests, this was expected since the user

is transmitting the whole ankle torque to the Anklebot.

5.6 Conclusions of ankle torque estimation

In this chapter was presented the implementation results of the Kalman filter approach in

the Anklebot robot to estimate the ankle torque of a voluntary subject. Four tests were

performed considering the different types of strategies used in robotic therapies for lower

limbs, in these tests, the impedance control of the Anklebot, commanded the actuator

torque to move the ankle joint through a desired angular displacement, in the meantime,
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the subject was asked to perform a set of defined operation modes.

The first three tests were split in two phases, where the subject performed passive operation

mode during first phase and active operation mode during second phase.

In tests 1 and 2 the subject made efforts against the Anklebot movement to maintain its

ankle joint in a zero reference position, they were programed each one with a different

constant Kv parameter in its impedance control, to demonstrate the efficiency of the

torque estimation despite changes in ankle+Anklebot dynamics. For the first phase of both

tests, no matter which the Kv parameter was, the estimated passive ankle torques turned

out to be close to each other. The validity of this estimates were verified by comparing the

angle of such torques with a theoretical angle response of the ankle+Anklebot admittance

function. With regard to phase 2, the estimated ankle torque of test 2 got closer to the

Anklebot torque than that estimated in test 1, that is, the estimation improved when the

Kv parameter and ankle impedance became greater.

The test 3 was implemented with the purpose to analyze the estimation approach when

subject executes a greater ankle torque than the provided by the Anklebot. Although

estimative was not as expected, it has to be taken into account that such estimative was

compared with the commanded Anklebot torque instead of the physical actuator torque.

In other words, since the subject is forcing the Anklebot to perform his ankle movement,

the physical actuator torque is probably lower than that estimated for the ankle during

phase 2. The backdriveability property of Anklebot implies that it generates an assistive

torque precisely as desired, however, such torque is not available for a direct measurement.

Another plausible explanation for the estimation results during phase 2 is that the ankle

mechanical impedance parameters increased, so the model with which the torque was

estimated experienced changes that affected its performance.

The fourth test was intended to evaluate the estimated ankle torque when the robot does

not provide any assistance, as consequence, instead of help to reach the desired movement,

the Anklebot receives the whole ankle torque from the subject. The estimation proved

to be in accordance with what was previously stated, resulting in similar torques for the

ankle and Anklebot.
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6 CONCLUSIONS AND RECOMMENDATIONS

In this work an ankle torque estimation approach was developed on the Anklebot robot for

lower limb rehabilitation. The approach was implemented on a voluntary subject wearing

the Anklebot, the results proved to be successful for the passive torque and in most of the

proposed modes of operation of active torque. This estimate can be an useful tool for robotic

rehabilitation therapies, for example, isokinetic muscle strengthening training measures

joint torques to analyze the functional recovery of stroke patients, such measurement is

obtained through dynamometers, the torque estimation approach developed here could

be an alternative solution to this measurement and also could be implemented in others

robotic devices.

To achieve a proper estimation, it was required a detailed modeling of the ankle+Anklebot

dynamics as well as the assumption of a disturbance model, in experiment results, the

torque estimation performance was affected when subject modified his ankle mechanical

impedance. Taking into account the above, the developed approach could be a good

starting point to design a robust Kalman filter, that 1) avoids the identification of the

ankle+Anklebot dynamics each time a new subject wears the Anklebot and 2) improve

the performance estimation when ankle+Anklebot dynamics and controller’s gains vary.
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