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Anm: a geometrical model for the composite structure
of mortar and concrete using real-shape particles
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Abstract The composite geometrical structure of

mortar composites can be represented by a model

consisting of sand embedded in a cement paste matrix

and the structure of concrete by gravel embedded in a

mortar matrix. Traditionally, spheres have often been

used to represent aggregates (sand and gravel),

although the accuracy of properties computed for

structures using spherical aggregates as inclusions can

be limited when the property contrast between aggre-

gate and matrix is large. In this paper, a new

geometrical model is described, which can simulate

the composite structures of mortar and concrete with

real-shape aggregates. The aggregate shapes are either

directly or statistically taken from real particles, using

a spherical harmonic expansion, where a set of

spherical harmonic coefficients, anm, is used to

describe the irregular shape. The model name of

Anm is taken from this choice of notation. The take-

and-place parking method is employed to put multiple

irregular particles together within a pre-determined

empty container, which becomes a representative

volume element. This representative volume element

can then be used as input into some kind of compu-

tational material model, which uses other numerical

techniques such as finite elements to compute prop-

erties of the Anm composite structure.

Keywords Parking algorithm � Mortar � Concrete �
Aggregates � Spherical harmonics � Contact algorithm

1 Introduction

Concrete is a composite heterogeneous construction

material, which is composed primarily of coarse

aggregates (e.g. gravel), fine aggregates (e.g. sand),

cement, and water. The cement paste matrix binds the

aggregates together and forms a system that is able to

carry loads. Concrete without coarse aggregates is

called mortar. In a simple composite model for mortar,

the particles are sand and the matrix is cement paste,

while for concrete, the particles are coarse aggregates,

and the mortar serves as the matrix. However, the

particle shape characteristics are usually different for

sand and coarse aggregates, although in general

particle shape, for a given material class, depends

only weakly on particle size for blasted and crushed

rocks [1–3]. But particle shape can be quite different

for different mineral classes of fine or coarse aggre-

gates or material that has been prepared in different
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ways (e.g. crushing vs. naturally rounded). This

requires any realistic 3D geometrical model of mortar

or concrete to be able to recognize and use various

particle shape classes.

There are many existing geometrical models of

particles embedded in a matrix [4–7], most of which

employ regular shape particles like spheres, ellipsoids, or

multi-faceted polyhedrons. Recently, a method was

described for generating packings of realistic particles

based on random field theory and Fourier shape

descriptors [8–10]. This model was oriented more

toward particle packings, where particles touch and

mechanics is dominated by contact forces. Inmortar and

concrete, the sand or gravel particles can be thought of as

being suspended in amatrix, forming a compositewhose

mechanics is controlled by stress transfer betweenmatrix

and inclusion, not inclusion–inclusion contact forces.

The real particle shapes found in construction of

naturally-rounded or blasted and crushed sands and

gravels sometimes play an essential role in the accuracy

of the model, for computing fracture paths and when the

property contrast between aggregate and matrix is high

[11]. It has been shown that spherical harmonic series are

an effective mathematical tool to characterize the shape

of particles analytically, and the procedures to retrieve

particle shape characterizations for a given class of

aggregates from X-ray CT (X-ray computed tomogra-

phy) scans have been established [12]. Statistical

methods have also been developed to generate new

particles based on statistics that have been obtained from

a real particle dataset or elsewhere [13, 14].

What else is needed to build a multi-aggregate 3D

model of mortar or concrete with real particles? One

must be able to randomly place multiple irregular

shape particles into a predefined container, without

overlapping. This procedure has been denoted random

sequential packing, random dense parking, or random

jamming [4, 15, 16], and we will use parking or

placing interchangeably below. In this paper, a

geometrical model with irregularly shaped particles

is proposed, which has these characteristics, and is

denoted the Anm model [17]. This name is taken from

the choice of notation for the spherical harmonic

expansion coefficients, anm, which are used to describe

particle shape. The Anmmodel has been written in the

computer language C??. Simple applications of the

Anm model are made to demonstrate its capabilities

for simulating the geometrical structure of mortar and

concrete, using both periodic and non-periodic

boundary conditions. The multiple inclusion models

can also serve as a good starting point for discrete

element modeling (DEM) [18] and for finite element

fracture models [19].

2 Description and properties of an individual

particle with irregular shape

2.1 Mathematical representation of a 3D irregular

shape

An arbitrary 2D single-valued closed surface of a 3D

particle can be represented by a function r(h,/) in a 3D
spherical polar coordinate system. The origin of the

local coordinate system is placed at an interior point,

in the case of particles usually the particle center of

mass. Single-valued means that a ray from the origin

to infinity will only intersect the surface once, which is

equivalent to the definition of a star-like particle [20].

The function r(h,/) is, in principle, impossible to

express explicitly for random shapes, but it can always

be approximated by a summation of spherical har-

monic functions for star-like shapes [21–23]. It is clear

that almost of all sand and gravel used for concrete

have star-like shapes (i.e., are star-shaped) [12, 24,

25]. The spherical harmonic expansion for r(h,/) is
given in Eq. (1), where 0 B / B 2p and 0 B h B p).

r h;uð Þ ¼
X1

n¼0

Xn

m¼�n

anmYnm h;uð Þ ð1Þ

Ynm (h,/) is the spherical harmonic function with

indices n and m and is given by Eq. (2), with

–n B m B n, Pmn (cos h) is the associated Legendre

polynomial, and i is the square root of -1 [26]:

Ynm h;uð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ n� mð Þ!
4p nþ mð Þ!

s

Pnm coshð Þeimu ð2Þ

Other versions of the spherical harmonic functions

are used in various disciplines, with slightly different

conventions, as well as real versions, but this is the

definition and convention used herein.

The particle shape is uniquely defined by the set of

spherical harmonic coefficients anm, which in general

are complex numbers. The total number of the anm
coefficients up to the degree n is (n ? 1)2. There should

be sufficient coefficients involved in the spherical

harmonic expansion to describe a shape accurately. Of
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course Eq. (1) is only exact when n becomes infinite.

The number of the coefficients that can accurately be

used is dependent on the resolution of the original

experimental shape characterization. As a general

guideline, the degree n should be at least 14 and is

usually no larger than 26 for common aggregates in

mortar and concrete. The number of coefficients needed

for accuracy and how this accuracy is determined is

discussed more fully in [12, 24]. In this paper, we

assume thatwe have spherical harmonic representations

of aggregates that are sufficiently accurate for our

purposes. An example of an irregularly-shaped particle,

which has beendescribed in terms of spherical harmonic

coefficients, is shown in Fig. 1. Particle shape databases

have been created for varying classes of powders and

aggregates withthe procedures proposed in [12, 24, 25],

either from direct X-ray computed tomographic mea-

surements of particles or from a statistical procedure for

generating new particles based on such a measured

collection [13, 14]. A selection from these databases,

contained in theAnmmodel, so far includes twocrushed

coarse aggregates (gravel), two crushed and naturally

rounded fine aggregates (sand), and one Portland

cement. Cements are included since cement particles

suspended in water can form an accurate geometrical

model of unhydratedcement paste, although the focus of

the model and of this paper has been on mortar and

concrete applications.

2.2 Particle geometric properties and operations

Many geometric properties of the particle shape can be

computed once the spherical harmonic coefficients are

known, including the particle volume, surface area,

integrated mean curvature, moment of inertia tensor,

length, width, and thickness [25, 27]. Length is the

longest surface–surface distance in the particle, width

is the longest surface–surface distance in the particle

such that width is perpendicular to length, and

thickness is the longest surface–surface distance in

the particle such that thickness is perpendicular to both

length and width [25]. A particle’s size can be changed

but its shape preserved by multiplying each anm
coefficient with the same scaling factor. The scaling

factor s is defined by s = Wa/Wb, where Wa is the

particle width after scaling, andWb is the width before

scaling. The particle width is preferentially used for

computational sieve analysis [12] since it is thought to

match best with the usual standard experimental sieve

classification of particles [28, 29]. The particle volume

will of course scale by a factor of s3, and the surface

area by a factor of s2. In the Anm model, rescaling of

particle size is a core operation of the overall

algorithm.

3 Anm geometrical model

3.1 Parking procedures and algorithms

In the simplest sense, the Anm geometrical model

simply places or parks [4, 15, 16] particles in a matrix.

The matrix is considered to be a continuum: mortar

surrounding coarse aggregates or cement paste sur-

rounding fine aggregates. An empty container is

created to represent a specimen, and then particles

are placed one after another into this container, from

the larger ones to the smaller ones, following a particle

size distribution that is given in terms of a sieve

analysis, selecting particles from a particle shape

database. A preliminary database, containing several

sand and gravel types, has been created from previous

data as part of the Anm model. This is not the

equivalent of equilibrium packing, but when there is a

wide particle size distribution, equilibrium packing

and non-equilibrium placing produce similar arrange-

ments of particles [30]. The sieve analysis is usually

taken from experiment or some kind of standard for

concrete materials. A pseudo-random number gener-

ator (the default function included in C??) is initial-

ized with a seed value that is different for each run of

the Anm model, thus guaranteeing different results for
Fig. 1 An irregular shape sand particle described by spherical

harmonics
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each run. The same pseudo-random number generator

was used for all random numbers required for the

functioning of the Anm model. Using a different

random number generator will be considered for

future versions of Anm, since such a large number of

random numbers can be used for each Anm run.

The Anmmodel starts with the largest particles as it

would be more difficult to place them if they were

processed at a later stage. Each new particle that is

placed must not overlap any other particles that have

already been placed, since that would be unphysical.

Particles are included in a sieve range according to

their size, which is taken to be the particle width

(previously computed). The widths within a sieve

range are assumed to be distributed evenly, with equal

probability for any width in the sieve range. A width

within the sieve range being processed is picked

randomly, using the same pseudo-random number

generator that gives a random number between 0 and

1, with equal probability. The random number is

scaled to the sieve range limits, determining a random

width. A particle is chosen randomly from the

appropriate particle shape database, which consists

of a collection of sets of spherical harmonic coeffi-

cients representing a collection of particles. All

particles in the database have equal probability and

one is chosen randomly using the pseudo-random

number generator in a way similar to how the width

was chosen. If there are M particles, then the output of

the pseudo-random number generator is scaled to pick

an integer between 1 and M in order to choose a

specific particle. Note that for the particle size ranges

considered in the Anm model, particle shape does not

appear to depend on particle size, so that any particle

in the shape database can be randomly picked and

scaled to fall into a given sieve size range [31].

When placing a particle, to simulate mixing we also

need to randomly rotate each particle before attempt-

ing to place it at a random location. The operation of a

rotation on the particle in the local coordinate system

can be done by transforming the spherical harmonic

expansion coefficients [22] according to an arbitrary

orientation defined by the three Euler angles a, b, and
c [26]. Each Euler angle is assumed to be uniformly

distributed in its range, and a selection is made of the

three angles using three random numbers scaled to the

appropriate angular range.

All points within the unit cell are equally probable,

so the pseudo-random number generator is used again

to choose values of x, y, and z that fall within the

bounds of the unit cell. The chosen point is used for the

origin of the particle being placed. This origin is

always the center of mass of the particle [12]. The

chosen particle is checked for overlap against the

previously placed particles within a certain distance.

This distance is controlled by a local bin structure. The

unit cell is divided up into bins, typically 103 = 1,000,

and the information about which bins are touched by a

given particle is recorded. Only those particles lying in

bins that have a possibility of overlap with the trial

particle are checked. This saves considerable run time,

especially once a significant number of particles have

been placed. If periodic boundary conditions are being

used, then the periodic ghost particles (see Sect. 3.3)

are also checked for overlap with existing particles. If

no overlap is detected, then the particle enters the

simulation box successfully, otherwise the program

will try to place it at a new randomly chosen location.

The reassignment of the location is subject to a pre-

defined maximum number of attempts. After the

number of consecutive failures reaches the maximum

limit, the particle will be resized to another randomly

selected width within the current sieve range, and the

program will try again to place the particle at a new

random location. Rescaling of the particle size is also

subject to a pre-definedmaximum number of attempts.

If the size scaling does not result in particle placement,

then the particle will be rotated randomly to have a

new orientation. If the particle still cannot be placed,

then a new shape will be chosen from the particle

shape database and the process restarts. If enough

particles in that sieve range have been placed,

satisfying the pre-determined volume fraction for that

sieve, then the next smallest sieve class is processed.

However, if after a number of such unsuccessful tries,

again a predefined parameter, the next sieve range will

be processed even if the volume placed is less than

what the user desired for this sieve range.

3.2 Overlap algorithm

The key algorithm required in the particle placing

procedures is to determine whether two particles

overlap. This can be examined by formulating and

solving contact equations. As shown in Fig. 2, the

mass centers of two particles are O1(x1; y1; z1) and

O2(x2; y2; z2), in a global coordinate system O(x; y; z).

Two local coordinate systems are also defined and
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their origins are placed at O1 and O2, respectively. It is

assumed that there is a contact point C(xc; yc; zc), and

its local coordinates are (hc1; /c1) and (hc2; /c2) in the

corresponding local coordinate system. In the particle

database, the coordinates, relative to the center of a

particle, of the corners of a box that just contains the

particle are stored. These are updated when the

particle is rescaled or rotated. If, for two particles,

these boxes do not overlap, then there is no way that

the particles themselves can overlap and no further

checks are done. In this way, many of the potential

particle overlaps can be handled simply.

The contact point C is located on the surface of

particle O1, with coordinates defined using the spher-

ical polar angles and origin associated with particle 1,

so the following Eq. (3) should be satisfied, if the

contact point C exists:

xc ¼ x1 þ r1ðhc1;/c1Þ sin hc1 cos/c1

yc ¼ y1 þ r1ðhc1;/c1Þ sin hc1 sin/c1

zc ¼ z1 þ r1ðhc1;/c1Þ cos hc1
ð3Þ

The contact point C is also located on the surface of

particle O2, with coordinates defined using the spher-

ical polar angles and origin associated with particle 2,

so Eq. (4) must also be valid,

xc ¼ x2 þ r2ðhc2;/c2Þ sin hc2 cos/c2

yc ¼ y2 þ r2ðhc2;/c2Þ sin hc2 sin/c2

zc ¼ z2 þ r2ðhc2;/c2Þ cos hc2
ð4Þ

Equations (3) and (4) can be equated and rear-

ranged, which yields Eqs. (5):

x2 � x1 þ r2ðhc2;/c2Þ sin hc2 cos/c2

� r1ðhc1;/c1Þ sin hc1 cos/c1 ¼ 0

y2 � y1 þ r2ðhc2;/c2Þ sin hc2 sin/c2

� r1ðhc1;/c1Þ sin hc1 sin/c1 ¼ 0

z2 � z1 þ r2ðhc2;/c2Þ cos hc2
� r1ðhc1;/c1Þ cos hc1 ¼ 0

ð5Þ

Equations (5) have four unknowns hc1; /c1; hc2;
/c2, which makes them unsolvable in principle. If

these equations were expressed in terms of the three

unknown Cartesian coordinates of the contact point,

then there would of course be only three unknowns

and three equations and therefore the contact equa-

tions would potentially be solvable if the contact point

C existed. However, it is much easier to express the

various derivatives needed for application of the

Newton–Raphson method in terms of spherical polar

coordinates, hence the four unknowns. The strategy to

overcome this difficulty is to fix one of the four

unknowns (e.g., /c2) at pre-selected values in the

range of [0; 2p), and then try to directly solve the three
equations with the three unknowns hc1; /c1; hc2 using
the Newton–Raphson method. If a solution is found,

then it demonstrates that the contact point exists, and

the two particles overlap. If no solution can be

obtained for every selected value of /c2, then it is

assumed that the contact point does not exist, and the

two particles do not overlap. It is recommended to take

at least 20 different values of /c2 evenly distributed in

the range [0; 2p). The number of such points is another

user-selected parameter of the algorithm. This contact

function has been tested against direct observation

using VRML (virtual reality modeling language)

images and has been found to be accurate for particle

surfaces that approach to within a small fraction of

either particle radius, approximately 1 %. For particle

surfaces that approach closer than that distance, it is

unknown how well the algorithm discriminates

between overlap and non-overlap.

A more accurate and faster contact algorithm for

star-shaped particles, which has been more rigorously

tested, is described in Ref. [32]. This contact function

will be introduced into the Anm model in its next

version [33]. Another potential contact function, based

on that described in Ref. [32] exists, but since it uses a

numerical triangulation of particle surfaces, it can be

applied also to non-star-shaped particles [34]. Since

the Anm model for the foreseeable future will be

Fig. 2 2D schematic of two random-shape particles

overlapping
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restricted to star-shaped particles, the next version [33]

will use the contact function of Ref. [32].

3.3 Periodic and non-periodic material boundaries

Inmathematical models and computer simulations, the

behavior of a small-volume model can often be

dominated by surface effects, since the surface area

to volume ratio increases as the volume decreases.

Periodic boundary conditions are a set of boundary

conditions that are often used to make a small model

seem larger by removing the dominance of the surface

since periodic boundary conditions eliminate the

surface. In the Anm model, both periodic and non-

periodic boundary conditions can be used. The

periodic boundary permits a particle to pass through

the surface of the simulation box and the part outside

the simulation box is put on the opposite surface by

placing a duplicate particle (ghost particle) with the

same orientation, in the periodic position, while non-

periodic boundary conditions do not allow a particle to

pass through the surface of the simulation box, as

shown in Fig. 3. In the specimen with periodic

boundary conditions, if a particle passes through a

surface but not an edge or corner, then it generates one

ghost particle; if a particle goes through an edge but

not a corner, then three ghost particles are created; if a

particle passes through at a corner, then the number of

its ghost particles is seven. In that way, every part of

every particle appears inside the unit cell only once. A

combination of periodic and non-periodic boundary

conditions, applied to different faces of the unit cell,

can also be employed.

4 Demonstrations of Anm for mortar and concrete

For now, the Anm model is designed for two

applications: simulating the arrangement of coarse

aggregates (gravel) in a mortar matrix, and simulating

the arrangement of fine aggregates (sand) in a cement

paste matrix. In either case, the volume fraction of

inclusions is limited to less than about 50 %. It should

be possible, using the Anm model, to simultaneously

place sand and gravel to achieve a total inclusion

volume fraction of 60–80 %. However, for this wide

size range of particles, approximately 0.5–12 mm, a

very large number of particles, probably well over

100,000, would be necessary. The run time needed for

the current version of Anm to simulate this situation

would be prohibitive. A newer, faster version of Anm

can handle this many particles in a reasonable (e.g.

days or a few weeks) run time [33].

Therefore, this section presents two examples, one

of coarse aggregates in a mortar matrix, and one of

sand in a cement paste matrix. A normal concrete mix

is given in Table 1, in terms of mass used per cubic

meter of concrete for both fine and coarse aggregates,

which will be used to simulate mortar and concrete

separately using the Anm model. The grading of the

coarse and fine aggregates is given in the lower portion

of Table 1.

In the simulations to be described next, the concrete

specimen is a cube with side length 150 mm, filled

with coarse aggregates, and the mortar specimen is in

the shape of a cube with edge length 10 mm, filled

with fine aggregates. The values of the many param-

eters of the Anm model were chosen to be able to

Fig. 3 Periodic and non-

periodic material boundaries
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create the desired structures. However, no attempt was

made to optimize these parameter values—their

values were set high in order to make sure the desired

aggregate concentrations were achieved. The various

internal parameters in the Anm model need to be

systematically investigated as a function of sieve

ranges used to see how these parameters can be

optimized to achieve a wide range of particle-based

microstructures. A first attempt at this systematic

investigation will be carried out using the 2nd version

of the Anm model, employing the more efficient

contact function and partial parallelization to decrease

run time [33].

4.1 Mortar example

Periodic material boundary conditions were employed

for the mortar model. The total mass of sand used in

the mortar specimen was 1.397 g, with volume of

527 mm3, and taking up 52.7 % of the specimen

volume. The mass in each sieve range, 0.125 mm to

4 mm, is found by scaling the mass amounts in

Table 1 by the factor 1.397 g/983 kg. The result of the

Anm model is illustrated in Fig. 4 as a VRML image.

The sand particles were Ottawa sand as used in the

ASTM C109 mortar cube test. On a typical desktop

PC, the time needed to build this simulated mortar was

about 11 weeks, for 26,683 particles. This is a long run

time, but there were several reasons for this. First, the

Anm code was not optimized in any way—either

through exploiting parallelism or in choosing the

internal parameters that control how often different

scenarios (e.g. position, orientation, size) were tried

for each particle placed. These parameters (the

maximum allowed attempts to pick, rotate, scale,

and place a particle and the number of points chosen to

fix the fourth unknown in the overlap algorithm) were

set to high values since we wanted to get the necessary

sand placement for this demonstration example and

were not concerned about the run time. The PC

processor used ran at 3.20 GHz and was manufactured

in 2009. The actual run times on more modern, faster

Windows machines, along with code optimization, a

degree of parallelism in some of the internal Anm

algorithms, and more judicious selection of the Anm

parameters mentioned above are more than a factor of

20 less [33].

To get an idea of how run times vary with the

volume fraction to be achieved, using the present

version of Anm, we ran the same system with the same

sand particle size distribution but only up to 30 %

Table 1 Concrete mix given in terms of the mass needed for one cubic meter of concrete, water:cement mass ratio = 0.4

Densities (kg/m3) Concrete = 2,417 Aggregates = 2,650 Cement = 3,150

Sand mass gradation Coarse mass gradation

[2,4) mm 270 kg [8,16) mm 503 kg

[1,2) mm 252 kg [4,8) mm 283 kg

[0.5,1) mm 192 kg Total mass 786 kg

[0.25,0.5) mm 153 kg

[0.125, 0.25) mm 116 kg

Total mass 983 kg

Fig. 4 The composite material structure of the mortar speci-

men with irregular shape sand particles. The computational cell

is shown as a translucent cube
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volume fraction, which took about 193 h or a little

more than 1 week for 17,810 particles. So to go from

30 % volume fraction to 52.7 % volume fraction, less

than twice as many particles and volume fraction, took

about 10 times the run time. This was because as the

sand was placed, an increasing number of trials are

needed to place the remaining particles, since much of

the volume is already occupied.

4.2 Concrete composite material structure

Non-periodic boundary conditions were used for the

concrete demonstration. The total mass of the coarse

aggregates was 2,653 g, of which 64 % by mass were

in the [8; 16) mm sieve and the remaining 36 % were

in the [4; 8) mm sieve. The volume percentage of the

coarse aggregates in the concrete specimen was 30 %.

The result of the Anm model is illustrated in Fig. 5

using a VRML image. The run time for this concrete

simulation was about 2 weeks, for 5,640 particles,

which was almost twice as long as the 30 % volume

fraction mortar but only for about one-third the

particles. We observed that building composites using

non-periodic boundary conditions seem to take some-

what longer, for systems with an equal number of

particles, than with periodic boundary conditions. This

is probably due to the difficulty of placing particles

near the boundary, which removes some of the unit

cell volume from placement possibility as compared to

when using periodic boundary conditions. This time

difference is probably also due to the fact that the

concrete gravel size distribution is narrower than the

mortar sand. A narrower particle size distribution

tends to come up more quickly against the monosize

particle jamming limit, which can significantly slow

down the particle placement process [4].

5 Potential model applications and improvements

The potential applications of the present version of the

Anm model are many. With certain improvements,

stated below, the number of potential applications is

increased still further. First, the Anm model can give

realistic mortar or concrete aggregate geometric

structures. One can mesh these models with a finite

element mesh and go on to calculate mechanical

properties, including fracture, once appropriate

mechanical properties have been assigned to the

matrix and inclusions. A meshing scheme especially

adapted to the Anmmodel has already been developed

[19].

Discrete element models that attempt to simulate

the flow of non-spherical powders suffer from two

limitations [18, 34]: (1) it is difficult to find realistic

3D particles that can serve as the starting point for the

usual DEM method of modeling irregular particles,

with clumps of spheres, and (2) it is difficult to

generate an initial configuration of particles that can

be relaxed into a mechanically stable starting point for

the DEM simulation. Using the Anmmodel, one could

easily generate large systems of randomly-shaped

particles that can be used as geometrical input into

discrete element software both for generating individ-

ual sphere clump models and for generating initial

configurations of many particles.

Computational rheology models [35] also need a

similar starting point, with 3-D particles dispersed in a

matrix, upon which to exert a shear force and compute

time-dependent particle positions. TheAnmmodel can

be easily used to generate such starting structures.

Finally, the Anm model can be used to numerically

generate various aggregate structures for which geo-

metric statistics can be generated [36], such as radial

distribution functions (howmany particles are within a

certain distance from a given aggregate particle) or the

Fig. 5 The composite material structure of the concrete

specimen with irregular shape crushed stones. The computa-

tional cell is shown as a translucent cube

156 Materials and Structures (2016) 49:149–158



distance distribution between particle surfaces. These

geometric statistics can then be compared to experi-

mental data fromX-rayCT to better understand the real

aggregate structure in mortar and concrete, and the

effect of real, non-spherical shape, which is a major

variable in many mortar and concrete properties.

The interfacial transition zone exists between

aggregate particles and the cement paste matrix [37,

38]. This has been modeled as a uniform-thickness

shell placed around each aggregate particle [39].

Placing a uniform-thickness shell around a spherical

aggregate particle is simple, since it is just formed by a

slightly larger spherical shell concentric with the

original particle. This process is much harder for an

irregular particle. Recently, a method has been

developed that allows such a shell to be placed around

a spherical harmonic particle by recalculating and

slightly changing the spherical harmonic coefficients

[32]. By combining this new algorithm with the Anm

model, interfacial transition zones could be repre-

sented in these simulated composite structures, for the

expansion of its ability to simulate real mortar and

concrete [33].

6 Summary

In this paper, a geometrical model was described that

simulates the geometrical structures of cementitious

materials: the Anm model. Any arbitrary star-shaped

particle can be represented in terms of spherical

harmonic coefficients anm, which will allow any sand

or gravel used in construction to be employed in a

simulation, giving the Anm algorithm broad applica-

bility. Sand in mortar or gravel in concrete can be

regarded as irregular shape particles in a matrix. The

shapes of a class of aggregate can be captured by an

X-ray CT scan, and then represented by spherical

harmonic expansion, with the coefficients for each

particle stored in a shape database. Such a database has

been included in the Anm model, with five different

kinds of particle in it, including sand, gravel, and

portland cement, and a method has been demonstrated

for generating new particles based on the shape

statistics of real particles. The composite geometrical

structure can be reproduced by parking multiple

particles with the appropriate shape characteristics

into an empty container. No overlap is allowed

between aggregates, which is checked using a particle

contact function. Both periodic and non-periodic

material boundaries are implemented in the Anm

model, and examples of both, for mortar and concrete,

were described. Using Anm results as a computational

input, the simulated composite structures ofmortar and

concrete can be further analyzed in terms of geometry,

mechanical performance (e.g. elastic moduli, fracture

paths), and transport properties (e.g. conductivity and

diffusivity), and can be used as an initial configuration

for DEM and rheology computations.
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