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 Abrasive Water Jet Machining is one of the novel nontraditional cutting processes found 

diverse applications in machining different kinds of difficult-to-machine materials.  Process 

parameters play an important role in finding the economics of machining process at good 

quality. This research focused on the predictive models for explaining the functional 

relationship between input and output parameters of AWJ machining process. No single set of 

parametric combination of machining variables can suggest the better responses concurrently, 

due to its conflicting nature. Hence, an approach of Multi-objective has been attempted for the 

best combination of process parameters by modelling AWJM process using of ANN. It served 

a set of optimal process parameters to AWJ machining process, which shows a development 

with an enhanced productivity. Wide set of trail experiments have been considered with a 

broader range of machining parameters for modelling and, then, for validating. The model is 

capable of predicting optimized responses. 
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1. Introduction 

AWJ process is an advanced machining process for difficult to cut materials. Collision of abrasive 

material with water is used to erode the work piece material (Mishra, 2002). High pressure water mixes 

with abrasives in mixing chamber and this abrasive water jet coming through the nozzle cuts the 

workpiece material. This process is a well-known advanced technique for cutting difficult-to machine 

materials. It is a technique, which machines without heat generation and the machined surface is 

generated without any HAZ or residual stress virtually (Khan & Haque, 2007) This process is inert 

towards properties of material with high versatile and flexible in machining. The main disadvantage of 

this technique is its vociferous and disordered working environment (Azmir & Ahsan, 2009)  

AWJ machining process is nonconformist yet totally a flexible process. Fret issue of high speed water 

jet combined with grating is used for metal removal. The intention of cutting by Waterjet is approved 
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from universe which has been exhibiting the incident of gnawing of the material by a flow of water. 

For the improvement in AWJ technology, when the fluid flow is combined with sand particles, the pace 

of erosion is viewed to be quicker. High speed waterjet is fabricated by crossing high tensioned water 

over a very tiny orifice during that time the abrasive is combined with high tensioned water in a 

blending cabin to produce abrasive jet. These complete cutting ends accommodated by water particles 

enlarge the percentage of gnawing, developing the machining proficiency of AWJ is very complex 

compared to pure WJ. The mechanism of material removal contains the following steps: micro cutting, 

micro-fracture and ploughing deformation. An imperious mechanism of metal cutting is detected by 

the features of influencing AW grains viz. physical dimensions of the workpiece, stiffness, the jet crash 

angle, feed rate. Micro cutting and pushing deformation are allied with plastic materials and shoal crash 

angles; where micro machining arise for spiny particles during which ploughing deformation is allied 

with round shaped particles. Micro cracking observes when the grains crash about right to the metal 

piece. Micro cutting is trusted to be the imperious mechanism for MRR in AWJ cutting of Fiber 

Reinforced Plastics (Folkes, 2009). Fig. 1 shows a simple schematic diagram of Abrasive Jet Machining 

(AJM). Pressurized jet may comprehend of an intensifier, prime mover, controller, and an accumulator. 

Pressurized water at 200-400Mpa is fed through high pressure jet tube to the module called cutting 

head. As described in Fig.1, the flow of water then carries along with a tiny hole (of 0.2 - 0.3 mm 

diameter) at high pressure, to frame a velocity (200 - 300 m/s) WJ at very high rates. Water Jet is then 

entered inside the stirring cabin to blend by abrasives equipped by abrasive furnishing system forming 

it which exit from vent nozzle of comparably huge diameter with 0.7 - 0.8 mm. CNC system is used 

for controlling the location and motion of the cutting head (Patel, 2013). AWJ machining includes 

utterly a small number of influential parameters that can show the impact on performance of AWJ 

cutting. Fig. 1 shows their general relationship. Moreover, main and easy-to-adopt parameters are 

considered approximately for obtaining the superior quality of the cut.  

 

Fig. 1. A simple schematic diagram of Abrasive Jet Machining (AJM)  

Due to its peculiar parameters and amusing features, such as invulnerability and encumbering to 

scratches, cracks, stains, spills, heat, cold, and moisture, granite has been extensively adopted as 

bounded stone in societal and economic applications in regular life (Zhao et al., 2013). AWJ is an 

advanced tool for penetrating rocks and rock like metals. It is best suited for cutting, pre-weakening 

and drilling of tough rocks (Momber & Kovacevic, 1997). For production industries and also for other 

civil and mining engineering fields this process is an assured tool due to its exceptional properties of 

inflexible cutting, and acceptable surface roughness, minor kerf widths, expanded tool life, trouble free-

form cutting, flexible process, dust free, ergonomic working conditions, and environment. These 

highlights make the process an ecofriendly process compared to other conventional machining 

processes like sawing (circular) in raw stone cutting and figuring areas (Assarzadeh et al., 2010; 

Vundavilli et al., 2012; Myers et al., 2016).  
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There are abundant parameters associated with this process. The connected parameters of AWH 

machining process are figured out in Fig. 2. (Jegaraj & Babu, 2007; Shanmugam et al., 2008). Many 

of the researchers have focused on understanding the effect of the most influential parameters on 

responses like material removal rate, surface roughness, kerf and microstructural properties. Very 

few researchers have been suggested techniques for enhancing the surface finish and kerf 

quality (Shanmugam & Masood, 2009; Lemma et al., 2002). Based on a thorough knowledge of the 

AWJC metal removal mechanism, various methods such as polishing (Fenggang et al., 1996), 

turning (Hashish, 1987), drilling (Yong & Kovacevic, 1997), milling (Hashish, 1989) and surface 

finishing (Borkowski, 2004) have been progressed to design and machine economically.  

Earlier commented, AWJ machining process has about no boundaries. This process is highly 

preferable for 2D and 3D machining. There is no variation between cutting of cheap construction 

steel or stainless steel materials, both are equally machined well. If quality is highly demanded 

during machining process, the process parameters (Fig. 2) must be properly selected and the 

machining process needs to be ended before occurrence of the abrasion deformation section. 

Parameter optimization for higher material removal and recommended surface roughness was done 

out by (Nagdeve et al., 2012). Taguchi’s integrated with ANOVA were adopted for optimization. 

The analysis exhibits that the standoff distance affects the MRR whereas surface roughness was 

highly influenced by abrasive flow rate. (Ramprasad & Kamal, 2015) investigated that the water 

pressure was the most influential factor for stainless steel 403 work material followed by standoff 

distance and abrasive flow rate. 

Liu et al. used (2014) response surface methodology (RSM) with Box-Behnken Design (BBD). The 

outcomes concluded that the transverse speed is an influential factor along with water pressure, 

abrasive flow rate and tilt angle. AWJ process was optimised using DOE with statistical approach 

(Ibraheem et al., 2015). The results showed that the suitable set of process parameters were 

responsible for the enhanced quality of finishing, dimension accuracy, and for higher productivity. 

An ANN model was developed to guess the speed of cut to the promised surface quality during AWJM 

(Lu et al., 2005). Forecasting of depth of cut using neural network model is build published a paper on 

genetic neuro technique stating that neural network model to predict cut depth is introduced by 

considering focusing nozzle diameter, rate of jet traverse, water pressure and abrasive flow rate. ANN 

combined with GA, i.e. genetic neuro technique, is showcased for suggesting the optimal set of input 

parameters (Srinivasu et al., 2005). A start has been done to build ANN model and Fuzzy logic for 

different figuring area employing AWJC along with an idea of focusing nozzle diameter (Srinivasu & 

Babu, 2008). 
 

1.1. Motivation and objective of the work 

 

The researchers have, even, donated towards exposure of ABWJ machining process. Moreover 

investigation is being continued still. This crucial, predictive control and performance of the grinding 

process. Optimization is certainly one of the aspects. Surface roughness and material removal rate are 

the most important responses while considering AWJ machining process proposes the need of future 

research. Further and continued research may gush through several aspects of more  
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Fig. 2. Process parameters and responses in AWJ process 

In addition, process variables are anticipated to influence surface roughness, as well as material removal 

rate during AWJ machining process. Taking in to account the aspects, the current work has been done 

to analyze how the assorted process parameters impact on surface roughness and material removal rate 

in AWJ machining of granite material. Multi objective optimization has been attempted by considering 

simultaneous minimization of surface roughness and maximization of material removal rate. The 

observation has been done through experiments; data examined using RSM and ANN approach. 

Mathematical modeling has also been done, to determine the relation between the responses and process 

parameters. It is predicted that this work and future research in this area will finally direct to build a 

vigorous knowledge and database, this may facilitate proper selection of process parameters more 

reliably and predictively for people in industry to achieve the desired performance in abrasive water jet 

machining of granite. This work is targeted on predicting responses of AWJ process parameters for 

machining a granite material applying RSM and ANN and also to optimize the process for qualitative 

productivity.  

2. Experimentation 
 

Abrasive water jet machining has been carried out at various levels of process variables as per Box-

Behnken design matrix, which is deliberated subsequently. An abrasive jet begin out the like a pure 

water jet. As the lean flow of water leaves the nozzle, abrasive is joined to the stream and blended. The 

beam of water precipitates abrasive particles to speeds higher in order to cut much harder materials. 

The blending of abrasive particles in water jet is in such a way that water jets momentum is shifted to 

the abrasives. The coherent, abrasive water jet that exists the AWJM nozzle can cut various materials, 

such as metals, glass, ceramics, and composites. The work material (Fig. 3) used in this experiment is 

granite machined into 27 samples of 2cm × 2cm dimension. Each experiment is repeated twice and 

average of response values are considered for analysis. 
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 Fig. 3. Granite cutting using AWJM 

2.1. Experimental Design 
 

 

2.1.1. Response Surface Methodology 

A response surface (Box & Draper, 2007) design is a set of futuristic design of experiments (DOE) 

techniques that help you comprehend and is optimize your response in a better manner. Response 

surface methodology is frequently applied to cultivate models after most influential factors have been 

determined using factorial designs. If a response of interest is influenced by multiple variables RSM is 

one of the best techniques for modeling and analysis because it is a combination of both mathematical 

and statistical technique, and then the target is the optimization of output by simultaneous variation of 

input factors. RSM is one of the operative techniques for enhancing, improving and optimizing the 

machining process by joining various process parameters and to decide the impact of critical 

interactions on the achievement of the output variables. For adopting RSM, choice of range of process 

parameters and effective design of experiment is in need. In present work, model built by adopting 

design of experiment with Box Behnken design and regression analysis in addition with ANOVA for 

judging about the performance of the model. The responses were modelled to equip quadratic pattern 

depicted by the given equation. 
 

2 2 2

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 11 1 22 2 33 3Y x x x x x x x x x x x x                   . (1) 
 

Here the notations with   are called approximating function parameters. Y  is an output parameter, 

and x  is process parameter. In this work, all 27 experiments (Table 2) were planned based on Box 

Behnken method. Four process parameters (Table 1) were considered for evaluating the performance 

of machining process. The responses considered for evaluation are material removal rate (MRR) and 

surface roughness (Ra). Experiments were conducted according to the order suggested by RSM 

methodology and the results were calculated as per the below formula and recorded in Table 3. 
 

MRR = Ht WDi 

Ht = depth of penetration 

Vf = Traverse speed of the abrasive water jet 

W = width of the kerf 

Ht = 16.5 mm 

Vf = varies at three different levels 

W = varies depending on the kerf value 

 

Kerf width is calculated using Vernier caliper. Surface roughness of the samples is found using roughness 

testing machine. 

Table 1  

Process parameters and their levels 
Level Pressure 

(bar) 

Abrasive 

(gm/min) 

Stand-off 

(mm) 

Feed rate 

(mm/min) 

-1 3000 500 2 350
0 3200 600 2.5 400
1 3600 800 3 495

 



  540

Table 2  

Box Behnken Experimental design  

 
Table 3  

Experimental Results 
S.No Pressure 

(bar) 

Abrasive 

(gm/min) 

Stand-off 

(mm) 

Feed rate 

(mm/min) 

Kerf 

(mm)

SR 

(µm) 
MRR 

(mm^3/min) 
1 3200 500 2.5 495 0.17 6.3496 528
2 3200 600 2.5 400 0.43 5.2516 150.15
3 3200 800 2.5 350 0.1 6.0605 528
4 3000 800 2.5 400 0.3 7.9998 2376
5 3200 600 2 350 0.15 6.2907 3185.325
6 3600 600 2.5 350 0.026 4.9293 4290
7 3600 600 2.5 495 0.39 7.3537 1388.475
8 3600 600 2 400 0.08 6.9946 2838
9 3200 800 2.5 495 0.08 6.0177 1122
10 3000 600 2.5 350 0.01 6.5055 303.6
11 3200 600 2 495 0.09 5.6061 735.075
12 3200 800 3 400 0.1 6.0196 792
13 3200 500 3 400 0.09 5.8027 594
14 3200 600 2.5 400 0.046 7.0307 130.68
15 3200 500 2.5 350 0.27 6.1613 1559.25
16 3000 500 2.5 400 0.32 7.2511 577.5
17 3200 600 3 495 0.016 5.5828 653.4
18 3000 600 2 400 0.13 6.7500 660
19 3200 800 2 400 0.17 5.9860 866.25
20 3600 800 2.5 400 0.08 6.4728 693
21 3200 500 2 400 0.12 6.2216 924
22 3200 600 3 350 0.12 5.3928 198
23 3600 500 2.5 400 0.36 6.1543 81.675
24 3600 600 3 400 0.65 6.1904 57.75
25 3000 600 3 400 0.03 6.0323 1980
26 3000 600 2.5 495 0.01 6.4509 858
27 3200 600 2.5 400 0.14 6.4300 2112

 

2.2.Empirical Model formulation 
 

RSM has been implemented to calculate MRR and surface roughness of granite material during AWJ 

machining process. Box Behnken design of 27 experiments are considered establishing the model for 

S.NO Pressure (bar) Abrasive (gm/min) Stand-off (mm) Feed rate (mm/min) 
1 0 -1 0 1 
2 0 0 0 0 
3 0 1 0 -1 
4 -1 1 0 0 
5 0 0 -1 -1 
6 1 0 0 -1 
7 1 0 0 1 
8 1 0 -1 0 
9 0 1 0 1 

10 -1 0 0 -1 
11 0 0 -1 1 
12 0 1 1 0 
13 0 -1 1 0 
14 0 0 0 0 
15 0 -1 0 -1 
16 -1 -1 0 0 
17 0 0 1 1 
18 -1 0 -1 0 
19 0 1 -1 0 
20 1 1 0 0 
21 0 -1 -1 0 
22 0 0 1 -1 
23 1 -1 0 0 
24 1 0 1 0 
25 -1 0 1 0 
26 -1 0 0 1 
27 0 0 0 0 
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formulation of relationship between responses and process parameters. Quadratic model for surface 

roughness and material removal rate are framed based on Eq. (2) and Eq. (3). 

Following equations shows the response surface equation for surface roughness and material removal 

rates in terms of process variables. 

MRR = 1355 + 481 A - 275 B + 139 C + 189 D + 277 A×A + 27 B×B - 332 C×C 

- 506 D×D - 429 A×B + 1106 A×C + 753 A×D - 66 B×C + 62 B×D - 108 C×D 

(2) 

Regression Equation of surface roughness 

SR = 62374 - 2412 A + 513 B - 2357 C + 1684 D + 4929 A×A + 1694 B×B - 2840 C×C 

- 3051 D×D - 1076 A×B - 216 A×C + 6198 A×D + 1131 B×C - 578 B×D + 2186 C×D 

(3)

 

3. Results and Discussion 
 

Based on response surface analysis, the impact of process variables on responses are discussed in this 

section. 

3.1.Effect on Process parameters on Surface roughness 
 

The goodness-of-fit in regression and ANOVA is examined by residual plots. Studying residual plots 

assists to find whether the ordinary least squares assumptions are being rescued. If these assumptions 

are fulfilled, then ordinary least squares regression will generate unbiased coefficient estimates with 

the least possible deviation. The normal plot of residuals is used to check the assumption that the 

residuals are normally distributed. The plot of residuals versus fits is used to check the assumption that 

the residuals have a fixed variance. 

 

  Fig. 4. Main Effects Plot for SR 

It is clear that surface roughness (Fig. 4) is mainly influenced by pressure then by SOD and feed rate 

in the sequence. Surface roughness decreases with growth in standoff distance. High surface finish is 

obtained at low feed rate and high standoff distance. An optimal value of surface roughness of 5-6 µm 

is obtained at 3mm standoff distance and at a feed rate of 350mm/min. At low pressure and low abrasive 

flowrate surface roughness expected at very high rate.  Non influential interaction terms have been 

eliminated. The accuracy of model in terms of the three tests, and analysis for lack of fit is verified by 

ANOVA. The standard of degree of fit is represented by coefficient of determination (R-sqr). The 

statistics of R-squared values clearly exhibits that, the pattern elucidates 92.2 % of the total deviation. 

The obtained R2 value after calibrated for measure of the model is 85.39%, smaller than permissible 

variation betwixt R-sqr and R-adj sqr. When comparing R2
Adj=0.8539 with R2

pred=0.4692 explains both 

the terms are mutually covenant with one other and the pattern would be demanded to justify 46.93% 

variability in new data. Fairness of the suggested model in RSM is inspected by residual reports. Plots 

of all residuals of surface roughness have represented by Fig. 5. 
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It gives the information about errors and assumptions considered in this research. Proximity of points 

to the linear line denotes that assumptions are not offended, since errors are normally and independently 

distributed. Residual versus run number plot (Fig. 5) explains that there is no complicated pattern and 

unused structure, which uncovers that separate and fixed deviated assumptions are not opposed and no 

correlation betwixt residuals has been noticed. Since actual and predicted values lies on a straight line 

Fig. 5 denotes that the normal distribution of errors. The above explanation concludes the abundancy 

of the suggested model. There is no reason existed to suspect any violator of independence or fixed 

variation assumptions. A contour plot provides (Fig. 6) a 2-dimensional view of the surface where 

points that have the same response are connected to produce contour lines of constant responses. 

Contour plots are useful for establishing the response values and operating conditions. 

Table 4  

Analysis of Variance of SR 
Source DF Adj SS Adj MS F-Value P-Value 

Regression 14 7.13283 0.50949 1.34 0.310 

Linear 4 1.73670 0.43418 1.14 0.384 

A 1 0.69818 0.69818 1.83 0.201 

B 1 0.03160 0.03160 0.08 0.778 

C 1 0.66665 0. 66665 1.75 0.210 

D 1 0.34027 0.34027 0.89 0.363 

Square 4 3.55586 0.88897 2.33 0.115 

A×A 1 1.29556 1.29556 3.40 0.090 

B×B 1 0.15305 1.5305478 0.40 0.538 

C×C 1 0.43023 0.43023 1.13 0.309 

D×D 1 0.49649 0.49649 1.30 0.276

Interaction  1.84027 0.30671 0.81 0.585 

A×B 1 0.04627 0.04627 0.12 0.733 

A×C 1 0.00187 0.00187 0.00 0.945 

A×D 1 1.53636 1.53636 4.04 0.068 

B×C 1 0.05119 0.05119 0.13 0.720 

B×D 1 0.01335 0.01335 0.04 0.855 

C×D 1 0.19123 0.19123 0.50 0.492 

Residual Error 12 4.5688 0.38074

Lack-of-Fit 10 2.93066 0.29307 0.38 0.891 

Pure Error 2 16.3822 0.81911   

Total 26 11.7017    
 

3.2 Effect of process variables on MRR 

Fig. 7 describes a linear increase of MRR as pressure increases. Abrasive flow rate doesn’t have any 

significant impact on MRR. Both SOD and traverse speed has similar impact on MRR. Fig 7 shows 

that maximum material removal rate can be achieved at high pressure and low SOD, traverse speed. 

Non influential interaction terms have been eliminated. The model accuracy which in terms consists of 
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the three tests, i.e., significance of regression model, significance of model coefficients, and tests for 

lack of fit is verified by ANOVA (Table 5).  

 

Fig. 7. Main effects plot for MRR 

The standard of degree of fit is shown by coefficient of determination (R-squared). R-squared statistics 

clearly exhibits that the model explains 90.6 % of the total deviation. The obtained R2 value after 

calibrated for size (terms) of model is 88.23%, smaller than the permissible variation between R-

squared and adjusted R-squared. Comparison of R2
Adj=0.8826 with R2

pred=0.5273 explains that both 

the terms are in mutual covenant with each other and the model would be demanded to justify 52.73% 

variability in new data. Fairness of the proposed model in RSM can be inspected by residual analysis. 

Plots of all residuals of surface roughness have represented by Fig 8. It gives the information about 

errors and assumptions considered in this research. Proximity of points to the straight line denotes that 

assumptions are not offended, since errors are normally and independently distributed. Residual versus 

run number plot (Fig. 8) explains that there is no complicated pattern and unused structure, which 

uncovers that separate and fixed deviated assumptions are not opposed and no correlation betwixt 

residuals has been noticed. Since actual and predicted values lies on a straight line Fig 8 denotes that 

the normal distribution of errors. The above explanation concludes the abundancy of the suggested 

model. There is no reason existed to suspect any violator of independence or fixed variation 

assumptions. It is concluded from counter plots  (Fig. 9) that an optimum value of 2000-3000 mm^3/sec 

of MRR can be achieved by setting pressure to 3600bar, SOD 2 mm and traverse speed to 350 mm/min. 

MRR is observed to be minimum at low abrasive flow rate and high SOD, traverse speed. 
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Table 5  

Analysis of Variance of MRR  
Source DF Adj SS Adj MS F-Value P-Value 

Regression 14 17757533 1268395 1.38 0.291 

Linear 4 4864353 1268395 1.32 0.317

A 1 560650 560650 0.61 0.45 

B 1 372002 372002 0.40 0.537 

C 1 2028285 2028285 2.21 0.163

D 1 1903416 1903416 2.07 0.176 

Square 4 2564554 641139 0.70 0.608 

A×A 1 1110488 1110488 1.21 0.293 

B×B 1 273571 273571 0.30 0.595 

C×C 1 88453 88453 0.10 0.762 

D×D 1 698701 1721437 0.76 0.400 

Interaction 6 10328625 0.30671 1.87 0.167

A×B 1 352346 352346 0.38 0.547 

A×C 1 4203013 4203013 4.57 0.054 

A×D 1 2985854 2985854 3.25 0.097 

B×C 1 16352 16352 0.02 0.896 

B×D 1 660359 660359 0.72 0.413 

C×D 1 2110700 2110700 2.30 0.156 

Residual Error 12 11027763 918980   

Lack-of-Fit 10 8436142 8436142 0.65 0.738 

Pure Error 2 2591621 1295811   

Total 26 28785296    
 

4. Artificial Neural Network 

Artificial Neural Networks (ANNs) are simple electronic devices modelled after the neural structure of 

the brain. ANNs are powerful tools for many complex applications such as optimization, system 

identification and pattern reorganization. ANNs are capable to learn from experiments and to perform 

non-linear mappings. The processing elements of neural networks are called artificial neurons, or 

nodes. ANN consists of input layers, which are multiplied by weights, and then evaluated by a 

mathematical mapping which computes the activation of the neuron. Another function determines the 

output of the artificial neuron. The artificial neurons of ANNs process the information. Neural networks 

are categorized by their structure, activation functions and training algorithms. Each type of neural 

networks has its own input-output characteristics; therefore, it could be applied only in some specific 

processes. In this one, a neural network is employed for modelling the MRR and the Ra in the EDM 

process. One of artificial neural networks, i.e., Back-Propagation Neural Network (BPNN) is discussed. 

The BPNN model consists of an input layer, one or two hidden layers, and an output layer in a forward 

multi-layer neural network (Fig. 10).    

           

 
Fig. 10. Customized Neural network structure 

 

Neural networks are categorized by their structure, activation functions and training algorithms. Each 

type of neural networks has its own input-output characteristics; therefore, it could be applied only in 

some specific processes. In this one, a neural network is employed for modeling the MRR and the Ra 

in the AWJM process.  
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4.1 Optimization Approach 
 

The trained ANN model can determine the response parameters as a function of four different control 

(input) parameters, i.e., MRR, abrasive flow rate, SOD, traverse speed. An attempt was made to 

generate the highest number of input, output parameter combinations to get more number of optimum 

points. The input parameters (four in numbers) were divided into all possible levels. These 

considerations resulted in 6050 possible input combinations. The developed ANN model was used to 

determine the MRR and Ra for all possible levels of the 6050 combinations. Finally, the results of this 

study proposed best of these combinations. 

Table 6  
Predicted output values using ANN 

S.NO Pressure Abrasive 

flow rate 

SOD Traverse 

speed

MRR SR 

1 3140 600 2 490 1129.026658 5.771710899
2 3040 780 2.2 375 1129.256601 5.855212906
3 3000 620 2 400 1201.265868 5.976404759
4 3160 720 2.4 485 1202.297187 5.615578039
5 3000 740 2.5 500 1203.485695 5.262118619

6 3120 800 2.1 370 1204.138402 5.780498788

7 3180 780 2.6 430 1204.277721 6.071839402
8 3160 760 2.3 500 1205.123621 5.419318083
9 3000 680 2.3 480 1754.905481 5.898562813

10 3020 800 2.3 500 1758.282978 5.847318964
11 3000 800 2.4 485 1827.16306 5.896483022
12 3020 780 2.4 480 1831.315761 5.912730528

13 3080 680 2.2 485 1862.845016 6.069668546
14 3060 740 2.2 500 1864.782594 5.954993512

15 3040 640 2.2 475 1866.067999 6.190420705
16 3260 660 2 350 3371.011297 7.386846458

 

 

 
Fig. 11. Experimental MRR Vs ANN MR 
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Fig. 12. Experimental SR VS ANN SR 

 

Parameter which we have considered to compare the proposed ANN model result with experimental 

result is the regression analysis or the R- value. Fig. 13 shows the R values based on ANN model and 

the experimental data for the MRR and Ra. The solid line represents the best possible regression fit 

between targets and outputs for training, validation, testing and all data sets. The value of R, which is 

shown in Fig. 13, represents the relation-ship between those two. In neural networks, R=1 indicates the 

perfect match between targets and outputs. Since the net-works cannot be made to learn perfectly, the 

general value of R lies near to 1. The closer its value to 1, the better the neural network is. On the other 

hand, the value of R close to 0 indicates the nonlinear relationship between targets and outputs. 

 

  Fig. 13. Compressions between Target and Output of ANN 
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5. Conclusions  

The influence of AWJ machining parameters on responses are reported in results and discussion section. Based 

on results analysis, the following conclusions were drawn. Based on analysis, it was found that a linear increase 

of MRR as pressure increases. Abrasive flow rate doesn’t have any significant impact on MRR. Both SOD and 

traverse speed has similar impact on MRR.  Maximum material removal rate is achieved at high pressure and 

low SOD, traverse speed. It is concluded from counter plots that an optimum value of 2000-3000 mm3/sec of 

MRR can be achieved by setting pressure to 3600bar, SOD 2 mm and traverse speed to 350 mm/min. MRR is 

observed to be minimum at low abrasive flow rate and high SOD, traverse speed. 

It is concluded that surface roughness is prominently affected by pressure followed by SOD and feed rate. 

Surface roughness decreases with increase in standoff distance.  High surface finish is obtained at low feed rate 

and high standoff distance. An optimal value of surface roughness of 5-6 µm is obtained at 3mm standoff distance 

and at a feed rate of 350mm/min. At low pressure and low abrasive flowrate surface roughness expected at very 

high. When compared to predict with experimental response, both are showing good agreement. 

References  

Assarzadeh, S., Ghoreishi, M., & Shariyyat, M. (2010). Response surface methodology approach to 

process modeling and optimization of powder mixed electrical discharge machining (PMEDM). 

In Proceedings of the 16th International Symposium on Electromachining (ISEM-XVI) April (pp. 

19-23). 

Azmir, M. A., & Ahsan, A. K. (2009). A study of abrasive water jet machining process on glass/epoxy 

composite laminate. Journal of Materials Processing Technology, 209(20), 6168-6173. 

Borkowski, P. (2004). Theoretical and experimental basis of hydro-jet surface treatment. Publ. 

Koszalin University of Technology. 

Box, G. E., & Draper, N. R. (2007). Response surfaces, mixtures, and ridge analyses (Vol. 649). John 

Wiley & Sons. 

Fenggang, L., Geskin, E. S., & Tismenetskiy, L. (1996). Feasibility study of abrasive waterjet 

polishing. 13th Int. In Conf. on Jetting Technology. Sardinia(pp. 709-723). 

Folkes, J. (2009). Waterjet—An innovative tool for manufacturing. Journal of Materials Processing 

Technology, 209(20), 6181-6189. 

Hashish, M. (1987). Turning With Abrasive-Waterjets--a First Investigation. J. Eng. Ind.(Trans. 

ASME), 109(4), 281-290. 

Hashish, M. (1989). An investigation of milling with abrasive-waterjets. ASME J. Eng. Ind, 111(2), 

158-166. 

Ibraheem, H. M. A., Iqbal, A., & Hashemipour, M. (2015). Numerical optimization of hole making in 

GFRP composite using abrasive water jet machining process. Journal of the Chinese Institute of 

Engineers, 38(1), 66-76. 

Jegaraj, J. J. R., & Babu, N. R. (2007). A soft computing approach for controlling the quality of cut 

with abrasive waterjet cutting system experiencing orifice and focusing tube wear. Journal of 

Materials Processing Technology, 185(1), 217-227. 

Khan, A. A., & Haque, M. M. (2007). Performance of different abrasive materials during abrasive 

water jet machining of glass. Journal of materials processing technology, 191(1), 404-407. 

Lemma, E., Chen, L., Siores, E., & Wang, J. (2002). Optimising the AWJ cutting process of ductile 

materials using nozzle oscillation technique. International Journal of Machine Tools and 

Manufacture, 42(7), 781-789. 

Liu, D., Huang, C., Wang, J., Zhu, H., Yao, P., & Liu, Z. (2014). Modeling and optimization of 

operating parameters for abrasive waterjet turning alumina ceramics using response surface 

methodology combined with Box–Behnken design. Ceramics International, 40(6), 7899-7908. 

Lu, Y., Li, X., Jiao, B., & Liao, Y. (2005). Application of artificial neural networks in abrasive waterjet 

cutting process. Advances in Neural Networks–ISNN 2005, 982-982. 

Mishra, P. K. (2002). Non-conventional machining processes. Published by NK Mehra (Naroja 

publishing house), 3. 



  548

Momber, A. W., & Kovacevic, R. (1997). Test parameter analysis in abrasive water jet cutting of 

rocklike materials. International Journal of Rock Mechanics and Mining Sciences, 34(1), 17-25. 

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: 

process and product optimization using designed experiments. John Wiley & Sons. 

Nagdeve, L., Chaturvedi, V., & Vimal, J. (2012). Implementation of Taguchi approach for optimization 

of abrasive water jet machining process parameters. International Journal of Instrumentation, 

Control and Automation, 1(3), 4. 

Patel, S. R., & Shaikh, A. A. (2013). Control and measurement of abrasive flow rate in an Abrasive 

Waterjet Machine. International journal of innovative Research in Science, Engineering and 

Technology, ISSN, 2319-8753. 

Ramprasad, U. G., & Kamal, H. (2015). Optimization MRR of Stainless steel 403 in abrasive water jet 

machining using ANOVA and Taguchi method. International Journal of Engineering Research and 

Applications, 5(5), 86-91. 

Shanmugam, D. K., & Masood, S. H. (2009). An investigation on kerf characteristics in abrasive 

waterjet cutting of layered composites. Journal of materials processing technology, 209(8), 3887-

3893. 

Shanmugam, D. K., Wang, J., & Liu, H. (2008). Minimisation of kerf tapers in abrasive waterjet 

machining of alumina ceramics using a compensation technique. International Journal of Machine 

Tools and Manufacture, 48(14), 1527-1534. 

Srinivasu, D. S., & Babu, N. R. (2008). A neuro-genetic approach for selection of process parameters 

in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Applied Soft 

Computing, 8(1), 809-819. 

Srinivasu, D. S., Babu, N. R., Srinivasa, Y. G., Louis, H., Peter, D., & Versemann, R. (2005, August). 

Genetically evolved artificial neural networks built with sparse data for predicting depth of cut in 

abrasive water jet cutting. In Proceedings American Water Jet Conference. Houston, Texas (pp. 1-

16). 

Vundavilli, P. R., Parappagoudar, M. B., Kodali, S. P., & Benguluri, S. (2012). Fuzzy logic-based 

expert system for prediction of depth of cut in abrasive water jet machining process. Knowledge-

Based Systems, 27, 456-464. 

Yong, Z., & Kovacevic, R. (1997). Modeling of jetflow drilling with consideration of the chaotic 

erosion histories of particles. Wear, 209(1-2), 284-291. 
Zhao, C. Y., Gong, H., Fang, F. Z., & Li, Z. J. (2013). Experimental study on the cutting force difference between 

rotary ultrasonic machining and conventional diamond grinding of K9 glass. Machining Science and 

Technology, 17(1), 129-144.  
 
 

© 2018 by the authors; licensee Growing Science, Canada. This is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


