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Abstract. The aim of this paper is to prove central limit theorems with respect
to the annealed measure for the magnetization rescaled by

√
N of Ising models

on random graphs. More precisely, we consider the general rank-1 inhomogeneous
random graph (or generalized random graph), the 2-regular configuration model
and the configuration model with degrees 1 and 2. For the generalized random
graph, we first show the existence of a finite annealed inverse critical temperature
0 ≤ βan

c < ∞ and then prove our results in the uniqueness regime, i.e., the values
of inverse temperature β and external magnetic field B for which either β < βan

c

and B = 0, or β > 0 and B 6= 0.
In the case of the configuration model, the central limit theorem holds in the

whole region of the parameters β and B, because phase transitions do not exist
for these systems as they are closely related to one-dimensional Ising models. Our
proofs are based on explicit computations that are possible since the Ising model
on the generalized random graph in the annealed setting is reduced to an inho-
mogeneous Curie-Weiss model, while the analysis of the configuration model with
degrees only taking values 1 and 2 relies on that of the classical one-dimensional
Ising model.

1. Introduction and main results

1.1. Motivation.
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1.1.1. Ising models on random graphs. The ferromagnetic Ising model is the most
well-known example of statistical mechanics system describing cooperative behav-
ior. Its probabilistic formulation Ellis (1985) amounts to an infinite family of ran-
dom variables taking values in {−1, 1} (so-called spins) whose joint law is given
by the Boltzmann-Gibbs distribution. The properties of such families of random
variables are crucially determined by the spatial structure where the spin variables
are sitting. For instance, for the Ising model on Z

d with nearest-neighbor interac-
tions, the model displays a second-order phase transition for d ≥ 2. Furthermore,
the universality prediction states that the precise details of the interactions are not
relevant for the near-critical behavior, so that around the critical temperature each
universality class is described by a single set of critical exponents.

Besides regular lattices, in recent years much attention has been devoted to the
setting in which the spin variables are placed on the vertices of random graphs
Albert and Barabási (2002); Dembo and Montanari (2010); Dembo et al. (2014,
2013); De Sanctis and Guerra (2008); Dommers et al. (2010, 2014); Dorogovtsev
et al. (2002, 2008); Leone et al. (2002); Montanari et al. (2012). Such random
graphs aim to model emergent properties of complex systems consisting of many
interacting agents described by a network. Several studies on empirical networks
have found that two random elements of the network are typically within relatively
short graph distance (the so-called small-world paradigm), whereas there does not
exist a typical scale for the number of neighbors that a random element has (the
so-called scale-free paradigm where degrees in the network are proposed to have
a power-law distribution) Newman (2003, 2010); van der Hofstad (2014a,b). As a
consequence, there are vertices with very high degree that often play an important
role in the functionality of the network.

Thus, the combination of the ferromagnetic Ising model on a random graph de-
scribes situations in which single units establish macroscopic cooperative behavior
in the presence of the random and complex connectivity structure described by a
network. Here the playing field has two levels of randomness: firstly, the proba-
bilistic law of the spins and, secondly, the probability distribution of the graph. So
far, most of the studies have focused on the so-called (random) quenched state, in
which the random graph is considered to be fixed once and for all. In this paper, we
instead consider the annealed state: the Ising model at every time sees an average
of the possible random graphs Bianconi (2012); Krasnytska et al. (2014), rather
than one realization of the graph. The annealed measure is particularly relevant
for applications in socio-economic systems, in which the graph dynamic models the
evolution of social acquaintances, or the brain, in which graph edge rearrangements
represent the evolution of synaptic connections. We explain the role of the annealed
and the quenched laws in more detail in the following section.

1.1.2. Annealing. To understand the difference between the quenched and annealed
settings, it is convenient to think of a microscopic dynamics yielding the equilibrium
state. For instance, one could imagine that the spins are subject to a Glauber
dynamics with a reversible Boltzmann-Gibbs distribution and the graph also has
its own dynamical evolution approaching the graph’s stationary distribution. In
general, these two dynamics are intertwined and both concur to determine the
equilibrium state, i.e., the asymptotic value of an ergodic dynamical time average.
The quenched and annealed state arise as follows:
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(a) In the quenched state, the changes of the graph happen on a time-scale
that is infinitely longer than the time-scale over which the changes of the
spin variables occur. Thus in the quenched state the graph viewed by the
evolving spins is frozen. One distinguishes between the random quenched
measure, i.e., the random Boltzmann-Gibbs distribution of a given real-
ization of the graph, and the averaged quenched measure, i.e., the aver-
age of the Boltzmann-Gibbs distribution over the graph ensemble. Several
thermodynamic observables (e.g., the free energy per particle, the inter-
nal energy per particle, etc.) are self-averaging, and therefore the random
quenched values and their averaged quenched expectations do coincide in
the thermodynamic limit. In the study of the fluctuations of the properly
rescaled magnetization one finds a Gaussian limiting law. Interestingly, the
asymptotic variances of the random quenched and averaged quenched state
might be different Giardinà et al. (2015) due to local Gaussian fluctuations
of graph properties.

(b) In the annealed state, the environment seen by the spins includes all pos-
sible arrangements of the random graph. The annealed measure (defined
later in (1.7)) is given by the stationary reversible measure of a Glauber
spin dynamics in which the transition from a configuration σ to another
configuration σ′ occurs with probability

E[e−βH(σ′)]

E[e−βH(σ)]
∧ 1, (1.1)

where H is the Hamiltonian and E[·] represents the average over the graph
ensemble. The above dynamics corresponds to an extremely fast random
graph dynamics in which we do not even observe the graph at any time,
but merely see it averaged over the random graph distribution. This is
equivalent to an effective Glauber dynamics with (annealed) Hamiltonian
equal to

Han(σ) = − 1

β
log(E[e−βH(σ)]). (1.2)

Thus, by construction, the annealed measure is necessarily non-random.
We will be interested in the properties of the Gibbs measure corresponding
to the dynamics in (1.1), which corresponds to the stationary or infinite-
time distribution of the spins under the dynamics. While the Glauber
dynamics (1.1) corresponds to infinitely fast graph dynamics compared to
the spin dynamics, the stationary distribution can equally well be viewed as
a dynamics where the graph and the spin evolve at equal speeds, as is the
more usual viewpoint in statistical mechanics. Note that, in the definition
of the annealed pressure (see (1.8)), the averages taken w.r.t. the spins and
the graph are completely symmetric, which can be seen as another argument
in favor of the view that the corresponding dynamics run equally fast and
that the limiting measure corresponds to the average w.r.t. graph and spins
alike. In this paper, we will study annealed central limit theorems for the
ferromagnetic Ising model on random graphs, in order to deduce what the
effect of annealing on the macroscopic properties of the Ising model is.

The definition of the annealed measure in the context of Ising models on random
graphs is thus different than in other class of problems with disorder, such as random
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walks in random environment Comets et al. (2000). In that context, annealing is
rather similar to what here we have called the averaged quenched measure.

In disordered systems (such as spin glasses Mézard et al. (1987); Contucci and
Giardinà (2013)), annealed disorder is usually considered to be easier to deal with
mathematically, since the average on the disorder and the thermal average are
treated on the same footing. This is true whenever the edges of the graph are
independent, due to the form of the Hamiltonian that allows a factorization of
expectations w.r.t. the bond variables. If instead the edge distribution in the graph
does not have a product structure, the annealed case can actually be more difficult
than the quenched case. Indeed, whereas the random-quenched case is dominated
by the typical realization of the graph (often having the local structure of a random
tree), in the annealed case (as in the averaged-quenched case) the rare graph samples
actually give a contribution that can not be ignored. This is due to the fact that
the Ising model gives rise to exponential functionals on the random graph, and
expectations of exponential functionals tend to be dominated by rare events in
which the exponential functional is larger than it would be under the quenched
law. Deriving such statement rigorously requires a deep understanding of the large
deviation properties of random graphs, a highly interesting but also challenging
topic.

In this paper, we consider graph ensembles of both types, i.e., random graphs
with independent edges (these are generalized random graphs) or dependent edges
(in this case, we study the configuration model). These are described in the follow-
ing section.

1.2. Random graph models. We denote by GN = (VN , EN) a random graph with
vertex set VN = [N ] and edge set EN ⊂ VN ×VN . Here and in the rest of this paper,
we write [N ] = {1, . . . , N} for the vertex set of GN . For any N ∈ N, we denote
by QN the probability law of the random graph GN . In this work, we consider
two classes of random graphs: the configuration model and the generalized random
graph. We next introduce these models.

1.2.1. The Generalized Random Graph. In the generalized random graph, each ver-
tex i ∈ [N ] receives a weight wi > 0. Given the weights, edges are present inde-
pendently, but the occupation probabilities for different edges are not identical,
instead, they are moderated by the vertex weights. For a given sequence of weights
w = (wi)i∈[N ], the graph is denoted by GRGN(w). We call Iij the Bernoulli indi-
cator that the edge between vertex i and vertex j is present and pij = P (Iij = 1)
is equal to

pij =
wiwj

ℓN + wiwj
, (1.3)

where ℓN is the total vertex weight given by

ℓN =
N∑

i=1

wi . (1.4)

Denote by WN = wIN
the weight of a uniformly chosen vertex IN ∈ [N ]. The weight

sequence of the generalized random graph GRGN(w) is often assumed to satisfy a
regularity condition, which is expressed as follows:
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Condition 1.1 (Weight regularity). There exists a random variable W such that,
as N → ∞,

(a) WN

D−→W ,
(b) E[WN ] =

1
N

∑
i∈[N ] wi −→ E[W ] <∞,

(c) E[W 2
N ] =

1
N

∑
i∈[N ] w

2
i −→ E[W 2] <∞,

where
D−→ denotes convergence in distribution. Further, we assume that E[W ] > 0.

In the following, we will consider deterministic sequences of weights that satisfy
Condition 1.1. In many cases, one could also work with weights w = (wi)i∈[N ]

that are i.i.d. random variables. For the annealed setting, however, one has to
be careful, as we will argue in more detail in Section 1.5.1 below. Indeed, when
the weights are themselves random variables, they introduce a double randomness
in the random graphs: firstly there is the randomness introduced by the weights,
and secondly there is the randomness introduced by the edge occupation statuses,
which are conditionally independent given the weights. Whereas the thermody-
namic properties (pressure, magnetization, etc.) in the quenched measures of the
Ising model on GRGN(w) are not affected by the choice of deterministic or random
weight sequences, the pressure of the annealed Ising model becomes infinite when
the weights have sufficiently heavy tails.

1.2.2. The Configuration Model. The configuration model is a multigraph, that is,
a graph possibly having self-loops and multiple edges between pairs of vertices. Fix
an integer N and consider a sequence of integers d = (di)i∈[N ]. The aim is to
construct an undirected multigraph with N vertices, where vertex j has degree dj .
We assume that dj ≥ 1 for all j ∈ [N ] and we denote the total degree in the graph
ℓN by

ℓN :=
∑

i∈[N ]

di. (1.5)

We assume ℓN to be even in order to be able to construct the graph.
Assuming that initially dj half-edges are attached to each vertex j ∈ [N ], one

way of obtaining a uniform multigraph with the given degree sequence is to pair
the half-edges belonging to the different vertices in a uniform way. Two half-edges
together form an edge, thus creating the edges in the graph. To construct the
multigraph with degree sequence d, the half-edges are numbered in an arbitrary
order from 1 to ℓN . Then we start by randomly connecting the first half-edge
with one of the ℓN − 1 remaining half-edges. Once paired, two half-edges form a
single edge of the multigraph. We continue the procedure of randomly choosing
and pairing the half-edges until all half-edges are connected, and call the resulting
graph the configuration model with degree sequence d, abbreviated as CMN(d).

We will consider, in particular, the following models:

(1) The 2-regular random graph, i.e., the configuration model with di = 2 for
all i ∈ [N ], which we denote by CMN(2).

(2) The configuration model with di ∈ {1, 2} for all i ∈ [N ], which we denote
by CMN(1,2). In CMN(1,2), for a given p ∈ [0, 1], we have N − ⌊pN⌋
vertices of degree 1 and ⌊pN⌋ vertices of degree 2.
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1.2.3. Properties of GRGN(w) and CMN(d). The existence of a phase transition
in the structural properties of the graph depends on the asymptotic degree D, i.e.
the weak limit, provided it exists, of the sequence (DN )N≥1 where DN is the degree
a uniformly chosen vertex IN ∈ [N ] in the graph. In order to state this result, we
introduce some notation that we will frequently rely upon. Let the integer-valued
random variable D have distribution P = (pk)k≥1, i.e., P(D = k) = pk, for k ≥ 1.
We define the size-biased law ρ = (ρk)k≥0 of D by

ρk =
(k + 1) pk+1

E[D]
,

where the expected value of D is supposed to be finite, and introduce the average
value of ρ by

ν :=
∑

k≥0

kρk =
E[D(D − 1)]

E[D]
. (1.6)

For CMN(2), the asymptotic degree distribution equals P(D = 2) = 1, while for
CMN(1,2), the asymptotic degree distribution equals P(D = 2) = p,P(D = 1) =
1−p. For GRGN(w) with asymptotic weight distribution W , the asymptotic degree
D is a mixed Poisson random variable Poi(W ) where W appears in Condition 1.1,
i.e.,

P(D = k) = E

[
e−W W k

k!

]
,

see e.g., van der Hofstad (2014a, Chapter 6).
It is well known Bollobás et al. (2007); Janson and Luczak (2009) that the above

random graphs have a phase transition in their maximal component. Indeed, when
ν > 1 a giant component exists, while for ν ≤ 1 the maximal component has o(N)
vertices. Here, since the degree distribution for GRGN(w) is D = Poi(W ), we have

that ν = E[W 2]
E[W ] , because E[D] = E[W ] and E[D(D− 1)] = E[W 2]. Thus, depending

on W , a giant component for GRGN(w) may exist, while it does not exist for
CMN(2) and CMN(1,2) since, in these cases, ν ≤ 1. In fact, for CMN(2), the
connectivity structure is quite interesting and explained in more detail in Janson
and Luczak (2009).

1.3. Annealed measure and thermodynamic quantities. We continue by introducing
the ferromagnetic Ising model and the annealed measure. We define them on finite
graphs with N vertices and then study asymptotic results in the limit N → ∞. We
denote a configuration of N spins by σ, where σ is defined on the vertices of the
random graph GN whose law is QN .

In our previous work Giardinà et al. (2015), we have considered two Ising models.
The random-quenched measure µGN (σ) coincides with the random Boltzmann–
Gibbs distribution, where the randomness is given by the graph GN .The averaged-
quenched measure PN(σ) is obtained by averaging the random Boltzmann–Gibbs
distribution over all possible random graphs, i.e., PN(σ) = QN(µGN

(σ)).
In defining the annealed measure, the numerator and denominator of the Boltz–

mann–Gibbs distribution µGN
are averaged separately with respect to QN , as for-

malized in the following definition:

Definition 1.1 (Annealed measure). For spin variables σ = (σ1, ..., σN) taking
values on the space of spin configurations ΩN = {−1, 1}N , we define the annealed
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measure by

P̃N(σ) =
QN

(
exp

[
β
∑

(i,j)∈EN
σiσj +B

∑
i∈[N ] σi

])

QN(ZN (β,B))
, (1.7)

where

ZN(β,B) =
∑

σ∈ΩN

exp
[
β

∑

(i,j)∈EN

σiσj +B
∑

i∈[N ]

σi

]

is the partition function. Here β ≥ 0 is the inverse temperature and B ∈ R is the
uniform external magnetic field.

In this paper, with a slight abuse of notation, we use the same symbols to denote
both a measure and the corresponding expectation. Moreover, we remark that the
measure defined above depends sensitively on the two parameters (β,B). However,
for the sake of notation, we will drop the dependence of the measure on these
parameters. Sometimes we will use Varµ(X) to denote the variance of a random
variable X with law µ.

We now define the thermodynamic quantities with respect to the annealed mea-
sure:

Definition 1.2 (Thermodynamic quantities Dembo and Montanari (2010); Dom-
mers et al. (2010)). For a given N ∈ N, we introduce the following thermodynamics
quantities in finite volume:

(i) The annealed pressure is given by

ψ̃N(β,B) =
1

N
log (QN (ZN (β,B))) . (1.8)

(ii) The annealed magnetization is given by

M̃N(β,B) = P̃N

(
SN

N

)
,

where the total spin is defined as

SN =
∑

i∈[N ]

σi .

(iii) The annealed susceptibility equals

χ̃N(β,B) :=
∂

∂B
M̃N(β,B) = VarP̃N

(
SN√
N

)
.

We are interested in the thermodynamic limit of these quantities, i.e., their
limits as N → ∞. In this limit, critical phenomena may appear. If M(β,B) :=
limN→∞ MN(β,B), where MN(β,B) is the average of SN/N with respect to µGN (·),
PN(·) or P̃N(·) and provided this limit exists, criticality manifests itself in the be-
havior of the spontaneous magnetization defined as M(β, 0+) = limB→0+ M(β,B).
In more detail, the critical inverse temperature is defined as

βc := inf{β > 0: M(β, 0+) > 0}. (1.9)

and thus, depending on the setting, we can obtain the quenched and annealed critical
points denoted by βqu

c and βan
c , respectively. When 0 < βc < ∞, we say that the

system undergoes a phase transition at β = βc.
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From Dommers et al. (2014), we recall that, in the general setting of tree-like ran-
dom graphs to which our models belong, the quenched critical inverse temperature
is given by

βqu
c = atanh(1/ν), (1.10)

where ν is defined in (1.6). Let us remark that, in the quenched setting, since ν ≤ 1
for both CMN(2) and CMN(1,2), from (1.10) it follows immediately that βqu

c = ∞,
which means that there is no quenched phase transition in these models. In the
annealed setting, we will prove the absence of phase transition for CMN(2) and
CMN(1,2) below. On the contrary, we will see that a critical inverse temperature
appears for GRGN(w).

1.4. Results. We focus first on the study of the generalized random graph under
the annealed measure, obtaining the Strong Law of Large Numbers (SLLN) and the
Central Limit Theorem (CLT) for the total spin SN . Then we present the results
in the annealed setting for the configuration models CMN(2) and CMN(1,2).

1.4.1. Results for GRGN(w). The proofs of the SLLN and CLT for GRGN(w) re-
quire to investigate the uniqueness regime for GRGN(w). For this, we first investi-
gate the existence of the thermodynamic quantities in the infinite volume limit with
respect to the annealed law. These results will be obtained in the next theorem.
They show, in particular, that annealing changes the critical inverse temperature.
Indeed, the annealed critical inverse temperature βan

c is strictly smaller than the
quenched critical inverse temperature βqu

c , when the latter exists. In the statement
of the theorem below, we will use the notation Uan for the annealed uniqueness
regime, i.e.,

Uan := {(β,B) : β ≥ 0, B 6= 0 or 0 < β < βan
c , B = 0} .

Theorem 1.1 (Thermodynamic limits for the annealed GRGN(w)). Let (GN)N≥1

be a sequence of GRGN(w) satisfying Condition 1.1. Then the following conclusions
hold:

(i) For all 0 ≤ β < ∞ and for all B ∈ R, the annealed pressure exists in the
thermodynamic limit N → ∞ and is given by

ψ̃(β,B) := lim
N→∞

ψ̃N(β,B), (1.11)

its value is given in (2.8).
(ii) For all (β,B) ∈ Uan, the magnetization per vertex exists in the limit N →

∞, i.e.,

M̃(β,B) := lim
N→∞

M̃N(β,B). (1.12)

For B 6= 0 the limit value M̃(β,B) equals M̃(β,B) = ∂
∂B ψ̃(β,B) and is

given by

M̃(β,B) = E

[
tanh

(√
sinh (β)

E [W ]
Wz∗ +B

)]
,

where z∗ = z∗(β,B) is the solution of the fixed-point equation

z = E

[
tanh

(√
sinh (β)

E [W ]
Wz +B

)√
sinh (β)

E [W ]
W

]
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and W is the limiting random variable defined in Condition 1.1.
(iii) The spontaneous magnetization is given by

M̃(β) := lim
B→0+

M̃(β,B) =

{
0 if β ∈ Uan

6= 0 if β /∈ Uan

and the annealed critical inverse temperature is

βan
c = asinh (1/ν) ,

where ν, defined in (1.6), is given by ν = E[W 2]/E[W ] and W is the limiting
random variable introduced in Condition 1.1. In particular, if ν > 1, then
βan
c < βqu

c .
(iv) For all (β,B) ∈ Uan, the thermodynamic limit of the susceptibility exists

and is given by

χ̃(β,B) := lim
N→∞

χ̃N(β,B) =
∂2

∂B2
ψ̃(β,B). (1.13)

Having investigated the phase diagram of the annealed Ising model on the
GRGN(w), we next state the SLLN and CLT for the total spin in the following
two theorems:

Theorem 1.2 (Annealed SLLN). Let (GN)N≥1 be a sequence of GRGN(w) graphs

satisfying Condition 1.1 then, for all (β,B) ∈ Uan, for any ε > 0 there exists a
number L = L(ε) > 0 such that the total spin is exponentially concentrated in the
form

P̃N

(∣∣∣∣
SN

N
− M̃

∣∣∣∣ ≥ ε

)
≤ e−NL for all sufficiently large N,

where M̃ = M̃(β,B) is the annealed magnetization defined in (1.12).

Theorem 1.3 (Annealed CLT). Let (GN)N≥1 be a sequence of GRGN(w) graphs

satisfying Condition 1.1. Then, for all (β,B) ∈ Uan, the total spin satisfies a CLT
of the form

SN − P̃N (SN)√
N

D−→ N (0, χ̃), w.r.t. P̃N , as N → ∞,

where χ̃ = χ̃(β,B) is the thermodynamic limit of the annealed susceptibility defined
in (1.13) and N (0, σ2) denotes a centered normal random variable with variance
σ2.

The proofs of Theorems 1.1, 1.2 and 1.3 all heavily rely on the fact that the
annealed GRGN(w) gives rise to an inhomogeneous Curie-Weiss model, which is
interesting in its own right. We continue by studying the annealed measure on
CMN(2).

1.4.2. Results for CMN(2). Our main result for CMN(2) concerns its thermody-
namic limits, a SLLN and a CLT for its total spin, as formulated in the following
theorems:

Theorem 1.4 (Thermodynamic limits for the annealed CMN(2)). Let (GN)N≥1

be a sequence of CMN(2) graphs. Then, for all β > 0, B ∈ R, the following hold:
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(i) The annealed pressure exists in the thermodynamic limit N → ∞ and is
given by

ψ̃(β,B) := lim
N→∞

ψ̃N(β,B) = log λ+(β,B),

where

λ+(β,B) = eβ
[
cosh(B) +

√
sinh2(B) + e−4β

]
.

(ii) The magnetization per vertex exists in the limit N → ∞ and is given by

M̃(β,B) := lim
N→∞

M̃N(β,B) =
sinh(B)√

sinh2(B) + e−4β

. (1.14)

Remark 1.1. Since limB→0+ M̃(β,B) = 0 for all β > 0, by definition (1.9) we
conclude that there is no annealed phase transition for CMN(2). This is not sur-
prising, since CMN(2) consists of a collection of disjoint cycles, and the Ising model
does not have a phase transition in dimension one.

Next we state the SLLN for the total spin in CMN(2):

Theorem 1.5 (Annealed SLLN for CMN(2)). Let (GN)N≥1 be a sequence of

CMN(2) graphs. Then, for all β ≥ 0, B ∈ R, for any ε > 0 there exists a number
L = L(ε) > 0 such that the total spin is exponentially concentrated in the form

P̃N

(∣∣∣∣
SN

N
− M̃

∣∣∣∣ ≥ ε

)
≤ e−NL for all sufficiently large N,

where M̃ = M̃(β,B) is the annealed magnetization defined in (1.14).

Finally, we investigate the CLT for CMN(2):

Theorem 1.6 (Annealed CLT for CMN(2)). Let (GN)N≥1 be a sequence of CMN(2)
graphs. Then, for all β ≥ 0, B ∈ R, the total spin satisfies a CLT of the form

SN − P̃N (SN)√
N

D−→ N (0, χ) , w.r.t. P̃N , as N → ∞,

where χ = χ(β,B) is the thermodynamic limit of the quenched susceptibility (see
Giardinà et al. (2015, Theorem 1.1)) of the Ising model on CMN(2). Moreover,
χ(β,B) is also equal to the susceptibility of the one-dimensional Ising model, i.e.,

χ(β,B) = χd=1(β,B) =
cosh(B)e−4β

(sinh(B) + e−4β)3/2
.

Theorems 1.4, 1.5 and 1.6 are proved in Section 3. Their proofs heavily rely on
the fact that CMN(2) consists of a collection of cycles, and the partition function
on a cycle can be computed explicitly.

1.4.3. Results for CMN(1,2). Our main result for CMN(1,2) again concerns its
thermodynamic limits, SLLN and CLT for its total spin. Some of the quantities
involved in the statement of these results are defined in Section 4.

Theorem 1.7 (Thermodynamic limits for the annealed CMN(1,2)). Let (GN)N≥1

be a sequence of CMN(1,2) graphs for a given p ∈ (0, 1). Then, for all β > 0,
B ∈ R, the following hold:
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(i) The annealed pressure exists in the thermodynamic limit N → ∞ and is
given by

ψ̃(β,B) := lim
N→∞

ψ̃N(β,B)

= log λ+(β,B) +
1− p

2
logA+(β,B) +H(s∗, t∗), (1.15)

where A+(β,B) is defined in (4.3) below,
the function H : [0, 1−p

2 ] × [0, p] → R is defined in (4.25) below, and

(s∗, t∗) is the unique maximum point of (s, t) 7→ H(s, t) on [0, 1−p
2 ]× [0, p].

(ii) The magnetization per vertex exists in the limit N → ∞, i.e.,

M̃(β,B) := lim
N→∞

M̃N(β,B) =
∂

∂B
ψ̃(β,B), (1.16)

and is given in (4.46) below.

Remark 1.2. (a) Since limB→0+ M̃(β,B) = 0 for all β > 0 (the explicit expression
of the magnetization is given in (4.46)), we again conclude that there is not an
annealed phase transition also for CMN(1,2). Again this is not surprising, since
CMN(1,2) consists of a collection of one-dimensional lines and cycles, and the
one-dimensional Ising model does not have a phase transition.
(b) Broutin and de Panafieu (2014) proved a CLT for the number of lines of given
lengths in CMN(1,2). Leveraging on this result, we proved in Giardinà et al. (2015)
the averaged quenched CLT for the total spin of the Ising model on CMN(1,2). We
have applied the result of Broutin and de Panafieu (2014) to compute also the
annealed pressure (1.8), but obtaining a result different form (1.15). While we are
able to see numerically that the two formulas agree, we have no analytic proof that
they coincide.

We next state the SLLN for the total spin in CMN(1,2):

Theorem 1.8 (Annealed SLLN for CMN(1,2)). Let (GN)N≥1 be a sequence of

CMN(1,2) graphs. Then, for all β ≥ 0, B ∈ R, for any ε > 0 there exists a number
L = L(ε) > 0 such that the total spin is exponentially concentrated in the form

P̃N

(∣∣∣∣
SN

N
− M̃

∣∣∣∣ ≥ ε

)
≤ e−NL for all sufficiently large N,

where M̃ = M̃(β,B) is the annealed magnetization defined in (1.16).

We finish with the annealed CLT in CMN(1,2):

Theorem 1.9 (Annealed CLT for CMN(1,2)). Let (GN)N≥1 be a sequence of

CMN(1,2) graphs. Then, for all β > 0, B ∈ R,

SN − P̃N (SN)√
N

D−→ N
(
0, σ2

2

)
, w.r.t. P̃N , as N → ∞,

where σ2
2 is defined in (4.15) below.

Theorems 1.7, 1.8 and 1.9 are proved in Section 4.

1.5. Discussion.
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1.5.1. Properties of annealing. From the results described above, the following gen-
eral picture emerges on the effect of annealing:

(i) First of all, in the presence of a ferromagnetic phase transition, annealing
can change the critical temperature, meaning that βan

c < βc
qu. We proved

this for the rank-1 inhomogeneous graph. For the configuration models with
vertex degrees at most two that we have analyzed, it holds βan

c = βc
qu = ∞.

We conjecture that in the general case when there is a positive proportion
of vertices of degree at least 3 and ν > 1 (so that there exists a giant
component), an annealed positive critical temperature exists. We believe
that this annealed critical temperature is strictly larger than the quenched
critical temperature whenever the vertex degrees fluctuate and a positive
proportion of the vertices have at least degree three.

(ii) Furthermore, the annealed state satisfies a central limit theorem for the
rescaled magnetization, as the quenched state does as proved in our previous
paper Giardinà et al. (2015). Unfortunately, we can only prove this for
certain random graph sequences, but we believe this to be true in general.
The variance of the annealed CLT and the variance of the quenched CLT
are different whenever the degrees are allowed to fluctuate. We showed this
in the case of the generalized random graph, where they can not be ordered
because the quenched and annealed critical temperatures are different and
the quenched and annealed susceptibilities diverge at the critical point.
For CMN(1,2) having zero critical temperature and fluctuating degrees
the variances are also different, and we believe the annealed variance to be
larger than the quenched variance. Unfortunately, we have not been able
to prove this.

(iii) From the analysis of the CMN(2), we see that both the annealed critical
temperature and the annealed variance are the same of their quenched
counterparts. We conjecture this behavior to occur for all random regular
graphs.

(iv) In the GRGN(w), when the weights (wi)i∈[N ] are i.i.d and such such P(w1 >

w) = cw−(τ−1)(1 + o(1)) for some τ > 1, the annealed partition function
satisfies

QN(ZN(β,B)) = e
βN2

2 (1+o(1)). (1.17)

Thus, the effect of annealing of the weights is dramatic, as the pressure
becomes infinite for every β > 0. To see (1.17), we first note that the
upper bound is trivial, as H(σ) ≤ N(N − 1)/2. Thus, it suffices to prove
a matching lower bound. With KN the complete graph on N vertices and
for a > 0,

P(GRGN(w) = KN) = E

[∏

ij

pij

]
≥P(wi ∈ [Na, 2Na]∀i ∈ [N ])

× E

[∏

ij

pij | wi ∈ [Na, 2Na]∀i ∈ [N ]
]
.

We analyze both terms separately. Firstly, since the weights are i.i.d.,

P(wi ∈ [Na, 2Na]∀i ∈ [N ]) = P(w1 ∈ [Na, 2Na])N ≥
(
cN−a(τ−1)

)N
= eo(N

2).
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Secondly, when wi ∈ [Na, 2Na] for every i, there exists b > 0 such that

pij ≥ 1− bN1−a.

Therefore,

E

[∏

ij

pij | wi ∈ [Na, 2Na]∀i ∈ [N ]
]
≥
(
1− bN1−a

)N(N−1)/2

= 1− o(1),

when a > 3. Thus,

QN(ZN(β,B)) ≥ Z
KN
N (β,B)eo(N

2) ≥ e
βN2

2 (1+o(1)),

where Z
KN
N (β,B) is the partition function on the complete graph. This

proves the claim.

We will expand on the analysis of the annealed critical behavior of Ising models
on generalized random graphs in a forthcoming paper Dommers et al. (2016), where
we study critical exponents around the annealed critical temperature and we derive
non-classical asymptotic laws at criticality.

1.5.2. CLT proof strategy. By applying a commonly used strategy Ellis (1985), we
can prove CLTs for (SN)N≥1 by showing that the moment generating function of

the rescaled total spin VN = SN−E(SN )√
N

, converges in a neighborhood of t = 0

to the moment generating function of a centered Gaussian random variable. The
convergence can be achieved by considering the so-called scaled cumulant generating
functions of SN , defined as

cN(t) =
1

N
logE [exp (tSN)], (1.18)

and by proving the convergence of the sequence (c′′N(tN))N≥1 for tN = o(1) to a finite
value χ, which turns out to be the variance of the normal limit. This strategy has
been followed in the quenched setting in Giardinà et al. (2015) where, specializing
E to the relevant measures, the CLT was proved for the Ising model on the whole
class of locally tree-like random graphs in the random quenched setting, and for the
CMN(2) and CMN(1,2) models in the averaged quenched setting. In the former
case, the limit c(t) := limN→∞ cN(t) can be established as a simple consequence of
the existence of the random quenched pressure on locally tree-like graphs, while the
convergence of (c′′N(tN))N≥1 follows from the concavity of the first derivatives of the
cumulant generating functions. In the random quenched setting, this in turn is a
consequence of the GHS inequality, which holds for the ferromagnetic Boltzmann-
Gibbs measure µGN

. On the other hand, under the averaged quenched measure this
derivative can not be expressed in terms of the averaged quenched magnetization
to exploit the GHS inequality. Because of that, only the CMN(2) and CMN(1,2)
setting have been treated in Giardinà et al. (2015) explicitly, by exploiting the
structure of the graphs and connecting these systems to the one-dimensional Ising
model.

A similar scenario is found in this paper, where the approach to the proof of the
CLT described above is applied to the annealed setting, i.e., with (1.18) replaced
by the annealed cumulant generating function

c̃N(t) =
1

N
log P̃N [exp (tSN)]
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that can be connected to the annealed pressure, since c̃N(t) = ψ̃N(β,B + t) −
ψ̃N(β,B), see (1.8).

We will show by an explicit computation that the annealed pressure of GRGN(w)
coincides with that of an inhomogeneous Curie-Weiss model. From this fact, the
thermodynamic limit of the annealed pressure, magnetization and susceptibility
can be obtained. This again relies on the GHS inequality that is valid also for this
inhomogeneous ferromagnetic system. Thus, for the generalized random graph, the
annealed CLT can be proven in a similar way as for the random quenched measure.

On the other hand, the proofs of the CLT for the configuration models do not
follow from the abstract argument based on the GHS inequality, since GHS is not
available in the general annealed context. Because of that, we have to explicitly
control the limit (c̃′′N(tN))N≥1 throughout the computation of the annealed pressure.
It is relatively simple to accomplish this task in the case of the regular CMN(2)
graph consisting of cycles only. The fluctuating degree of CMN(1,2) makes the
computation of the pressure and of the limit (c̃′′N(tN))N≥1 much more involved.
CMN(1,2) consists of both lines and cycles. While the cycles give a vanishing
contribution to the thermodynamic limit, the distribution of the length of the lines
has to be carefully analyzed and its Gaussian fluctuations appear in the CLT for
the total spin.

1.5.3. Paper organization. The rest of the paper is organized as follows. In Section
2 we deal with GRGN(w) for which we compute the pressure and magnetization in
the thermodynamic limit, identify the critical temperature and then prove the SLLN
and CLT. All of these results rely on the fact that the Ising model on GRGN(w)
in the annealed setting turns into an inhomogeneous Curie-Weiss model. The pres-
sures and CLTs for the 2-regular configuration model are considered in Section 3
and for the configuration model with vertex degrees 1 and 2 in Section 4. In the
former case, we show that the variance of the limiting normal variable is the suscep-
tibility of the one-dimensional Ising model. In the latter case, which is much more
difficult, the varying degrees of the vertices affect the pressure and the limiting dis-
tribution. In fact, the limiting variance is the sum of that of the one-dimensional
Ising model and of an extra term emerging from the fluctuations of the connected
structures of the graph.

2. Proofs for GRGN(w)

In this section, we derive our results for the generalized random graph GRGN(w)
stated in Theorems 1.1, 1.2 and 1.3.

2.1. Annealed thermodynamic limits: Proof of Theorem 1.1. The proof is divided
into several steps.

Annealed partition function. We start by analyzing the average of the partition
function for GRGN(w). By remembering that in this random graph the edges are
independent and denoting by Iij the Bernoulli indicator that the edge between
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vertex i and vertex j is present, we compute

QN (ZN (β,B)) = QN

( ∑

σ∈ΩN

exp
[
β
∑

i<j

Iijσiσj +B
∑

i∈[N ]

σi

])

=
∑

σ∈ΩN

eB
∑

i∈[N] σiQN

(
eβ

∑
i<j Iijσiσj

)

=
∑

σ∈ΩN

eB
∑

i∈[N] σi
∏

i<j

QN

(
eβIijσiσj

)

=
∑

σ∈ΩN

eB
∑

i∈[N] σi
∏

i<j

(
eβσiσjpij + (1− pij)

)
.

We rewrite

eβσiσjpij + (1− pij) = Cije
βijσiσj ,

where βij and Cij are chosen such that

e−βpij + (1− pij) = Cije
−βij , and eβpij + (1− pij) = Cije

βij .

Now, by adding and dividing the two equations of the system above, we get

Cij cosh (βij) = pij cosh(β) + (1− pij) , βij =
1

2
log

eβpij + (1− pij)

e−βpij + (1− pij)
.

Then, using the symmetry βij = βji we arrive at

QN (ZN (β,B)) =
(∏

i<j

Cij

) ∑

σ∈ΩN

eB
∑

i∈[N] σie
∑

i<j βijσiσj

= G(β)G1(β)
∑

σ∈ΩN

eB
∑

i∈[N] σie
1
2

∑
i,j∈[N] βijσiσj , (2.1)

where G(β) =
∏

i<j Cij and G1(β) =
∏

i∈[N ] e
−βii/2 and we write pii = w2

i /(ℓN +

w2
i ). This is the starting point of our analysis. We can recognize the r.h.s. as the

partition function of an inhomogeneous Ising model on the complete graph, where
the coupling constant between vertices i and j is equal to βij . In the next step, we
analyze this partition function in detail.

Towards an inhomogeneous Curie-Weiss model. We continue by showing
that βij is close to factorizing into a contribution due to i and to j. For this, by a
Taylor expansion of x 7→ log(1 + x),

βij =
1

2
log
(
1 + pij(e

β − 1)
)
− 1

2
log
(
1 + pij(e

−β − 1)
)

=
1

2
pij(e

β − 1)− 1

2
pij(e

−β − 1) +O(p2ij) = sinh(β)pij +O(p2ij).

Then,

QN (ZN(β,B)) (2.2)

= G2(β)
∑

σ∈ΩN

eB
∑

i∈[N] σie
1
2 sinh(β)

∑
i,j∈[N] pijσiσj+O(

∑
i,j∈[N] p

2
ijσiσj).
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where G2(β) = G(β)G1(β). To control the error in the exponent, we use pij ≤
wiwj/ℓN and the assumptions in Condition 1.1, to obtain

∣∣∣
∑

i,j∈[N ]

p2ijσiσj

∣∣∣ ≤
∑

i,j∈[N ]

(wiwj

ℓN

)2
=

(∑
i∈[N ] w

2
i

ℓN

)2

= o(N).

Then,

QN (ZN(β,B)) = G2(β)e
o(N)

∑

σ∈ΩN

eB
∑

i∈[N] σie
1
2 sinh(β)

∑
i,j∈[N]

wiwj
ℓN

σiσj

= G2(β)e
o(N)

∑

σ∈ΩN

eB
∑

i∈[N] σie
1
2

sinh(β)
ℓN

(
∑

i∈[N] wiσi)
2

.

When wi ≡ w for all i, so that GRGN(w) is the Erdős-Rényi random graph, we
retrieve the Curie-Weiss model at inverse temperature β′ = sinh(β)w. In our
inhomogeneous setting, we obtain an inhomogeneous Curie-Weiss model that we
will analyze next.

Analysis of the inhomogeneous Curie-Weiss model. We use the Hubbard-

Stratonovich identity, i.e., we write et
2/2 = E[etZ ], with Z standard Gaussian.

Then, we find

QN (ZN(β,B)) = G2(β)e
o(N)

∑

σ∈ΩN

eB
∑

i∈[N] σi
E

[
e

√
sinh(β)

ℓN
(
∑

i∈[N] wiσi)Z
]

= G2(β)e
o(N)2NE

[ N∏

i=1

cosh
(√ sinh (β)

ℓN
wiZ +B

)]

= G2(β)e
o(N)2NE

[
exp

{ N∑

i=1

log cosh
(√ sinh(β)

ℓN
wiZ +B

)}]
.

We rewrite the sum in the exponential, using the fact that WN = wIN , where we
recall that IN is a uniform vertex in [N ], to obtain

QN (ZN(β,B)) = G2(β)e
o(N)2NE

[
exp

{
NE

[
log cosh

(√ sinh(β)

NE[WN ]
WNZ +B

)∣∣∣Z
]}]

= G2(β)e
o(N)2NE

[
e
NFN

(
Z√
N

)]
,

where

FN(z) = E

[
log cosh

(√ sinh (β)

E [WN ]
WNz +B

)]
. (2.3)

Here we emphasize the fact that in (2.3), the expectation is w.r.t. WN only. We
continue by analyzing FN(z). We claim that, uniformly for |z| ≤ a and any a <∞,

sup
|z|≤a

|FN(z)− F (z)| = o(1), (2.4)

where

F (z) = E

[
log cosh

(√ sinh (β)

E[W ]
Wz +B

)]
.
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To see (2.4), we note that FN(z) → F (z) for every z fixed by Condition 1.1(a)-(b),
and the fact that log cosh(x) ≤ |x|. Further,

|F ′
N(z)| ≤

sinh(β)

E[WN ]
E

[
tanh

(√ sinh (β)

E[WN ]
WNz +B

)
WN

]
≤ sinh(β),

since tanh(x) ≤ 1 for all x, so that |F ′
N(z)| is uniformly bounded in N and z.

Therefore, (FN)N≥1 forms a uniformly equicontinuous family of functions, so that
(2.4) follows from Arzelà-Ascoli. Since FN(z) ≤ sinh(β)|z|, it further follows that,
for a > 4 sinh(β),

E

[
e
NFN

(
Z√
N

)

1l{|Z|>a
√
N}

]
≤ E

[
e
√
N sinh(β)|Z|1l{|Z|>a

√
N}

]

= 2E
[
e
√
N sinh(β)Z1l{Z>a

√
N}

]

=
2√
2π

∫ ∞

a
√
N

e
√
N sinh(β)ze−z2/2dz

≤ ea sinh(β)N−a2N/2

∫ ∞

0

e
√
N(sinh(β)−a)xdx ≤ e−a2N/4,

which, for a sufficiently large, is negligible compared to E

[
e
NFN

(
Z√
N

)

1l{|Z|≤a
√
N}

]
.

We conclude that

QN (ZN (β,B)) = G2(β)e
o(N)2NE

[
e
NF

(
Z√
N

)]
(1 + o(1)). (2.5)

A large deviation analysis. The expectation in (2.5) is an expectation of an
exponential functional, to which we apply large deviation machinery. The Gaussian
variable Z/

√
N satisfies a large deviation principle with rate function I(z) = z2/2

and speed N , because Z/
√
N

d
= 1

N (Z1 + ...+ ZN), where (Zi)i∈[N ] are i.i.d. stan-
dard Gaussian variables. Using Varadhan’s Lemma and the fact that z 7→ F (z) is
continuous, we calculate the thermodynamic limit of the pressure as

lim
N→∞

1

N
logQN (ZN (β,B)) = log 2 + lim

N→∞

1

N
logG2(β) + sup

z
[F (z)− I(z)]

= log 2 + α (β) (2.6)

+ sup
z

[
E

[
log cosh

(√ sinh(β)

E [W ]
Wz +B

)]
− z2

2

]
.

where α (β) = limN→∞
1
N logG2 (β). The equation that defines the supremum is

z∗ = z∗(β,B) = E

[
tanh

(√ sinh (β)

E[W ]
Wz∗ +B

)√ sinh (β)

E[W ]
W
]
, (2.7)

and the annealed pressure is obtained by substituting the supremum point z∗ in
the right hand side of (2.6) as

ψ̃(β,B) = log 2 + α(β) + E

[
log cosh

(√ sinh (β)

E[W ]
Wz∗(β,B) +B

)]
− z∗(β,B)2/2.

(2.8)
This completes the proof of Theorem 1.1(i).
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The critical inverse temperature. To identify βan
c as stated in Theorem 1.1(ii),

we evaluate (2.7) when B ց 0 to obtain

z∗ = H(z∗) where H(z) = E

[
tanh

(√
sinh (β)

E [W ]
Wz

)√
sinh (β)

E [W ]
W

]
.

(2.9)
We investigate the solutions of z∗ = H(z∗) in (2.9). We note that z 7→ H(z) is
an increasing and concave function in [0,∞). When H ′(0) > 1, we have three
solutions of (2.9), i.e., ±z∗ and 0, where z∗ = z∗(β, 0+) > 0. When H ′(0) ≤ 1,
instead, z∗ = 0 is the only solution. This leads us to compute that

H ′(0) = sinh (β)
E
[
W 2
]

E [W ]
= sinh (β) ν.

Thus, the annealed critical temperature βan
c satisfies sinh (βan

c ) = 1/ν. Since
tanh (βqu

c ) = 1/ν, and tanh(x) < sinh(x) ∀x > 0, we obtain βqu
c > βan

c , unless
when ν = ∞, in which case βan

c = βqu
c = 0.

Thermodynamic limit of the magnetization. To prove the existence of the
magnetization in the thermodynamic limit stated in Theorem 1.1(ii), we follow the
strategy used in Dommers et al. (2010). We use the following lemma:

Lemma 2.1. Let (fn)n≥1 be a sequence of functions that are twice differentiable
in x. Assume that

(a) limn→∞ fn(x) = f(x) for some function y 7→ f(y) that is differentiable in
x;

(b) d
dxfn(x) is monotone in [x− h, x+ h] for all n ≥ 1 and some h > 0.

Then,

lim
n→∞

d

dx
fn(x) =

d

dx
f(x).

We apply Lemma 2.1 with n = N and fn equal to B 7→ ψ̃N(β,B). We verify the
conditions in Lemma 2.1 and start by noting that

M̃N(β,B) = P̃N

(
SN/N

)
=

∂

∂B
ψ̃N(β,B),

and limN→∞ ψ̃N(β,B) = ψ̃(β,B) by Theorem 1.1(i) with B 7→ M̃N(β,B) non-
decreasing:

∂

∂B
M̃N(β,B) =

1

N

[
P̃N

(
S2

N

)
− P̃N (SN)

2
]
≥ 0.

Thus, we can indeed conclude that

M̃(β,B) = lim
N→∞

M̃N(β,B) = lim
N→∞

∂

∂B
ψ̃N(β,B) =

∂

∂B
ψ̃(β,B).

The limit magnetization M̃(β,B) can be explicitly computed by taking the deriv-

ative of ψ̃(β,B), (2.8) and using the fixed point equation (2.7), to obtain

M̃(β,B) = E

[
tanh

(√
sinh (β)

E [W ]
Wz∗ +B

)]
.

Thermodynamic limit of the susceptibility. Finally, the thermodynamic limit
of the susceptibility in Theorem 1.1(iv) is proved using Lemma 2.1 by combining

Theorem 1.1(ii) and the fact that B 7→ ∂
∂B M̃N(β,B) is non-increasing by the GHS
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inequality. Indeed, by the explicit computation in (2.1), we see that the annealed
partition function can be viewed as the partition function of an inhomogeneous
Curie-Weiss model, where the field is homogeneous and the coupling constants
depend on the edges. Since such an inhomogeneous Ising model also satisfies the
GHS inequality, the same follows for the annealed partition function for GRGN(w).
Therefore,

∂2

∂B2
M̃N(β,B) =

1

N

∑

i∈[N ]

∂2

∂B2
P̃N (σi) ≤ 0.

�

2.2. Annealed SLLN and CLT: Proofs of Theorems 1.2 and 1.3. With Theorem 1.1
in hand, we now have all the hypotheses to prove Theorems 1.2 and 1.3 following the
strategy used for the random quenched setting in Sections 2.2 and 2.3 of Giardinà
et al. (2015) verbatim. Indeed, for the proof of the annealed SLLN, referring to
Giardinà et al. (2015, Section 2.2), we obtain the existence of the thermodynamic
limit of the annealed cumulant generating function

c̃N(t) =
1

N
log P̃N [exp (tSN)] = ψ̃N(β,B + t)− ψ̃N(β,B)

by Theorem 1.1(i). Then, from Ellis (1985, Theorem II.6.3) and Theorem 1.1(ii)
we conclude the proof.

To prove the annealed CLT (see Giardinà et al. (2015, Section 2.3) for the proof
of the random quenched CLT) we need the existence in the thermodynamic limit
of pressure, magnetization and susceptibility given by Theorem 1.1 together with
the GHS inequality that is still true in the annealed setting thanks to the mapping
to the inhomogeneous Curie-Weiss model.

3. Proofs for CMN(2)

In this section we prove the CLT with respect to the annealed measure for the
2-regular random graph. We start by computing the annealed pressure using the
partition functions for the one-dimensional Ising model with periodic boundary
conditions.

3.1. Annealed thermodynamic limits and SLLN: Proofs of Theorems 1.4 and 1.5.
From our previous paper Giardinà et al. (2015), we remember that any 2-regular
random graph is formed by cycles only. Thus, as in Giardinà et al. (2015), denoting
the random number of cycles in the graph by Kt

N , we can enumerate them in an
arbitrary order from 1 to Kt

N and call LN(i) the length (i.e., the number of vertices)
of the ith cycle. The random variable Kt

N has distribution given by

Kt
N =

N∑

j=1

Ij , (3.1)

where Ij are independent Bernoulli variables given by

Ij = Bern

(
1

2N − 2j + 1

)
. (3.2)
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See Giardinà et al. (2015) for a proof of this fact. Since the random graph splits
into (disjoint) cycles, its quenched partition function factorizes into the product of
the partition functions of each cycle. Therefore,

ZN(β,B) =

Kt
N∏

i=1

Z(t)

LN (i)(β,B). (3.3)

By Giardinà et al. (2015, Section 3.1), we have that the partition function of the
one-dimensional Ising model with periodic boundary conditions Z(t)

N is given by

Z(t)

N (β,B) = λN+ (β,B) + λN− (β,B), (3.4)

where

λ±(β,B) = eβ
[
cosh(B)±

√
sinh2(B) + e−4β

]
, (3.5)

so we can write

Z(t)

LN (i)(β,B) = λ
LN (i)
+ (β,B) + λ

LN (i)
− (β,B).

Because β > 0, we have 0 < λ−(β,B) < λ+(β,B), so that, for every i,

λ
LN (i)
+ (β,B) ≤ Z(t)

LN (i)(β,B) ≤ 2λ
LN (i)
+ (β,B).

As a result, we can bound the the pressure as follows:

Kt
N∏

i=1

λ
LN (i)
+ (β,B) ≤

Kt
N∏

i=1

Z(t)

LN (i)(β,B) ≤
Kt

N∏

i=1

2λ
LN (i)
+ (β,B),

and, since
∑Kt

N
i=1 LN(i) = N , we finally obtain

λN+ (β,B) ≤ ZN(β,B) ≤ 2K
t
NλN+ (β,B). (3.6)

The thermodynamic limit of the annealed pressure ψ̃N(β,B), defined in (1.8), can
be computed along the same lines of the averaged quenched one in Giardinà et al.
(2015). Indeed, by applying the monotone operator N−1 log(QN(·)) to (3.6) and
using the fact that λ+(β,B) is non random, we obtain

log λ+(β,B) ≤ ψ̃N(β,B) ≤ 1

N
log
(
QN

(
2K

t
N

))
+ log λ+(β,B).

Now using the fact

1

N
log
(
QN

(
2K

t
N

))
=

1

N
log

N∏

i=1

QN

(
2Ii
)

=
1

N
log

N∏

i=1

[
2

2N − 2i+ 1
+

(
1− 1

2N − 2i+ 1

)]

=
1

N

N∑

i=1

log

(
1 +

1

2N − 2i+ 1

)
N→∞−→ 0, (3.7)

we conclude that the annealed pressure of CMN(2) coincides with the pressure of
the one-dimensional Ising model ψd=1(β,B), i.e.,

ψ̃(β,B) = ψd=1(β,B) ≡ log λ+(β,B). (3.8)
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Moreover, it also agrees with the averaged and random quenched pressures Giardinà
et al. (2015), i.e.,

ψ̃(β,B) = ψ(β,B) = ψ(β,B),

where

ψ(β,B) := lim
N→∞

1

N
QN(lnZN (β,B)) and ψ(β,B) := lim

N→∞

1

N
lnZN (β,B) .

It also straightforwardly follows that the annealed cumulant generating function of
CMN(2) coincides with the random and averaged quenched ones Giardinà et al.
(2015) i.e.,

c̃(t) = c(t) = c(t) = log λ+(β,B + t)− log λ+(β,B). (3.9)

The existence of the magnetization in the thermodynamic limit (Theorem 1.4(ii))
can be proved, as in the previous section, using Lemma 2.1 and the existence of the
thermodynamic limit of the pressure (3.8), so we obtain

M̃(β,B) =
∂

∂B
ψ̃(β,B) =

sinh(B)√
sinh2(B) + e−4β

,

as required. �

Proof of Theorem 1.5: The proof, as for Theorem 1.2, follows immediately from the
existence of the annealed pressure in the thermodynamic limit and its differentia-
bility with respect to B. See also Giardinà et al. (2015, Section 2.2). �

3.2. Annealed CLT: Proof of Theorem 1.6. To prove the CLT in the annealed set-
ting, we follow the strategy used in Giardinà et al. (2015) for the averaged quenched
CLT.

Rewrite in terms of cumulant generating functions. Using the annealed
cumulant generating function and using a Taylor expansion, we write

log P̃N

[
exp

(
tSN − tP̃N(SN)√

N

)]
=

t2

2
c̃′′N(tN), (3.10)

where tN ∈ [0, t/
√
N ]. Then the aim is to prove that limN→∞ c̃′′N(tN) exists as a

finite limit.
By expressing c̃N(t) in terms of Z(t)

N = λN+ +λN− and using (3.9), we can compute
the difference as

c̃N(t)− c̃(t) =
1

N
log



QN

(
Z

(t)
N (β,B+t)

(λ+(β,B+t))N

)

QN

(
Z

(t)
N (β,B)

(λ+(β,B))N

)


=

1

N
log



QN

(∏Kt
N

i=1 (1 + (rB+t)
LN (i))

)

QN

(∏Kt
N

i=1 (1 + (rB)LN (i))
)


,

where, as in Giardinà et al. (2015), we have defined

rB = r(β,B) =
λ−(β,B)

λ+(β,B)
. (3.11)

Then

c̃N(t) = log λ+(β,B + t)− log λ+(β,B) +
1

N
log



QN

(∏Kt
N

i=1 (1 + (rB+t)
LN (i))

)

QN

(∏Kt
N

i=1 (1 + (rB)LN (i))
)


 .

(3.12)
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Our aim is to show that the double derivative arises from the first term only, the
second derivative of the last term vanishes.

Computation of the second derivative of the cumulant generating func-

tion. The second derivative of (3.12) is

c̃′′N(t) =
∂2

∂t2
log λ+(β,B + t) +

1

ND̃N(t)

[
ĨN(t) + ĨIN(t) +

ĨIIN(t)

D̃N(t)

]
, (3.13)

where

ĨN(t) = QN

[ Kt
N∑

i=1

LN(i)(LN(i)− 1)(rB+t)
LN (i)−2(r′B+t)

2

+ LN(i)(rB+t)
LN (i)−1r′′B+t

Kt
N∏

j=1
j 6=i

(1 + (rB+t)
LN (j))

]
,

ĨIN(t) = QN

[ Kt
N∑

i=1

Kt
N∑

j=1
j 6=i

LN(i)LN(j)(rB+t)
LN (i)+LN (j)−2(r′B+t)

2

Kt
N∏

l=1
l 6=i,j

(1 + (rB+t)
LN (l))

]
,

ĨIIN(t) =
[
QN

( Kt
N∑

i=1

LN(i)(rB+t)
LN (i)−1r′B+t

Kt
N∏

j=1
j 6=i

(1 + (rB+t)
LN (j))

)]2
,

D̃N(t) = QN

[Kt
N∏

i=1

(1 + (rB+t)
LN (i))

]
.

Uniform bound of the averaged normalized partition function. To analyze
the contributions above we show that the averaged normalized partition function
of CMN (2) is uniformly bounded:

Lemma 3.1 (The partition function on tori). For every γ < 1 and α ∈ (0,∞),
there exists a constant A = A(α, γ) such that, uniformly in N ,

QN

[K
t
N∏

i=1

(
1 + αγLN (i)

)]
≤ A.

Proof : Denote ZN = QN

[∏Kt
N

i=1

(
1 + αγLN (i)

)]
. For the proof we use induction in

N . The induction hypothesis is that there exists an A > 1 such that

ZN ≤ A
(
1− 1

2 3
√
N + 1

)
. (3.14)

Fix M ≥ 1 large. We note that we can fix A so large that the inequality is trivially
satisfied for N ≤M . To advance the induction hypothesis we first derive a recursion
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relation for ZN . We have

ZN =

N∑

l=1

QN(LN (1) = l) QN

(Kt
N∏

i=1

(1 + αγLN (i))
∣∣∣LN (1) = l

)

=

N∑

l=1

QN(LN (1) = l)
(
1 + αγl

)
ZN−l. (3.15)

Indeed, the average of
∏Kt

N
i=1 (1 + αγLN (i)) conditioned on LN (1) = l, reduces to

the average on a CMN(2) graph with N − l vertices of a similar product. This
average gives rise to the factor ZN−l in (3.15), while the term corresponding to the
first cycle is factorized, being

(
1 + αγl

)
. Substituting the induction hypothesis into

(3.15) leads to

ZN ≤ A

N∑

l=1

QN(LN (1) = l)
(
1 + αγl

)(
1− 1

2 3
√
N − l + 1

)

≤ A
N∑

l=1

QN(LN (1) = l)
(
1 + αγl

)
−A

N∑

l=1

QN(LN (1) = l)
1

2 3
√
N − l + 1

.

It is not hard to see that
N∑

l=1

QN(LN (1) = l)γl ≤ c/(N + 1),

while there exists a constant θ > 1 such that
N∑

l=1

QN(LN (1) = l)
1

3
√
N − l + 1

≥ θ
3
√
N + 1

. (3.16)

Indeed, by van der Hofstad (2014b, Exercise 4.1), or an explicit computation,

LN (1)/N
D−→ T , where T has density fT (x) given by

fT (x) =
1

2
√
1− x

.

Therefore, rewriting the sum in (3.16) we have:

N∑

l=1

QN(LN (1) = l)
1

3
√
N − l + 1

=
1

3
√
N + 1

QN

[ 1
3
√
1− LN (1)/(N + 1)

]
,

and by Fatou’s Lemma and weak convergence, we obtain

lim inf
N→∞

QN

[ 1
3
√

1− LN (1)/(N + 1)

]
≥ E

[ 1
3
√
1− T

]
> 1.

Since we can assume that N ≥M , which is sufficiently large, we thus obtain (3.16).
Thus,

ZN ≤ A
(
1 +

c

N + 1
− θ

2 3
√
N + 1

)
≤ A

(
1− 1

2 3
√
N + 1

)
,

when N is sufficiently large. This advances the induction hypothesis and completes
the proof of the lemma. �

Analysis of the second derivative of the cumulant generating function.

Armed with Lemma 3.1, it is now easy to show that all the contributions in the
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second term of the r.h.s. of (3.13) indeed vanish on a sequence tN = o(1). To see

this, let t > 0 and (tN)N≥1 a sequence of real numbers such that tN ∈ [0, t/
√
N ].

We consider first the term ĨN(tN). As in Giardinà et al. (2015, Lemma 3.1), there
exists a constant C > 0 such that

Kt
N∑

i=1

∣∣LN(i)(LN(i)−1)(rB+tN
)LN (i)−2(r′B+tN )2 + LN(i)(rB+tN

)LN (i)−1r′′B+tN

∣∣ ≤ C ·Kt
N ,

since rB+tN
< 1. Then, using the Cauchy-Schwarz inequality and recalling that

0 < r < 1, we obtain

|ĨN(tN)| ≤ C ·QN

(
Kt

N

Kt
N∏

i=1

(
1 + (rB+tN

)LN (i)
) )

≤ C ·QN

((
Kt

N

)2)1/2 ·QN

(Kt
N∏

i=1

(
1 + (rB+tN

)LN (i)
)2 )1/2

≤ CQN

( (
Kt

N

)2 )1/2 ·QN

(Kt
N∏

i=1

(
1 + 3(rB+tN

)LN (i)
) )1/2

.

Using Lemma 3.1 with α = 3 and γ = rB+tN
we conclude that

QN

(Kt
N∏

i=1

(
1 + 3(rB+tN

)LN (i)
) )1/2

≤ A
1
2 .

Finally, since D̃N(tN) ≥ 1,

|ĨN(tN)|
ND̃N(tN)

≤ C ·A 1
2 · logN
N

N→∞−→ 0.

Similar computations allow us to estimate ĨIN(tN) and ĨIIN(tN) to obtain

lim
N→∞

ĨIN(tN)

ND̃N(tN)
= 0, lim

N→∞

ĨIIN(tN)

N
(
D̃N(tN)

)2 = 0 .

Completion of the proof of Theorem 1.6. Having proved that

lim
N→∞

1

ND̃N(tN)

[
ĨN(tN) + ĨIN(tN) +

ĨIIN(tN)

D̃N(tN)

]
= 0 ,

the combination of (3.10) and (3.13) yields the proof of the annealed CLT, i.e.,

lim
N→∞

log P̃N

[
exp

(
t
SN − P̃N(SN)√

N

)]
=
t2

2

∂2

∂t2
log λ+(β,B + t)

∣∣∣∣
t=0

=
t2

2

cosh(B)e−4β

(sinh(B) + e−4β)3/2
.

Therefore, we conclude that the annealed CLT has the same variance as in aver-
aged quenched case Giardinà et al. (2015), i.e., the variance in both cases is the
susceptibility of the one-dimensional Ising model. �
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4. Proofs for CMN(1,2)

In this section, we consider the Configuration Model CMN(1,2), introduced in
Section 1.2. In this graph, the connected components are either cycles or tori (which
we indicate by a superscript (t)) connecting vertices of degree 2, or lines (indicated
by a superscript (l)) having vertices of degree 2 between two vertices of degree 1. In
order to state some properties of the number of lines and tori, we need to introduce
some notation. By taking p ∈ (0, 1), let us define the number of vertex of degree 1
and 2 by

n1 := # {i ∈ [N ] : di = 1} = N−⌊pN⌋, n2 := # {i ∈ [N ] : di = 2} = ⌊pN⌋,
and the total degree of the graph by

ℓN =
∑

i∈[N ]

di = 2n2 + n1 = N + ⌊pN⌋. (4.1)

Then, the number of edges is given by ℓN/2. Let us also denote by KN the number
of connected components in the graph and by K(l)

N and K(t)

N the number lines and
tori. Obviously,

KN = K(l)

N +K(t)

N .

Because every line uses up two vertices of degree 1, the number of lines is given
by n1/2, i.e., K(l)

N = (N − ⌊pN⌋)/2 a.s.. Regarding the number of cycles, we have
that K(t)

N has the same distribution of Kt
N̄

, where N is the (random) number of

vertices with degree 2 that do not belong to any line and Kt
N̄

is the number of tori
on this set of vertices. Then, since this subset forms a CMN̄(2) graph, we can apply

Giardinà et al. (2015, (3.16) in Section 3.2), obtaining that K(t)

N /N
P−→ 0, so that

also

KN/N
P−→ (1− p)/2.

Denoting the length (i.e. the number of vertices) in the ith line and jth torus (for
an arbitrary labeling) by L(l)

N (i) and L(t)

N (j), the partition function can be computed
as

ZN(β,B) =

K
(l)
N∏

i=1

Z(l)

L
(l)
N (i)

(β,B) ·
K

(t)
N∏

i=1

Z(t)

L
(t)
N (i)

(β,B), (4.2)

where, by (3.4),

Z(t)

L
(t)
N (i)

(β,B) = λ
L

(t)
N (i)

+ + λ
L

(t)
N (i)

− ,

while the partition function on each line is obtained using the partition function on
one-dimensional Ising model with free boundary condition Giardinà et al. (2015,
Section 3.1) as

Z(l)

N = A+λ
N
+ +A−λ

N
− ,

where

A± = A±(β,B) =
e−2βe±B + (λ+ − eβ+B)2e∓B ± 2e−β(λ+ − eβ+B)

[e−2β + (λ+ − eβ+B)2]λ±
. (4.3)

This is the starting point of our analysis of the annealed Ising measure onCMN(1,2).
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4.1. Annealed CLT: proof of Theorem 1.9. In order to prove the CLT in the an-
nealed setting, we will show that

lim
N→∞

P̃N

[
exp

( t√
N

(
SN − P̃N(SN)

))]
= exp(σ2

2t
2/2), t ∈ R. (4.4)

From now on, to alleviate notation we will omit the dependence on β and abbreviate
BN = B + t√

N
. We start by writing

P̃N

[
exp

( t√
N
SN

)]
=
QN [ZN(BN)]

QN [ZN(B)]
=

QN [e
NFBN

(p(N))+NEN (BN )]

QN [eNFB(p(N))+NEN (B)]
,

where, by Giardinà et al. (2015),

FB(p
(N)) = log λ+(B) +

∑

l≥2

p(N)

l log
(
A+(B) +A−(B) (r(B))

l
)
, (4.5)

EN(B) =
1

N

K
(t)
N∑

i=1

log
(
1 + r(B)L

(t)
N (i)

)
, (4.6)

with r(B) = rB defined in (3.11) and p(N) =
(
p(N)

l

)
l≥2

the empirical distribution of

the lines lengths given by

p(N)

l :=
1

N

K
(l)
N∑

i=1

1{L(l)
N (i)=l}. (4.7)

Analysis of the annealed partition function. We have

eNFB(p(N)) = (λ+(B))
N

∞∏

l=2

(
A+(B) +A−(B) (r(B))

l
)Nl

= (λ+(B))
N

∞∏

l=2

(A+(B))
Nl

∞∏

l=2

(
1 + a(B) (r(B))

l
)Nl

. (4.8)

where

a(B) =
A−(B)

A+(B)
(4.9)

and Nl = Np(N)

l is the number of lines of length l. We rewrite the second factor in
(4.8) as

∞∏

l=2

(A+(B))
Nl = (A+(B))

n1/2 ,

since
∑

l≥2Nl = n1/2. Therefore, we arrive at

eNFB(p(N))=λN+ (B)A
n1/2
+ (B)

∞∏

l=2

(
1 + a(B)rl(B)

)Nl
=λN+ (B)A

n1/2
+ (B)

∞∏

l=2

cl(B)Nl ,

where we define

cl(B) := 1 + a(B)rl(B) .

Next, define

MN = N −
∑

l≥2

lNl
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for the number of vertices that are not part of a line. Then, denoting by Z
(2)
N (B)

the partition function of CMN(2),

QN [ZN(BN)]

QN [ZN(B)]
=
QN [e

NFBN
(p(N))Z̄(2)

MN
(BN)]

QN [eNFB(p(N))Z̄(2)

MN
(B)]

(4.10)

=
λN+ (BN)A

n1/2
+ (BN)QN

[
Z̄(2)

MN
(BN)

∏∞
l=2 cl(BN)

Nl
]

λN+ (B)A
n1/2
+ (B)QN

[
Z̄(2)

MN
(B)

∏∞
l=2 cl(B)Nl

] ,

where we write

Z̄(2)

N (B) = λ−N
+ Z(2)

N (B).

Asymptotic behavior of the annealed partition function. The key result
for the proof of Theorem 1.9 is the following proposition that establishes the expo-
nential growth of the annealed partition function with polynomial corrections:

Proposition 4.1. The following holds true:

(a) For B 6= 0, there exist I = I(B) and J = J(B) such that, as N → ∞,

QN

[
Z̄(2)

MN
(B)

∞∏

l=2

cl(B)Nl
]
= J(B)eI(B)N (1 + o(1)). (4.11)

The function B 7→ J(B) is continuous, while B 7→ I(B) is infinitely differ-
entiable.

(b) Given t ∈ R there exist Ī = Ī(t) and J̄ such that, as N → ∞,

QN

[
Z̄(2)

MN

(
t√
N

) ∞∏

l=2

cl

(
t√
N

)Nl ]
= J̄eĪ(t/

√
N)N (1 + o(1)). (4.12)

The function t 7→ Ī(t) is infinitely differentiable.

Proof of Theorem 1.9 subject to Proposition 4.1. We start proving the theorem for
B 6= 0. We substitute (4.11) into (4.10) to arrive at

QN [ZN(BN)]

QN [ZN(B)]
= (1 + o(1))

λN+ (BN)A
n1/2
+ (BN)J(BN)e

I(BN )N

λN+ (B)A
n1/2
+ (B)J(B)eI(B)N

(4.13)

= (1 + o(1))
(λ+(BN)

λ+(B)

)N(A+(BN)

A+(B)

)n1/2

eN(I(BN )−I(B)),

where we use the fact that B 7→ J(B) is continuous to obtain that J(BN) =
(1 + o(1))J(B). We can next use the differentiability of B 7→ I(B) and the fact

that BN = B + t/
√
N to expand out

QN [ZN(BN)]

QN [ZN(B)]
=(1 + o(1))et

√
N
[

∂
∂t log λ+(B+t)|t=0+

n1
2N

∂
∂t logA+(B+t)|t=0+

∂
∂t I(B+t)|t=0

]

× eσ
2
2t

2/2, (4.14)

where

σ2
2 =

∂2

∂t2
log λ+(B + t)|t=0 +

(1− p)

2

∂2

∂t2
logA+(B + t)|t=0 +

∂2

∂t2
I(B + t)|t=0.

(4.15)
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Since

P̃N(SN) =N
[ ∂
∂t

log λ+(B + t)|t=0 +
n1
2N

∂

∂t
logA+(B + t)|t=0 +

∂

∂t
I(B + t)|t=0

]

+ o(
√
N) ,

then (4.14) implies (4.4), thus proving the theorem in the case B 6= 0.

For B = 0, in a similar way now using (4.12), we get

QN [ZN(t/
√
N)]

QN [ZN(0)]
= (1+ o(1))et

√
N
[

∂
∂t log λ+(t)|t=0+

n1
2N

∂
∂t logA+(t)|t=0+

∂
∂t Ī(t)|t=0

]
eσ̄

2
2t

2/2,

where

σ̄2
2 =

∂2

∂t2
log λ+(t)|t=0 +

(1− p)

2

∂2

∂t2
logA+(t)|t=0 +

∂2

∂t2
Ī(t)|t=0.

�

Strategy to prove asymptotic behavior. The remainder of this section is
devoted to the proof of Proposition 4.1. We use the law of total probability to
write

QN

[
Z̄(2)

MN
(B)

∞∏

l=2

cl(B)Nl
]

=

n2∑

m=0

Em[Z̄(2)

m (B)]QN

[ ∞∏

l=2

cl(B)Nl |MN = m
]
QN(MN = m), (4.16)

where we denote by the symbol Em the expectation with respect to an independent
CMm(2).

Our aim is to prove that the asymptotic behavior of (4.16) is essentially dom-
inated by the term with m = 0, which gives the exponential growth J(B)eNI(B)

stated in Proposition 4.1. To achieve a full control we analyze in the following the
three contributions whose product gives rise to the summand of (4.16):

i) Em[Z̄(2)
m (B)]: this is subdominant in the limit N → ∞ since, by Lemma 3.1,

supm Em[Z̄(2)
m (B)] is bounded. Therefore it will appear only in the prefactor

J(B).
ii) QN(MN = m): we study the distribution of the number of vertices in

tori MN in Lemma 4.1; in particular we prove the existence of a limiting
distribution function in the limit N → ∞.

iii) QN

[∏∞
l=2 cl(B)Nl | MN = m

]
: this is rewritten explicitly in Lemma 4.2

and its asymptotics is computed in Lemmata 4.3 and 4.4.

The number of vertices in tori. We start by analyzing the random variable
MN representing the number of vertices belonging to tori.

Lemma 4.1 (The number of vertices in tori). When N → ∞, there exists a random
variable M such that

MN

D−→M.
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Further,

QN(MN = m)

=
1

(n1 + 2n2 − 1)!!

(
n2
m

)
2n2−m(n2 −m)!(n1 − 1)!!(2m− 1)!!

(
n1/2 + n2 −m− 1

n2 −m

)

= 2n2
(n1 − 1)!!n2!

(n1 + 2n2 − 1)!!
2−2m

(
2m

m

)(
n1/2 + n2 −m− 1

n2 −m

)
. (4.17)

Proof : Number the vertices of degree 2 in an arbitrary way. We write

MN =
∞∑

l=1

lN (t)

l , where N (t)

l =

n2∑

i=1

Ji(l),

and Ji(l) is the indicator that vertex i is in a cycle of length l of which vertex i has
the smallest label. We compute that

QN [N
(t)

l ] =
n2
l
QN(vertex 1 is in cycle of length l) → 1

2l
(2p/(1 + p))l ≡ λl.

It is not hard to see, along the lines of van der Hofstad (2014a, Proposition
7.12), that (N (t)

l )l≥1 converges in distribution to a collection of independent Pois-
son random variables (Pl)l≥1 with parameters (λl)l≥1. Further, since QN [N

(t)

l ] ≤
1
2l (n2/ℓN)

l, which decays exponentially, the contribution from large l equals zero

whp, i.e., QN(∃l > T : N (t)

l > 0) is small uniformly in N for T large. This shows
that

MN

D−→
∑

l≥1

lPl ≡M.

Note that

QN [b
M ] =

∞∏

l=1

QN [b
lPl ] =

∞∏

l=1

e(b
l−1)λl = e

∑
l≥1(b

l−1)λl , (4.18)

which is finite only when b < (1 + p)/(2p).
To prove (4.17), we note that

QN(MN = m) =
1

(n1 + 2n2 − 1)!!
N(n1, n2,m), (4.19)

where N(n1, n2,m) is the number of ways in which the half-edges can be paired
such that there are precisely m degree 2 vertices in cycles. We claim that

N(n1, n2,m) =

(
n2
m

)
2n2−m(n2 −m)!(n1 − 1)!!(2m− 1)!!

(
n1/2 + n2 −m− 1

n2 −m

)
.

(4.20)
For this, note that

(1) there are
(
n2

m

)
ways to choose the m vertices of degree 2 that are in cycles;

(2) there are (2m−1)!! ways to pair the half-edges that are incident to vertices
in cycles;

(3) there are (n1−1)!! ways to pair the vertices of degree 1 (and this corresponds
to the pairing of degree 1 vertices in lines);

(4) there are (n2 −m)! ways to order the vertices that are in lines;
(5) there are 2 ways to attach the half-edges of a degree 2 vertex inside a line,

and there are in total n2 −m degree 2 vertices in lines, giving 2n2−m ways
to attach their half-edges; and
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(6) finally, there are
(
n1/2+n2−m−1

n2−m

)
ways to create n1/2 lines with n2 − m

vertices of degree 2.

Multiplying these numbers out gives (4.20). This completes the proof of Lemma
4.1. �

Combinatorial expression of the partition function. To perform the asymp-
totic analysis of the partition function QN

[∏∞
l=2 cl(B)Nl | MN = m

]
, we rewrite

it as double sum in Lemma 4.2 and then we investigate the asymptotics of the
summand in Lemma 4.3 by Stirling’s formula. Finally, in Lemma 4.4, we use the
Laplace method to estimate the asymptotics of the double sum.

Lemma 4.2 (Generating function of number of lines in CMN(1,2)). For every
a, r, for cl = 1 + arl for every l ≥ 2,

QN

[ ∞∏

l=2

cl(B)Nl |MN = m
]
=

n1/2∑

ℓ=0

n2−m∑

k=0

B(N)

ℓ,k (n2 −m), (4.21)

where

B(N)

ℓ,k (n2 −m) =

(
n1/2

ℓ

)
(ar2)ℓrk

(
ℓ+k−1

k

) (
n1/2−ℓ+n2−m−k−1

n2−m−k

)
(
n1/2+n2−m−1

n2−m

) . (4.22)

Proof : When MN = m, we have that n2−m vertices of degree 2 have to be divided
over n1/2 lines. Number the lines as 1, . . . , n1/2 in an arbitrary way. Denote the
number of degree 2 vertices in line j by Yj and rewrite

QN

[ ∞∏

l=2

cl(B)Nl |MN = m
]
=
∑

(i1,...,in1/2)

QN

(
Y1 = i1, . . . , Yn1/2 = in1/2

) n1/2∏

j=1

(1+arij+2)

where (i1, . . . , in1/2) is such that i1+· · ·+in1/2 = n2−m. Let [n1/2] = {1, . . . , n1/2},
and expand out

∏n1/2
j=1 (1 + arij+2) to obtain

∑

(i1,...,in1/2)

QN

(
Y1 = i1, . . . , Yn1/2 = in1/2

) ∑

Γ⊆[n1/2]

(ar2)|Γ|
∏

j∈Γ

rij . (4.23)

where the sum over Γ is over all subsets of [n1/2]. We denote

Nn1,n2−m = #
{
(i1, . . . , in1/2) : ij ≥ 0 ∀ j and

n1/2∑

j=1

ij = n2 −m
}

=

(
n1/2 + n2 −m− 1

n2 −m

)
,
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so that (4.23) is equal to

∑

(i1,...,in1/2)

1(
n1/2+n2−m−1

n2−m

)
∑

Γ⊆[n1/2]

(ar2)|Γ|
n2−m∑

k=0

rk1l{∑j∈Γ ij=k}

=
∑

(i1,...,in1/2)

1(
n1/2+n2−m−1

n2−m

)
n1/2∑

ℓ=0

(
n1/2

ℓ

)
(ar2)ℓ

n2−m∑

k=0

rk1l{(i1+...+iℓ=k)}

=
1(

n1/2+n2−m−1
n2−m

)

×
n1/2∑

ℓ=0

(
n1/2

ℓ

)
(ar2)ℓ

n2−m∑

k=0

rk
(
ℓ+ k − 1

k

)(
n1/2− ℓ+ n2 −m− k − 1

n2 −m− k

)

=

n1/2∑

ℓ=0

n2−m∑

k=0

(
n1/2

ℓ

)
(ar2)ℓrk

(
ℓ+k−1

k

) (
n1/2−ℓ+n2−m−k−1

n2−m−k

)
(
n1/2+n2−m−1

n2−m

) .

�

Asymptotics by Stirling’s formula. We continue the analysis by investigating
the asymptotics of B(N)

ℓ,k (n2) in (4.22) when ℓ, k and n2 are of the same asymptotic

order. To alleviate the notation we write B(N)

a,b (n2) := B(N)

⌊a⌋,⌊b⌋(n2) when a, b are not

necessarily integers.

Lemma 4.3 (Asymptotics of B(N)

ℓ,k (n2)). Let Dp = [0, (1−p)/2]×[0, p]. For external

fields B 6= 0, there exists a function H(s, t) continuous in Dp and smooth in D◦
p

(the interior of Dp) and a function C(s, t) smooth in D◦
p, such that

B(N)

sN,tN (n2) =
C(s, t)

N
exp {NH(s, t)} (1 + o(1)), as N → ∞, (4.24)

Moreover, H(s, t) is strictly concave on its domain Dp and its (unique) maximum
point (s∗, t∗) lies in the interior D◦

p. In D◦
p, the functions are defined as follows:

H(s, t) = (1− p) log

(
1− p

2

)
− 2s log(s)− 2

(
1− p

2
− s

)
log

(
1− p

2
− s

)

+ s log(ar2) + t log(r) + (s+ t) log(s+ t)− t log(t)

+

(
1 + p

2
− s− t

)
log

(
1 + p

2
− s− t

)

− (p− t) log(p− t)−
(
1 + p

2

)
log

(
1 + p

2

)
+ p log(p), (4.25)

and

C(s, t) =
1

2π

1−p
2

s
(
1−p
2 − s

)

√
( 1+p

2 − s− t)(s+ t)p
√

( 1+p
2 )(p− t)t

. (4.26)

Finally, uniformly in (s, t) ∈ Dp,

B(N)

sN,tN (n2) ≤ CN1/2 exp {NH(s, t)} . (4.27)
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Proof : Using Stirling’s approximation in the form n! = e−nnn
√
2πn (1 + o(1)) for

n large, taking a, b ∈ N, we can rewrite the binomial coefficients as
(
b n

an

)
= e[b log b−a log a−(b−a) log (b−a)]n ·

√
b (1 + o(1))√
a
√
b− a

√
2πn

.

Plugging the previous formula into (4.22), then (4.24) follows. By inspection,
H(s, t) and C(s, t) are smooth functions in D◦

p for B 6= 0. The function H(s, t) can
be further extended by continuity to the boundary ∂Dp of Dp, while C(s, t) cannot
be defined in Dp \D◦

p since it is unbounded there. In order to prove concavity of
H(s, t), we check that its Hessian matrix Q(s, t) is negative definite on each point
of D◦

p. For this, we compute the Hessian Q(s, t) as








1

1−p

2
− s+ p− t

+
1

s+ t
−

2

1−p

2
− s

−
2

s

1

1−p

2
− s+ p− t

+
1

s+ t

1

1−p

2
− s+ p− t

+
1

s+ t

1

1−p

2
− s+ p− t

+
1

s+ t
−

1

p− t
−

1

t









.

The eigenvalues µ+ and µ− of Q(s, t) are

µ
±
=

1

2

[

2

1+p

2
− s− t

+
2

s+ t
−

2

1−p

2
− s

−
2

s
−

1

p− t
−

1

t

±

√

√

√

√

(

2

1−p

2
− s

+
2

s
−

1

p− t
−

1

t

)2

+ 4

(

1

1+p

2
− s− t

+
1

s+ t

)2]

.

We can easily see that µ− < 0, and in order to show that also µ+ is negative, we
observe that the determinant of the Hessian matrix is positive. Therefore, H(s, t)
is strictly concave in D◦

p and, by continuity, concave in Dp. Concavity implies that
(s, t) 7→ H(s, t) has a unique global maximum in Dp, the uniqueness follows by
strict concavity and the fact that the maximizer is not on the boundary. In order
to find (s∗, t∗) := argmax

(s,t)∈Dp

H(s, t), and to prove that it lies in D◦
p, we calculate

∂H(s, t)

∂s
= 2 log

(
1− p

2
− s

)
− log

(
1 + p

2
− s− t

)
+ log(s+ t)− 2 log(s)

+ log(ar2), (4.28)

∂H(s, t)

∂t
= log(s+ t)− log(t)− log

(
1 + p

2
− s− t

)
+ log(p− t) + log(r),

(4.29)

so that (s∗, t∗) is a solution of the system




( 1−p
2 −s)

2

s2
(s+t)

( 1+p
2 −s−t)

= 1
ar2 ,

(p−t)
t

(s+t)

( 1+p
2 −s−t)

= 1
r .

(4.30)

Since B 6= 0, and then both ar2 and r are finite and larger than zero, it easy to see
from (4.30) that the maximum point cannot be attained on the boundary.

The proof of (4.27) follows similarly, now using that e−nnn
√
2πn ≤ n! ≤

e−nnn
√
2πn(1+ 1

12n ) for every n ≥ 1. The power ofN is needed to make the estimate
uniform, e.g., by bounding s((1− p)/2− s) ≥ c/N uniformly for s ≥ 1/N . �
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Asymptotics by Laplace method. In the next Lemma we compute the asymp-
totic behavior of (4.21) by using the discrete analogue of Laplace method.

Lemma 4.4 (Asymptotics of QN [
∏∞

l=2 cl(B)Nl | MN = m]). For every m ≥ 0
fixed,

QN [
∞∏

l=2

cl(B)Nl |MN = m] (4.31)

= 2π C(s∗, t∗) (detQ(s∗, t∗))−
1
2 (b∗)m exp{NH(s∗, t∗)}(1 + o(1)),

where (s, t) 7→ H(s, t) and (s, t) 7→ C(s, t) are defined in Lemma 4.3, (s∗, t∗) is the
maximum point of H(s, t), Q(s, t) is the Hessian matrix of H and

b∗ =

(
1 + p

2p

)(
p− t∗

1+p
2 − s∗ − t∗

)
.

Proof : We start by proving (4.31) for m = 0. Due to Lemma 4.3, we may estimate
the asymptotic behavior of the double sum

K(N) :=

n1/2∑

ℓ=0

n2∑

k=0

B(N)

ℓ,k (n2), (4.32)

by making use of the function fN(s, t) = N−1C(s, t) exp{NH(s, t)} that appeared
in (4.24). The correspondence between the two sets of variables (ℓ, k) and (s, t)
is given by the simple transformation s = ℓ/N and t = k/N . We denote this
transformation by TN .

Let us define ℓ∗N := ⌊s∗N⌋, k∗N := ⌊t∗N⌋ and introduce 0 < δ < min{p, (1−p)/2}.
The precise value of δ will be chosen later on. We partition the domain of the
summation appearing in the sum of B(N)

ℓ,k (n2)

ΛN = {(ℓ, k) : ℓ = 1, . . . , n1/2, k = 1, . . . n2},
into two subsets

Uδ,N = {(ℓ, k) ∈ ΛN : |ℓ− ℓ∗N | ≤ δN + 1, |k − k∗N | ≤ δN + 1}, U c
δ,N = ΛN\Uδ,N .

The set Uδ,N is to be considered as a neighborhood of (ℓ∗N , k
∗
N), the “maximum”

point of B(N)

ℓ,k (n2). We observe that TN(Uδ,N) is contained in the neighborhood of

(s∗, t∗) in Dp, i.e.,

Wδ+ 1
N

= {(s, t) ∈ Dp : |s− s∗| ≤ δ +
1

N
, |t− t∗| ≤ δ +

1

N
},

while TN(U
c
δ,N) is contained in its complement W c

δ+ 1
N

:= Dp\Wδ+ 1
N

. We rewrite

(4.32) as K(N) = K1(δ,N) +K2(δ,N) where

K1(δ,N) :=
∑

(ℓ,k)∈Uδ,N

B(N)

ℓ,k (n2), K2(δ,N) :=
∑

(ℓ,k)∈Uc
δ,N

B(N)

ℓ,k (n2). (4.33)

We aim to prove that the asymptotic behavior of K(N) is given by K1(δ,N),
while K2(δ,N) gives a sub-dominant contribution. We start by proving the latter
statement.

Bound on K2(δ,N). Making use of (4.27), we upper bound

K2(δ,N) ≤ CN1/2
∑

(ℓ,k)∈Uc
δ,N

exp {NH(ℓ/N, k/N)} . (4.34)
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Defining

M(δ) := sup
|s−s∗|>δ
|t−t∗|>δ

H(s, t) ≥ sup
(s,t)∈Uc

δ,N

H(s, t) ,

since the values (ℓ/N, k/N) in (4.34) belong toW c
δ+ 1

N

we can boundH(ℓ/N, k/N) ≤
M(δ). We conclude that

K2(δ,N) ≤ CN1/2 exp{NM(δ)}|U c
δ,N | ≤ CN5/2 exp{NM(δ)}, (4.35)

which, together with M(δ) < H(s∗, t∗), implies that

exp{−NH(s∗, t∗)}K2(δ,N) → 0, as N → ∞. (4.36)

Let us remark that, besides the condition 0 < δ < min{p, (1 − p)/2} (which guar-
antees that (ℓ, k) and (s, t) are contained in the domains of B(N)

ℓ,k (n2) and fN(s, t)),
in the previous argument no further condition has been imposed on δ.

Asymptotics of K1(δ,N). Here we consider the sum K1(δ,N) defined in (4.33).
Choose ε > 0 arbitrary and small. By continuity of C(s, t), we can choose δ > 0
small enough so that, for large N ,

C(s∗, t∗)− ε ≤ C(s, t) ≤ C(s∗, t∗) + ε, for all (s, t) ∈Wδ+ 1
N

Then using (4.24), we obtain

K1(δ,N) ≤ C(s∗, t∗) + ε

N

∑

(ℓ,k)∈Uδ,N

exp

{
NH

(
ℓ

N
,
k

N

)}
(1 + o(1)), (4.37)

and a similar lower bound with C(s∗, t∗) + ε replaced by C(s∗, t∗) − ε. Recalling
that Q(s, t) is the Hessian matrix of H(s, t), by Taylor expanding up to second
order and using that (s∗, t∗) is the maximum, we can write

H(s, t)−H(s∗, t∗) ≤ 1

2
x ·Q(s∗, t∗)x+ cδ‖x‖2/2, for all (s, t) ∈Wδ+ 1

N

where x = (s− s∗, t− t∗), and a similar lower bound with cδ replaced by −cδ.
By multiplying (4.37) by exp[−NH(s∗, t∗)] and applying the previous inequality,

we obtain

exp[−NH(s∗, t∗)]K1(δ,N)

≤ C(s∗, t∗) + ε

N

∑

(ℓ,k)∈Uδ,N

exp

{
N

2
xT ·Q(s∗, t∗)x+ cδN‖x‖2/2

}
, (4.38)

(where x is computed with s = ℓ/N and t = k/N) and a similar lower bound with
C(s∗, t∗) + ε replaced with C(s∗, t∗)− ε and +cδN‖x‖2 replaced with −cδN‖x‖2.
The last step is bounding the sum

K̃1(δ,N) :=
∑

(ℓ,k)∈Uδ,N

exp

{
N

2
xT · (Q(s∗, t∗)± cδI)x

}
,

Now we can substitute the finite sum in the previous display with the infinite one,
since the difference is exponentially small de Bruijn (1961). It is known that (as
can be seen by extending de Bruijn (1961, (3.9.4)) to two-dimensional sums) that

∑

j∈Z2

e−jTAj/(2N) =
2πN

det(A)1/2
(1 + o(1)),
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Therefore,

K̃1(δ,N) =
2π

det(Q(s∗, t∗)± cδI)1/2
N(1 + o(1)).

From the previous equation, recalling (4.38), we obtain

exp[−NH(s∗, t∗)]K1(δ,N) ≤ 2π(C(s∗, t∗) + ε)

det(Q(s∗, t∗)− cδI)1/2
(1 + o(1)),

and a similar lower bound with C(s∗, t∗) + ε replaced with C(s∗, t∗) − ε and
Q(s∗, t∗) − cδI with Q(s∗, t∗) + cδI. Since ε is arbitrary, the previous inequality
implies

lim
N→∞

exp[−NH(s∗, t∗)]K(N) =
2π C(s∗, t∗)

det(Q(s∗, t∗))1/2
,

which proves the claim.
Next, we want to generalize the previous result by computing the asymptotic of

(4.21) in the case m 6= 0. We start by rewriting (4.21) in the following fashion:

QN [
∞∏

l=2

cl(B)Nl |MN = m] =

n1/2∑

ℓ=0

n2−m∑

k=0

G(N)

ℓ,k (m;n2)B
(N)

ℓ,k (n2) ,

where

G(N)

ℓ,k (m;n2) :=
B(N)

ℓ,k (n2 −m)

B(N)

ℓ,k (n2)
=

∏m
j=1

(
n1

2 + n2 − j
)∏m−1

j=0 (n2 − k − j)
∏m−1

j=0 (n2 − j)
∏m

j=1

(
n1

2 + n2 − ℓ− k − j
) ,

for m = 0, 1, . . . , n2. By defining the function F (s, t;m) on D◦
p given by

F (s, t;m) =

(
1 + p

2p

)m
(

p− t
1+p
2 − s− t

)m

,

we obtain that

G(N)

ℓ,k (m;n2) = F

(
ℓ

N
,
k

N
;m

)
(1 + o(1))

as N → ∞. Then the proof is obtained from that for m = 0 by replacing C(s, t)
by C(s, t)F (s, t). �

Remark 4.1 (Bound on b∗). Since (s∗, t∗) ∈ D◦
p,

p− t∗

1+p
2 − s∗ − t∗

=
p− t∗

( 1−p
2 − s∗) + (p− t∗)

< 1, so that b∗ <
1 + p

2p
.

This will allow us to use in the following the moment generating function QN [(b
∗)M ]

defined in (4.18).

Boundary contribution. Lemma 4.4 proves, for any fixed 0 ≤ m < ∞, the as-
ymptotic exponential growth of QN [

∏∞
l=2 cl(B)Nl |MN = m] as N → ∞. However

in formula (4.16) we need to sum over a range of values of m that increases with
the volume N . In order to overcome this problem, in the proof of Proposition 4.1
we introduce a cut-off in the sum over m (and then send the cut-off to infinity at

the end). In doing so we need to exclude the contribution arising from B
(N)
ℓ,k for ℓ

close to the boundary n1/2. This is achieved in the following Lemma.
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Lemma 4.5 (Boundary contribution). For every ε > 0 sufficiently small, as N →
∞

n2∑

m=0

Em[Z̄(2)

m (B)]

n1/2∑

ℓ>(1−ε)
n1
2

n2−m∑

k=0

B(N)

ℓ,k (n2 −m)QN(MN = m) = o(eNH(s∗,t∗)).

Proof : By Lemma 4.3, we know that s∗ < 1−p
2 . Defining

H(s∗, t∗) := sup
(s,t)

s>(1−ε) 1−p
2

H(s, t),

it follows that H(s∗, t∗) < H(s∗, t∗). Further, we define

D(N)

ℓ,k (n1, n2,m) = B(N)

ℓ,k (n2 −m)QN(MN = m),

and using (4.17) and the following bound

2−2(m+1)

(
2(m+ 1)

m+ 1

)
≤ 2−2m

(
2m

m

)
,

we obtain

D(N)

ℓ,k (n1, n2,m+ 1)

D(N)

ℓ,k (n1, n2,m)
≤ n2 −m− k

n1/2− ℓ+ n2 −m− k − 1

≤ n2
n1/2− ℓ+ n2 − 1

≤ n2
n2 − 1

. (4.39)

As a consequence, using (4.27),

B(N)

ℓ,k (n2 −m)QN(MN = m) ≤ B(N)

ℓ,k (n2)QN(MN = 0)

(
n2

n2 − 1

)m

≤ aN1/2 exp{H(ℓ/N, k/N)},

since,
(

n2

n2−1

)m
≤
(

n2

n2−1

)n2

≤ a for m ≤ n2 and some a > e. Therefore, using this

inequality together with Lemma 3.1, we obtain that

e−NH(s∗,t∗)
n2∑

m=0

Em[Z̄(2)

m (B)]

n1/2∑

ℓ>(1−ε)
n1
2

n2−m∑

k=0

B(N)

ℓ,k (n2 −m)QN(MN = m)

≤ aAn2N
1/2 e−NH(s∗,t∗)

n1/2∑

ℓ>(1−ε)
n1
2

n2∑

k=0

exp{H(ℓ/N, k/N)}

≤ aAN7/2eN(H(s∗,t∗)−H(s∗,t∗)) N→∞−→ 0.

�

Now we are finally ready for the proof of Proposition 4.1. We treat first the case
in the presence of an external field B and then the case without field.

Proof of Proposition 4.1 (a). We fix µ ∈ {0, . . . , n2} and ε > 0 sufficiently small.
Using (4.16) and Lemma 4.2 we write

QN

[
Z̄(2)

MN
(B)

∞∏

l=2

cl(B)Nl
]
= X(1)

N,ℓ≤(1−ε)
n1
2
(µ) + X(2)

N,ℓ≤(1−ε)
n1
2
(µ) + X(3)

N,ℓ>(1−ε)
n1
2
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where

X(1)

N,ℓ≤(1−ε)
n1
2
(µ) =

µ∑

m=0

Em[Z̄(2)

m (B)]

(1−ε)
n1
2∑

ℓ=0

n2−m∑

k=0

B(N)

ℓ,k (n2 −m)QN(MN = m),

(4.40)

X(2)

N,ℓ≤(1−ε)
n1
2
(µ) =

n2∑

m=µ+1

Em[Z̄(2)

m (B)]

(1−ε)
n1
2∑

ℓ=0

n2−m∑

k=0

B(N)

ℓ,k (n2 −m)QN(MN = m),

(4.41)

X(3)

N,ℓ>(1−ε)
n1
2

=

n2∑

m=0

Em[Z̄(2)

m (B)]

n1/2∑

ℓ>(1−ε)
n1
2

n2−m∑

k=0

B(N)

ℓ,k (n2 −m)QN(MN = m).

(4.42)

We analyze the three pieces separately, showing that only the first of them con-
tributes to the exponential growth of QN

[
Z̄(2)

MN
(B)

∏∞
l=2 cl(B)Nl

]
. By Lemma 4.1

and Lemma 4.4

X(1)

N,ℓ≤(1−ε)
n1
2
(µ) =2π C(s∗, t∗) (detQ(s∗, t∗))−

1
2 exp{NH(s∗, t∗)}

×
µ∑

m=0

Em[Z̄(2)

m (B)]QN(M = m)(1 + o(1)). (4.43)

The expression in (4.41) can be rewritten as

X(2)

N,ℓ≤(1−ε)
n1
2
(µ) =

n2∑

m=µ+1

Em[Z̄(2)

m (B)]

(1−ε)
n1
2∑

ℓ=0

n2−m∑

k=0

B(N)

ℓ,k (n2 −m)QN(MN = m)

B(N)

ℓ,k (n2)QN(MN = 0)

×B(N)

ℓ,k (n2)QN(MN = 0).

Now, by (4.39),
B

(N)
ℓ,k (n2−m)QN (MN=m)

B
(N)
ℓ,k (n2−(m−1))QN (MN=m−1)

is uniformly bounded by 1−δ for δ > 0

sufficiently small, because ℓ ≤ (1− ε)n1/2. Using this bound together with Lemma
3.1 yields

X(2)

N,ℓ≤(1−ε)
n1
2
(µ) ≤ A

n1/2∑

ℓ=0

n2∑

k=0

B(N)

ℓ,k (n2)

n2∑

m=µ+1

(1− δ)m.

Thus there exist ε(µ) (with ε(µ) → 0 as µ→ ∞) such that, uniformly in N,

X(2)

N,ℓ≤(1−ε)
n1
2
(µ) ≤ ε(µ) exp{NH(s∗, t∗)}(1 + o(1)).

Finally, from Lemma 4.5 it results that X(3)

N,ℓ>(1−ε)
n1
2

= o(exp{NH(s∗, t∗)}). Thus,

from (4.43) we can identify I = H(s∗, t∗) and

J = 2π C(s∗, t∗) (detQ(s∗, t∗))−
1
2

∞∑

m=0

Em[Z̄(2)

m (B)](b∗)mP(M = m).

We remark the previous expression is well-defined since, from Lemma 3.1,
∞∑

m=0

Em[Z̄(2)

m (B)](b∗)mP(M = m) ≤ AE [( b∗)M ],

which is finite because b∗ < 1+p
2p (see (4.18) in Lemma 4.1 and Remark 4.1).



158 C. Giardinà et al.

Proof of Proposition 4.1 (b). In this case we work with a vanishing external field.
Defining tN := t√

N
and by Taylor expanding (4.9) around 0, we have

a (tN) :=
A− (tN)

A+ (tN)
= C

t2

N
(1 + o(1)), as N → ∞,

where C is a constant (whose value actually depends on β). Thus,

QN [
∞∏

l=2

cl(tN)
Nl |MN = m] = QN [

∞∏

l=2

(
1 + a(tN)r

l(tN)
)Nl |MN = m]

= QN

[
e
∑∞

l=2 a(tN )rl(tN )Nl(1 + o(1)) |MN = m
]

= QN

[
eCt2

∑∞
l=2 rl(tN )p

(N)
l |MN = m

]
(1 + o(1)).

By writing

QN

[
eCt2

∑∞
l=2 rl(tN )p

(N)
l |MN = m

]
(4.44)

= eCt2
∑∞

l=2 rl(tN )QN (p
(N)
l )

+ eCt2
∑∞

l=2 rl(tN )QN (p
(N)
l )QN

[
eCt2

∑∞
l=2 rl(tN )(p

(N)
l −QN (p

(N)
l )) − 1 |MN = m

]
,

and using formula (4.16), we can rewrite QN

[
Z̄(2)

MN
(tN)

∏∞
l=2 cl(tN)

Nl
]
= S1(N) +

S2(N) as the sum of two contributions, due to the two terms in (4.44). Now we
analyze S1(N) and S2(N) as N → ∞. First, we remark that the sum in the
exponential factor converges in this limit. This can be shown by observing that
r(B) < 1 (see (3.11)). Therefore, calling r∗ = r(0) and given any ǫ > 0 such
that r∗ + ε < 1, thanks to the convergence of r(tN ) to r∗, we have that for all N
sufficiently large,

∞∑

l=2

rl(tN)QN(p
(N)

l ) ≡
N∑

l=2

rl(tN)QN(p
(N)

l ) ≤
N∑

l=2

(r∗ + ε)l

where we used the fact that p(N)

l ≤ 1 for l ≤ N and p(N)

l = 0 for all l > N . Since
the geometric sum in the r.h.s. of the previous display is convergent, the positive
series in the l.h.s. is also convergent to some positive value Ī0. Thus, by inserting
the first term of the r.h.s. of (4.44) in (4.16) and applying bounded convergence,
we obtain (4.12) with

Ī (t) = Ī0Ct
2.

and

J̄ =
∞∑

m=0

Em[Z̄(2)

m (0)]P(M = m).

Further, by Lemma 3.1 and the law of total expectation,

S2(N) ≤ AeCt2
∑∞

l=2 rl(tN )QN (p
(N)
l )QN

[∣∣∣eCt2
∑∞

l=2 rl(tN )
(
p
(N)
l −QN (p

(N)
l )

)

− 1
∣∣∣
]
.

We use the Cauchy-Schwarz inequality to bound

QN

[∣∣∣eCt2
∑∞

l=2 rl(tN )
(
p
(N)
l −QN (p

(N)
l )

)

− 1
∣∣∣
]

(4.45)

≤ QN

[(
e
Ct2

∑∞
l=2 rl(tN )

(
p
(N)
l −QN (p

(N)
l )

)

− 1
)2]1/2

,
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and, by Jensen’s inequality and Hölder inequality,

1 ≤ QN

[
e
Ct2

∑∞
l=2 rl(tN )

(
p
(N)
l −QN (p

(N)
l )

)]

≤
(
QN

[
e
Ct2

√
N

∑∞
l=2 rl(tN )

(
p
(N)
l −QN (p

(N)
l )

)]) 1√
N

≤ 1 + o(1),

due to the existence of the finite limit of QN

[
e
Ct2

√
N

∑∞
l=2 rl(tN )

(
p
(N)
l −QN (p

(N)
l )

)]
by

Giardinà et al. (2015, Lemma 4.3). Therefore, also the term in (4.45) converges to 0,
showing that S2(N) gives a vanishing contribution. This completes the proof. �

4.2. Annealed thermodynamic limits and SLLN: Proof of Theorems 1.7 and 1.8.
Finally, we prove the existence of the thermodynamic limits.

Proof of Theorem 1.7. The thermodynamic limit of the annealed pressure is given
by

ψ̃(β,B) = lim
N→∞

ψ̃N(β,B) = lim
N→∞

1

N
log (QN (ZN(β,B))) .

From (4.10) we can rewrite

QN (ZN(β,B)) = λN+ (B)A
n1/2
+ (B)QN

[
Z̄(2)

MN
(B)

∞∏

l=2

cl(B)Nl

]
,

and then

ψ̃(β,B) = log λ+ +
1− p

2
logA+ + lim

N→∞

1

N
log
{
QN

[
Z̄(2)

MN
(B)

∞∏

l=2

cl(B)Nl

]}
.

Using Proposition 4.1 we find

ψ̃(β,B) = log λ+(β,B) +
1− p

2
logA+(β,B) +H(s∗, t∗).

To prove the existence of the thermodynamic limit of the magnetization, we use
Lemma 2.1 and the existence of the pressure in the thermodynamic limit. Then,
remembering that (s∗, t∗) is the maximum point of the function H(s, t), we compute

M̃(β,B) =
∂

∂B
ψ̃(β,B) =

∂

∂B
log λ+(β,B) +

1− p

2

∂

∂B
logA+(β,B)

+ s∗(β,B)
∂

∂B
log
[
a(β,B)r2(β,B)

]

+ t∗(β,B)
∂

∂B
log r(β,B) (4.46)

In the limit of small external field B by Taylor expanding (4.9) one has a(β,B) =
O(B2). Also, from the fixed point equations (4.30) one can check that s∗(β,B) =

O(B2). As a consequence limB→0+ M̃(β,B) = 0 for all β > 0, and therefore, by the
definition in (1.9), we conclude that there is no phase transition for CMN(1,2). �

Proof of Theorem 1.8: Again, the SLLN follows immediately from the existence
of the annealed pressure in the thermodynamic limit and its differentiability with
respect to B. See the proof of Theorem 1.2 and Giardinà et al. (2015, Section
2.2). �
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