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Abstract

We consider a random, uniformly elliptic coefficient field a(x) on
the d-dimensional cubic lattice Zd. We are interested in the spatial
decay of the quenched elliptic Green’s function G(a;x, y). Next to sta-
tionarity, we assume that the spatial correlation of the coefficient field
decays sufficiently rapidly to the effect that a Logarithmic Sobolev
Inequality holds for the ensemble 〈·〉. We prove that all stochastic
moments of the first and second mixed derivatives of the Green’s func-
tion, that is, 〈|∇xG(x, y)|p〉 and 〈|∇x∇yG(x, y)|p〉, have the same de-
cay rates in |x−y| � 1 as for the constant coefficient Green’s function,
respectively. This result relies on and substantially extends the one
by Delmotte and Deuschel [8], which optimally controls second mo-
ments for the first derivatives and first moments of the second mixed
derivatives of G, that is, 〈|∇xG(x, y)|2〉 and 〈|∇x∇yG(x, y)|〉. As an
application, we derive optimal estimates on the random part of the
homogenization error.

The outline of this work is as follows: After introducing the discrete setting
in Section 1, we present the statistical assumptions and the main result on
the annealed moments of the Green’s function in Section 2. We present opti-
mal estimates on the random part of the homogenization error in Section 3.
Section 4 contains an annealed Hölder-estimate in the spirit of De Giorgi,
which we will obtain as a a consequence of our main result. In Section 5 we
explain our main assumption, a weakened Logarithmic Sobolev Inequality,
which in particular holds for all independent, identically distributed coef-
ficient fields. Section 6 contains the main ingredients of the proof of the
annealed Green’s function estimates — in particular we recall the result by
Delmotte and Deuschel [8]. All proofs are postponed until Section 7.
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1 Discrete uniformly elliptic equations

In this paper we consider linear second order difference equations with uni-
formly elliptic, bounded random coefficients of the form

∇∗(a∇u)(x) = f(x) for all x ∈ Zd.

If there is no danger of confusion, we also write ∇∗a∇u for ∇∗(a∇u). In this
equation we define the spatial derivatives for scalar fields ζ : Zd → R, vector
fields ξ = (ξ1, . . . , ξd) : Zd → Rd, and all i = 1, . . . , d by the expressions

∇iζ(x) := ζ(x+ ei)− ζ(x), ∇∗i ζ(x) := ζ(x− ei)− ζ(x),

∇ζ = (∇1ζ, . . . ,∇dζ), ∇∗ξ =
d∑
i=1

∇∗i ξi .

Here e1, . . . , ed is the canonical basis of Rd. The expressions ∇ζ and −∇∗ξ
are the discrete gradient and divergence for scalar fields and vector fields,
respectively, on Zd. Note that ∇∗ is the `2(Zd)-adjoint of ∇.

Here comes the main assumption on the considered coefficient fields {a(x)}x∈Zd :
For every x ∈ Zd, a(x) ∈ Rd×d is symmetric and uniformly elliptic in the
sense of λ|ξ|2 ≤ ξ · a(x)ξ ≤ |ξ|2 for all ξ ∈ Rd. Here and below λ ∈ (0, 1)
denotes the ellipticity ratio which is fixed throughout the paper. In addition
we assume that the coefficients are diagonal. We note that the condition
a = diag(a11, . . . , add) is diagonal yields that the coefficients can be associ-
ated with the bonds of the lattice (rather than the vertices): In fact, this can
be seen on the level of the Dirichlet integral, which can be rewritten as∑

x∈Zd
ζ(x)∇∗(a∇ζ)(x) =

∑
x∈Zd

d∑
i=1

aii(x)(ζ(x+ ei)− ζ(x))2.

This allows, for instance, to interpret ∇∗a∇u as the generator of a random
walk on Zd with jump rates across bonds described by a. Diagonality is
known to be a sufficient (but not necessary) condition for the maximum
principle to hold for ∇∗a∇u. The maximum principle is a crucial ingredient
for the estimate (19) on the quenched Green’s function. Also, in the proof of
Lemma 5, we shall adapt the bond-based point of view.

Our main object is the non-constant coefficient, elliptic, discrete Green’s
function G(a;x, x′) defined through ∇∗xa(x)∇xG(a;x, x′) = δ(x− x′), where
δ stands for the discrete version of the Dirac distribution, i.e.

δ(x) =

{
1 for x = 0

0 otherwise

}
.
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We usually drop the argument a and just write G(x, y). Often, it is more
convenient to appeal to the distributional characterization:

∀ ζ(x) :
∑
x

∇ζ(x) · a(x)∇xG(x, x′) = ζ(x′).

Throughout the paper, we will work in dimension d ≥ 2. Dimension d = 2
needs a bit more care in terms of the definition of the Green’s function.
Since we are only interested in gradient estimates, this is merely technical.
Sometimes, it is more convenient to think of the approximation via a massive
term in the sense of

T−1GT (x, x′) +∇∗xa(x)∇xGT (x, x′) = δ(x− x′);

this is the case in the proof of Proposition 1. At other times, it is more
convenient to think in terms of an approximation via periodization in the
sense of

∇∗xa(x)∇xGL(x, x′) =
∑
z∈Zd

δ(x− x′ − Lz)− L−d; (1)

this is the case in the proof of Lemma 6.

2 Assumptions on the ensemble and main re-

sult

We are given a probability measure on the space of uniformly elliptic, di-
agonal coefficient fields (endowed with the product topology), cf. the previ-
ous section. Following the convention in statistical mechanics, we call this
probability measure an ensemble and denote the associated ensemble av-
erage (i.e. the expected value) by 〈·〉. We assume that 〈·〉 is stationary
in the sense that for any shift vector z ∈ Zd, the shifted coefficient field
a(· + z) := {Zd 3 x 7→ a(x + z)} has the same distribution as a. We also
note that the Green’s function is shift-invariant or stationary in the sense
that G(a(·+ z);x, y) = G(a;x+ z, y + z).

Besides stationarity, the main assumption on the ensemble of coefficients
and only probabilistic tool will be a weak variant of the Logarithmic Sobolev
Inequality (LSI). In Section 5, we will comment on the LSI and the related
Spectral Gap Inequality — there we will also describe the relation between
this weak LSI and the usual LSI.

Definition 1. [Weak logarithmic Sobolev inequality]. Let 〈·〉 be a stationary
ensemble of coefficients a.
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i) For a random variable ζ, i.e. a function ζ(a), a site y ∈ Zd, and a direction
i = 1, · · · , d, we define the continuum vertical derivative ∂ζ

∂aii(y)
as the partial

derivative with respect to the variable aii(y). Furthermore, we denote by ∂ζ
∂a(y)

the d-dimensional vector with coefficients ∂ζ
∂aii(y)

with i = 1, . . . , d. Thus in

particular, ( ∂ζ
∂a(y)

)2 =
∑d

i=1(
∂ζ

∂aii(y)
)2.

ii) We say 〈·〉 satisfies a weak Logarithmic Sobolev Inequality (LSI) with
constant ρ > 0 if for all positive random variables f(a) > 0 we have〈

f log
f

〈f〉

〉
≤ 1

2ρ

〈∑
y∈Zd

sup
a(y)∈[λ,1]d

1

f

( ∂f

∂a(y)

)2〉
. (2)

Note that the difference between the weakened LSI (2) and the usual LSI, see
(15), lies solely in the supremum over a(y). The usual LSI therefore implies
(2). The merit of this weakening is that it is satisfied by any ensemble
of independent, identically distributed coefficients {a(y)}y∈Zd , cf. Lemma 1
below. Our main result is:

Theorem 1. Let 〈·〉 be stationary and satisfy the weak version of LSI with
constant ρ > 0, see Definition 1. Then for all 1 ≤ p < ∞ and x ∈ Zd, it
holds

〈|∇∇G(x, 0)|2p〉
1
2p ≤ C(d, λ, ρ, p)(|x|+ 1)−d, (3)

〈|∇xG(x, 0)|2p〉
1
2p ≤ C(d, λ, ρ, p)(|x|+ 1)1−d. (4)

Here ∇∇G(x, y) = ∇x∇yG(x, y) denote the mixed second derivatives of the
Green’s function. Also, here and in the sequel, C(d, λ, ρ, p) stands for a
generic constant that only depends on dimension d ≥ 2, on the ellipticity
ratio λ > 0, on the LSI constant ρ > 0, and on the exponent of integrability
p <∞.

Clearly, the spatial decay rates in Theorem 1 are optimal, since those are the
decay rates of the constant coefficient Green’s function. Note that station-
arity of 〈·〉 and G implies 〈|∇∇G(a;x, y)|2p〉 = 〈|∇∇G(a(· − y);x, y)|2p〉 =
〈|∇∇G(a;x− y, 0)|2p〉, so Theorem 1 can be rephrased as

〈|∇x∇yG(x, y)|2p〉
1
2p ≤ C(d, λ, ρ, p)(|x− y|+ 1)−d,

〈|∇xG(x, y)|2p〉
1
2p ≤ C(d, λ, ρ, p)(|x− y|+ 1)1−d

for all x, y ∈ Zd. An interesting aspect of Theorem 1 is the following: The
quenched versions of (3) and (4) are false, i.e. the uniform in a and point-
wise in x estimates |∇∇G(x, 0)| ≤ C(d, λ)(|x| + 1)−d and |∇xG(x, 0)| ≤
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C(d, λ)(|x|+ 1)d−1 do not hold (while suitably spatially averaged versions of
both estimates do hold uniformly in a); see our discussion in Section 4 below.

An easy consequence is the following generalized variance estimate on G
itself:

Corollary 1. Let 〈·〉 be as in Theorem 1. Then it holds that

〈∣∣G(x, 0)− 〈G(x, 0)〉
∣∣2p〉 1

p ≤ C(d, λ, ρ, p)

{
(|x|+ 1)2(1−d) d > 2

(|x|+ 1)−2 log(|x|+ 2) d = 2

}
(5)

for all x ∈ Zd and 1 ≤ p <∞.

Remark 1. We note that the estimate in Corollary 1 is optimal in the scaling
of the spatial decay. This can be seen by developing to leading order in a small
ellipticity ratio 1 − λ � 1. We expand upon this argument (for the special
case of p = 1) after the proof of Corollary 1.

3 Homogenization error

In the same vein as Corollary 1, Theorem 1 allows to give optimal estimates
on the random part of the homogenization error. These extend the results
by Conlon & Naddaf [5, Theorem 1.2, Theorem 1.3] from small ellipticity
ratio (i.e. 1−λ� 1) to arbitrary ellipticity ratio. For the “strong error” (see
below for an explanation of this wording) [5, Theorem 1.2] in d > 3, this was
already achieved by Gloria [11, Theorem 2]. For all other cases, our result
appears to be new. Let us be more precise: For a coefficient field a(x) and a
right hand side f(x) we consider the solution u(x) of

∇∗a(x)∇u(x) = f(x) on Zd. (6)

In order for (6) to have a unique solution that decays (i. e. lim|x|↑∞ u(x) = 0),
we assume for simplicity that f is compactly supported (and is of zero spatial
average in the case of d = 2 to ensure decay of u). By the random part of
the homogenization error, we understand the “fluctuations” u(x) − 〈u(x)〉.
These are expected to be small (w. r. t. the size of u(x) itself) if f(x) varies
only slowly w. r. t. to the lattice spacing. In our notation, the lattice spacing
is unity, so that a natural model for a right hand side that has a large
characteristic scale L� 1 is given by f(x) = L−2f̂( x

L
) for some bounded and

compactly supported “mask” f̂(x̂), x̂ ∈ Rd. The scaling L−2 of the amplitude
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of f is motivated as follows: In the rescaled variables x̂, (6) now assumes the
suggestive form of

∇∗εa( x̂
ε
)∇εu(x̂) = f̂(x̂) on εZd, (7)

where ε := L−1 is the ratio of the lattice spacing to the characteristic scale
of the r. h. s. and where ∇ε denote finite differences for the rescaled lattice
εZd (i. e. ∇ε,iu(x̂) = ε−1(u(x̂+ εei)− u(x̂))).

The size of the fluctuations will be measured in two different ways.

• Corollary 2: Here, the fluctuations will be controlled in a strong way in
the sense that we estimate the (discrete, spatial) `p(Zd)-norm (

∑
x |u− 〈u〉|p)

1/p

of the fluctuations. This will be done for arbitrary stochastic moments
(the role played by rp). Corollary 2 is the generalization of [5, The-
orem 1.2] as well as [11, Theorem 2]. For our model right hand side,
f(x) = ε2f̂(εx) with bounded and compactly supported f̂ , the fluctua-
tions are (up to a logarithmic correction for d = 2) of the order of ε in
this measure, see (11).

• Corollary 3: Here, the fluctuations will be controlled in a weak way
in the sense that we only estimate spatial averages

∑
x(u − 〈u〉)g of

the fluctuations, with deterministic averaging function g(x). Again,
this will be done for arbitrary stochastic moments (the role played
by r). Corollary 3 is the generalization of [5, Theorem 1.3]. For our
model right hand side f(x) = ε2f̂(εx) with bounded and compactly
supported f̂ , and an averaging function of the form g(x) = ĝ(εx) with
bounded and compactly supported ĝ, the fluctuations are O(εd/2) in
this measure, see (12).

Corollary 2. Let 〈·〉 be as in Theorem 1; for compactly supported right
hand side f(x) consider the decaying solution u(x) to (6). Let the spatial
integrability exponents 2 ≤ p < ∞ and 1 ≤ q < ∞ be related through 1

q
=

1
d

+ 1
p
.

In case of d > 2, we have for all r <∞:〈(∑
x

∣∣u− 〈u〉∣∣p)r〉 1
rp

≤ C(d, λ, ρ, p, r)
(∑

x

|f |q
) 1
q
. (8)

In case of d = 2, we additionally require p > 2 (so that q > 1) and that f is
supported in {|x| ≤ R} for some R ≥ 1. Then we have for all r <∞:〈( ∑

|x|≤R

∣∣u− 〈u〉∣∣p)r〉 1
rp

≤ C(λ, ρ, p, r) (log
1
2 R)

(∑
x

|f |q
) 1
q
. (9)
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Corollary 3. Let 〈·〉, f(x), u(x) be as in Corollary 2. Let the averaging
function g(x) be compactly supported. Let the two integrability exponents
1 < q, q̃ <∞ be related by 1

q
+ 1

q̃
= 2

d
+ 1

2
. Then it holds for all r <∞:

〈∣∣∣∣∑
x

(u− 〈u〉)g
∣∣∣∣r〉 1

r

≤ C(d, λ, ρ, r)

(∑
x

|f |q
) 1

q
(∑

x

|g|q̃
) 1

q̃

. (10)

For the convenience of the reader we express the results of both corollaries
in terms of the rescaled variable x̂ = εx, the model right hand side f(x) =
ε2f̂(εx) and the model averaging function g(x) = ĝ(εx); we also rewrite the
solution itself in terms of u(x) = ûε(εx). In this notation, (8) (multiplied by
εd/p) turns into〈(

εd
∑
x̂∈εZd

∣∣ûε − 〈ûε〉∣∣p)r〉 1
rp

≤ C(d, λ, ρ, p, r)ε
(
εd
∑
x̂∈εZd

|f̂ |q
) 1
q ≤ C(d, λ, ρ, r, f̂)ε. (11)

Note that this can be interpreted as the discrete version of〈(∫
Rd

∣∣ûε − 〈ûε〉∣∣pdx̂)r〉 1
rp

≤ C(d, λ, ρ, p, r)ε
(∫

Rd
|f̂ |qdx̂

) 1
q
,

which highlights the O(ε)-nature of the “spatially strong” error.

Likewise, (10) (multiplied by εd) turns into〈∣∣∣∣εd ∑
x̂∈εZd

(ûε − 〈ûε〉)ĝ
∣∣∣∣r〉 1

r

≤ C(d, λ, ρ, r)ε
d
2

(
εd
∑
x̂∈εZd

|f̂ |q
) 1

q
(
εd
∑
x̂∈εZd

|ĝ|q̃
) 1

q̃

≤ C(d, λ, ρ, r, f̂ , ĝ)ε
d
2 . (12)

As above, this can be seen as the discrete version of〈∣∣∣∣ ∫
Rd

(ûε − 〈ûε〉)ĝ
∣∣∣∣rdx̂〉 1

r

≤ C(d, λ, ρ, r)ε
d
2

(∫
Rd
|f̂ |qdx̂

) 1
q
(∫

Rd
|ĝ|q̃dx̂

) 1
q̃

,

uncovering the O(εd/2)-nature of the “spatially weak” error.
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Let us make a couple of further more detailed remarks related to Corollaries
2 and 3. In case of Corollary 2 and d = 2, we can use Hölder’s inequality to
establish an estimate also for p = 2. However, in that case we pay the price
of an arbitrarily small power of R on the right hand side of (9). We also
note that the requirement that f has compact support and that u decays
can be weakened: All we need is the Green’s function representation u(x) =∑

y G(x, y)f(y). We conclude by pointing out that our argument does not

require any smoothness assumptions on f̂(x̂) and ĝ(x̂) beyond (uniform)
boundedness to obtain (11) and (12).

In its ε-version (12), the estimate of the weak error (10) hints towards the
scaling of the Central Limit Theorem (CLT). CLT-scaling has been estab-
lished for related quantities, as we shall detail now: For g = f , the weak
measure of fluctuations turns into a measure of fluctuations of the energy:∑

x

(u− 〈u〉)g =
∑
x

∇u · a∇u− 〈
∑
x

∇u · a∇u〉.

If u is the so-called corrector (which is an a-harmonic function of affine behav-
ior on large scales) the (stationary) energy density defines the homogenized
coefficient. In [12, Theorem 2.1], it is shown that in the case of indepen-
dent, identically distributed (i. i. d.) coefficients, the energy density of the
corrector has CLT scaling in the sense that spatial averages behave as if the
energy density was independent from site to site; in [13, Proposition 7], that
has result has been generalized to ensembles that only satisfy a Spectral Gap
condition. The scaling result has been substantially sharpened for i. i. d.
ensembles: In this situation, the fluctuations of the energy of the corrector
become more and more Gaussian as the box over which the spatial average
is taken increases. The latter result has been obtained by three different
techniques: Nolen [23] gives a quantitative estimate based on a differential
characterization of Gaussian distributions (second order Poincaré inequality)
and relies on the corrector estimates from [12, Theorem 2.1]. Biskup, Salvi &
Wolff [3] obtain a more qualitative result using a Martingale decomposition
of the spatially averaged energy density (their result assumes small ellipticity
contrast 1 − λ � 1, but presumably could be extended using the results of
[13]). Rossignol [25] in turn uses an orthogonal decomposition of the space
of coefficients (Walsh decomposition).
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4 Relation to De Giorgi’s approach to elliptic

regularity

While our result heavily relies on the celebrated regularity theory for scalar
elliptic operators, connected with the names of De Giorgi, Nash, and Moser,
it also gives a new perspective on these results. We will specify the input from
regularity theory, namely Nash’s (upper) bounds on the parabolic Green’s
function, in the next section. We now address what we see as a new perspec-
tive on these results, namely on De Giorgi’s result on Hölder continuity of
a-harmonic functions.

An elementary consequence of the mean value property is the following Liou-
ville principle: Harmonic functions that grow sub-linearly must be constant.
This holds for the constant-coefficient Laplacian both on Rd and on Zd, but
is no longer true for variable coefficients, even if they are uniformly ellip-
tic. Indeed, a well-known example [1, Corollary 16.1.5] shows that for any
α > 0, there exists an explicit coefficient field α2 ≤ a(z) ≤ 1 such that
u(z) = Re(|z|α−1z) is a-harmonic in z 3 C = R2. We believe that this exam-
ple can be adapted to the lattice Z2 (provided the condition of diagonality
is relaxed to the condition that the discrete maximum principle is valid, a
setting to which our results presumably can be extended). However, a cele-
brated result of De Giorgi [6, Theorem 2] states that for any dimension d and
any ellipticity ratio λ, there exists an exponent α0(d, λ) > 0 with the follow-
ing property: For any field of coefficients λ ≤ a(x) ≤ 1 and any a-harmonic
function u(x), |u(x)| ≤ |x|α0 for |x| � 1 implies that u is constant. This
result holds both in Rd and in Zd [7, Proposition 6.2]. In this sense, while
it is no longer true that “sub-linear implies constant”, it remains true that
“very sub-linear implies constant”.

De Giorgi’s result can be rephrased as an inner regularity result in terms of
Hölder continuity with Hölder exponent α0: For any harmonic function u(x)
on {x : |x| ≤ R}, the Hölder-α0 modulus of continuity at zero is estimated
by the supremum:

sup
x:|x|≤R

|u(x)− u(0)|
|x|α0

≤ C(d, λ)R−α0 sup
x:|x|≤R

|u(x)|.

To contrast De Giorgi’s result with our result below, let us rephrase it as
follows:

∀ λ ≤ a(x) ≤ 1, ∀ R <∞ : sup
u

supx:|x|≤R
|u(x)−u(0)|
|x|α0

1
Rα0

supx:|x|≤R |u(x)|
≤ C(d, λ), (13)
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where the outer supremum is taken over all u(x) that satisfy ∇∗a∇u = 0 in
{x : |x| ≤ R}.

In this context, we will show that Theorem 1 has the following Corollary.

Corollary 4. For all 0 < α < 1, p <∞, and R <∞, we have〈(
sup
u

supx:|x|≤R
|u(x)−u(0)|
|x|α

1
Rα

supx:|x|≤R |u(x)|

)p〉
≤ C(d, λ, α, p), (14)

where the outer supremum is taken over all u(x) that satisfy ∇∗a∇u = 0 in
{x : |x| ≤ R}.

As a consequence of this annealed Hölder regularity, we obtain the following
Liouville principle.

Corollary 5. For 〈·〉-almost every a, if u is a solution to ∇∗a∇u = 0 which
is strictly sub-linear in the sense that there exists 0 < α < 1 such that

lim
R→∞

1

Rα
sup
|x|≤R

|u(x)| = 0,

then u is constant.

Loosely speaking, Corollary 4 implies that for “most” coefficient fields, an
a-harmonic function u(x) is Hölder continuous with an exponent arbitrarily
close to one. More precisely, the modulus of near-Lipschitz continuity of
u(x) in some large ball {x : |x| ≤ R} only depends on its supremum in the
ball of double radius. This quantitative result has the Liouville principle as
an easy corollary: For almost every a, any sub-linear a-harmonic function
must be constant, see Corollary 5 for the version of this result we can derive
from Corollary 4. For the convenience of the reader, we display the short
proof of how Corollary 4 yields Corollary 5. However, surprisingly for us,
the qualitative Corollary 5 holds without any assumption on the ensemble 〈·〉
besides stationarity! This is established in a very inspiring paper [2, Theorem
3]. The main ingredients for the short and elegant argument are

• The “annealed” estimate 〈
∑

x |x|2G(t, x, 0)〉 . t on the second moments

of the parabolic Green’s function G(a; t, x, y)
short

= G(t, x, y) (cf. [2,
(SBD)], see Subsection 6 below for the definition of G), which in our
uniformly elliptic context even holds in its stronger “quenched” version,
that is,

∑
x |x|2G(t, x, 0) . t.
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• The annealed estimate −〈
∑

xG(t, x, 0) lnG(t, x, 0)〉 . log t on the spa-
tial entropy of the parabolic Green’s function G (cf. [2, p.12]), which
in our context is an immediate consequence of the second moments
estimate. This ingredient is shown to imply the following annealed
continuity property of G:〈∑

y

G(1, 0, y)
∑
x

|G(t, 0, x)−G(t− 1, y, x)|2

G(t, 0, x) +G(t− 1, y, x)

〉
.

1

t
.

5 Logarithmic Sobolev inequality

In the following we give a more detailed description of our use of the log-
arithmic Sobolev inequality and prove that any i. i. d. ensemble satisfies
Definition 1. LSI substitutes the Spectral Gap Inequality (SG) in prior work
on quantitative stochastic homogenization. SG has been introduced into the
field by Naddaf & Spencer [18, Theorem 1] (in form of the Brascamp-Lieb
inequality) and used most recently in [12, Lemma 2.3] in an indirect way and
in [13] explicitly. Like SG, LSI follows from the property that there is an
integrable fall-off of correlations in the sense of a uniform mixing condition
à la Dobrushin-Shlosman, see for instance [26, Theorem 1.8 c)] for a discrete
setting. Both SG and LSI quantify ergodicity of the ensemble, see for in-
stance the discussion in [13, Chapter 4]. Recall that the usual LSI in this
setting (with continuum derivative) would read〈

f log
f

〈f〉

〉
≤ 1

2ρ

〈∑
y∈Zd

1

f
(
∂f

∂a(y)
)2
〉
. (15)

The difference to Definition 1 lies solely in the presence of a supremum over
a(y) inside the expectation, see (2).

Both SG and LSI are based on the notion of a vertical derivative that defines
a Dirichlet form and thus a reversible dynamics, namely Glauber dynamics,
on the space of coefficient fields (the word “vertical” is used to distinguish
this derivative from the “horizontal” derivative naturally arising in stochastic
homogenization, but not used in this paper). In the earlier work on stochastic
homogenization and motivated by field theories, see [19], the version of SG
that is based on the continuum vertical derivative (as on the r.h.s. of (15)) has
been used [18]. However, this assumption rules out the natural example of
coefficients with a single-site distribution that only assumes a finite number
of values (Bernoulli). In [13], it has been shown that SG based on a discrete
version of vertical derivative can be used instead — without much more work

11



and allowing for any single-site distribution. Indeed, it is known that SG for
the discrete vertical derivative holds for any independently and identically
distributed field of coefficients: This follows from the tensorization principle
and the fact that any single-site distribution satisfies SG for the discrete
vertical derivative with constant one.

Here lies a difference between SG and LSI: While the tensorization principle
still holds for LSI, see for instance [15, Theorem 4.4], it is not true that the
appropriate discrete version of the usual LSI holds for any single-site distri-
bution — in fact, the discrete LSI does not hold for a continuum distribution.
Hence in order to treat arbitrary single-site distributions, we are forced to
consider the weakened version of LSI of Definition 1. A similarly weakened
version of SG was already considered in [12, Lemma 2.3].

The LSI has been of great use in the setting of stochastic processes and
diffusion semi-groups, for the first time introduced in generality by Gross [14].
It implies SG and is equivalent to the notion of hyper-contractivity, see [14,
Theorem 1] as well as [15, Theorem 4.1] for a recent exposition. Incidentally,
hyper-contractivity was first observed in the Gaussian context by Nelson
[21], see [22] for an improved result. It is thus the older notion and in fact
motivated the (somewhat implicit) introduction of LSI by Federbush [10].
We refer to [15] for a recent exposition on LSI.

The result of this section is that any independent, identically distributed
coefficient-field satisfies the LSI (2) in Definition 1.

Lemma 1. Consider an ensemble 〈·〉 of i. i. d. coefficients with arbitrary
single-site distribution on [λ, 1]d. Then (2) holds, i.e.〈

f log
f

〈f〉

〉
≤ 1

2ρ

〈∑
y

sup
a(y)∈[λ,1]d

1

f

( ∂f

∂a(y)

)2〉
for all (continuously differentiable) positive functions f of the coefficient field
a. The constant ρ can be taken to be ρ = 1

2d
.

Note that even for discrete distributions, we have to take the supremum over
the whole box [λ, 1]d, even though the coefficients attain only a countable
number of values. Lemma 1 is an immediate consequence of the following
two lemmas. The first one shows that any single-site distribution on [λ, 1]d

satisfies the LSI in Definition 1.

Lemma 2. Let 〈·〉 be any distribution on [λ, 1]d. Then it holds that〈
f log

f

〈f〉

〉
≤ 1

2ρ
sup

a∈[λ,1]d

1

f(a)

(∂f(a)

∂a

)2
(16)
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for all functions f : [λ, 1]d → (0,∞). In fact, the constant ρ = 1
2d

will do.

The next lemma shows that the LSI in Definition 1 satisfies the tensorization
principle.

Lemma 3. Let 〈·〉 be an ensemble consisting of independent single-site dis-
tributions such that each single-site distribution satisfies the single-site LSI
(16) with the same constant ρ. Then 〈·〉 itself satisfies the LSI (2) with
constant ρ.

6 Main ingredients of the proof

Loosely speaking, our approach consists in upgrading the (optimal) annealed
estimates of Delmotte & Deuschel [8, Theorem 1.1] in terms of the integra-
bility p:

Proposition 1. [Delmotte & Deuschel]. Let 〈·〉 be stationary. Then we have
for all x ∈ Zd

〈|∇∇G(x, 0)|〉 ≤ C(d, λ)(|x|+ 1)−d, (17)

〈|∇xG(x, 0)|〉 ≤ C(d, λ)(|x|+ 1)1−d. (18)

More precisely, we refer to the estimates (1.4) and (1.5a) in [8, Theorem
1.1] on the discrete parabolic Green’s function G(t, x, y) = G(a; t, x, y) (i.e.
the solution of ∂tG(t, x, y) + ∇∗xa(x)∇xG(t, x, y) = 0 with G(t = 0, x, y) =
δ(x− y)) that in our notation imply for any weight exponent α <∞:

〈|∇∇G(t, x, 0)|〉 ≤ C(d, λ, α)(t+ 1)−
d
2
−1
( |x|2
t+ 1

+ 1
)−α

2
, (19)

〈|∇xG(t, x, 0)|〉 ≤ C(d, λ, α)(t+ 1)−
d
2
− 1

2

( |x|2
t+ 1

+ 1
)−α

2
. (20)

(In fact, [8] establishes (19) & (20) with exponentially decaying weights in-
stead of just algebraically decaying ones.) Since the elliptic Green’s function
can be inferred from the parabolic one via G(x, y) =

∫∞
0
G(t, x, y)dt, these es-

timates imply (17) & (18) (by fixing some α > d and performing the change
of variables t̂ = |x|−2(t + 1)). Actually, [8] establishes (20) and thus (18)
in the stronger form where the L1-norm 〈| · |〉 is replaced by the L2-norm

〈| · |2〉1/2: 〈|∇xG(x, 0)|2〉1/2 ≤ C(d, λ, α)(|x|+ 1)1−d( |x|
2

t+1
+ 1)−

α
2 .

13



Let us point out that the spatially point-wise annealed estimates (19) & (20)
are consequences of the following spatially averaged quenched estimates∑

x

(
(
|x|2

t+ 1
+ 1)

α
2G(t, x, 0)

)2 ≤ C(d, λ, α)(t+ 1)−
d
2 , (21)

∑
x

(
(
|x|2

t+ 1
+ 1)

α
2 |∇xG(t, x, 0)|

)2 ≤ C(d, λ, α)(t+ 1)−
d
2
−1. (22)

The first estimate (21) is the (upper, off-diagonal part of the) celebrated Nash
estimate [20, Appendix]. The discrete case was treated in full generality in
[4, Corollary 3.28]. The second estimate (22) is a consequence of the first
one. For an elementary proof of both, we refer to [13, Lemmas 24 & 25], with
the Nash inequality as only noteworthy ingredient. Let us point out how (22)
is implies (19): Using the semi group property in form of ∇∇G(t, x, x′) =∑

y∇xG( t
2
, x, y)∇x′G( t

2
, y, x′) we obtain by the triangle inequality for the

weight, Cauchy Schwarz in
∑

y, and the symmetry of G(t, x, y) in x and y:( |x− x′|2
t+ 1

+ 1
)α

2 |∇∇G(t, x, x′)|

≤
∑
y

(2|x− y|2

t+ 1
+ 1
)α

2 |∇xG(
t

2
, x, y)|

(2|y − x′|2

t+ 1
+ 1
)α

2 |∇x′G(
t

2
, y, x′)|

≤
(∑

y

((2|x− y|2

t+ 1
+ 1
)α

2 |∇xG(
t

2
, x, y)|

)2
×
∑
y

((2|x′ − y|2

t+ 1
+ 1
)α

2 |∇x′G(
t

2
, x′, y)|

)2) 1
2

.

Note that the right-hand side of the last inequality does not allow for appli-
cation of (22), since the sum is not in the variable the derivative is taken.
However, taking the expectation, using Cauchy Schwarz in 〈·〉, and using sta-
tionarity and symmetry in form of 〈|∇xG( t

2
, x, y)|2〉 = 〈|∇2G( t

2
, x−y, 0)|2〉 =

〈|∇3G( t
2
, 0, x− y)|2〉 = 〈|∇yG( t

2
,−x,−y)|2〉 (where ∇2 stands for the deriva-
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tive w. r. t. to the second variable), yields

( |x− x′|2
t+ 1

+ 1
)α

2 〈|∇∇G(t, x, x′)|〉

≤
(∑

y

(2|x− y|2

t+ 1
+ 1
)α〈|∇xG(

t

2
, x, y)|2〉

×
∑
y

(2|x′ − y|2

t+ 1
+ 1
)α〈|∇x′G(

t

2
, x′, y)|2〉

) 1
2

=

(〈∑
y

(2|x− y|2

t+ 1
+ 1
)α|∇yG(

t

2
,−x,−y)|2

〉
×
〈∑

y

(2|x′ − y|2

t+ 1
+ 1
)α|∇yG(

t

2
,−x′,−y)|2

〉) 1
2

.

We now see that (22) implies (19). The estimate (20) is derived via the semi
group property in form of ∇xG(t, x, x′) =

∑
y∇xG( t

2
, x, y)G( t

2
, y, x′) from

the combination of (21) and (22) by an analogous argument.

Note that the estimates of Proposition 1 make no assumptions on the en-
semble besides stationarity. In order to pass from Proposition 1 to Theorem
1, we need the assumption on the ensemble from Definition 1. In fact, LSI
enters only through the following lemma.

Lemma 4. Let 〈·〉 be stationary and satisfy LSI with constant ρ > 0. Then
for arbitrary δ > 0 and 1 ≤ p <∞ and for any ζ(a) it holds that

〈|ζ|2p〉
1
2p ≤ C(d, ρ, p, δ)〈|ζ|〉+ δ

〈(∑
x

sup
a(x)

( ∂ζ

∂a(x)

)2)p〉 1
2p
. (23)

In order to make use of Lemma 4, we need to estimate the vertical derivatives
of ∇∇G and ∇xG. The following lemma is at the core of our result.

Lemma 5. There exists an integrability exponent p0 = p0(d, λ) < ∞ such
that for all p ≥ p0 and any x ∈ Zd, it holds

(|x|+ 1)d
〈(∑

y

sup
a(y)

∣∣ ∂
∂y
∇∇G(x, 0)

∣∣2)p〉 1
2p

≤ C(d, λ, p) sup
z

{
(|z|+ 1)d〈|∇∇G(z, 0)|2p〉

1
2p

}
(24)
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and

(|x|+ 1)d−1
〈(∑

y

sup
a(y)

∣∣ ∂
∂y
∇xG(x, 0)

∣∣2)p〉 1
2p

≤ C(d, λ, p)

(
sup
z

{
(|z|+ 1)d−1〈|∇zG(z, 0)|2p〉

1
2p

}
(25)

+ sup
z

{
(|z|+ 1)d〈|∇∇G(z, 0)|2p〉

1
2p

})
. (26)

The formulation of Lemma 5 shows that with our method, we first have to
estimate the mixed second derivatives 〈|∇∇G(x, 0)|2p〉 before we can tackle
the first derivatives 〈|∇xG(x, 0)|2p〉. It also reveals that it is necessary to
estimate high moments p ≥ p0 in 〈·〉 in order to estimate moderately low
moments like the fourth moment 〈|∇xG(x, 0)|4〉 that is needed in the proof
of Corollary 1.

The preceding lemma relies on the following suboptimal, but quenched esti-
mates on the (elliptic) Green’s function:

Lemma 6. [Gloria & Otto] There exists α0 = α0(d, λ) > 0 such that for all
R > 0

|∇∇G(0, 0)|2 +R2α0

∑
R≤|x|<2R

|∇∇G(x, 0)|2 ≤ C(d, λ), (27)

|∇xG(0, 0)|2 +
∑

R≤|x|<2R

|∇xG(x, 0)|2 ≤ C(d, λ). (28)

The estimate (28) was established in the stronger (dimensionally optimal)
form of

∑
R≤|x|≤2R |∇xG(x, 0)|2 . R2−d in [12, Lemma 2.9]; in its weaker form

of (28), it is straight forward for d > 2. The proof of estimate (28) in [12] in
case of d = 2 is subtle and relied on an adaptation of [9]. In this paper, we will
give an elementary argument for the estimate (27), which we could not find
in the literature. However, in the stronger form of

∑
R≤|x|<2R |∇∇G(x, 0)|2 ≤

C(d, λ)R2−d−2α0 , this estimate can also be seen as a consequence of the fol-
lowing classical ingredients:

• the optimal decay of G(x, y) itself, that is just needed in a spatially av-
eraged sense of R−d

∑
y:R≤|x−y|<2R |G(x, y)− Ḡ| ≤ C(d, λ)R2−d (thanks

to subtracting the average Ḡ over the annulus {y : R ≤ |x− y| ≤ 2R},
this estimate also holds in d = 2),

• De Giorgi’s Hölder continuity estimate, that then yields for some α0 =
α0(d, λ) > 0 that supy:R≤|x−y|<2R |∇xG(x, y)| ≤ C(d, λ)R2−d−α0 ,
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• Caccioppoli’s estimate, that then yields
∑

x:R≤|x−y|<2R |∇y∇xG(x, y)|2 ≤
C(d, λ)R2−d−2α0 .

Remark 2. We remark that with the same proof, one obtains a periodic
version of Theorem 1 (with constants uniform in L) for the Green’s function
defined in (1). In that case, one just replaces the Euclidean distance |x|
on Zd by its periodic version dist(x, LZd) on the torus R/LZd. The periodic
version of Proposition 1 follows as above from the quenched spatially averaged
estimates of [13, Theorem 3(b)].

7 Proofs

Proof of Lemma 4.
Step 1. Result for p = 1. We claim that for any δ > 0 and all ζ(a), it holds

〈ζ2〉
1
2 ≤

(
exp

( 2

ρδ2

)
+
ρδ2

2e

)
〈|ζ|〉+ δ

〈∑
x

sup
a(x)

( ∂ζ

∂a(x)

)2〉 1
2
, (29)

where ρ denote the constant in the LSI, see Definition 1. By homogeneity,
we may assume 〈ζ2〉 = 1. For all real-valued ζ it holds that

ζ2 ≤

{
exp( 2

ρδ2
)|ζ| if |ζ| ≤ exp 2

ρδ2

ρδ2

4
ζ2 log ζ2 if |ζ| ≥ exp 2

ρδ2

}
.

Since x log x is bounded from below by 1
e
, it is elementary to verify that 2

e
|ζ|+

ζ2 log ζ2 ≥ 0 whenever |ζ| ≤ 1. Since furthermore ζ2 log ζ2 > 0 whenever
|ζ| > 1, we find that

ζ2 ≤
(

exp
( 2

ρδ2

)
+
ρδ2

2e

)
|ζ|+ ρδ2

4
ζ2 log ζ2.

Hence taking the expectation 〈·〉 yields

〈ζ2〉 ≤
(

exp
( 2

ρδ2

)
+
ρδ2

2e

)
〈|ζ|〉+

ρδ2

4

〈
ζ2 log ζ2

〉
.

Since 〈ζ2〉 = 1, Young’s inequality yields

〈|ζ|〉 ≤ 1

2

(
exp

( 2

ρδ2

)
+
ρδ2

2e

)
〈|ζ|〉2 +

1

2

(
exp

( 2

ρδ2

)
+
ρδ2

2e

)−1
=

1

2

(
exp

( 2

ρδ2

)
+
ρδ2

2e

)
〈|ζ|〉2 +

1

2

(
exp

( 2

ρδ2

)
+
ρδ2

2e

)−1
〈ζ2〉.
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Combining the last two estimates, we deduce

〈ζ2〉 ≤
(

exp
( 2

ρδ2

)
+
ρδ2

2e

)2

〈|ζ|〉2 +
ρδ2

2

〈
ζ2 log

ζ2

〈ζ2〉

〉
.

Hence LSI yields

〈ζ2〉 ≤
(

exp
( 2

ρδ2

)
+
ρδ2

2e

)2

〈|ζ|〉2 + δ2
〈∑

x

sup
a(x)

( ∂ζ

∂a(x)

)2〉
and estimate (29) follows from taking the square root and applying the esti-
mate

√
a+ b ≤

√
a+
√
b.

Step 2. We finish the proof of (23), i.e. show that

〈ζ2p〉
1
2p ≤ C(ρ, p, δ)〈|ζ|〉+ δ

(〈(∑
x

sup
a(x)

(
∂ζ

∂a(x)
)2
)p〉) 1

2p

for general p ≥ 1. To that end, we apply (29) to ζ replaced by |ζ|p and take
the 2p-th root:

〈|ζ|2p〉
1
2p ≤ C(ρ, p, δ)〈|ζ|p〉

1
p +

(
δ
〈∑

x

sup
a(x)

( ∂

∂a(x)
|ζ|p
)2〉) 1

2p
,

where C(ρ, p, δ) denotes a generic constant only depending on ρ, p, and
δ. Since p < 2p, an application of Hölder’s inequality in 〈·〉 and Young’s
inequality on the first r. h. s. term yields

〈|ζ|2p〉
1
2p ≤ C(ρ, p, δ)〈|ζ|〉+ 2

(
δ
〈∑

x

sup
a(x)

( ∂

∂a(x)
|ζ|p
)2〉) 1

2p
. (30)

Now we apply the chain rule ∂
∂a(x)
|ζ|p = p|ζ|p−2ζ ∂

∂a(x)
ζ, since p > 1. Fur-

thermore we note that for every coefficient field a ∈ [λ, 1]Z
d
, it holds that

supa(x) |ζ| ≤ |ζ|+
√
d supa(x) | ∂ζ

∂a(x)
| and hence

sup
a(x)

(
|ζ|2p−2

( ∂ζ

∂a(x)

)2)
≤ C(d, p)

(
|ζ|2p−2 sup

a(x)

( ∂ζ

∂a(x)

)2
+
(

sup
a(x)

( ∂ζ

∂a(x)

)2)p)
.

Hence〈∑
x

sup
a(x)

( ∂

∂a(x)
|ζ|p
)2〉

≤ C(d, p)

(〈∑
x

|ζ|2p−2 sup
a(x)

( ∂ζ

∂a(x)

)2〉
+
〈∑

x

(
sup
a(x)

( ∂ζ

∂a(x)

)2)p〉)

≤ C(d, p)

(
〈|ζ|2p〉1−

1
p

〈(∑
x

sup
a(x)

( ∂ζ

∂a(x)

)2)p〉 1
p

+
〈(∑

x

sup
a(x)

( ∂ζ

∂a(x)

)2)p〉)
.
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Here in the last line, we have used Hölder’s inequality in 〈·〉 with exponents
(p−1

p
, p) on the first term and the embedding `2(Zd) ⊂ `2p(Zd) on the second

term. Another application of Young’s inequality thus allows us to pass from
(30) to

〈|ζ|2p〉
1
2p ≤ C(d, ρ, p, δ)〈|ζ|〉+ C(p)

(
(δ + δp)

〈(∑
x

sup
a(x)

( ∂ζ

∂a(x)

)2)p〉) 1
2p
.

By redefining δ, this yields (23).

Proof of Lemma 6.
We just give the proof of (27); for (28), we refer to [12, Lemma 2.9].
Step 1. In this step, we derive the a priori estimate∑

x

|∇∇G(x, 0)|2 ≤ C(d, λ). (31)

Indeed, note that the weak formulation of the defining equation for G reads

∀ ζ(x) :
∑
x

∇ζ(x) · a(x)∇xG(x, x′) = ζ(x′).

Taking the derivative w. r. t. the variable x′ in some direction i = 1, · · · , d
yields

∀ ζ(x) :
∑
x

∇ζ(x) · a(x)∇x∇i,x′G(x, x′) = ∇iζ(x′). (32)

The choice of ζ(x) = ∇i,x′G(x, x′) (we address the question of admissibility
of this test function below) yields∑

x

∇x∇i,x′G(x, x′) · a(x)∇x∇i,x′G(x, x′) = ∇i,x∇i,x′G(x, x′)|x=x′ .

Since a(x) ≥ λ, this implies (31) in the explicit form of∑
x

|∇x∇i,x′G(x, x′)|2 ≤ λ−2. (33)

We now turn to the question of admissibility of ζ(x) = ∇i,x′G(x, x′) as a
test function for (32), i.e. the question of decay as |x| ↑ ∞ of this function
and its gradient. This issue can be circumvented as in Step 3 below through
approximation by the periodic problem. More precisely, we consider the
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periodic discrete elliptic Green’s function GL(x, x′) = GL(a, x, x′) of period
L. Up to additive constants, it is characterized by the weak equation∑

x∈[−L
2
,L
2
)d

∇ζ(x) · a(x)∇xGL(x, x′) = ζ(x′)− L−d
∑

x∈[−L
2
,L
2
)d

ζ(x)

for all periodic ζ(x). With the same argument as above, we obtain∑
x∈[−L

2
,L
2
)d

|∇x∇i,x′GL(x, x′)|2 ≤ λ−2. (34)

Since GL(x, x′) converges point-wise to G(x, x′), the latter implies (33) in
the limit L ↑ ∞ by Fatou’s lemma. Incidentally, limL↑∞∇xGL(x, x′) may be
taken as a definition of ∇xG(x, x′) in the case of d = 2, where G itself is not
unambiguously defined.

In the following steps, we use the fact that u(x) = ∇i,x′G(x, x′)|x′=0, i =
1, · · · , d, is a-harmonic away from x = 0 to show that there exists a decay
exponent α0(d, λ) > 0 such that for all R ≥ C(d) we have∑

x:|x|≥R

|∇u|2 ≤ C(d, λ)R−2α0

∑
x:|x|≥1

|∇u|2. (35)

Together with (31), this implies (27). In Step 2, we’ll formally treat the con-
tinuum whole-space case. In Step 3, we will show how to make the continuum
case rigorous by approximation through the continuum periodic case. More
precisely, using (31), we will directly prove the estimate (27) in form of∑

x:|x|≥R

|∇u|2 ≤ C(d, λ)R−2α0 . (36)

In Step 4, we indicate the changes necessary to treat the discrete case.

Step 2. Formal derivation of the continuum version of (35), that is∫
{|x|≥R}

|∇u|2dx ≤ C(d, λ)R−2α0

∫
{|x|≥1}

|∇u|2dx (37)

for R ≥ 1 and a function u(x) satisfying

−∇x · a(x)∇xu = 0 in {|x| > 1}. (38)

Indeed, let η(x) be a cut-off function for {x : |x| ≥ 2R} in {x : |x| ≥ R}.
We test (38) with ζ = η2(u − ū), where ū is the spatial average of u on the
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annulus {x : R ≤ |x| ≤ 2R}. It is a priori not clear that this is an admissible
test function for (38); we shall address this in the next step. We appeal to
the identity

∇(η2(u− ū)) · a∇u = ∇(η(u− ū)) · a∇(η(u− ū))− (u− ū)2∇η · a∇η, (39)

which in view of λ ≤ a(x) ≤ 1 turns into the inequality

∇(η2(u− ū)) · a∇u ≥ λ|∇(η(u− ū))|2 − (u− ū)2|∇η|2. (40)

Hence from testing (38) we obtain

λ

∫
|∇(η(u− ū))|2dx ≤

∫
(u− ū)2|∇η|2dx,

which by the choice of η yields the Caccioppoli estimate∫
{x:|x|≥2R}

|∇u|2dx ≤ C(d, λ)R−2
∫
{x:R≤|x|≤2R}

(u− ū)2dx. (41)

By Poincaré’s estimate on {x : R ≤ |x| ≤ 2R} with mean value zero, this
turns into ∫

{x:|x|≥2R}
|∇u|2dx ≤ C(d, λ)

∫
{x:R≤|x|≤2R}

|∇u|2dx,

which can be reformulated as∫
{x:|x|≥R}

|∇u|2dx ≤ C(d, λ)

∫
{x:R≤|x|≤2R}

|∇u|2dx, (42)

where C(d, λ) as always denotes a generic constant only depending on d and
on λ whose value may change from line to line.

A standard iteration argument now leads from (42) to (37): Introducing the
notation Ik :=

∫
{x:|x|≥2k} |∇u|

2dx, (42) reads

∀k ∈ {0, 1, · · · } Ik ≤ C(d, λ)(Ik − Ik+1),

which with help of θ = θ(d, λ) := 1− 1
C
< 1 can be reformulated

∀k ∈ {0, 1, · · · } Ik+1 ≤ θIk,

or with help of α0 = α0(d, λ) := − log θ
2 log 2

as

∀k ∈ {0, 1, · · · } Ik ≤ θkI0 = (2k)−2α0I0.

21



In the original notation, this implies (37) in form of

∀R ≥ 1

∫
{x:|x|≥R}

|∇u|2dx ≤ (
R

2
)−2α0

∫
{x:|x|≥1}

|∇u|2dx.

Step 3. Rigorous derivation of the continuum version (36) for R ≥ 1, and
where u is now specified to be a partial derivative of the Green’s function,
i.e. u(x) = ∇i,x′G(x, x′)|x′=0 with i = 1, · · · , d. In this step, as opposed to
the previous step, we deal with the issue that we don’t know a priori that
η2(u − ū) is an admissible test function for (38). More precisely, we worry
about the decay at |x| ↑ ∞ — we don’t worry about local smoothness since
anyway, we’ll apply the argument to the discrete case in the next step. As
in Step 1, we circumvent the problem of decay through approximation by
the periodic problem. More precisely, we consider the periodic continuum
elliptic Green’s function GL(x, x′) = GL(a, x, x′) of period L. Up to additive
constants, it is characterized by the weak equation∫

[−L
2
,L
2
)d
∇ζ(x) · a(x)∇xGL(x, x′)dx = ζ(x′)− L−d

∫
[−L

2
,L
2
)d
ζ(x)dx (43)

for all periodic ζ(x). We note that uL(x) = ∇i,x′GL(x, x′)|x′=0 thus is char-
acterized by ∫

[−L
2
,L
2
)d
∇ζ(x) · a(x)∇xuL(x)dx = ∇iζ(0). (44)

Since ∇∇GL distributionally converges to ∇∇G as L ↑ ∞, it is enough to
show (44) implies∫

[−L
2
,L
2
)d∩{|x|≥R}

|∇uL|2dx ≤ C(d, λ)R−2α0

∫
[−L

2
,L
2
)d∩{|x|≥1}

|∇uL|2dx (45)

for 1 ≤ R ≤ C(d)L. Indeed we can estimate the right-hand side of (45)
using (34) and apply weak lower semi-continuity to take the limit as L→∞
on the left-hand side to obtain (36). Now, disregarding smoothness issues,
η2(uL− ūL) is an admissible test function for (44). The argument for (45) is
identical to the one in Step 2.

Step 4. Rigorous derivation of (35) for R ≥ C(d). In this step, we indicate
the modifications in Step 2 (or rather Step 3) that are necessary to treat the
discrete case. The first modification results from the fact that Leibniz’ rule
and thus the neat identity (39) does not hold anymore. However, we claim
that the estimate (40) survives in form of

∇(η2(u− ū)) · a∇u ≥
d∑
i=1

(
λ(∇i(η(u− ū)))2 − ([u]i − ū)2(∇iη)2

)
, (46)
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where [u]i(x) = 1
2
(u(x) + u(x + ei)) denotes a local average of u. Indeed,

since λ ≤ a(x) ≤ 1 is diagonal, it is enough to show for any two functions
η(x) and v(x)

∇i(η
2v)∇iv ≥ (∇i(ηv))2 − [v]2i (∇iη)2.

This in turn follows from the simple inequality on 4 numbers η, η̃, v, ṽ:

(η2v − η̃2ṽ)(v − ṽ)− (ηv − η̃ṽ)2

= −(η − η̃)2vṽ ≥ −(η − η̃)2(1
2
(v + ṽ))2.

Hence, if η(x) denotes the (slightly narrower) cut-off function for {x : |x| ≥
2R − 2} in {x : |x| ≥ R + 2} (which is OK for R ≥ 5), from (46) we obtain
the following substitute of (41)

∑
x:|x|≥2R

|∇u|2 ≤ C(d, λ)R−2
d∑
i=1

∑
x:R+1≤|x|≤2R−1

([u]i − ū)2

≤ C(d, λ)R−2
∑

x:R≤|x|≤2R

(u− ū)2. (47)

The second modification comes from the fact that we need a discrete version
of the Poincaré estimate with mean value zero on the annulus Zd∩{R ≤ |x| ≤
2R}, which obviously holds with a constant C(d)R2 provided that R ≥ C(d).

Proof of Lemma 5.
Step 1. In this step, we derive the following formulas for the continuum
vertical derivative ∂

∂akk(y)
of spatial derivatives of the Green’s function:

∂

∂akk(y)
G(x, x′) = −∇k,yG(x, y)∇k,yG(y, x′), (48)

∂

∂akk(y)
∇i,xG(x, x′) = −∇i,x∇k,yG(x, y)∇k,yG(y, x′), (49)

∂

∂akk(y)
∇i,x∇i′,x′G(x, x′) = −∇i,x∇k,yG(x, y)∇k,y∇i′,x′G(y, x′). (50)

These formulas highlight the fact that the directional spatial derivative ∇i,x

is associated with the bond b = x + ei; likewise, the continuum vertical
derivative ∂

∂akk(y)
is associated with the bond e = y + ek. In the next step,

it will thus be more convenient to introduce the notation ∇i,xζ(x) = ∇ζ(b)
and ∂

∂akk(y)
ζ = ∂

∂a(e)
ζ. Equipped with this notation, we rewrite (48) - (50) in
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the more compact form

∂

∂a(e)
G(x, x′) = −∇G(x, e)∇G(e, x′), (51)

∂

∂a(e)
∇G(b, x′) = −∇∇G(b, e)∇G(e, x′), (52)

∂

∂a(e)
∇∇G(b, b′) = −∇∇G(b, e)∇∇G(e, b′). (53)

We turn to the argument for (48) - (50): From the defining equation

∇∗xa(x)∇xG(x, x′) = δ(x− x′),

we obtain by Leibniz’ rule from applying ∂
∂akk(y)

that

∇∗xa(x)∇x
∂

∂akk(y)
G(x, x′) +∇∗k,xδ(x− y)∇k,xG(x, x′) = 0

and thus

∂

∂akk(y)
G(x, x′) = −

∑
z

G(x, z)∇∗k,zδ(z − y)∇k,zG(z, x′)

= −
∑
z

δ(z − y)∇k,zG(x, z)∇k,zG(z, x′)

= −∇k,yG(x, y)∇k,yG(y, x′),

yielding the representation (48). An application of ∇i,x (with i = 1, · · · , d)
yields (49), a further application of ∇i′,x′ (with i′ = 1, · · · , d) yields (50).

Step 2. In this step, we argue that for any two sites x and y, the depen-
dence of the derivatives ∇yG(y, x) and ∇∇G(y, x) on the value a(y) of the
conductivity is mild in the sense of

sup
a(y)

|∇yG(y, x)| ≤ exp(d
1
2λ−1) inf

a(y)
|∇yG(y, x)|, (54)

sup
a(y)

|∇∇G(y, x)| ≤ exp(d
1
2λ−1) inf

a(y)
|∇∇G(y, x)|. (55)

An immediate consequence of (48) - (50), (54) and (55) is

sup
a(y)

| ∂

∂a(y)
G(x, x′)| ≤ C(d, λ)|∇yG(x, y)||∇yG(y, x′)|, (56)

sup
a(y)

| ∂

∂a(y)
∇xG(x, x′)| ≤ C(d, λ)|∇∇G(x, y)||∇yG(y, x′)|, (57)

sup
a(y)

| ∂

∂a(y)
∇∇G(x, x′)| ≤ C(d, λ)|∇∇G(x, y)||∇∇G(y, x′)|. (58)
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Coordinate-wise, (54) turns into

sup
{akk(y)}k=1,··· ,d

d∑
j=1

(∇j,yG(y, x))2

≤ exp(2d
1
2λ−1) inf

{akk(y)}k=1,··· ,d

d∑
j=1

(∇j,yG(y, x))2

and by summation over i = 1, · · · , d, (55) is a consequence of

sup
{akk(y)}k=1,··· ,d

d∑
j=1

(∇j,y∇i,xG(y, x))2

≤ exp(2d
1
2λ−1) inf

{akk(y)}k=1,··· ,d

d∑
j=1

(∇j,y∇i,xG(y, x))2.

In terms of the notation introduced introduced at the end of Step 1, we thus
have to show for any pair of site x, y and any bond b

sup
{a(e)}e∈S

∑
e′∈S

(∇G(e′, x))2 ≤ exp(2d
1
2λ−1) inf

{a(e)}e∈S

∑
e′∈S

(∇G(e′, x))2,

sup
{a(e)}e∈S

∑
e′∈S

(∇∇G(e′, b))2 ≤ exp(2d
1
2λ−1) inf

{a(e)}e∈S

∑
e′∈S

(∇∇G(e′, b))2,

where S is the set of bonds adjacent to y, i.e. {y + e1, · · · , y + ed}. In fact,
we shall show for any finite set S of bonds that

max
{a(e)}e∈S

∑
e′∈S

(∇u(e′))2 ≤ exp(2|S|
1
2λ−1) min

{a(e)}e∈S

∑
e′∈S

(∇u(e′))2, (59)

where the field u = u(x′) either denotes u(x′) = G(x′, x) or u(x′) = ∇G(x′, b)
and |S| denotes the number of bonds in the set S. At the basis of the
argument is the a priori estimate (33) from Lemma 6, which in the edge-
based notation reads ∑

b

(∇∇G(b, e))2 ≤ λ−2. (60)

We now derive the following inequality:

∑
e∈S

(
∂

∂a(e)

(
log
(∑
e′∈S

(∇u(e′))2
) 1

2

))2

≤ sup
e∈S

∑
e′∈S

(∇∇G(e′, e))2. (61)
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Indeed, by Leibniz’s rule we obtain from (52) & (53) (that in our notation
both take the form of ∂

∂a(e)
∇u(e′) = −∇∇G(e′, e)∇u(e)):

∂

∂a(e)

1

2

∑
e′∈S

(∇u(e′))2 = −∇u(e)
∑
e′∈S

∇∇G(e′, e)∇u(e′),

and thus by Cauchy-Schwarz( ∂

∂a(e)

1

2

∑
e′∈S

(∇u(e′))2
)2 ≤ (∇u(e))2

∑
e′∈S

(∇∇G(e′, e))2
∑
e′∈S

(∇u(e′))2,

which, using the chain rule, we rewrite as( ∂

∂a(e)

(∑
e′∈S

(∇u(e′))2
) 1

2

)2
≤ (∇u(e))2

∑
e′∈S

(∇∇G(e′, e))2.

We sum over e ∈ S and relabel:∑
e∈S

( ∂

∂a(e)

(∑
e′∈S

(∇u(e′))2
) 1

2

)2
≤

∑
e′∈S

(∇u(e′))2 sup
e∈S

∑
e′∈S

(∇∇G(e′, e))2;

by the chain rule again, this can be reformulated as (61).

Inserting (60) into (61) we obtain(∑
e∈S

( ∂

∂a(e)
log
(∑
e′∈S

(∇u(e′))2
) 1

2

)2) 1
2

≤ λ−1,

which we rewrite as(∑
e∈S

( ∂

∂a(e)
log
(∑
e′∈S

(∇u(e′))2
))2) 1

2

≤ 2λ−1, (62)

We note that (62) amounts to a uniform bound of the Euclidean gradient of
X := log

(∑
e′∈S(∇u(e′))2

)
with respect to the variables {a(e)}e∈S ∈ [λ, 1]|S|.

Hence X is Lipschitz continuous on this convex set with Lipschitz constant
2λ−1. Since the set of {a(e)}e∈S in [0, 1]|S| has diameter bounded by |S|1/2,
we obtain that the oscillation of X on this set is bounded by 2|S|1/2λ−1:

max
{a(e)}e∈S

log
(∑
e′∈S

(∇u(e′))2
)
≤ min
{a(e)}e∈S

log
(∑
e′∈S

(∇u(e′))2
)

+ 2|S|
1
2λ−1,
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which turns into (59).

Step 3. In this step, we rephrase Lemma 6, more precisely (27), in a way
more suitable for its application in Step 4. More specifically, we claim that
there exists a weight exponent α(d, λ) > 0 such that∑

y

|(|x− y|+ 1)α∇∇G(x, y)|2q ≤ C(d, λ, q), (63)

for all q ≥ 1. In fact, we claim that

α :=
1

2
α0 (64)

does the job. We start by noting that due to the symmetry of ∇∇G(x, y)
under the interchange of x and y and to translational invariance (since we
can replace a by some translation of it), it suffices to establish∑

y

|(|y|+ 1)α∇∇G(y, 0)|2q ≤ C(d, λ, q). (65)

Because of q ≥ 1, and thus `2(Zd) ⊂ `2q(Zd), we have∑
y

|(|y|+ 1)α∇∇G(y, 0)|2q ≤
(∑

y

|(|y|+ 1)α∇∇G(y, 0)|2
)q
.

Using a dyadic decomposition, we see∑
y

|(|y|+ 1)α∇∇G(y, 0)|2

= |∇∇G(0, 0)|2 +
∞∑
n=0

∑
y:2n≤|y|<2n+1

|(|y|+ 1)α∇∇G(y, 0)|2

≤ |∇∇G(0, 0)|2 +
∞∑
n=0

22α(n+2)
∑

y:2n≤|y|<2n+1

|∇∇G(y, 0)|2.

We now may appeal to (27) to obtain

|∇∇G(0, 0)|2 +
∑
y

|(|y|+ 1)α∇∇G(y, 0)|2

≤ C(d, λ)
(

1 +
∞∑
n=0

22α(n+2)2−2α0n
) (64)

≤ C(d, λ).
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Step 4. In this step we establish the first statement of Lemma 5, namely
(24). More precisely, we claim that for p ≥ max{ d

α
, 1} with α chosen in Step

3 and all x ∈ Zd it holds

(|x|+ 1)2pd
〈(∑

y

sup
a(y)

| ∂

∂a(y)
∇∇G(x, 0)|2

)p〉
≤ C(d, λ, p) sup

y

{
(|y|+ 1)2pd〈|∇∇G(y, 0)|2p〉

}
, (66)

where C(d, λ, p) denotes a generic constant that only depends on d, λ, and
p. Indeed, we first square (58) taken at x′ = 0 and sum over y:∑

y

sup
a(y)

∣∣ ∂

∂a(y)
∇∇G(x, 0)

∣∣2 ≤ C(d, λ)
∑
y

|∇∇G(x, y)|2|∇∇G(y, 0)|2.

After taking the p-th power, we split the sum into its contributions over
|y − x| ≤ |y| and |y − x| > |y| to obtain(∑

y

sup
a(y)

| ∂

∂a(y)
∇∇G(x, 0)|2

)p
≤ C(d, λ, p)

(( ∑
y:|y−x|≤|y|

|∇∇G(x, y)|2|∇∇G(y, 0)|2
)p

+
( ∑
y:|y−x|≥|y|

|∇∇G(x, y)|2|∇∇G(y, 0)|2
)p)

. (67)

We first bound the first term. To this end, smuggle in a weight (|y−x|+1)2α

with α = α(d, λ) from Step 3 and apply Hölder’s inequality with p and its
dual exponent q such that 1

p
+ 1

q
= 1:( ∑

y:|y−x|≤|y|

|∇∇G(x, y)|2|∇∇G(y, 0)|2
)p

≤
( ∑
y:|y−x|≤|y|

(
(|y − x|+ 1)α|∇∇G(x, y)|

)2q)p−1
×

∑
y:|y−x|≤|y|

(
(|y − x|+ 1)−α|∇∇G(y, 0)|

)2p
.

The first term on the right hand side is bounded by Step 3, that is (63).
After taking the expectation, we smuggle in another weight (|y| + 1)2pd and
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take the supremum over appropriate terms to obtain〈 ∑
y:|y−x|≤|y|

(
(|y − x|+ 1)−α|∇∇G(y, 0)|

)2p〉
≤
( ∑
y:|y−x|≤|y|

(|y−x|+1)−2pα(|y|+1)−2pd
)

sup
z

(
(|z|+1)2pd

〈
|∇∇G(z, 0)|2p

〉)
.

Since |y − x| ≤ |y| implies |y| ≥ 1
2
|x|, we find for the first r. h. s. factor that∑

y:|y−x|≤|y|

(|y − x|+ 1)−2pα(|y|+ 1)−2pd

≤
(
1
2
|x|+ 1

)−2pd∑
y

(|y − x|+ 1)−2pα.

Since by assumption 2pα ≥ 2d > d, we obtain for the last factor∑
y

(|y|+ 1)−2pα ≤ C(d).

Combining the last three estimates yields the bound〈( ∑
y:|y−x|≤|y|

|∇∇G(x, y)|2|∇∇G(y, 0)|2
)p〉

≤
(
C(d, λ, p)(|x|+ 1)−d sup

z

(
(|z|+ 1)d

〈
|∇∇G(z, 0)|2p

〉 1
2p

))2p

,

i.e. the expectation of the first term on the right hand side of (67) is bounded
as desired. The second term in (67) can be dealt with exactly as the first
term by simply exchanging the roles of x and 0.

Step 5. Like in Step 3, we rephrase Lemma 6, this time (28), in a way more
suitable for its application in Step 6. We claim that for any integrability
exponent q ≥ 1 and any weight exponent β > 0 we have

sup
a

∑
y

∣∣(|y|+ 1)−β∇yG(y, 0)
∣∣2q ≤ C(d, λ, q, β) (68)

We note that by (28) we have as soon as β > 0:∑
y

|(|y|+ 1)−β∇yG(y, 0)|2q

≤
(∑

y

|(|y|+ 1)−β∇yG(y, 0)|2
)q

≤
(
|∇yG(0, 0)|2 +

∞∑
n=0

2−qβn
∑

y:2n≤|y|<2n+1

|∇yG(y, 0)|2
)q (28)

≤ C(d, λ, β). (69)
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Step 6. In this step we establish the second conclusion of Lemma 5, namely
(26). More precisely, we show that for any integrability exponent p < ∞ at
least as large as in Step 3 and for any weight exponent β > 0 such that

2p(β − d) + d < 0 (70)

we have

(|x|+ 1)d−1
〈(∑

y

sup
a(y)

| ∂

∂a(y)
∇xG(x, 0)|2

)p〉 1
2p

≤ C(d, λ, p, β)
(

sup
y

(
(|y|+ 1)d−1〈|∇yG(y, 0)|2p〉

1
2p

)
+ (|x|+ 1)β−1+

d
2p sup

z

(
(|z|+ 1)d〈|∇∇G(z, 0)|2p〉

1
2p

))
, (71)

for all x ∈ Zd, where C(d, λ, p, β) denotes a generic constant that only de-
pends on d, λ, p, and β. We note that by choosing β small and p large, the
exponent β − 1 + d

2p
can be made to be non-positive (in fact, as close to −1

as we want), which proves (26). In order to establish (71), we first square
(57) and sum over y:∑

y

sup
a(y)

| ∂

∂a(y)
∇xG(x, x′)|2 ≤ C(d, λ)

∑
y

|∇∇G(x, y)|2|∇yG(y, x′)|2.

We now specify to x′ = 0 and split the sum over y:∑
y

sup
a(y)

| ∂

∂a(y)
∇xG(x, 0)|2

≤ C(d, λ)
( ∑
y:|y|≥ 1

2
|x|

+
∑

y:|y|< 1
2
|x|

)
|∇∇G(x, y)|2|∇yG(y, 0)|2

≤ C(d, λ)
( ∑
y:|y|≥ 1

2
|x|

|∇∇G(x, y)|2|∇yG(y, 0)|2

+
∑

y:|y−x|> 1
2
|x|

|∇yG(y, 0)|2|∇∇G(x, y)|2
)
. (72)

We start by treating the first term on the r. h. s. of (72) in an analogous
way to Step 4. For that purpose, let α be as in Step 3. We smuggle in the
weight (|x − y| + 1)α and apply Hölder’s inequality with p and q such that
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1
p

+ 1
q

= 1: ( ∑
y:|y|≥ 1

2
|x|

|∇∇G(x, y)|2|∇yG(y, 0)|2
)p

≤
(∑

y

|(|x− y|+ 1)α∇∇G(x, y)|2q
)p−1

×
∑

y:|y|≥ 1
2
|x|

|(|x− y|+ 1)−α∇yG(y, 0)|2p.

The first term was bounded by a constant C(d, λ, p) in Step 3. Now we take
the expectation 〈·〉 w. r. t. a and then smuggle in a weight (|y|+ 1)2p(d−1) to
obtain as desired:〈( ∑

y:|y|≥ 1
2
|x|

|∇∇G(x, y)|2|∇yG(y, 0)|2
)p〉

≤
( ∑
y:|y|≥ 1

2
|x|

(|x− y|+ 1)−2pα(|y|+ 1)−2p(d−1)

× sup
z

(
(|z|+ 1)2p(d−1)〈|∇zG(z, 0)|2p〉

))
(63)

≤ C(d, λ, p)
(
|x|+ 1

)−2p(d−1)
sup
z

(
(|z|+ 1)2p(d−1)〈|∇zG(z, 0)|2p〉

)
, (73)

where we have used that 2pα > d.

We now address the second term on the r. h. s. of (72) in a similar way,
just exchanging the roles of ∇G and ∇∇G, of y and y − x, and of α and
−β, where the weight exponent β > 0 needs to satisfy (70). By Hölder’s
inequality we obtain:( ∑

y:|y−x|≥ 1
2
|x|

|∇yG(y, 0)|2|∇∇G(x, y)|2
)p

≤
(∑

y

|(|y|+ 1)−β∇yG(y, 0)|2q
)p−1

×
∑

y:|y−x|≥ 1
2
|x|

|(|y|+ 1)β∇∇G(x, y)|2p.

The first term is bounded by Step 5 in form of (68). By stationarity in form
of 〈|∇∇G(x, y)|2p〉 = 〈|∇∇G(x− y, 0)|2p〉, taking expectation and smuggling
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in a weight (|y − x|+ 1)2pd yields〈( ∑
y:|y−x|≥ 1

2
|x|

|∇yG(y, 0)|2|∇∇G(x, y)|2
)p〉

≤
∑

y:|y−x|≥ 1
2
|x|

(|y|+ 1)2pβ(|y − x|+ 1)−2pd sup
z

(
(|z|+ 1)2pd〈|∇∇G(z, 0)|2p〉

)
.

We note that by the triangle inequality in form of |y| ≤ |x|+ |y − x|, in the
range (70) the remaining sum is bounded as follows:∑

y:|y−x|≥ 1
2
|x|

(|y|+ 1)2pβ(|y − x|+ 1)−2pd

≤ C(p, β)
(

(|x|+ 1)2pβ
∑

y:|y−x|≥ 1
2
|x|

(|y − x|+ 1)−2pd

+
∑

y:|y−x|≥ 1
2
|x|

(|y − x|+ 1)2p(β−d)
)

≤ C(d, p, β)(|x|+ 1)2p(β−d)+d.

Hence we have obtained〈( ∑
y:|y−x|≥ 1

2
|x|

|∇yG(y, 0)|2|∇∇G(x, y)|2
)p〉

≤ C(d, λ, p, β)(|x|+ 1)2p(β−d)+d sup
z

(
(|z|+ 1)2pd〈|∇∇G(z, 0)|2p〉

)
. (74)

In view of (72), the combination of (73) and (74) and taking the 2p-th root
yields (71).

Proof of Theorem 1.
We start with the proof of (3). To this purpose, we fix x ∈ Zd and p < ∞;
by Jensen’s inequality, we may assume that p ≥ p0 with p0 from Lemma 5.
Applying Lemma 4 to ζ(a) = ∇∇G(a;x, 0) (component-wise) and inserting
the estimate (24) of Lemma 5 yields (after redefining δ)

(|x|+ 1)d〈|∇∇G(x, 0)|2p〉
1
2p ≤ C(d, λ, ρ, p, δ)(|x|+ 1)d〈|∇∇G(x, 0)|〉

+ δ sup
z

(
(|z|+ 1)d〈|∇∇G(z, 0)|2p〉

1
2p

)
.

We now insert (17) and take the supremum over x:

sup
x

(
(|x|+ 1)d〈|∇∇G(x, 0)|2p〉

1
2p

)
≤ C(d, λ, ρ, p, δ) + δ sup

z

(
(|z|+ 1)d〈|∇∇G(z, 0)|2p〉

1
2p

)
.
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Choosing δ = 1
2
, we obtain (3). We deal with the objection that supx

(
(|x|+

1)d〈|∇∇G(x, 0)|2p〉1/(2p)
)

may be infinite by first working with the periodic
Green’s function GL as in the proof of Lemma 6 and then letting L ↑ ∞.

We now turn to the proof of (4). With help of the just established (3), we
may upgrade the result of Lemma 5, cf. (26), to

(|x|+ 1)d−1
〈(∑

y

sup
a(y)

| ∂

∂a(y)
∇xG(x, 0)|2

)p〉 1
2p

≤ C(d, λ, ρ, p)

(
sup
z

(
(|z|+ 1)d−1〈|∇zG(z, 0)|2p〉

1
2p

)
+ 1

)
. (75)

Applying Lemma 4 to ζ = ∇xG(x, 0) (component-wise) and inserting (75)
yields (after redefining δ)

(|x|+ 1)d−1〈|∇xG(x, 0)|2p〉
1
2p

≤ C(d, λ, ρ, p, δ)(|x|+ 1)d−1〈|∇xG(x, 0)|〉

+ δ

(
sup
z

(
(|z|+ 1)d−1〈|∇zG(z, 0)|2p〉

1
2p

)
+ 1

)
.

We now insert (18) and take the supremum over x:

sup
x

(
(|x|+ 1)d−1〈|∇xG(x, 0)|2p〉

1
2p

)
≤ C(d, λ, ρ, p, δ) + δ sup

z

(
(|z|+ 1)d−1〈|∇zG(z, 0)|2p〉

1
2p

)
.

Proof of Corollary 1.
By stationarity, it suffices to prove the result for y = 0. It is well known
that an LSI implies a corresponding SG, see for instance [15, Theorem 4.9].
Indeed, using ζ2 = 1+ εf for some f(a) in (2) and expanding to second order
in ε� 1 one obtains

〈(f − 〈f〉)2〉 ≤ 1

ρ

〈∑
y

sup
a(y)

( ∂f

∂a(y)

)2〉
.

As in Step 2 of the proof of Lemma 4, see also [13, Lemma 11], it follows
that

〈|f − 〈f〉|2p〉 ≤ C(ρ, p)
〈(∑

y

sup
a(y)

( ∂f

∂a(y)

)2)p〉
. (76)
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We fix x ∈ Zd and apply this inequality to f(a) = G(a;x, 0) and use (56)
from the proof of Lemma 5

sup
a(y)

∣∣∣∂G(x, 0)

∂a(y)

∣∣∣ ≤ C(d, λ)|∇yG(x, y)||∇yG(y, 0)|

to obtain〈∣∣G(x, 0)−〈G(x, 0)〉
∣∣2p〉 1

p ≤ C(d, λ, ρ, p)
〈(∑

y

|∇yG(x, y)|2|∇yG(y, 0)|2
)p〉 1

p
.

The triangle inequality yields

〈∣∣G(x, 0)− 〈G(x, 0)〉
∣∣2p〉 1

p ≤ C(d, λ, ρ, p)
∑
y

〈
|∇yG(x, y)|2p|∇yG(y, 0)|2p

〉 1
p
.

Using Cauchy Schwarz’s inequality in 〈·〉 and appealing to stationarity, we
obtain 〈∣∣G(x, 0)− 〈G(x, 0)

〉∣∣2p〉 1p
≤ C(d, λ, ρ, p)

∑
y

〈|∇yG(x, y)|4p〉
1
2p 〈|∇yG(y, 0)|4p〉

1
2p

= C(d, λ, ρ, p)
∑
y

〈|∇1G(x− y, 0)|4p〉
1
2p 〈|∇1G(y, 0)|4p〉

1
2p ,

where ∇1 denotes the derivative w. r. t. the first variable. Into this estimate,
we insert the result of Theorem 1:〈∣∣G(x, 0)− 〈G(x, 0)〉

∣∣2p〉 1
p ≤ C(d, λ, ρ, p)

∑
y

(|x− y|+ 1)2(1−d)(|y|+ 1)2(1−d).

(77)

We now turn to the sum on the r. h. s. of (77): By symmetry, we have∑
y

(|x−y|+1)2(1−d)(|y|+1)2(1−d) ≤ 2
∑

y:|x−y|≤|y|

(|x−y|+1)2(1−d)(|y|+1)2(1−d).

(78)
We note that in the case of d > 2 we have 2(1− d) < −d so that∑

z

(|z|+ 1)2(1−d) ≤ C(d) <∞. (79)
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Since |x− y| ≤ |y| implies |y| ≥ 1
2
|x| we thus have as desired for (78)∑

y:|x−y|≤|y|

(|x− y|+ 1)2(1−d)(|y|+ 1)2(1−d)

≤ (
1

2
|x|+ 1)2(1−d)

∑
y

(|x− y|+ 1)2(1−d)

(79)

≤ C(d)(|x|+ 1)2(1−d). (80)

We now turn to the case of d = 2. In this case, we split the sum on the r. h.
s. of (78) according to∑

y:|x−y|≤|y|

=
∑

y:|x−y|≤|y| and |y|≥2|x|

+
∑

y:|x−y|≤|y| and |y|<2|x|

≤
∑

y:|x−y|≥ 1
2
|y| and |y|≥2|x|

+
∑

y:|x−y|≤2|x| and |y|≥ 1
2
|x|

,

so that ∑
y:|x−y|≤|y|

(|x− y|+ 1)−2(|y|+ 1)−2

≤
∑

y:|y|≥2|x|

(
1

2
|y|+ 1)−4 + (

1

2
|x|+ 1)−2

∑
z:|z|≤2|x|

(|z|+ 1)−2

≤ C(|x|+ 1)−2 + C(|x|+ 1)−2 log(|x|+ 2). (81)

Combining (80) and (81), we gather∑
y

(|x− y|+ 1)2(1−d)(|y|+ 1)2(1−d)

≤ C(d)(|x|+ 1)2(1−d)
{

1 for d > 2
log(|x|+ 2) for d = 2

}
,

which we insert into (77) to obtain (5).

Optimality of Corollary 1 for p = 1.
In this section we will show by formal calculations that Corollary 1 is optimal
by considering the regime 1−λ� 1. Recall that the Green’s function satisfies
∇∗xa(x)∇xG(x, x′) = δ(x−x′). Recall that in edge-based notation introduced
in Step 1 of the proof of Lemma 5, the components of the (diagonal) matrix
a(x) on sites can be identified with scalars on edges via a(e) = aii(x) for
the edge e = x + ei. Now let a(e) = 1 + εb(e), where b is i. i. d. with
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values at each edge taken in [−1, 1]. Of course in site-based notation, b(x)
is given by a diagonal matrix with diagonal elements b(x + ei), i = 1, . . . , d.
Furthermore we assume 〈b(e)〉 = 0 as well as 〈b(e)2〉 = 1. Note that this
implies a ∈ [1− ε, 1 + ε] ⊂ [1/2, 3/2] (w. l. o. g. ε < 1/2), but (by linearity of
the equation in a) all results remain true with this new upper bound on a.
Let us expand the Green’s function corresponding to a in powers of ε:

G(x, y) = G0(x, y) + εG1(x, y) + . . . .

Substituting into the defining equation for G, we find that to zeroth order in
ε, it holds

∇∗x∇xG0(x, y) = δ(x, y),

i.e. G0 is the constant-coefficient Green’s function. Then to first order, it
follows

∇∗x∇xG1(x, y) +∇∗xb(x)∇xG0(x, y) = 0.

Hence it holds that

G1(x, y) = −
∑
z∈Zd

G0(x, z)∇∗zb(z)∇zG0(z, y)

= −
∑
e

∇2G0(x, e)b(e)∇1G0(e, y),

where the last sum is taken over all edges e. Since 〈b(e)〉 = 0, we deduce
〈G1〉 = 0 and consequently

〈G1(x, 0)2〉 = 〈(G1(x, 0)− 〈G1(x, 0)〉)2〉

=
∑
e,e′

∇2G0(x, e)∇2G0(x, e
′)〈b(e)b(e′)〉∇1G0(e, 0)∇1G0(e

′, 0).

Since the coefficients b(x) are i. i. d. with variance 1, it follows

〈(G1(x, 0)− 〈G1(x, 0)〉)2〉 =
∑
e

(∇2G0(x, e))
2(∇1G0(e, 0))2.

The behavior of the constant-coefficient Green’s function is well-known, see
for instance [16, Theorem 4.3.1], and yields that at the edge e = z + ei,
the term (∇1G0(e, 0))2 behaves as (|z| + 1)1−d with a similar expression for
(∇2G0(x, e))

2. Hence we find that

〈(G1(x, 0)− 〈G1(x, 0)〉)2〉 ≤ C(d)
∑
z∈Zd

(
(|x− z|+ 1)(|z|+ 1)

)2(1−d)
and

〈(G1(x, 0)− 〈G1(x, 0)〉)2〉 ≥ 1

C(d)

∑
z∈Zd

(
(|x− z|+ 1)(|z|+ 1)

)2(1−d)
. (82)
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Thus (80), (81), and (82) yield the upper bound

〈(G1(x, 0)− 〈G1(x, 0)〉)2〉 ≤ 1

C(d)
(|x|+ 1)2(1−d)

{
1 for d > 2

log(|x|+ 2) for d = 2

}
.

If d > 2, a lower bound can be obtained by considering only the summand
z = 0 in (82). If d = 2, we restrict the sum to all z such that |z| ≤ |x| to
obtain

〈(G1(x, 0)− 〈G1(x, 0)〉)2〉 ≥ 1

C(d)

∑
z:|z|≤|x|

(|x− z|+ 1)−2(|z|+ 1)−2

≥ 1

C(d)
(|x|+ 1)−2

∑
z:|z|≤|x|

(|z|+ 1)−2

≥ 1

C(d)
(|x|+ 1)−2 log(2 + |x|).

Thus Corollary 1 is indeed optimal in scaling.

Proof of Corollary 2
Step 1. Proof in dimension d > 2. First of all, the triangle inequality in
〈(·)r〉1/r yields〈(∑

x

∣∣u(x)− 〈u(x)〉
∣∣p)r〉 1

rp

≤
(∑

x

〈∣∣u(x)− 〈u(x)〉
∣∣rp〉 1

r

) 1
p

. (83)

Since u is the decaying solution of (6) with compactly supported right hand
side f , it can be represented via the Green’s function:

u(x) =
∑
y

G(x, y)f(y), (84)

Consequently, an application of the triangle inequality in 〈(·)rp〉1/(rp) yields〈∣∣u(x)− 〈u(x)〉
∣∣rp〉 1

rp ≤
∑
y

〈∣∣G(x, y)− 〈G(x, y)〉
∣∣rp〉 1

rp |f(y)|,

so that we may use Corollary 1 to the effect of〈∣∣u(x)− 〈u(x)〉
∣∣rp〉 1

rp ≤ C(d, λ, ρ, r, p)
∑
y

(|x− y|+ 1)1−d|f(y)|. (85)
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We now insert (85) in (83) to obtain〈(∑
x

∣∣u(x)− 〈u(x)〉
∣∣p)r〉 1

rp

≤ C(d, λ, ρ, r, p)

(∑
x

(∑
y

(|x− y|+ 1)1−d|f(y)|
)p) 1

p

. (86)

Now let us recall the Hardy-Littlewood-Sobolev inequality in Rd, see [17,
Section 4.3] for a proof:(∫

Rd

(∫
Rd
|x− y|−αf(y) dy

)p) 1
p

≤ C(d, α, p)

(∫
Rd
|f(y)|q dy

) 1
q

for all weight exponents 0 < α < d and for all integrability exponents
1 < p, q < ∞ related by 1 + 1

p
= α

d
+ 1

q
. A discrete version can easily

be obtained by applying the continuum version to piecewise linear functions
on a triangulation subordinate to the lattice Zd. We use the discrete version
for α = d− 1, that is,(∑

x

(∑
y

(|x− y|+ 1)1−d|f(y)|
)p) 1

p

≤ C(d, p)
(∑

y

|f(y)|q
) 1
q
, (87)

in which case the relation turns as desired into 1
p

+ 1
d

= 1
q
. Our assumption

p ≥ 2 and d > 2 ensure that q is indeed admissible for Hardy-Littlewood-
Sobolev in the sense of the strict inequality q > 1.

Step 2. Changes if d = 2. In this case, using that f(y) is supported in
{|y| ≤ R}, (86) assumes the form〈( ∑

x:|x|≤R

∣∣u(x)− 〈u(x)〉
∣∣p)r〉 1

rp

≤ C(d, λ, ρ, r, p)

( ∑
x:|x|≤R

( ∑
y:|y|≤R

(|x− y|+ 1)1−d(log
1
2 |x− y|)|f(y)|

)p) 1
p

≤ C(d, λ, ρ, r, p)(log
1
2 R)

(∑
x

(∑
y

(|x− y|+ 1)1−d|f(y)|
)p) 1

p

.

As in Step 1, it remains to apply the discrete Hardy-Littlewood-Sobolev
inequality, where we note that our assumption p > 2 now ensures q > 1 even
for d = 2.
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Proof of Corollary 3
Step 1. In this step, we derive the estimate

〈∣∣∣∑
x

(u(x)− 〈u(x)〉)g(x)
∣∣∣r〉 1

r

≤ C(ρ, r)
〈(∑

z

sup
a(z)

(∑
x

∑
y

∂G(x, y)

∂a(z)
f(y)g(x)

)2) r
2〉 1

r
. (88)

Indeed, it follows from the representation (84) that

〈∣∣∣∑
x

(
u(x)− 〈u(x)〉

)
g(x)

∣∣∣r〉 1
r

=
〈∣∣∣∑

x

∑
y

(
G(x, y)− 〈G(x, y)〉

)
f(y)g(x)

∣∣∣r〉 1
r
.

Since the only dependence on the coefficients a is through G, the Lp-version
of SG (76), with 2p replaced by r, yields (88).

Step 2. In this step, we estimate the right hand side of (88) as follows:

〈(∑
z

sup
a(z)

(∑
x

∑
y

∂G(x, y)

∂a(z)
f(y)g(x)

)2) r
2〉 1

r

≤ C(d, λ, ρ, r)

(∑
z

(∑
x

(|x−z|+1)1−d|g(x)|
)2(∑

y

(|y−z|+1)1−d|f(y)|
)2
) 1

2

.

(89)

Indeed, expanding the square (of a vector) on the l. h. s. of (89) and inserting
(56) yields

sup
a(z)

(∑
x

∑
y

∂G(x, y)

∂a(z)
f(y)g(x)

)2
= sup

a(z)

∑
x,x′,y,y′

∂G(x, y)

∂a(z)
· ∂G(x′, y′)

∂a(z)
g(x)g(x′)f(y)f(y′)

≤ C(d, λ)
∑

x,x′,y,y′

|∇zG(x, z)||∇zG(x′, z)||∇zG(z, y)||∇zG(z, y′)|

× |g(x)g(x′)f(y)f(y′)|.
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Consequently we obtain by the triangle inequality w. r. t. 〈
∑

z,x,x′,y,y′ |·|r/2〉2/r
(w. l. o. g. we may assume r ≥ 2)〈(∑

z

(∑
x

∑
y

∂G(x, y)

∂a(z)
f(y)g(x)

)2) r
2〉 1

r

≤ C(d, λ)

( ∑
z,x,x′,y,y′

〈|∇zG(x, z)|
r
2 |∇zG(x′, z)|

r
2 |∇zG(z, y)|

r
2 |∇zG(z, y′)|

r
2 〉

1
r

× |g(x)||g(x′)||f(y)||f(y′)|

) 1
2

.

Hölder’s inequality with respect to the ensemble 〈·〉 and Theorem 1 yield

〈|∇zG(x, z)|
r
2 |∇zG(x′, z)|

r
2 |∇zG(z, y)|

r
2 |∇zG(z, y′)|

r
2 〉

2
r

≤ C(d, λ, ρ, r)
(

(|x− z|+ 1)(|x′ − z|+ 1)(|y − z|+ 1)(|y′ − z|+ 1)
)1−d

.

Hence (89) follows from partly undoing the expansion of the square:( ∑
z,x,x′,y,y′

(|x− z|+ 1)1−d(|x′ − z|+ 1)1−d(|y − z|+ 1)1−d

× (|y′ − z|+ 1)1−d|g(x)||g(x′)||f(y)||f(y′)|

) 1
2

=

(∑
z

(∑
x

(|x− z|+ 1)1−d|g(x)|
)2(∑

y

(|y − z|+ 1)1−d|f(y)|
)2
) 1

2

.

Step 3. Conclusion. An application of Hölder’s inequality w. r. t. the sum
over z on the r. h. s. of (89) yields a bound by(∑

z

(∑
x

(|x− z|+ 1)1−d|g(x)|
)p̃) 1

p̃

×

(∑
z

(∑
y

(|y − z|+ 1)1−d|f(y)|
)p) 1

p

, (90)

with p̃ and p such that 2
p

+ 2
p̃

= 1 to be chosen later. We recall the Hardy-

Littlewood-Sobolev inequality (87), i.e.(∑
z

(∑
x

(|x− z|+ 1)1−d|f(x)|
)p) 1

p

≤ C(d, q)

(∑
x

|f(x)|q
) 1

q

,
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if we choose p such that 1
q

= 1
d

+ 1
p
. The Hardy-Littlewood-Sobolev inequality

likewise yields(∑
z

(∑
x

(|x− z|+ 1)1−d|g(x)|
)p̃) 1

p̃

≤ C(d, q)

(∑
x

|g(x)|q̃
) 1

q̃

,

where 1
q̃

= 1
d

+ 1
p̃

= 1
d

+ 1
2
− 1

p
. Inserting these estimates into (90) and then

into Steps 2 and 1 yields Corollary 3.

Proof of Corollary 4.
Step 1. We claim that for any function η(x) supported in {|x| < R}, we
obtain the representation formula

(ηu)(x) =
∑

y:|y|≤R

(
u(y)∇yG(y, x) · a(y)∇η(y)−G(y, x)∇η(y) · a(y)∇u(y)

)
.

(91)
We start by noting that even on the discrete level, some aspects of Leibniz’
rule survive, such as

∇ζ · a∇(ηu)−∇(ηζ) · a∇u = u∇ζ · a∇η − ζ∇η · a∇u (92)

for any function ζ. Indeed, since a is diagonal, (92) reduces to

∇iζ∇i(ηu)−∇i(ηζ)∇iu = u∇iζ∇iη − ζ∇iη∇iu,

which in turn reduces to the elementary identity

(ζ̃ − ζ)(η̃ũ− ηu)− (η̃ζ̃ − ηζ)(ũ− u) = u(ζ̃ − ζ)(η̃ − η)− ζ(η̃ − η)(ũ− u).

We integrate (92):∑
y

∇ζ · a∇(ηu)−
∑
y

∇(ηζ) · a∇u =
∑
y

(
u∇ζ · a∇η − ζ∇η · a∇u

)
(93)

and use it for ζ = G(·, x). By definition of G, the first term on the l. h. s.
of (93) yields (ηu)(x); since ηG(·, x) is supported in {|y| ≤ R}, the second
term on the l. h. s. of (93) vanishes. This yields (91).

Step 2. We now use the representation obtained in Step 1 to obtain bounds
on the gradient of u and consequently on the α-Hölder norm of u. Specifically,
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we claim that(
supx:|x|≤R

8

|u(x)−u(0)|
|x|α

1
Rα

supx:|x|≤R |u(x)|

)p

≤ C(d, λ, p)RαpR−p
(
Rd(p−1)

∑
x:|x|≤R

8

∑
y:R

4
≤|y|≤R

2

|∇∇G(y, x)|p

+Rd(p−1)−p
∑

x:|x|≤R
8

∑
y:R

4
≤|y|≤R

2

|∇xG(y, x)|p
)
, (94)

where α and p are related by αp = p − d. To this end, we choose a cut-off
function η for {|x| ≤ R

4
+1} in {|x| ≤ R

2
−1} (w. l. o. g. R > 8). If we restrict

to |x| ≤ R
4

and take the derivative in x, we obtain

∇u(x) =
∑
y

(
u(y)∇∇G(y, x)a(y)∇η(y)− (∇η(y) · a(y)∇u(y))∇xG(y, x)

)
,

which implies

|∇u(x)| ≤ C(d)R−1
∑

y:R
4
≤|y|≤R

2

(
|u(y)||∇∇G(y, x)|+ |∇xG(y, x)||∇u(y)|

)
.

(95)
Summing the p-th power of (95) and applying Hölder’s inequality, we obtain∑

x:|x|≤R
8

|∇u(x)|p

≤ C(d, p)R−p
(( ∑

y:|y|≤R
2

|u(y)|q
)p−1 ∑

x:|x|≤R
8

∑
y:R

4
≤|y|≤R

2

|∇∇G(y, x)|p

+
( ∑
y:|y|≤R

2

|∇u(y)|q
)p−1 ∑

x:|x|≤R
8

∑
y:R

4
≤|y|≤R

2

|∇xG(y, x)|p
)
, (96)

where q is the dual Hölder exponent of p. Now we apply the following (dis-
crete) Sobolev inequality: If α < 1 and p > d are related by

α = 1− d

p
, (97)

then it holds that

sup
x:|x|≤R

8

|u(x)− u(0)|
|x|α

≤ C(d, p)

( ∑
x:|x|≤R

8

|∇u(x)|p
) 1

p

.
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(This discrete version can easily be derived from its continuum version by
extending u to a piecewise linear function on a triangulation subordinate to
the lattice.) Therefore the left-hand side of (96) bounds the α-Hölder norm
as desired, albeit over a smaller ball.

Let us now turn to the right-hand side of (96). It holds that( ∑
y:|y|≤R

2

|u(y)|q
)p−1

≤ C(d, p)Rd(p−1)
(

sup
x:|x|≤R

2

|u(y)|
)p
. (98)

To estimate the second summand on the right-hand side, we note that Cac-
cioppoli’s estimate (47) implies∑
y:|y|≤R

2

|∇u(y)|2 ≤ C(d, λ)R−2
∑

y:|y|≤R

|u(y)|2 ≤ C(d, λ)Rd−2
(

sup
x:|x|≤R

|u(x)|
)2
.

Together with Jensen’s inequality (here we need p ≥ 2, which is obvious since
even p > d), we obtain that( ∑

y:|y|≤R
2

|∇u(y)|q
)p−1

≤ C(d, p)Rd( p
2
−1)
( ∑
y:|y|≤R

2

|∇u(y)|2
) p

2

≤ C(d, λ, p)Rd(p−1)−p
(

sup
x:|x|≤R

|u(x)|
)p
. (99)

Substituting (98) and (99) into (96) yields the claim of this step.

Step 3. We end by bounding the Green’s function to arrive at the conclusion〈(
sup
u

supx:|x|≤R
|u(x)−u(0)|
|x|α

1
Rα

supx:|x|≤R |u(x)|

)p〉
≤ C(d, λ, ρ, p, α) (100)

for all α < 1, p < ∞, and R < ∞, where the outer supremum is taken over
all solutions u(x) to ∇∗a∇u = 0 in {x : |x| ≤ R}. Indeed, Theorem 1 applied
to the result (94) of Step 2 yields〈(

sup
u

supx:|x|≤R
8

|u(x)−u(0)|
|x|α

1
Rα

supx:|x|≤R |u(x)|

)p〉
≤ C(d, λ, ρ, p)Rαp

(
Rd(p−1)−p

∑
x:|x|≤R

8

∑
y:R

4
≤|y|≤R

2

(|x− y|+ 1)−pd

+Rd(p−1)−2p
∑

x:|x|≤R
8

∑
y:R

4
≤|y|≤R

2

(|x− y|+ 1)p(1−d)
)
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if α and p are related by (97). Here we have used symmetry and stationarity
to replace 〈|∇xG(y, x)|p〉 by 〈|∇1G(x − y, 0)|p〉 and thus bring the terms
involving G into the form of Theorem 1. In the domains of x and y, it holds
|x− y|+ 1 ≥ |y|/2 ≥ R/8. Therefore the first double-sum on the right-hand
side is bounded by

C(d, p)R2d−pd.

Likewise the second double-sum is bounded by

C(d, p)R2d+p(1−d).

If (97) holds, we conclude that〈(
sup
u

supx:|x|≤R
8

|u(x)−u(0)|
|x|α

1
Rα

supx:|x|≤R |u(x)|

)p〉
≤ C(d, λ, ρ, p).

In the region {x : R
8
≤ |x| ≤ R}, it obviously holds

|u(x)− u(0)|
|x|α

≤ 2
8α

Rα
sup

x:|x|≤R
|u(x)|.

Thus we have obtained (100) for p and α such that (97) holds. Since in (97),
α→ 1 as p→∞ and since we can always decrease p and α in the conclusion
(100) (in p this follows from Jensen’s inequality), the estimate (100) indeed
holds for arbitrary p <∞ and α < 1.

Proof of Corollary 5.
Step 1. First we write Corollary 4 in a point-wise (in a) form. The corollary
implies that for (〈·〉-almost) every a, R > 0, α < 1, and all solutions u to
∇∗a∇u = 0, it holds that

sup
x:|x|≤R

|u(x)− u(0)|
|x|α

≤ K(a,R)
1

Rα
sup

x:|x|≤R
|u(x)|

with a constant K(a,R) such that 〈K(·, R)p〉 ≤ C(d, λ, α, p) for all p <∞.
Step 2. We argue that for every R0 > 0, there exists a sequence of increasing
radii (Rn)n∈N with limn→∞Rn =∞ such that

1

N

N∑
n=0

K(a,Rn) ≤ C(a) <∞.

Indeed, Step 1 yields that the set of random variables (K(a,R))R>1 is bounded
in L2(〈·〉). By the Banach-Saks theorem [24, Chapter II.38], we obtain a
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subsequence (K(a,Rn))n∈N with increasing, unbounded radii Rn such that
N−1

∑N
n=0K(a,Rn) converges strongly in L2(〈·〉). Thus we have obtained a

subsequence with the desired property.
Step 3. In this step, we deduce the estimate

sup
|x|=R0

|u(x)− u(0)| ≤ C(a) sup
n>M

{ 1

Rα
n

sup
|x|≤Rn

|u(x)|
}

+
1

N

M∑
n=1

K(a,Rn)
1

Rα
n

sup
|x|≤Rn

|u(x)| (101)

for all N > M > 0. Indeed, since the radii Rn ≥ R0 are increasing, it holds

sup
|x|=R0

|u(x)− u(0)| ≤ 1

N

N∑
n=0

sup
|x|≤Rn

|u(x)− u(0)|
|x|α

.

Inserting Step 1 and splitting the sum yields

sup
|x|=R0

|u(x)− u(0)| ≤ 1

N

N∑
n=M+1

K(a,Rn)
1

Rα
n

sup
|x|≤Rn

|u(x)|

+
1

N

M∑
n=1

K(a,Rn)
1

Rα
n

sup
|x|≤Rn

|u(x)|.

Upon noting the positivity of K(a,Rn) and the monotonicity in n of the
suprema, Step 2 yields estimate (101).
Step 4. We conclude by taking the limit as first N →∞ and then M →∞.
First, letting N →∞ in (101) from Step 3 yields

sup
|x|=R0

|u(x)− u(0)| ≤ C(a) sup
n>M

{ 1

Rα
n

sup
|x|≤Rn

|u(x)|
}
.

Since R−αn sup|x|≤Rn |u(x)| vanishes in the limit as n→∞ by our boundedness
assumption, letting M → ∞ yields u(x) = u(0) for all |x| ≤ R0. Since R0

was arbitrary, this implies that u is indeed constant.

Proof of Lemma 2.
Without loss of generality, we may assume 〈f〉 = 1. The elementary inequal-
ity f log f − f + 1 ≤ (f − 1)2 then yields

〈f log f〉 = 〈f log f − f + 1〉 ≤ 〈(f − 1)2〉.
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Since (f − 1)2 = (
√
f − 1)2(

√
f + 1)2, we find that

〈f log f〉 ≤ 〈(
√
f + 1)2〉 sup

a
(
√
f − 1)2.

Since 〈f〉 = 1, there exists a∗ ∈ [λ, 1]d such that f(a∗) ≤ 1. Since the
diameter of [λ, 1]d is bounded by d1/2, it follows that√

f(a)− 1 ≤
√
f(a)−

√
f(a∗) ≤ d

1
2 sup

a

∣∣∣∂√f
∂a

∣∣∣.
Likewise there exists a∗ ∈ [λ, 1]d such that f(a∗) ≥ 1 and therefore

1−
√
f(a) ≤

√
f(a∗)−

√
f(a) ≤ d

1
2 sup

a

∣∣∣∂√f
∂a

∣∣∣.
Hence it follows that

〈f log f〉 ≤ 〈(
√
f + 1)2〉 d sup

a

(∂√f
∂a

)2
= 〈(

√
f + 1)2〉d

4
sup
a

1

f

(∂f
∂a

)2
.

Finally it holds that

〈(
√
f + 1)2〉 ≤ 〈2f + 2〉 = 4,

and the combination of the previous two inequalities yields (16) with constant
ρ = 1

2d
.

Proof of Lemma 3.
The following is a simple adaptation of the usual tensorization proof, cf. [15,
Theorem 4.4]. Take any enumeration (xn)n∈N of the lattice Zd and denote by
〈·〉n the xn-marginal of the (product) ensemble 〈·〉. Furthermore we denote
iteratively f0 := f and fn := 〈fn−1〉n. Thus fn is the average of f over
the first n sites. Then the l. h. s. of (2) can be expressed as the following
telescope sum:

〈f log f〉 − 〈f〉 log〈f〉 =
∞∑
n=1

〈
fn−1 log fn−1 − fn log fn

〉
=
∞∑
n=1

〈
〈fn−1 log fn−1〉n − 〈fn−1〉n log〈fn−1〉n

〉
. (102)

The assumption of single-site LSI yields

〈fn−1 log fn−1〉n − 〈fn−1〉n log〈fn−1〉n ≤
1

2ρ
sup
a(xn)

1

fn−1

( ∂fn−1
∂a(xn)

)2
. (103)
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Notice that the definition of fn−1 immediately yields fn−1 = 〈f〉<n, where we
have denoted shortly by 〈·〉<n the ensemble average over the first n− 1 sites.
By Cauchy-Schwarz, it holds that(∂〈f〉<n

∂a(xn)

)2
=
〈 ∂f

∂a(xn)

〉2
<n
≤ 〈f〉<n

〈 1

f

( ∂f

∂a(xn)

)2〉
<n
.

Hence we find that

sup
a(xn)

1

fn−1

( ∂fn−1
∂a(xn)

)2
≤ sup

a(xn)

〈 1

f

( ∂f

∂a(xn)

)2〉
<n
≤
〈

sup
a(xn)

1

f

( ∂f

∂a(xn)

)2〉
<n
.

(104)
Finally we collect (102), (103), and (104) to obtain

〈f log f〉 − 〈f〉 log〈f〉 ≤ 1

2ρ

∞∑
n=1

〈
sup
a(xn)

1

f

( ∂f

∂a(xn)

)2〉
,

which is the LSI (2).
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