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Large area rutile TiO2 nanorod arrays were grown on F:SnO2 (FTO) conductive glass using a hydrothermal method at low
temperature. CdSe quantum dots (QDs) were deposited onto single-crystalline TiO2 nanorod arrays by a chemical bath deposition
(CBD) method to make a photoelectrode. The solar cell was assembled using a CdSe-TiO2 nanostructure as the photoanode
and polysulfide solution as the electrolyte. The annealing effect on optical and photovoltaic properties of CdSe quantum-dots-
sensitized TiO2 nanorod solar cells was studied systematically. A significant change of the morphology and a regular red shift of
band gap of CdSe nanoparticles were observed after annealing treatment. At the same time, an improved photovoltaic performance
was obtained for quantum-dots-sensitized solar cell using the annealed CdSe-TiO2 nanostructure electrode. The power conversion
efficiency improved from 0.59% to 1.45% as a consequence of the annealing effect. This improvement can be explained by
considering the changes in the morphology, the crystalline quality, and the optical properties caused by annealing treatment.

1. Introduction

At present, technologies to utilize solar energy have attracted
world-wide attention. Although the solar cells based on
monocrystalline Si could provide ample power, their rela-
tively high cost has impaired the research and development
of new photovoltaic (PV) systems. Many new PV systems
have been introduced including dye-sensitized solar cell [1–
3], organic solar cells [4], and multijunction solar cells [5].
As a promising alternative to silicon-based solar cells, dye-
sensitized solar cells (DSSCs) have played a promising role
in the development of renewable energy. In the laboratory,
DSSCs can reach light-to-electric conversion efficiencies of
up to 11% [6]. Although the results reported recently are very
impressive, the use of expensive dye to sensitize the solar cell
is still not feasible for practical applications. Therefore, it is
critical to tailor the materials to be not only cost-effective but
also long lasting.

Considering the high cost and low stability of organic
dyes, using nanosized narrowband gap semiconductor mate-
rials as sensitizers in place of the molecular dyes in DSSCs
has been put forward as an efficient and promising alter-
native. Inorganic semiconductors have several advantages
over conventional dyes. (i) The band gap of semiconductor
quantum dots (QDs) can be tuned by size to match the solar
spectrum. (ii) Their large intrinsic dipole moments can lead
to rapid charge separation and a large extinction coefficient,
which is known to reduce the dark current and increase
the overall efficiency. (iii) In addition, semiconductor QD
sensitizers provide new chances to utilize hot electrons
or generate multiple charge carriers with a single photon.
Hence, nanosized narrowband gap semiconductors are ideal
candidates for the optimization of a solar cell for improved
performance.

Recently, various nanosized semiconductors including
CdS [7], CdSe [8], CdTe [9], Sb2S3 [10, 11], and Bi2S3



2 Journal of Nanomaterials

[12] have been studied for photocatalyst and solar cell
applications. Among these sensitizers, CdSe has shown much
promise as an impressive sensitizer due to its reasonable
band gap of about 1.70 eV, which has a strong absorption
of the solar spectrum. The use of CdSe quantum dots,
which may produce more than one electron-hole pair per
single absorbed photon (also known as multiple exciton
generation (MEG)), is a promising solution to enhance
power conversion efficiency. Furthermore, the creation of
a type-II heterojunction by growing CdSe QDs on the
TiO2 surface greatly enhances charge separation. All these
effects are known to increase the exciton concentration,
quantum yield, and lifetime of hot electrons and therefore,
the performance of QD-sensitized solar cells.

To date, CdSe-TiO2-nanostructured solar cells have
been reported by several groups [13–16]. While most of
the reported work was conducted on polycrystalline TiO2,
little work has been done on the single-crystalline TiO2

nanorod arrays. Compared with polycrystalline TiO2, single-
crystalline TiO2 nanorods grown directly on transparent
conductive oxide (TCO) electrodes provide a perfect solution
by avoiding the particle-to-particle hopping that occurs in
polycrystalline films, thereby increasing the photocurrent
efficiency.

In this paper, we combine CdSe semiconductor quantum
dots and single-crystalline rutile TiO2 nanorod arrays to
produce a practical quantum-dot-sensitized solar cell. A
low-temperature hydrothermal technique was used to grow
ordered TiO2 nanorod arrays directly on fluorine-doped tin
oxide (FTO) glass, and CdSe nanoparticles were deposited
using a CBD method. Postpreparation annealing was
conducted to improve the solar cell performance. After
annealing, apparent changes in morphology, optical and
photovoltaic properties were observed. The photoconversion
efficiency of the quantum-dots-sensitized solar cell assem-
bled using a CdSe-TiO2 nanostructure annealed at 400◦C
for 30 min showed an increase of 146% compared with that
based on as-grown CdSe-TiO2 nanostructure.

2. Experimental

2.1. Growth of Single-Crystalline Rutile TiO2 Nanorods by
Hydrothermal Process. Ordered TiO2 nanostructures with
different morphologies, such as nanowires [17], nanotubes
[18], and nanoparticles [19], have been obtained by dif-
ferent groups using hard-template methods. Alternative
wet-chemical techniques for crystalline TiO2 growth and
morphology control are also an interesting and promising
subject. It is known that in wet-chemical techniques, the
particle size, morphology, and structure can be easily
controlled by adjusting preparation parameters. In this study,
single crystal rutile TiO2 nanorod arrays were directly grown
on fluorine-doped-tin-oxide- (FTO-) coated glass using the
following hydrothermal method. 50 mL of deionized water
was mixed with 40 mL of concentrated hydrochloric acid
(HCl, 36–38% by weight, Sinopharm). After stirring at
ambient temperature for 5 min, 400 µL of titanium tetra-
chloride (TiCl4, 99.9%, Aladdin) was added to the mixture.

The mixture was injected into a stainless steel autoclave
with a Teflon container cartridge. The FTO substrates were
ultrasonically cleaned for 10 min in a mixed solution of
deionized water, acetone, and 2-propanol with volume ratios
of 1 : 1 : 1 and then were placed at an angle against the Teflon
container wall with the conducting side facing down. The
hydrothermal synthesis was conducted at 180◦C for 2 h. After
synthesis, the autoclave was cooled to room temperature
under flowing water, and the FTO substrates were taken out,
washed extensively with deionized water, and dried in the
open air.

2.2. Deposition of CdSe Nanoparticles with Chemical Bath
Deposition (CBD) Method and Annealing Treatment. In a
typical CBD cycle, the F:SnO2 conductive glass, pregrown
with TiO2 nanorod arrays, was dipped into the 0.2 M
cadmium chloride (CdCl2) solution for 5 minutes, rinsed
in water, then dipped into the 0.1 M sodium selenosulphate
solution (obtained by constantly stirring the mixed solution
of selenium powder and sodium sulphite for 6 h at 50◦C) for
another 5 minutes at 80◦C, and rinsed in water. This entire
CBD process was repeated from 5 to 9 cycles to achieve the
desired thickness of CdSe nanoparticles layer. To investigate
the annealing effect on the optical and structural properties
of synthesized CdSe-TiO2 nanostructures, annealing treat-
ments were carried out in air at varied temperatures from
100◦C to 400◦C for 30 min using a tube furnace.

2.3. Characterization. A field emission scanning electron
microscope (SEM, S-4800, Hitachi) and a transmission
electron microscope (TEM, JEOL JEM-2100) were used to
characterize the morphology and internal structures of the
samples. The crystal structure of the CdSe-TiO2 samples was
examined by X-ray diffraction (XD-3, PG Instruments Ltd.)
with Cu Kα radiation (λ = 0.154 nm) at a scan rate of 2◦

per min. X-ray tube voltage and current were set at 40 kV
and 35 mA, respectively. The optical absorption spectra were
obtained using a UV-visible spectrometer (TU-1900, PG
Instruments, Ltd.).

2.4. J-V Measurements. Solar cells were assembled using
CdSe-TiO2 nanostructures as the photoanode. Pt counter
electrodes were prepared by depositing 20 nm thick Pt film
on FTO glass using magnetron sputtering. A 60 µm thick
sealing material (SX-1170-60, Solaronix SA) with a 2.5 ×
2.5 mm aperture was pasted onto the Pt counter electrodes.
The Pt counter electrode and the CdSe-TiO2 photoelectrode
were sandwiched and sealed with the conductive sides facing
inward. A polysulfide electrolyte was injected into the space
between the two electrodes. The polysulfide electrolyte was
composed of 1 M sulfur, 1 M Na2S, and 0.1 M NaOH, which
were dissolved in methanol/water (7 : 3, v/v) and stirred at
80◦C for 2 h.

A solar simulator (Model 94022A, Newport) with an
AM1.5 filter was used to illuminate the working solar cell
at light intensity of 1 sun illumination (100 mW/cm2). A
sourcemeter (2400, Keithley) was used for electrical char-
acterization during the measurements. The measurements
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Figure 1: Top view SEM images of the bare TiO2 nanorod (a), the CdSe-TiO2 nanostructure after 7 CBD cycles (b), and the sample with 7
CBD cycles annealed at 400◦C for 30 minutes (c).

were carried out with respect to a calibrated OSI standard
silicon solar photodiode.

3. Results and Discussion

Field emission scanning electron microscopy (FESEM) im-
ages show a typical morphology of the rutile TiO2 nanorod
arrays in Figure 1(a), confirming that the entire surface
of the FTO-coated glass substrate was uniformly covered
with ordered TiO2 nanorods. The nanorods are typically
100–150 nm in diameter and are tetragonal in shape with
square top facets consisting of many small grids. The density
of nanorods is 20 nanorods/µm2 with suitable space for
deposition of CdSe nanoparticles. The CdSe QDs deposited
onto TiO2 nanorods with different CBD cycles were also
characterized by FESEM. The SEM results (not shown here)
suggest that as the number of CBD cycles increased from 5
to 7 and then to 9, the thickness of the CdSe nanoparticles
increased correspondingly. A thicker CdSe nanoparticles
layer is beneficial for stronger sunlight absorption, but will
cause severe recombination of photo-induced carriers at
the same time. Hence, an optimal thickness should be
determined to achieve a higher power conversion efficiency.
In our experiment, the best photovoltaic performance was
observed in the CdSe-TiO2 photoelectrode deposited with
7 CBD cycles. Therefore, in the following research process

we are focused on this CdSe-TiO2 nanostructure with 7
deposition cycles to study the annealing effect on optical
and photovoltaic properties. A close look at the CdSe-TiO2

nanostructure with 7 successive deposition cycles is shown
in Figure 1(b). A uniform porous CdSe shell composed
of small nanoparticles was formed on the TiO2 nanorod
surface. Figure 1(c) showed the morphology of this CdSe-
TiO2 nanostructure after annealing at 400◦C for 30 minutes.
Compared with Figure 1(b), a significant change in the
morphology was observed. After annealing, the porous CdSe
layer transformed into larger CdSe particles with size of
about 100 to 150 nm. Also, as shown in Figure 1(c), this
annealing treatment enabled a much close contact btween
CdSe particle and the TiO2 nanorod surface. This firm
connection is beneficial to the charge separation and will
improve the overall properties of the sensitized solar cells.

The detailed microscopic structure of the CdSe nanopar-
ticles before and after annealing was further investigated by
a high-resolution TEM. For the as-deposited sample only a
blurred HRTEM image (Figure 2(a)) was obtained, which
indicates that the CdSe layer is polycrystalline with a poor
crystallization. Further characterization suggests that the
CdSe shell consists of nanoparticles with an average diameter
of approximately 5–10 nm, which is coincident with the SEM
measurement above. The HRTEM image of the annealed
CdSe-TiO2 nanostructure is presented in Figure 2(b).
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Figure 2: HRTEM images of CdSe nanoparticles deposited on TiO2 nanorod arrays before (a) and after (b) annealing treatment.
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Figure 3: XRD patterns of (a) the TiO2 bare nanorod array, (b)
the as-synthesized CdSe-TiO2 nanorod array electrode, and (c) the
CdSe-TiO2 nanorod array electrode annealed at 400◦C for 30 min.
All the peaks from SnO2 and TiO2 are indexed in (a), and those from
CdSe nanoparticles are indexed in (b) and (c).

The clear lattice fringes in the HRTEM image indicate that
the CdSe particle has a high degree of crystallinity. The
lattice spacing is measured to be approximately 0.33 nm,
which agrees well with the spacing of the (101) planes of the
wurtzite CdSe. The high interior crystal quality of the CdSe
nanoparticles is conducive to reduce the recombination of
the excited electron-hole pairs and increase the photocurrent
of the solar cells.

X-ray diffraction (XRD) patterns of the bare TiO2

nanorod array, the as-synthesized CdSe-TiO2 nanostructure,
and the annealed nanostructure are shown in Figure 3. Note
in Figure 3(a) that the TiO2 nanorod arrays grown on the
FTO-coated glass substrates have a tetragonal rutile structure
(JCPDS no. 02-0494), which could be attributed to the small
lattice mismatch between FTO and rutile. The as-synthesized
CdSe-TiO2 nanostructure exhibits weak diffraction peaks at
2θ = 25.3◦, 42.0◦, and 49.8◦, corresponding to the (111),
(220), and (311) planes of metastable cubic (sphalerite)
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Figure 4: Optical absorption spectra of CdSe-TiO2 nanostructure
samples before (a) and after annealing at 100◦C (b), 200◦C (c),
300◦C (d), and 400◦C (e).

CdSe with the lattice constant a = 0.609 nm (JCPDS no.
19-0191). After being annealed at 400◦C, diffraction peaks
could be indexed as the (100), (102), (101), (110), (103),
and (112) planes of wurtzite hexagonal phase (JCPDS no.
08-0459). Compared with Figure 3(b), it is obvious that for
the annealed samples, the diffraction peaks became sharper
and the full width at half maximum (FWHM) decreased.
This was due to the improvement of the crystalline and the
increase in particle size during the annealing process.

The optical absorption spectra of CdSe-TiO2 nanos-
tructure samples are shown in Figure 4. An optical band
gap of 2.04 eV is estimated for the as-synthesized CdSe
nanoparticles from the absorption spectra, which are much
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Figure 5: Optical absorption spectra of nanorod arrays with and
without annealing treatment.

wider than that of bulk wurtzite CdSe. After annealing at
100◦C, 200◦C, 300◦C, and 400◦C for 30 min, respectively, the
band gap of CdSe nanoparticles was red-shifted to 1.88 eV
(660 nm), 1.80 eV (690 nm), 1.74 eV (714 nm), and 1.68 eV
(736 nm) accordingly (Figures 4(b)–4(e)). The annealed
CdSe-TiO2 nanostructures show an enhanced absorption
in the visible range, which is very important for solar
cell application and will result in higher power conversion
efficiency. As shown by the XRD patterns, SEM images and
HRTEM images, this red shift in the annealed samples could
be explained by the annealing-induced phase transformation
(from cubic to hexagonal) at the elevated temperatures as
well as the increase in particle size [20]. The annealing effect
on the optical absorption spectra of bare TiO2 nanorod
arrays was also studied. As shown in Figure 5, no obvious
difference was found between the samples with and without
annealing treatment. This result suggests that although
annealing changes the morphology and crystallinity of CdSe
nanoparticles, it does not have significant effect on the
optical property of the TiO2 nanorod arrays.

Figure 6 shows the photocurrent-voltage (I-V) perfor-
mance of the quantum-dots-sensitized solar cells assembled
using CdSe-TiO2 nanostructures annealed under different
temperatures. The I-V curves of the QDSSC were measured
under one sun illumination (AM1.5, 100 mW/cm2). An
open-circuit voltage (Voc) of 0.33 V, a short-circuit current
density (Jsc) of 7.8 mA/cm2, and an overall efficiency of
0.59% were observed for QDSSC based on the as-grown
CdSe-TiO2 nanostructure. As the annealing temperature
increased, the open-circuit voltage (Voc) was improved from
0.33 V to 0.38 V, and the short-circuit current density (Jsc)
was increased from 7.7 mA/cm2 to 12.5 mA/cm2. An overall
efficiency of 1.45% was observed for QDSSC based on
CdSe-TiO2 nanostructures annealed at 400◦C, indicating
an increase of up to 146% compared with that of the as-
synthesized one.
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Figure 6: I-V curves for the solar cells assembled using CdSe-TiO2

nanostructures annealed under different temperatures.

This significant improvement of the photovoltaic perfor-
mance obtained for QDSSC based on annealed CdSe-TiO2

nanostructure can be ascribed to the following reasons. (i) As
confirmed by the absorption spectra presented in Figure 4,
an enhanced absorption of sunlight caused by the red shift
of the band gap will result in an enhanced current density.
(ii) Increase of CdSe grain size by annealing will reduce the
particle-to-particle hopping of the photo-induced carrier.
This hopping may occur in an as-grown nanostructure
with a CdSe layer composed of CdSe nanoparticles. (iii)
Improvement of crystal quality of the CdSe nanoparticles
by annealing treatment will decrease the internal defects,
which can reduce the recombination of photoexcited carriers
and result in a higher power conversion efficiency. (iv)
Good contact between the CdSe quantum dots and the TiO2

nanorod is formed as a result of high-temperature annealing.
Such a superior interface between TiO2 and QDs can inhibit
the interfacial recombination of the injected electrons from
TiO2 to the electrolyte, which is also responsible for its higher
efficiency.

This study opens the possibility of using a 3D nanostruc-
ture material with a facile hydrothermal method for QDSSC
studies. In present work, the low photoelectric efficiency may
be caused by the low transport efficiency of the S/S−2 redox
couple. By applying more efficient redox couple electrolyte,
higher cell efficiency could be achieved.

4. Conclusions

Using a facile hydrothermal method, the single-crystalline
TiO2 nanorod arrays were successfully grown on fluorine-
doped tin oxide (FTO) glass. Then the densely distributed
CdSe nanoparticles were deposited on TiO2 nanorod arrays
using a chemical bath deposition (CBD) method. Annealing
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was conducted to improve the properties of the CdSe-
TiO2 nanostructure. Greatly improved crystallinity of CdSe
nanoparticles and obvious enhancement in visible light
absorption were observed for the annealed samples. Sig-
nificant improvement of the photovoltaic performance for
QDSSC based on the annealed CdSe-TiO2 nanostructure
was obtained. Compared with QDSSC based on as-deposited
CdSe-TiO2 nanostructures, an increase of up to 146% in
power conversion efficiency was achieved for QDSSCs using
the annealed CdSe-TiO2 photoanode.
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