Annealing induced phase transformations in amorphous As\textsubscript{2}S\textsubscript{3} films

R. P. Wang,a) S. J. Madden, C. J. Zha, A. V. Rode, and B. Luther-Davies
Centre for Ultrahigh Bandwidth Devices for Optical Systems, Laser Physics Centre, and Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia

(Received 19 January 2006; accepted 7 July 2006; published online 27 September 2006)

Amorphous arsenic sulphide (As\textsubscript{2}S\textsubscript{3}) films prepared by ultrafast pulsed laser deposition have been vacuum annealed at a range of different temperatures. Measurements of the glass transition temperature indicate that a crystallization process initiates at annealing temperatures around 170 °C. In combination with Raman scattering analysis, we conclude that phase separation is intrinsic for our as-deposited films. During annealing two sorts of phase transformation are identified: one between different amorphous polymorphs, and another from the amorphous to a crystalline state. We point out a correlation between these two types of transformation and two characteristic time scales identified from measurements of the relaxation of the refractive index, and explain the Arrhenius and non-Arrhenius behaviors leading to the observed temporal characteristics. © 2006 American Institute of Physics. [DOI: 10.1063/1.2353787]

I. INTRODUCTION

Chalcogenide glasses are promising candidates for integrated nonlinear optical components because they offer low switching energies, ultrafast broadband optical response time, and low optical losses.1,2 Although films of these materials have been deposited using various methods to create planar waveguides, significant differences have been found to exist between the properties of the bulk glass and as-deposited films, which, for example, result in the films being highly photosensitive—a possible drawback for application in optoelectronics. Furthermore, while the stoichiometry of the film may differ insignificantly from the bulk glass, parameters such as the refractive index (RI) can be markedly different. For example, our experiments show that while bulk As\textsubscript{2}S\textsubscript{3} has a refractive index of 2.43 at 1.55 μm, as-grown films produced by pulsed laser deposition (PLD) have values of typically 2.37–2.39 (n\textsubscript{RI}) depending on deposition conditions, while for thermally evaporated films the index is 2.29–2.32 (n\textsubscript{RI}). Thus, as-deposited films are in a significantly different physical state from the bulk glass, most likely because they are created in nonequilibrium conditions. The challenge is, therefore, to release the excess internal energy stored in films deposited in nonequilibrium conditions and relax them back to the thermal equilibrium state. The physical properties of the film such as its refractive index should be sensitive to the degree of relaxation towards the bulk glass structure and can be used to monitor changes in the film.3

In the experiments reported here, we have studied the properties of As\textsubscript{2}S\textsubscript{3} films produced by PLD. PLD is a useful approach for depositing multicomponent materials because the elemental composition of the target is accurately transferred to the film and hence the stoichiometry of the material is preserved. Deposition onto substrates held at room temperature, which is easily achieved using PLD because of the absence of radiant sources in the deposition chamber, also generally favors the production of amorphous films. The major drawback of the conventional PLD method that employs low repetition rate, high-energy, nanosecond ultraviolet excimer laser pulses for ablation is the presence of droplets in the plume due to vapor condensation and particulates ejected from the target.4 These contaminate the film and cause high propagation losses in optical waveguides. We have shown that a modified approach to PLD which uses high-repetition-rate picosecond duration laser pulses for ablation avoids this problem and allows the deposition of low loss waveguide films in As\textsubscript{2}S\textsubscript{3} chalcogenide glass.5 The resulting films have been found to be highly photosensitive, have very high surface quality, and have a refractive index closer to that of bulk material when compared with thermally evaporated films. In addition, the thickness uniformity of the films produced by ultrafast PLD is better than ±0.5% over a 100 mm wafer and superior to other deposition methods because the plume undergoes nearly three-dimensional expansion due to the use of a very small focused spot combined with the use of a large scanned area on the target surface. Waveguide losses as low as 0.2 dB/cm in fabricated waveguides have been measured at 1550 nm in these laser deposited films.6

Thermal annealing can generally be used to accelerate the relaxation of a film into its equilibrium state since the room temperature relaxation times for nonannealed As\textsubscript{2}S\textsubscript{3} film have been reported to be of the order of one year.3 When thermally evaporated As\textsubscript{2}S\textsubscript{3} films were annealed near their glass transition temperature T\textsubscript{g}, polymerization of the structure through the switching of homopolar bonds to heteropolar bonds was observed to occur.7 Although it is well known that the physical properties of chalcogenide film are very sensitive to the preparation conditions and the film history,8,9 systematic experiments concerning the effect of thermal annealing on the physical properties of As\textsubscript{2}S\textsubscript{3} film prepared by PLD have not been reported.

It is known that As\textsubscript{5}S\textsubscript{100−x} bulk glass is intrinsically phase separated into small As-rich (As\textsubscript{5}S\textsubscript{14}) and large S-rich

4FAX: 61 02 6125 0029; electronic mail: rpwl111@rsphysse.anu.edu.au
clusters for $x > 38$ and displays a global maximum in T_g near $x = 40$. However, a similar investigation has not been carried out for films because of the difficulty in measuring T_g of such films. In addition, high annealing temperatures could induce crystallization, which can deteriorate the physical properties of the materials. For example, the inhomogeneities due to crystallization during clad fiber fabrication were found to increase the transmission loss of the fiber by two orders of magnitude. In order to resolve these problems, and to investigate annealing as a method of achieving As$_2$S$_3$ glass films with stable physical properties similar to its bulk counterpart, a study on annealing induced change in films is necessary.

In this paper we investigate vacuum annealing of high quality As$_2$S$_3$ films prepared by PLD. We measured the glass transition temperature T_g and Raman spectra of the annealed samples. Two sorts of phase transformation were found during the annealing process. One between different amorphous polymorphs, and another is a transformation from an amorphous state into a crystalline state. A correlation between these two kinds of transformations and two different time scales which characterize the relaxation of the RI is also discussed.

II. EXPERIMENTS

Chemically stoichiometric As$_2$S$_3$ bulk glass from Amorphous Material Co. was used as the ablation target. High quality As$_2$S$_3$ films were deposited by the ultrafast laser ablation method. A detailed description about the laser ablation system and deposition conditions can be found in our previous work. In order to generate enough material for a differential scanning calorimeter (DSC) to be able to detect phase transformations, a 50 μm thick film was deposited on an aluminum plate before pieces were mechanically removed and sealed into several aluminum boats. The boats were annealed at different temperatures for 15 h, then the T_g measured using DSC at a temperature ramp rate of 10 K/min. A 2.5 μm thick sample was also deposited onto a silicon wafer under the same deposition conditions, cut into smaller pieces, and then annealed in a Heraeus Vacuthem oven at around 100 mbars. Raman scattering spectra were recorded using a quasibackscattering geometry and a 782 nm excitation source. No differences were detectable in the Raman spectra from films deposited on silicon and Al confirming that the substrate had a negligible effect on the structure of our films. An SCI FilmTek 4000 wafer mapper measuring over the wavelength range from 450 to 1650 nm was used to ex situ evaluate parameters such as film thickness, refractive index, band gap, etc., based on a least squares fit of the reflection spectra at normal and 70° incidence using a single oscillator Tauc-Lorentz model to represent the refractive index dispersion of the As$_2$S$_3$ film. Scanning electron microscopy equipped with energy dispersive x-ray spectrometry (EDX) was used to check the chemical composition of all the samples. The atomic ratio of As in as-grown and annealed films was at $x = 40.9 \pm 0.2$ for As$_{38}$S$_{60-x}$.

In Ref. 13, the melting temperature of the target was found to increase the annealing temperature up to 180 °C induces a crystalline As$_2$S$_3$ phase in high temperature annealed samples. The T_g has been formed during annealing, since its melting temperature was reported to be 296 °C in Ref. 14. Unfortunately, Refs. 15 and 16 suggest a higher melting temperature at 310 °C and this places some doubt on this interpretation. Alternatively, the melting point of As$_2$S$_3$ is quoted as 300 °C (Ref. 17) though we have no particular information on a reaction route that would lead to the formation of a substantial fraction of As$_2$S$_3$ in the films. Interestingly, it has been reported that in bulk As$_2$S$_3$ glass, crystallization does not occur even after prolonged storage at or near T_g.

As shown in the top two curves of Fig. 1, further increasing the annealing temperature up to 180 °C induces a broad shoulder centered at 270 °C. This is quite close to the melting point of α-realgar As$_2$S$_4$ at 267 °C, and consequently, we conclude that there is crystalline As$_4$S$_4$ (α-realgar) phase in high temperature annealed samples. The α-realgar could have been crystallized from polymerization of arsenic clusters with As$_2$S$_3$ units or formed from the reverse reaction of pararealgar known to occur at temperatures above 160 °C. One may argue that these two high temperature endothermic peaks represent...
glass phase transitions, for example, an As-deficient phase has a liquidus temperature T_g close to 300 °C. However, our near chemically stoichiometric films were sealed in Al boats for DSC measurements and the formation of As clusters would be necessary if such an As-deficient phase was present in order to maintain the chemical stoichiometry. Since we did not observe any endothermic peaks corresponding to glass transition of As clusters, we believe the contribution of the melting state of any As-deficient phase to the endothermic peaks is small, if not negligible.

The change of T_g as a function of the T_a for the films is shown in Fig. 2, from where it is evident that the increase of T_a up to 170 °C will lead to the increase of T_g. However, T_g becomes saturated or slightly decreases with any further increase of T_a. The trends in the evolution of T_g is remarkably similar to the chemical composition dependence of T_g in As$_x$S$_{100-x}$ and As$_x$Se$_{100-x}$ bulk glasses, where there is a phase separation region around $x=40$. The chemical composition of our as-grown and annealed samples is located in this region. However, our EDX measurements do not show any change in the chemical composition that correlates with T_a. The physical origin of the similarity is unclear, but may correlate with structural change between different polymorphs.

We integrated the dips in the DSC data around 200 and 296 °C and plot the ratio of their areas against T_a in the inset in Fig. 2. Although we cannot determine exactly what fraction of the material transfers into the crystalline states by this approach, a sharp increase in the crystallized fraction is clearly evident, suggesting that a substantial amount of crystalline material had been formed at 170 °C. A trace of the peaks at 188 and 211 cm$^{-1}$ and another broad and strong feature at 342 cm$^{-1}$ is evident, suggesting that a substantial amount of crystalline material had been formed at 170 °C. A trace of the peaks corresponding to As$_4$S$_4$ indicates the existence of phase separation in all the films. The absence of S–S vibrations at 494 cm$^{-1}$ is puzzling given that S–S bonds are necessary in order to form As$_4$S$_4$ and maintain the chemical stoichiometry. Indeed, 129I Mossbauer spectroscopy measurement has provided evidence of the existence of an internal surface dressing the S-rich cluster. The weak vibration at 494 cm$^{-1}$ in thermally evaporated films was ascribed to S–S bonds, which, however, cannot be observed in our experiments. We suppose that this weak vibration may be smeared out by the strong background from the silicon 520 cm$^{-1}$ Raman peaks in our samples. Another available explanation is that S reacts with silicon wafer forming Si–S bond, whose signature is hidden in the broad band between 300 and 400 cm$^{-1}$ although this seems unlikely anywhere but the silicon surface.

An interesting change in intensity happens at 232 cm$^{-1}$, which is assigned to As–As vibration in pararealgar, As$_4$S$_4$, or to As clusters. A strong vibration at this position is found for as-grown films, which then becomes weak after vacuum annealing. The decrease of the intensity at 232 cm$^{-1}$ could indicate a transformation of the pararealgar phase into α-realgar As$_4$S$_4$ upon annealing as deduced above from the DSC data. Among the different polymorphs of α, β, and pararealgar-As$_4$S$_4$, pararealgar is the most voluminous. As a result, such a transformation should be accompanied by a decrease in the thickness of the film. Indeed, in all our experiments we have observed a decrease in film thickness upon annealing, as shown in the right axis of Fig. 4, although this could also result from pure bond angle relaxation of the silicon surface.

Typical Raman scattering spectra are shown in Fig. 3. These spectra were obtained using 0.2 mW pump power at 780 nm with a resolution of 1 cm$^{-1}$. A weak feature at 188 cm$^{-1}$ and another broad and strong feature at 342 cm$^{-1}$ dominate the Raman spectrum of the target. For the films, some separated or additional peaks appear. On the basis of the previous assignments, the peaks at 188, 211, 220, and 360 cm$^{-1}$ are ascribed to $\alpha(\beta)$-As$_4$S$_4$, and 303 and 342 cm$^{-1}$ to the orpiment phase As$_2$S$_3$. The appearance of the peaks corresponding to As$_4$S$_4$ indicates the existence of phase separation in all the films. The absence of S–S vibrations at 494 cm$^{-1}$ is puzzling given that S–S bonds are necessary in order to form As$_4$S$_4$ and maintain the chemical stoichiometry. Indeed, 129I Mossbauer spectroscopy measurement has provided evidence of the existence of an internal surface dressing the S-rich cluster. The weak vibration at 494 cm$^{-1}$ in thermally evaporated films was ascribed to S–S bonds, which, however, cannot be observed in our experiments. We suppose that this weak vibration may be smeared out by the strong background from the silicon 520 cm$^{-1}$ Raman peaks in our samples. Another available explanation is that S reacts with silicon wafer forming Si–S bond, whose signature is hidden in the broad band between 300 and 400 cm$^{-1}$ although this seems unlikely anywhere but the silicon surface.

An interesting change in intensity happens at 232 cm$^{-1}$, which is assigned to As–As vibration in pararealgar, As$_4$S$_4$, or to As clusters. A strong vibration at this position is found for as-grown films, which then becomes weak after vacuum annealing. The decrease of the intensity at 232 cm$^{-1}$ could indicate a transformation of the pararealgar phase into α-realgar As$_4$S$_4$ upon annealing as deduced above from the DSC data. Among the different polymorphs of α, β, and pararealgar-As$_4$S$_4$, pararealgar is the most voluminous. As a result, such a transformation should be accompanied by a decrease in the thickness of the film. Indeed, in all our experiments we have observed a decrease in film thickness upon annealing, as shown in the right axis of Fig. 4, although this could also result from pure bond angle relaxation of the silicon surface.

Typical Raman scattering spectra are shown in Fig. 3. These spectra were obtained using 0.2 mW pump power at 780 nm with a resolution of 1 cm$^{-1}$. A weak feature at 188 cm$^{-1}$ and another broad and strong feature at 342 cm$^{-1}$ dominate the Raman spectrum of the target. For the films, some separated or additional peaks appear. On the basis of the previous assignments, the peaks at 188, 211, 220, and 360 cm$^{-1}$ are ascribed to $\alpha(\beta)$-As$_4$S$_4$, and 303 and 342 cm$^{-1}$ to the orpiment phase As$_2$S$_3$. The appearance of the peaks corresponding to As$_4$S$_4$ indicates the existence of phase separation in all the films. The absence of S–S vibrations at 494 cm$^{-1}$ is puzzling given that S–S bonds are necessary in order to form As$_4$S$_4$ and maintain the chemical stoichiometry. Indeed, 129I Mossbauer spectroscopy measurement has provided evidence of the existence of an internal surface dressing the S-rich cluster. The weak vibration at 494 cm$^{-1}$ in thermally evaporated films was ascribed to S–S bonds, which, however, cannot be observed in our experiments. We suppose that this weak vibration may be smeared out by the strong background from the silicon 520 cm$^{-1}$ Raman peaks in our samples. Another available explanation is that S reacts with silicon wafer forming Si–S bond, whose signature is hidden in the broad band between 300 and 400 cm$^{-1}$ although this seems unlikely anywhere but the silicon surface.
amorphous structures. Alternatively, the data are also consistent with the Kolobovv-Adriaenssens conclusion\(^4\) that heating could switch homopolar As–As bonds to heteropolar S–As–S bonds. If this resulted in the formation of crystalline \(\alpha\)-realgar, then this explanation is also consistent with the DSC data.

The peak at 273 cm\(^{-1}\) found in high temperature annealed films marked by the star corresponds to the vibration in crystalline As\(_4\)S\(_4\) or As-rich glass.\(^10\) Since EDX measurements do not show any observable change of the chemical composition, and given the DSC data, then this peak most likely comes from the formation of As\(_4\)S\(_4\) microcrystals.

For the RI measurements (Fig. 4), we annealed the films on Si substrates below 180 °C. The RI of the film was found to increase with increasing annealing time. At 140 °C, the RI reaches 2.41 after 500 min annealing, and this time scale can be reduced to 300 min at 170 °C. Several different functions were tried to fit these experimental data; finally, the best fitting was achieved with the double exponential function. Two time scales from the double exponential function imply that two different relaxation processes occur during annealing. The Arrhenius plots in Fig. 5 reveal that a group of short relaxation time processes follow a linear relation, from which the activation energy was estimated to be 0.32 eV. Another group of long relaxation time processes show strong non-Arrhenius behavior at 150 °C. In combination with Figs. 1–3 we argue that the short time scale corresponds to structural relaxation within the amorphous state itself and the long time scale to the transformation from the amorphous states into the crystalline state. This is consistent with Angell’s paper,\(^25\) where he pointed out that the relaxation time of the amorphous-crystal transformation is much longer than that of amorphous-amorphous transformation. When Arrhenius behavior in the physical properties of a glass such as As\(_2\)S\(_3\) exists, the appearance of crystalline As\(_2\)S\(_3\) creates nucleation centers in the matrix which disrupt the As\(_2\)S\(_3\) glass network making it more fragile and this results in the appearance of the non-Arrhenius behavior.

IV. CONCLUSIONS

In summary, we have vacuum annealed amorphous As\(_2\)S\(_3\) films deposited by ultrafast laser ablation at different temperatures. DSC measurements indicate that \(T_g\) increases with increasing \(T_a\) up to 170 °C, and then a crystallization process appears. Raman scattering analysis suggests that our films are intrinsically phase separated, and two sorts of phase transformation occur during the annealing process. One is between different amorphous polymorphs, and another is transformation of the amorphous state into a crystalline state. These two sorts of transformations correlate with two different time behaviors identified via studies of the relaxation of the refractive index. Finally, one should note that from these studies, it would appear that thermal annealing of As\(_2\)S\(_3\) films deposited by pulsed laser deposition does not necessarily relax the films into a state characteristic of the bulk glass and hence is unlikely to lead to a material stable enough for optoelectronic applications.

ACKNOWLEDGMENT

This research was supported by the Australian Research Council through its Centres of Excellence, Discovery and Federation Fellow Programs.

\(^15\) http://www webelations.com/ webelations/ compounds/ text/ As/ As2S5- 1303340.html

