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Abstract 

Markov chain Monte Carlo (MCMC, the Metropolis-Hastings algorithm) has 

been used for many statistical problems including Bayesian inference, likelihood 

inference, and tests of significance. Though the method often works well, doubts 

about convergence remain in all applications. Here we propose MCMC methods 

distantly related to simulated annealing. Our samplers mix rapidly enough to be 

usable for problems in which other methods would require eons of computing time. 

They simulate realizations from a sequence of distributions, allowing the distribution 

being simulated to vary randomly over time. If the sequence of distributions is 

well chosen, the sampler will mix well and produce accurate answers for all the 

distributions. Even when there is only one distribution of interest, these annealing

like samplers may be the only known way to get a rapidly mixing sampler. 

These methods are essential for attacking very hard problems, which arise in 

areas such as statistical genetics. We illustrate the methods with an application 

that is much harder than any problem previously done by Markov chain Monte 

Carlo. It involves ancestral inference on a very large genealogy (7 generations, 2024 

individuals). The problem is to find, conditional on data on living individuals, the 

probabilities of each individual having been a carrier of cystic fibrosis. The uncon

ditional probabilities are easy to calculate, but exact calculation of the conditional 

probabilities is infeasible. Moreover, a Gibbs sampler for the problem would not mix 

in a reasonable time, even on the fastest imaginable computers. Our annealing-like 

samplers have mixing times of a few hours. We also give examples of samplers for 

the "witch's hat" distribution and the conditional Strauss process. 

The methods may also be useful for easier problems. It is a common concern 

about MCMC that one can never be sure that that the chain was well mixed and 

the answers are correct. Although we have no guaranteed convergence bounds for 

our methods, it does seem that annealing-like samplers are overkill in easy problems 

and should dispel doubts about convergence. 



1. Introduction 

Markov chain Monte Carlo (MCMC) in the form of the Metropolis-Hastings algo

rithm (Hastings 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953) 

and its special case the Gibbs sampler (Geman and Geman 1984) has been used in 

recent years to attack a wide variety of statistical problems that seem impossible to 

solve by other means. See, for example, Geyer and Thompson (1992), Geyer (1992), 

Besag and Green (1993), Smith and Roberts (1993), Tierney (in press) and the 

accompanying discussions and references. MCMC simulates realizations from prob

ability distributions whose densities are known up to a normalizing factor. If h(x) 
is a nonnegative integrable function on the sample space, the Metropolis-Hastings 

algorithm simulates a Markov chain whose equilibrium distribution is proportional 

to h(x) using only evaluations of h(x). No matter how complicated the problem, it is 

usually possible to find a Markov chain having the desired equilibrium distribution. 

If the chain is irreducible, time averages over the chain converge to expectations 

with respect to the stationary distribution as the Monte Carlo sample size goes to 

infinity, but if the chain is slowly mixing, it may take astronomically large sample 

sizes to get accurate estimates. Slow mixing typically occurs in problems where the 

sample space has high dimension and the sampler updates one variable at a time 

like the Gibbs sampler. Then the mixing time can be exponential in the number of 

variables. As the dimension increases the Gibbs sampler becomes useless at some 

fairly low dimension. 

To do MCMC on high-dimensional problems, better Markov chain samplers are 

needed, ones whose mixing time is does not increase exponentially with dimension. 

To do that it is necessary to make a radical change in the sampling scheme, getting 

away from updating one variable at a time. The first such method was the Swendsen

Wang (1987) algorithm for the Ising model and related models of statistical physics. 

A number of similar algorithms have been devised since (Besag and Green 1993; 

Wang and Swendsen 1990) and are grouped under the name "cluster algorithms." 

Although these algorithms are highly effective, they seem to apply only to problems 

where all variables are conditionally positively correlated given the rest and hence 

do not apply to many problems of interest to statisticians. 

A much more general algorithm was proposed by Geyer (1991a) under the 

name "Metropolis-coupled MCMC" (MCMCMC). An improvement of MCMCMC 

by changing from parallel simulation of distributions at different temperatures to 

random temperatures, lead us to the algorithm we called "pseudo-Bayes" in the 

first version of this paper. We later found that the key idea had been independently 

proposed by Marinari and Parisi (1992) under the name "simulated tempering." 

We have adopted their name even though our algorithm differs from theirs in some 

details and adds a number of ideas needed to make it work on a wide variety of 

problems. This paper explains our version of simulated tempering and provides 

examples of its use. 

Both MCMCMC and simulated tempering are based on an analogy with sim

ulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983). Simulated annealing is 

an algorithm for optimization rather than Monte Carlo, but it provides the useful 
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metaphor of starting with "heated" versions of the problem and slowly cooling down 

to the problem of interest. Since an MCMC algorithm is a Markov chain with sta

tionary transition probabilities, neither MCMCMC or simulated tempering "cools" 

like simulated annealing, but both use a one-parameter family of probability distri

butions indexed by a parameter called "temperature" ranging from the distribution 

of interest at the "coldest" temperature to a "hottest" distribution that is much 

easier to simulate. 

There have been other proposals in the statistics literature for speeding up the 

mixing of MCMC samplers, such as using the classical variance reduction methods 

of ordinary independent-sample Monte Carlo like importance sampling and anti

thetic variates (see Besag and Green 1993 and Tierney in press and the references 

cited therein), but those methods only reduce the mixing time by a constant fac

tor and would not would not change the exponential growth of mixing time with 

dimension. There have also been other proposals in the statistical physics litera

ture. Berg and Neuhaus (1991), following earlier work by Berg and other authors, 

propose to simulate a "multicanonical ensemble" as the stationary distribution of 

the sampler and reweight the multicanonical ensemble to the distribution of inter

est by the importance sampling formula. This is similar to work by Torrie and 

Valleau (1977) who called their importance sampling scheme "umbrella sampling," 

except that Torrie and Valleau do not present their method as a way of doing in

tractable high-dimensional problems but rather as one for obtaining stable estimates 

of expectations with respect to a wide range of distributions in the same spirit as 

the method of "reweighting mixtures" of Geyer (1991b). Frantz, Freeman, and Doll 

(1990) proposed a method called "J-walking" which is not an exact MCMC scheme, 

because it does not run a Markov chain with a specified stationary distribution, but 

only an approximation thereof. If it were corrected so as to be exact, it would be 

MCMCMC. 

We provide three examples of our simulated tempering method. The "witch's 

hat" distribution, provides a clear illustration of how simulated tempering works 

when Gibbs sampling fails. A more realistic example is the Strauss process, where 

the method is used for importance sampling in the spirit of Torrie and Valleau (1977) 

and Geyer (1991b). The third example is from pedigree analysis. We analyze a 

small 35-member pedigree for which the exact answers are known, and large 2024-

member and 5277-member pedigrees for which simulated tempering seems to be the 

only known feasible sampling algorithm. Although our methods were developed to 

do high-dimensional problems like those in pedigree analysis, they can be applied 

to any situation in which MCMC is used. In easier problems, these annealing-like 

samplers go a long way toward alleviating concerns about convergence. 

2. Algorithms 

Both MCMCMC and simulated tempering simulate a sequence of m distributions 

specified by unnormalized densities hi(x), i = 1, ... , m on the same sample space, 

where the index i is called "temperature". We call h1 ( x) the "cold" distribution and 
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hm(x) the "hot" distribution. Sometimes, as in Section 3, all m distributions are of 

interest, but usually only the cold distribution is of interest, and the rest are used 

only to increase the mixing and are not of interest in themselves. 

Simulated annealing uses a specific form of "heating" a problem that is some

times called "powering up." If h(x) is the unnormalized density for the distribution 

of interest, h( x )1113 for /3 > 1 are the "heated" unnormalized densities, including 

perhaps /3 = oo which gives h( x) = 1. This form comes from statistical physics 

where the distribution of a thermodynamic equilibrium has an unnormalized den

sity of the form e-U(x)/kT, where U(x) is the energy (Hamiltonian) function of the 

system, T is the absolute temperature and k is the Boltzmann constant. Such a 

distribution is called a Gibbs distribution and gives the Gibbs sampler its name. It 

is a special case of powering up with h( x) = e-U(x) and /3 = kT. 

Marinari and Parisi (1992) used this kind of heating because it was natural for 

their example (the random field Ising model, a Gibbs distribution), and we also use 

it in the conditional Strauss process example (also a Gibbs distribution). However, 

"powering up" is not an essential part of simulated tempering or MCMCMC. In the 

"witch's hat" example, Section 2.6, "powering up" is useless, but a different form 

of heating works fine. It is necessary to find a form of "heating" that works well in 

each particular problem. 

2.1. Simulated Tempering 

For now, suppose that the hi(x) have been specified. Guidance for choosing them 

will be given after the algorithm is described. We also suppose that there is available 

for each i a method for updating x that has hi( x) as a stationary distribution. For 

example this could be a Gibbs or Metropolis update for hi(x). The state of a 

simulated tempering sampler is the pair (x, i) where x takes values in the common 

state space of all the hi( x) and the temperature i is now random. The stationary 

distribution of the sampler is proportional to hi(x)'1r(i) where 1r(l), ... , 1r(m) are 

auxiliary numbers that must be chosen in advance so as to make the sampler work. 

We call 1r the pseudo-prior because hi ( x )1r ( i) looks like the product of likelihood 

and prior, i being the parameter and x the data, and because it determines the 

distribution of temperatures. 

The specification of one iteration of the "Hastings version" of the simulated 

tempering algorithm is as follows: 

1. update x using a Metropolis-Hastings or Gibbs update for hi. 

2. Set j = i ± 1 according to probabilities qi,j where q1,2 = qm,m-l - 1 and 
1 "f 1 . qi,i+l = qi,i-1 = 2 1 < i < m. 

3. Calculate the Hastings ratio 

hj ( X )1r(j) qj,i 
r = --------

hi ( X )1r( i) qi,j 

and accept the transition (set i to j) or reject it according to the Metropolis 

rule: accept with probability min(r, 1). 
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In the calculation of r in step 3, the factor qi,d qi,j is the Hastings (1970) modifi

cation of the Metropolis algorithm. It compensates for asymmetry in the proposed 

transitions. There is also a "Metropolis version" of the algorithm which in step 2 

uses the probabilities q1,1 = q1,2 = qm,m-1 = qm,m = ½ so the factor qi,d qi,j in step 3 

disappears. Because half the time it does not attempt to move from i = 1 or i = m, 

the Metropolis version makes fewer transitions and is slightly inferior. 

There are two built-in diagnostics. If any pair of adjacent distributions are 

too far apart, this will be indicated by low acceptance rates in step 3. Secondly, 

consider the occupation numbers of the chain, the number of iterations spent in each 

temperature i. If the sampler does not mix, the occupation numbers will be very 

uneven. This indicates the need for a better pseudo-prior. Simulated tempering has 

advantages over MCMCMC (Geyer, 1991a), in that we keep only one copy of the 

state x rather than m copies, so the chain uses less storage and also mixes better. 

The disadvantage is that simulated tempering needs a good pseudo-prior, which 

must be determined by preliminary experimentation. 

2.2. Determination of the Pseudo-Prior 

The stationary distribution of a simulated tempering Markov chain is a joint 

distribution for the pair (X, I) where Xis a random realization of the state variable 

x and J is a random realization of the "temperature" i. The marginal distribution 

of I is 

Pr(J = i) ex 1r(i) / hi(x) dµ(x) = c(i)1r(i) 

where c( i) = f hidµ is the normalizing constant for distribution i. Hence, if 

1r(i) = 1/c(i), the marginal distribution of J would be uniform, the sampler would 

spend a fraction ! of the time sampling each distribution, and there would be no 

temperature that is not visited frequently. The question is then how to determine 

the normalizing constants, since they are typically unknown. We offer three meth

ods: (1) using an MCMCMC sampler, (2) using stochastic approximation, and (3) 

trial and error. In very hard problems, neither of the first two work reliably, and 

some experimentation is necessary. In easier problems either of the first two may 

be used. 

If an MCMCMC sampler using the same sequence of distributions hi as the sim

ulated tempering sampler mixes, then a preliminary run of the MCMCMC can be 

used to estimate the normalizing constants, either by direct Monte Carlo integra

tion (Geyer and Thompson, 1992; Thompson and Guo 1991) or by reverse logistic 

regression ( Geyer 1991 b). 

Stochastic approximation, also called the Robbins-Munro method (Wasan 1969), 

for simulated tempering starts with any values for the pseudo-prior and updates the 

values as the chain progresses. At iteration k, the amount eo/[m(k + n0 )] is added 

to log1r(i) for each i not equal to the current state I, and the amount c0 /(k + n0 ) 

is subtracted from log 1r(J). Here Co and n0 are positive constants chosen by the 

user. It is necessary to choose a Co small enough and n0 large enough so that the 

algorithm does not make large overcorrections early in the run before many samples 
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have been collected. On the other hand, if c0 is chosen too small or n0 too large, 

it will take a very long time for the algorithm to converge to a useful pseudo-prior. 

Stochastic approximation works well on small problems and in large problems when 

started from near the answer. Our experience so far is that it does not converge 

rapidly enough to be useful in large problems when started far from the answer. 

Trial and error determines the 1r(i) starting at one end of the sequence of tem

peratures and proceeding to the other, usually starting at the hottest temperatures, 

which are easier to sample. Suppose that 1r(k + 1), ... , 1r(m) have been determined 

so that a simulated tempering sampler for the corresponding distributions mixes 

well and has roughly even occupation numbers. We now want to determine a good 

1r( k) so that a sampler mixes when hk is added to the set of distributions. Since 1r( k) 
may differ from 1r( k + 1) by many orders of magnitude, extrapolation using the 1r( i) 
already determined may only get within several orders of magnitude of a good 1r( k ). 

If 1r(k) is set orders of magnitude too small, the chain will run down to temperature 

k + 1 but never jump to temperature k. If 1r( k) is set orders of magnitude too large, 

the chain will run down to temperature k and stay there, never jumping back up 

to temperature k + 1. In either case, 1r( k) is increased or decreased as appropriate 

by an order of magnitude or more and the sampler rerun. Once 1r(k) is adjusted 

to the right order of magnitude, the sampler will mix going in and out of the cold 

distribution. Then the pseudo-prior can be more finely adjusted by dividing the 

1r( i) from the last run by the occupation numbers Pr( I = i) to get approximately 

uniform occupation numbers in the next run. 

This simplest form of trial and error is very slow. It can be speeded up by using 

stochastic approximation. One can often extrapolate five or more new components 

of the pseudo-prior vector close enough for stochastic approximation to converge. 

Suppose that 1r(k + 5), ... , 1r(m) have been determined so that a sampler mixes. 

Extrapolate 1r(k), ... , 1r(k + 4). Run stochastic approximation to get the 1r(i) to 

within an order of magnitude of the inverse normalizing constants. Then rerun the 

sampler without stochastic approximation to check that the sampler still mixes, and 

correct the pseudo-prior by dividing by the occupation numbers. 

With long temperature sequences ( e. g. 40 distributions), stochastic approxima

tion even when started with a good extrapolation may fail to get close enough for 

the chain to mix when stochastic approximation is turned off: the 1r( i) are still 

incorrect by more than an order of magnitude. In this case, "forcing the mixing" 

helps. If in step 3 of the simulated tempering algorithm, we multiply r by a constant 

greater than 1, this increases the acceptance rate. It also destroys the stationary 

distribution, but if the forcing constant is small, the difference between the forced 

and unforced schemes will be small, and adjustment of the pseudo-prior by dividing 

by the occupation numbers will be approximately right. So we start with a large 

forcing constant (100 or more) and reduce it in stages until the sampler mixes with 

no forcing. 

In our experience, a useful pseudo-prior can be found in a reasonable amount 

of time, roughly of the same order as the time spent running the sampler once the 

pseudo-prior has been determined. Note that it is not necessary to have the pseudo

prior be exactly the inverse normalizing constants. A simulated tempering sampler 
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has the correct stationary distribution for any strictly positive pseudo-prior. It will 

mix faster if the pseudo-prior approximates the inverse normalizing constants fairly 

closely, but high precision in the approximation is not necessary. 

2.3. Regeneration 

Some Markov chains can be made to regenerate, and this can improve estima

tion (Ripley 1987). This is easily done with simulated tempering. Choose the hot 

distribution hm(x) so that independent sampling is possible, and when i = m in 

step 1 of the algorithm update x with an independent sample from hm. Given 

i = m, the next value of x does not depend on the current value, and the future 

path of the chain is independent of the past. The set of states (x, i) such that i = m 

(x arbitrary) is an atom of the Markov chain, times when i = m are regeneration 

times, and segments of the sample path between regeneration times ( called tours) 

are stochastically independent. 

Regeneration greatly simplifies estimation of Monte Carlo error. It also elim

inates "start up bias" if we start at the atom ( at temperature m) and run until 

another regeneration time, so the sample path consists of a number of complete 

tours. Let Tk, k = 0, ... , I<, with To = 0 be the regeneration times. The sample 

path is (Xt, It) for t = 1, ... , TK, and 10 = m (the value of Xo is irrelevant). By 

an analog of Wald's lemma in sequential sampling (Nummelin 1984, pp. 76 and 81) 

the expectation over a complete tour is unbiased 

Tk 

E L g(Xt,lt) = E(g(X,l))E(ri) 
t=Tk-1+1 

where Eg(X, I) is an expectation with respect to the stationary distribution and 

the other two expectations are with respect to the distribution of the Markov chain. 

If we are trying to determine the expectation of f(X) under the cold distribution 

E (! (X) I I = 1), we calculate the sums 

Tk 

zk = I: f(Xt)w(lt) 
t=Tk-1+1 

Tk 

Nk= I: w(lt) 
t=Tk-1+1 

for k = 1, ... , I< where w(I) is 1 when I = 1 and O otherwise. Then the Zk are 

i. i. d. with expectation E(f(X)w(I))E(r1 ), and the Nk are i. i. d. with expectation 

E( w(J) )E( r1 ). Hence by the ergodic theorem 

(1) 

If the variances of Zk and Nk can be shown to be finite, the standard error of 

the Monte Carlo estimate can be calculated using the ratio estimator from finite 
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population sampling (Ripley 1987, p. 158 ff.) Let /J,K denote the left hand side 

of (1) and µ the right hand side. Let Vi = Zk - µNk. Then the Vi are i. i. d. 

mean zero random variables with finite variance (say ui) that can be estimated by 

a-i = } I:f=1 Vl. Now K-1
/

2 (½ + · · · + VK) is asymptotically Normal(0,ui ), so 

}R-(Vi + · · · + VK) 
,/K(µK - µ) = -k(Ni+ ... + NK) 

converges to Normal(0, uif v2
) where v is the expectation of the Nk. Thus the 

asymptotic variance of /J,K can be estimated by ( a-i / v2
) / I( where D is the sample 

mean of the Nk. 

Typically only a small fraction of tours will visit the cold distribution so most 

of the Nk will be zero. Hence one might wonder whether it would not make more 

sense to average only over "informative tours" for which Nk is nonzero. It can be 

easily checked that one gets the same mean and variance estimates either way as 

long as /( rather than /( - 1 is used in computing a-i. 
It is not necessary that the number of tours /( be fixed in advance of the run. 

A simple martingale argument shows that 'TK can be any Markov stopping time, for 

example the first regeneration time after some fixed number of iterations (Mykland, 

Tierney, and Yu 1992). 

Before leaving this issue we should explain a curiously attractive error. It seems 

natural to look at the estimates of probabilities Zk/ Nk obtained from single batches. 

These vary widely and seem to say something about the sampling variability, but 

they do not. Nothing is known about the distribution of Zk/ Nk, in particular its 

expectation is not the probability of interest, since E(Zk/Nk) -:/ E(Zk)/ E(Nk). 

The distribution of the tour lengths Ni will generally have a long tail so that there 

are many short tours and a few long ones that contribute most of the information. 

This is an unavoidable consequence of stationarity and slow mixing of the cold 

chain. If each tour only looks at a small region of the state space, the only way the 

stationary distribution can be correct is if tours that enter the cold chain in high 

probability regions are much longer than tours that enter in low probability regions. 

Any attempt to shorten the tail of the distribution of tour lengths must introduce 

bias. 

Regeneration using an independence hot chain is not a necessary part of simu

lated tempering; it was not used by Marinari and Parisi (1992). However, in a hard 

problem where little is known about the model, it seems best to use the hottest pos

sible distribution, that is, independent sampling. There is no way to know where 

it is safe to stop heating the distributions short of the "infinitely hot" indepen

dent sampling. When the sampler for the cold distribution alone would be very 

slowly mixing, it is actually the regeneration-excursions up to hot temperatures 

and back-that is providing all of the mixing. So regeneration estimates are very 

natural. Other variance estimation estimates may appear to be more stable, but 

appearances are deceiving. They cannot be better in this situation and may well be 

worse. 

Despite this, if one knows either from theory or experience that a simulated 

tempering sampler without an independence hot chain mixes well and is safe to use, 
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then regeneration should not be used, since, all other things being equal, the fewer 

distributions the better. But we usually do not have such knowledge, so it seems 

safer to use regenerating samplers. We note that one need not have an independence 

hot chain to use regeneration, since regeneration could be obtained by "splitting" 

the hot chain (Mykland, Tierney, and Yu 1992), but we have not tried this. 

2.4. How Many Distributions? 

The dynamics of a simulated tempering sampler are very complex, so it is difficult 

to give criteria for chasing the number and spacing of the distributions. Some 

intuition, however, can be obtained from examining a simplified model. Consider 

a random walk on the integers 1, ... , m having transitions to adjacent states with 

probability p/2 and staying at the same point with probability 1- p for the interior 

points and 1 - p/2 for the endpoints. In the terminology of Feller (1968) this is a 

random walk with reflecting barriers at x = 1/2 and x = m + 1/2. This models 

a simulated tempering sampler with constant acceptance rate p independent of the 

state. 

There are a variety of properties that could be called the mixing time of the 

random walk. Here we consider the expected time taken to move from one end 

to the other, which is the same as the "expected duration of the game" in Feller's 

terminology for a random walk with a reflecting barrier at x = 1/2 and an absorbing 

barrier at x = m. Using the methods of Feller (1968, chap. XIV) we find that the 

expected time to go from x = 1 to x =mis m(m - 1)/p. 

This suggests that acceptance rates should not be too large. Certainly it is a 

losing proposition to double the number of distributions unless that multiplies the 

acceptance rate by a factor of 4. When the acceptance rate is already above 25% this 

is not possible. The actual sampler may behave rather differently from the random 

walk model, however, so we recommend acceptance rates in the range of 20 to 40%. 

This agrees with the behavior of some of our examples (Sections 2.7 and 4.4). It 

is not always possible, though, to obtain acceptance rates this low (Section 2.6) no 

matter how wide the temperature gaps. So this recommendation cannot apply to 

all models. The problem is that acceptance rates averaged over the whole sample 

space may not be reflective of acceptance rates in parts of the sample space that 

are important for mixing (Section 2.6). So average acceptance rates may not be a 

sufficient guide, but we have no better proposal at this time. 

2.5. Adjusting the Spacing 

Given information about the acceptance rates for a run, how can we adjust the 

number and spacing of the distributions to get a desired acceptance rate? Suppose 

the possible distributions have a one-parameter family of unnormalized densities h>., 

0 ::; A ::; 1. Suppose the parameter values for a run were O = At, A2 , ••• , Am = 1, 

and suppose that the observed acceptance rates were ai, ... , am-t· For 1 < i < m-1 

this rate ai can be taken to be the average of the rates for transitions from Ai to Ai+i 

and vice versa. Because the 1 --+ 2 transitions are attempted twice as frequently 
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as the 2 ---+ 1 transitions, they are accepted only half as often, the averages are 

unbalanced and it is best to define a1 to be the average of the 2 ---+ 1 transition rate 

and half the 1 ---+ 2 transition rate. A similar definition is used for am-l · 

The exact effect of an adjustment does not matter; any reasonable model will 

suffice, since the adjustment will need to be iterated in any case. We take as a model 

of the acceptance rate that the rate for transitions between h>-.i and h>-.i+i is 

( f'·+ 1 
) ai = exp - l>-.i' b(s) ds (2) 

where b( s) is some unknown function. We estimate b( s) as a step function that is 

constant on the intervals between the Ak 

1 1 
b(s) =bi= ---log-, 

Ai+i - Ai ai 
Ai< s < >,.i 

The following algorithm then determines new intervals with endpoints >..t, ),.2, ... 
that have a specified acceptance rate a according to the model (2). 

1. Set >..i = 0, and set i = j = I. 

2. Set r = a. 

3. Set >..t+i = >..t + l. log ~. 
] 

4. If >..t+i < Aj+i, increase i by 1 and go to step 2. 

5. Set r = r / exp ( bi( Aj+1 - >..T)) Increase j by 1 and go to step 3. 

Experience shows that this method tends to overshoot in its corrections. If the 

observed acceptance rates are about 90% and one asks for 30%, it may produce ),.*'s 

that give acceptance rates varying from 10 to 30 percent. A few iterations of the 

process, however, do give approximately uniform acceptance rates at the desired 

level. 

2.6. The Witch's Hat Distribution 

The "witch's hat" distribution in two dimensions is the distribution on the unit 

disc with a density shaped like a witch's hat, with a broad flat brim and a high 

conical peak. It was proposed by Matthews (1991) as a counterexample to the 

Gibbs sampler. In higher dimensional analogs of the two dimensional distribution, 

the mixing time of the Gibbs sampler increases exponentially fast with dimension, 

since all but one coordinate must be lined up with the peak before a Gibbs step can 

move from the brim to the peak and this has exponentially small probability. 

Here we use for illustration a simplified witch's hat distribution defined as follows. 

Let a and /3 be real numbers with 0 < a ~ I and /3 ~ 0. Define a distribution on 

the unit hypercube in d dimensions [0, l]d as follows. The unnormalized density is 
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Table 1: Results for the simplified witch's hat distribution. The cold distribution is 

the top row and the hot distribution the bottom; a and /3 are the parameters of the 

witch's hat distribution, µ is the probability of the peak, which is equal to a for the 

f3 values chosen here,µ is the estimate ofµ obtained by averaging over the samples. 

The "actual error" is the difference between µ and µ = a. The "estimated error" is 

the standard error of µ estimated using the ratio estimator. 

actual estimated 

a /3 µ error error 

0.333 1.03 X 1014 0.335 0.001 0.031 

0.351 2.32 X 1013 0.354 0.003 0.031 

0.370 5.24 X 1012 0.373 0.003 0.031 

0.390 1.19 X 1012 0.382 -0.008 0.030 

0.411 2.70 X 1011 0.403 -0.008 0.030 

0.433 6.14 X 1010 0.424 -0.009 0.029 

0.456 1.41 X 1010 0.441 -0.016 0.028 

0.481 3.23 X 109 0.458 -0.023 0.027 

0.507 7.45 X 108 0.486 -0.021 0.026 

0.534 1.73 X 108 0.510 -0.023 0.024 

0.562 4.04 X 107 0.541 -0.021 0.022 

0.593 9.52 X 106 0.570 -0.023 0.021 

0.624 2.27 X 106 0.607 -0.018 0.019 

0.658 5.46 X 105 0.642 -0.016 0.017 

0.693 1.34 X 105 0.676 -0.017 0.015 

0.731 3.33 X 104 0.715 -0.016 0.013 

0.770 8.55 X 103 0.759 -0.011 0.010 

0.811 2.28 X 103 0.810 -0.002 0.007 

0.855 6.46 X 102 0.855 0.000 0.005 

0.901 1.99 X 102 0.903 0.002 0.003 

0.949 6.98 X 101 0.948 -0.001 0.001 

1.000 0.00 1.000 0.000 0.000 

equal to 1 + /3 on the small hypercube [0, a]d and equal to 1 elsewhere in [0, 1 ]d. We 

still call the part of the distribution over the small hypercube the "peak" and the 

rest the "brim" although the density no longer looks much like a witch's hat. These 

distributions for various values of the parameters a and /3 make up the simplified 

witch's hat family. 

For our example, we used d = 30 and 22 temperatures shown in Table 1. The 

hot distribution was the uniform distribution on the unit hypercube, which is a 

simplified witch's hat distribution with a = 1 or /3 = 0. The cold distribution 

had a = 1/3 and /3 ~ 1014 chosen so the probability of the peak was exactly 1/3. 

The a's for intermediate temperatures were chosen so that the a's were equally 

spaced on the log scale and the area of each peak is the same fraction (0.20816) 
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of the peak for the next higher temperature. Thus there is a constant proportion 

of proposals in the peak in attempted jumps down in temperature. The (3's were 

chosen so that the probability of the peak was equal to a. Since the hot distribution 

permits independent sampling the sampler is regenerating. For this example we 

used a pseudo-prior that was exactly equal to the inverse normalizing constants 

1/(1 + (3ad). 

Some form of heating is necessary, but for the witch's hat "powering up" is 

useless. Raising the cold distribution to a power still produces a distribution with 

two levels, the peak and the brim, in the same positions, so powering up is the same 

as decreasing (3 while leaving a fixed. It should be clear that this makes the peak no 

easier to hit and so gives no improvement over ordinary Gibbs sampling. If the hot 

distribution has (3 = 0, it is a regeneration point, so regeneration methods can be 

used to estimate variance. The overall acceptance rates will be high, but almost all 

tours will stay in the brims of the distributions. Over a very long run of the sampler 

there will eventually be a transition from the brim to the peak of some distribution, 

and then the sampler will stay in the peaks for 1012 iterations. Until such a long 

tour is seen, the regeneration estimates of variance will be completely erroneous. 

A Gibbs sampler for the cold distribution has a very hard time. The volume 

of the peak is (1/3)30 = 5 x 10-15 so it takes it a very long time to jump into 

the peak (and then stationarity requires that it take a very long time to jump 

out). A more careful analysis uses the fact that the peak is an atom so the Gibbs 

sampler is also regenerating. By the renewal theorem, the mean regeneration time 

is 1/ P(peak) = 3. The probability of leaving the peak in one Gibbs update is 

q = 2 x 10-14 so the probability of leaving in one scan is 1- (1-q)d = 6 x 10-13
• In 

order that the average time for tours of all lengths be 3, the average length of tours 

of length greater than one must be 3.4 x 1012
• We can take this to characterize the 

mixing of the Gibbs sampler. It will need 1012 scans to get close to mixing and 10 

or 100 times that to get any accuracy in the answers. 

This is not surprising. The mixing time of the Gibbs sampler increases expo

nentially in d. The simulated tempering sampler, in contrast, needs a number of 

temperatures that is 0( d) and the mixing time is approximately quadratic in the 

number of temperatures (Section 2.4), so the mixing time is approximately O(d2). 

The simulated tempering sampler was run to the first regeneration point after 

1,000,000 iterations, which was iteration 1,000,110. This took 5 minutes and 42 

seconds on a workstation that does about 1.5 million floating point operations per 

second. There were 42,556 tours of which all but 5567 were of length one (regen

erations on consecutive iterations). The distribution of the regeneration times was 

skewed (of course) but not extremely long-tailed. The longest tour (11556 itera

tions) made up only 1 percent of the total iterations. The largest 17 tours made up 

10 percent, the largest 165 made up 50 percent, the largest 773 made up 90 percent. 

The simulated tempering sampler gets one significant figure accuracy in about 

106 scans. The last three columns of Table 1 above give the estimates µ of the 

probabilities of the peak of each distribution, the actual deviations of the estimates 

from the truth, and the estimated standard errors using the regeneration property 

and the ratio estimator of variance. 
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Table 2: Acceptance rates for the sampler for the simplified witch's hat distribution. 

temperature going up going down 

1 0.720 

2 0.718 0.707 

3 0.702 0.690 

4 0.704 0.676 

5 0.684 0.659 

6 0.665 0.637 

7 0.652 0.627 

8 0.643 0.615 

9 0.615 0.594 

10 0.596 0.570 

11 0.575 0.546 

12 0.554 0.519 

13 0.518 0.496 

14 0.495 0.467 

15 0.468 0.431 

16 0.433 0.400 

17 0.402 0.363 

18 0.363 0.322 

19 0.322 0.286 

20 0.280 0.263 

21 0.261 0.260 

22 0.262 

The Gibbs sampler would need to run a million times as long as the simulated 

tempering sampler to have even a hope of diagnosing its own failure. If run for much 

less than 1012 iterations, the Gibbs sampler will give a completely wrong answer, 

either all or none of the iterations would be in the peak, depending on the starting 

position, and no diagnostic based on the samples would diagnose the nonconver

gence. This is, of course, well known. It was the original point of the witch's hat 

problem, that the Gibbs sampler will do arbitrarily badly as the dimension increases. 

Acceptance rates for jumps of the simulated tempering sampler are shown in 

Table 2. These acceptance rates are much larger than the recommendations in 

Section 2.4 at the cold end, but they cannot be made as small as 20 to 40%. Going 

down between temperatures 2 and 1, for example, the probability at stationarity 

of being on the brim before the jump is 1 - o: = .65. When on the brim, the 

probability of a proposal on the brim is nearly one, giving a contribution to the 

overall acceptance rate of 65% for jumps down in temperature at points on the brim 

of both distributions. The probability of being in the peak before the jump is .35, 

and the probability of a proposal on in the peak is is 20.8% and most such proposals 

are accepted, giving a contribution to the overall acceptance rate of 7.3% for jumps 
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down in temperature at points in the peak of both distributions. So although there 

is an overall acceptance rate of 72%, only 7% of that is involved in simulating the 

peak of the cold distribution. 

2.7. A Small Pedigree Example 

This example uses a small instance of the genetics problems which are the subject 

of Section 4.1. The problem has 23 discrete variables, the genotypes of 23 individuals 

in a test pedigree from Thompson (1980). The problem is to find the conditional 

distribution of the genotypes given observed data (explained further in Section 4.1). 

The Gibbs sampler would work satisfactorily on this problem; we used it as a test of 

correctness of the code and algorithms. The exact distribution can be calculated by 

"peeling" (Cannings, Thompson, and Skolnick 1978), and this also gives the exact 

normalizing constants. 

Stochastic approximation starting with a uniform pseudoprior on 13 distributions 

converged to within 5% of the ideal pseudoprior in 2,000,000 iterations. The method 

described in Section 2.5 was then used to select spacings of the distributions to obtain 

approximately equal acceptance rates. The results are shown in Table 3. 

The mixing time of the sampler, reflected in the number of end-to-end excursions, 

is maximized at an acceptance rate of about one-third. This agrees with the analysis 

of Section 2.4 and with our experience with larger pedigrees. Acceptance rates above 

50% actually make for a slower sampler. A fairly broad range of acceptance rates 

between 20 and 40 percent are close to optimal. 

It took several iterations to achieve the fairly equal acceptance rates shown in 

Table 3. The first run using 13 distributions produced acceptance rates varying 

between 56 and 83 percent. The method of Section 2.5 applied to these results 

predicted equal acceptance rates of 24% with four distributions, but the actual 

Table 3: Results on a test pedigree showing the effects of varying the number of 

distributions. Column labels: dist. number of distributions, iter. number of it

erations ( the first regeneration point after 2,000,000 iterations), tours number of 

complete tours from the cold distribution to the hot distribution and back to the 

cold, ave. average acceptance rate, max. maximum acceptance rate, min. minimum 

acceptance rate. 

dist. iter. tours ave. max. mm. 

20 2000546 2055 0.811 0.840 0.787 

10 2000046 6177 0.614 0.635 0.597 

9 2000047 7082 0.565 0.597 0.501 

7 2000474 9131 0.431 0.471 0.393 

6 2000090 10077 0.341 0.371 0.329 

5 2000018 9515 0.213 0.247 0.183 

4 2000111 5830 0.075 0.093 0.065 
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acceptance rates varied between 4 and 13%. So the method did not accurately 

predict acceptance rates ( not surprising in view of the ad hoc nature of the model). 

Another application of the method predicted equal acceptance rates of 6.8%, and the 

actual acceptance rates varied between 6.5% and 9.3%. The model does fairly well 

at equalizing rates when the rates are not being changed much, and with iteration 

the method of Section 2.5 can equalize acceptance rates. 

3. Likelihood Inference for the Strauss Process 

The Strauss process (Strauss 1975) is the simplest non-Poisson spatial point 

process. Here we deal with the conditional Strauss process, which has realizations 

consisting of a fixed number of points in a bounded region. Let t( x) denote the 

number of pairs of points ( called neighbor pairs) separated by less than some fixed 

number r. A conditional Strauss process is any distribution in the exponential family 

with unnormalized densities he( x) = et(x)e with respect to the "binomial process" 

under which then points are uniformly distributed. Our example has 50 points in 

the unit torus and r = 0.2. 

The first sampler for the conditional Strauss process was a Gibbs sampler de

scribed by Ripley (1979). A Metropolis sampler described by Geyer and MfeSller 

(in press) is much more efficient and, unlike the Gibbs sampler, can be used for 

both the unconditional and conditional processes. Even the Metropolis algorithm 

is inefficient for a process with strong dependence (large positive 0). A simulated 

tempering sampler is better. 

The special case 0 = 0 is the binomial process, which can be sampled indepen

dently and is a regeneration point. As 0 increases so does the expected number of 

neighbor pairs, and for large 0 all of the points are in one small clump and the value 

of t( x) is very near its maximum (5
2
°) = 1225 with very high probability. Prelimi

nary runs showed that this occurs for 0 > .16, so we adjusted a sampler to have 9 

distributions, 0 = 0.0, 0.0869, 0.1143, 0.1240, 0.1267, 0.1296, 0.1348, 0.1448, 0.16, 

with approximately equal acceptance rates ranging between 65 and 77 percent. The 

results are shown in Figure 1. Note that the horizontal coordinate is not 0 but the 

distribution index. Fewer distributions and lower acceptance rates would have made 

for faster mixing, but Figure 1 would not have given as nice a picture of the Strauss 

process. 

We ran for 405,677 iterations making 46,166 tours between regenerations, with 

90 tours hitting the cold chain. The running time was 2 hours 23 minutes on a 

workstation that does about 1.5 million floating point operations per second. This 

one sample describes this conditional Strauss process for all values of 0 between O 

and 0.16. In particular the mapping between the canonical parameter 0 and the 

mean value parameter r(0) = Eet(X) can be determined by importance reweighting 

the sample. Let Xk, h denote the samples, which have unnormalized stationary 

density hei ( x )1r( i), and let 

. he(x) 
we(x,i)= h () er 

Bi X 1r i 
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Figure 1: Scatterplot of the canonical statistic versus distribution number for the 

Strauss process. The x-coordinates are integer-valued, but jittered. Every 100th 

iteration from a run of 405,677 iterations is plotted. 

Then 

n-HX) (3) 

for each 0 and Tn(0) is the natural Monte Carlo approximation of r(0). This curve is 

shown in Figure 2. For this one-parameter exponential family maximum likelihood 

estimation is a simple matter of finding the 0 such that Tn(0) equals the observed 

t(x). The general multiparameter case (Geyer and Thompson 1992; Geyer 1994) 

can be handled analogously. Monte Carlo likelihood theory applies to simulated 

tempering samplers just like any other Markov chain sampler. The only real novelty 

is in the faster mixing. To see how far the practice of Monte Carlo likelihood 

inference has come in just a few years, compare with Strauss (1986) in which much 

more computing was used to get a figure like Figure 2. 
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Figure 2: Plot of the mean value parameter r( 0) versus the canonical parameter 0 for 

the Strauss process. The dots are the the empirical averages for the 9 distributions 

sampled. The line is Tn(0) given by equation (3). 
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4. Ancestral Inference in the Hutterites 

4.1. The Genetic Model 

We consider the inheritance at single diallelic genetic locus. This means that 

each individual has two genes, one inherited from the father and one from the 

mother and that there are two types of genes (alleles) denoted A and a. Hence 

each individual has one of three possible genotypes AA, Aa or aa. In particular 

we consider a lethal recessive disease; that is, the AA and Aa genotypes produce 

individuals with normal characteristics and the aa genotype is lethal, all individuals 

dying before the age of reproduction. Conversely, individuals diagnosed as having 

the disease have genotype aa, and all individuals who have survived to adulthood 

( and, in particular, any parent) must be either genotype AA or Aa ( called non

carrier or carrier respectively). The parents of diagnosed cases must be carriers, 

since they are not affected but have passed an a allele to a child. These are the 

known carriers. All other individuals have unknown carrier status. The problem of 

interest is to compute the probability distribution of carrier status over the pedigree 

given the observed data. 

Mendel's laws specify the probability of an individual's genotype given the geno

types of the parents. If neither parent is a carrier, the child must be a non-carrier. 

If one parent is a carrier, the child has probability 0.5 of being a carrier and 0.5 of 

being a non-carrier. If both parents are carriers, the probability is 0.25 of the child 

being AA, 0.5 of being Aa, and 0.25 of being aa. Individuals whose parents are 

unknown (founders) are assumed to have genes that are a random draw from the 

population gene pool. Their genotype probabilities are given by 

Pr(AA) = (1 - p)2, Pr(Aa) = 2p(l - p), Pr(aa) = p2 (4) 

where p is the population frequency of the disease gene ( assumed known). This 

specifies the probabilities in the model. 

Tracing the ancestry of rare recessive diseases in genetic isolates has been often 

considered (for example, Castilla and Adams 1990; Hussels and Morton 1972; Sorsby 

1963; Thompson and Morgan 1989). However, except where an exact probability 

can be computed (Thompson 1978), the methods used are of doubtful value. On 

a large complex pedigree, exact computation of posterior probabilities is infeasible. 

Although, the Gibbs sampler (Geman and Geman 1984) has been used successfully 

to estimate probabilities of ancestors' genotypes on small pedigrees (Sheehan 1990; 

Sheehan and Thomas 1993), on the pedigree of our example the Gibbs sampler 

does not mix, even in very long runs (M. Emond, unpublished results). For large 

pedigrees, methods like the Gibbs sampler that update one variable at a time can 

take eons to get a representative sample of genotypic configurations. 

4.2. The Genealogy and Cystic Fibrosis 

We illustrate the methods of this paper with a problem that has stretched them 

to their limits; the ancestry of cystic fibrosis (CF) genes in the Hutterite population 
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of North America. The structure of this large Caucasian genetic isolate has been 

described by Hostetler, (1974), and the CF data by Fujiwara et al. (1988). The 

current population of over 30,000 traces its entire ancestry to about 85 founders 

mostly living in the eighteenth century. About 450 immigrants came to North 

America in the late nineteenth century, and the population expanded very rapidly 

thereafter. Cystic fibrosis is a recessive and (until recently) lethal genetic disease. 

The frequency of CF genes in Caucasian populations is typically about 0.025; in 

large Caucasian populations about 1 in 1600 births is affected by CF, and about 1 

in 20 individuals is a carrier. This gene frequency seems plausible for the founders 

of the Hutterite population, although, due to genetic drift and founder effects, the 

frequency in the current population may be higher. 

There are 27 couples who are known to be parents of CF cases in the data set 

we consider (K. Morgan, personal communication). These 54 known carrier parents 

together with all their direct ancestors traced back to the original founders number 

771. These founders, the majority of whom lived before 1750, number 77. This is 

the core pedigree. 

The database of Hutterite individuals born to 1981 (T. M. Fujiwara and K. 
Morgan, unpublished data) contains 24,875 individuals. Analysis of this entire pop

ulation pedigree is feasible, but would require huge amounts of computing time. 

An analysis of CF ancestry based only upon the core pedigree would, however, be 

biased. The ancestors of current cases had many other descendants who lived to 

adulthood, and therefore cannot have been affected by CF. For simplicity, we restrict 

attention to the offspring of members of the core pedigree. Where these offspring 

themselves had offspring they can be assumed unaffected. There are 1242 such in

dividuals. Adding them to the core pedigree makes an incomplete pedigree of 2013 

individuals, adding individuals so that the pedigree is "closed" ( every individual has 

two parents or none) makes a 2024 member pedigree, which is the subject of our 

analysis. We later analyzed a larger pedigree of 5277 individuals, adding to the core 

pedigree all the children and grandchildren of the core pedigree who themselves had 

offspring ( and so can be assumed unaffected). 

In computing probabilities on pedigrees, it is often convenient to pre-process 

information from the periphery of the structure (Thompson 1978), and such con

tributions to the overall result can be incorporated into Markov chain Monte Carlo 

sampling on the remainder (Thompson 1991). Here, we replace children with no 

offspring by pair potentials on their parents. Let x be the genotype of such a child 

and Xm and x J be the genotypes of the child's parents. Then the contribution to 

the probability distribution for this child is the pair potential 

</>(xm,XJ) = EPr(data on the childlx)Pr(xlxm,XJ) 
X 

The marginal probability distribution for the remaining individuals is simply the 

distribution for the rest times the product of the pair potentials. For the Hutterites, 

this greatly decreases the amount of work the sampler must do. In our 2024-member 

pedigree, 1209 have no offspring in this pedigree and can be replaced by pair poten

tials on their parents. This leaves only 815 individuals to be sampled. The sampler 
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not only takes less than half the time to make one scan but is also less sticky since 

the potentials provide part of the distribution exactly. In the 5277-member pedigree, 

3167 individuals were replaced by pair potentials leaving 2110 actually sampled. 

4.3. Hot Distributions and Hot Priors 

The regeneration method needs a "hot" distribution hm for which independent 

sampling is feasible. For our pedigree analysis problems we used two different dis

tributions for independent sampling: gene drop and all heterozygotes. Gene drop is 

the distribution of the genotypes when the data are ignored. It is easily simulated 

by drawing the founders' genotypes independently from equation ( 4), then going 

down the pedigree simulating offspring genotypes conditionally on their parents'. 

All heterozygotes is the distribution which gives probability one to the genotypic 

configuration in which every individual is a carrier, Aa. (The cases, who are known 

to have genotype aa, are not in the 2024-member or 5277-member pedigrees.) This 

distribution is even easier to simulate; every realization is the same. Similar distri

butions can be found for other problems. There is often some special case ( such as 

no data in pedigree analysis) for which independent sampling is possible, and, when 

the state space is discrete, a distribution concentrated at one point can always be 

chosen. 

There is no reason not to change other aspects of the model as well. We also 

experimented with individual-specific "hot priors" changing the prior distribution 

for certain founders so that the gene drop would make them carriers more frequently. 

Adjusting the hot priors so that the founders have approximately the same carrier 

frequencies in both the hot and cold distributions makes the sampler more efficient, 

but this requires some iteration. Note that the hot priors do not alter the cold 

distribution; the sampler mixes faster with good hot priors but it produces valid 

results regardless. 

Either of these two hot distributions can be thought of as resulting from altering 

the penetrances (probability of observed data given the genotypes). The gene drop 

distribution results from uniform penetrance Pr( data I genotype) = ! for all data val

ues and all genotypes, where mis the number of data values, and the all heterozy

gotes distribution results from complete penetrance of the heterozygote genotype 

with data on all individuals Pr( datalheterozygote) = 1 and Pr( data I genotype) = O 

for the other genotypes. For "warm" distributions intermediate between hot and 

cold we used penetrances that were convex combinations of the hot and cold pene

trances, A of the hot penetrances and 1-A of the cold penetrances, where O ~ A ~ 1. 

When hot priors were used, the warm distributions had similar convex combinations 

of the cold and hot priors. 

4.4. Results 

The results of our analysis of the 2024-member pedigree are shown in Figure 3 

and the first two columns of Table 4. Figure 3 gives a histogram of all the carrier 

probabilities. These should be compared with the prior mean ( unconditional proba-
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Figure 3: Histogram of the estimated carrier frequencies for the 76 founders of the 

core pedigree who were not known carriers. 
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Table 4: Hutterite Carrier Frequencies. Column labels: 2024 members refers to 

the pedigree containing ancestors of affected individuals and their first generation 

offspring who themselves had offspring and are thus known to not have CF, 5277 

members refers to the pedigree containing ancestors of affected individuals and their 

first and second generation descendents who themselves had offspring, mean is the 

estimated posterior probability of being a carrier, s. e. is the Monte Carlo standard 

error of the estimate. The first column gives arbitrary labels for the individuals. 

The pairs C-D, E-F, G-H, and 1-J are married couples with no other spouses. 

2024 members 5277 members 

mean s. e. mean s. e. 

A 0.204 0.005 0.318 0.024 

B 0.195 0.015 0.294 0.031 

C 0.183 0.014 0.088 0.021 

D 0.159 0.011 0.089 0.023 

E 0.140 0.013 0.140 0.019 

F 0.134 0.013 0.109 0.015 

G 0.133 0.014 0.076 0.011 

H 0.127 0.012 0.071 0.009 

I 0.121 0.008 0.164 0.015 

J 0.116 0.008 0.163 0.016 

K 0.109 0.011 0.073 0.016 

L 0.104 0.009 0.063 0.011 

M 0.094 0.014 0.060 0.007 
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Figure 4: Histogram of log (base 10) of tour lengths in the Monte Carlo for the 

Hutterite pedigree. 

bility) of being a carrier, which is 0.049. Of the 77 founders of the core pedigree, one 

is a known carrier. Of the other 76 founders, 26 are below the prior carrier proba

bility and 50 above, though 31 of these are less than 2 standard errors ( of the Monte 

Carlo) from the prior mean. Of the 45 founders who are more than two standard 

errors from the prior mean, 12 are below the prior mean and and 33 above. A few 

founders are far above the unconditional probability and hence are much more likely 

to have been carriers. The 13 with the highest carrier probabilities ( as estimated 

by the Monte Carlo) are shown in Table 4. Their probabilities of being carriers 

range from almost 2 to over 4 times the prior probability. Although this is only a 

weak check, it is comforting that the couples C-D, E-F, G-H, and 1-J, who must 

have exactly the same true carrier probabilities, have Monte Carlo estimates that 

agree to within the estimated Monte Carlo error. The conditional expectation of the 

number of CF genes in these 76 founders is 5.58 (standard error 0.05) as compared 

to the unconditional expectation of 3. 705. 

These estimates were based on a run of 11,555,470 iterations ( each iteration being 

one Gibbs scan of the 815 individuals being sampled plus an attempt to jump from 
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Figure 5: Scatterplot of number of iterations during a tour that individual "B" was 

a carrier against tour length. The line goes through the origin and has slope equal 

to the estimated carrier frequency for individual "B." 

one distribution to another) during which there were 355 tours that spent any time 

sampling the distribution of interest. The total running time was 20 days 3 hours 

on a workstation that does about 2 million floating point operations per second. 

The standard errors are based on the sampling variability of these 355 tours. 

The distribution of tour lengths is shown in Figure 4. The tours range in length 

from 1 to 8830 and approximately follow Zipf's law: 35 tours account for half of the 

total length, another 38 account for half of the remaining half, another 37 for half 

of the remaining quarter, another 34 for half of the remaining eighth, another 29 for 

half of the remaining sixteenth, and so forth. 

The estimation for a single individual is illustrated by Figure 5, which shows the 

results of the Monte Carlo for individual labeled "B" in Table 4, who was chosen 

because he or she had high carrier probability and also large Monte Carlo error 

(being at the top of the pedigree). The slope of the line in the figure is the sum of 

all they values of the points divided by the sum of all the x values. So the points 

cluster around the line in a sense, but not in any very obvious one. It is clear that 
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Figure 6: Occupation number for the Hutterite pedigree sampler. 

the long tours provide most of the information. 

The operating characteristics of the sampler are shown in Figures 6 and 7. Fig

ure 6 shows the occupation numbers as a function of A: the "occupation number" 

is the number of iterations (of the 11,555,470 total) that the sampler spent in each 

of the 40 distributions being sampled, and A is the parameter indexing the distri

butions. The variation around the horizontal line, along which all the dots would 

lie if the adjustment of the pseudo-priors were perfect is mostly adjustment error, 

not sampling variation. So the pseudo-priors are not perfectly adjusted. They are, 

however, adjusted well enough so as not to degrade performance seriously. Figure 7 

shows the acceptance rates. These were set using the adjustment procedure out

lined in Section 2.5 with a target acceptance rate of 40 percent. As can be seen, 

this adjustment was not perfect either, especially at the "cold" end of the sequence 

of distributions, where the information from preliminary runs was least accurate. 

Again, the A's are not so misadjusted as to seriously degrade performance. The 

main problem here is not that some of the acceptance rates deviate appreciably 

from 40 percent, but that it is not known whether 40 percent acceptance rates are 

near optimality. 

Using the information from this run, both the pseudo-priors and the A's were 

adjusted in an attempt to get a sampler with even acceptance rates of about 30 per

cent and even occupation numbers. This sampler had 32 distributions. The results 

of a run of 2,255,775 iterations showed that the adjustment was fairly successful. 

The occupation numbers were almost uniform (perhaps to within sampling error), 

and the acceptance rates were all 30 or 31 percent except for three steps which had 

rates of 29, 33 and 35. This sampler appeared to run about 8 percent faster that 
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Figure 7: Plot of the average acceptance rate of jumps between distributions. The 

average is the average of the acceptance rate going up and the acceptance rate going 

down. At the ends, the acceptance rates were adjusted to account for the uneven 

proposal probabilities. The "steps" are numbered from 1 to 39 going from cold to 

hot. 

the other, but the difference in speed may have been only sampling variation. After 

this, another sampler with 26 distributions was adjusted to have acceptance rates of 

about 20 percent. The results of a run of 2,008,438 iterations showed almost uniform 

occupation numbers and acceptance rates all between 19 and 21 percent except for 

three rates of 18, 22, and 26. This sampler appeared to run about 5 percent faster 

than the one with 30 percent acceptance rates. The sampling error in the speeds of 

these two samplers is fairly large, but these results do agree qualitatively with the 

experiment of Section 2. 7: adjusting the acceptance rates to be between 20 and 40 

percent seems reasonable. 

Results on the 5277-member pedigree are shown in the second two columns 

of Table 4. This sampler had 42 distributions and ran for 12,314,658 iterations, 

producing 37 tours that hit the cold distribution. The tours for this sampler are 

about 10 times the length of tours for the 2024-member pedigree. Because of the 

smaller number of tours, this sampler is less accurate than the one for the 2024-

member pedigree, but it is accurate enough to show that the two pedigrees do have 

different probability distributions. Individuals A and B are now much more likely 

than the others to have been carriers, half again as likely as given the information 

in the 2024-member pedigree. Presumably the answer for the full pedigree has the 

probability of A and B being carriers higher still. 
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5. Discussion 

For the purposes of discussion let us divide problems into "hard" ones that 

need simulated tempering and "easy" ones for which the Gibbs sampler or variable

at-a-time Metropolis algorithms work. The main value of simulated tempering is 

that it provides a method of attack for these "hard" problems. The method is not 

guaranteed, since if one choses a bad form of "heating" simulated tempering can 

fail, as the example of the witch's hat with "powering up" shows (Section 2.6). 

But no other MCMC method has guaranteed convergence either, and simulated 

tempering seems to provide the best chance of obtaining a converging sampler in 

hard problems. 

In easy problems the function of simulated tempering is to remove doubts about 

convergence of the Gibbs sampler and other simple methods. If simulated tempering 

produces the same answer as the simpler methods, then both presumably are right. 

There has been much controversy in the literature over the convergence even of very 

simple examples (Gelman and Rubin 1992; Geyer 1992). In such cases the ultimate 

solution should be to run simulated tempering, which seems to deliver all of the 

benefits that were promised for multistart methods by Gelman and Rubin (1992). 

Multistart methods are worthless in hard problems. Figure 5 shows why. A mul

tistart method would produce some average over the dots in the figure that would 

depend on the starting distribution and hence be incorrect unless the starting distri

bution were very near the stationary distribution. Unless the starting distribution 

involved some form of annealing, the averages would be wildly incorrect. 

Have we found effective hot distributions for the Hutterite CF problem? The 

sampler found "modes" in which each founder was a carrier, so it could have missed 

a mode only if the mode were characterized by some more complex function of the 

paths of descent of the CF genes. We used two different hot distributions. The 

results for the "gene drop" hot distribution have not been shown, but agreed with 

those discussed to within the estimated Monte Carlo error. So what evidence there 

is suggests we have obtained correct results. No other method we know of mixes 

well enough to provide a check on our results. We cannot guarantee our results are 

correct, but they are the best that can be done with the current state of the art. 
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