
Mach Learn (2007) 68: 201–233
DOI 10.1007/s10994-007-5017-7

Annealing stochastic approximation Monte Carlo
algorithm for neural network training

Faming Liang

Received: 25 June 2005 / Revised: 17 June 2007 / Accepted: 22 June 2007 / Published online: 3 August 2007
Springer Science+Business Media, LLC 2007

Abstract We propose a general-purpose stochastic optimization algorithm, the so-called
annealing stochastic approximation Monte Carlo (ASAMC) algorithm, for neural network
training. ASAMC can be regarded as a space annealing version of the stochastic approxi-
mation Monte Carlo (SAMC) algorithm. Under mild conditions, we show that ASAMC can
converge weakly at a rate of Ω(1/

√
t) toward a neighboring set (in the space of energy)

of the global minimizers. ASAMC is compared with simulated annealing, SAMC, and the
BFGS algorithm for training MLPs on a number of examples. The numerical results indicate
that ASAMC outperforms the other algorithms in both training and test errors. Like other
stochastic algorithms, ASAMC requires longer training time than do the gradient-based al-
gorithms. It provides, however, an efficient approach to train MLPs for which the energy
landscape is rugged.

Keywords Back-propagation · Convergence rate · Markov chain Monte Carlo · Multiple
layer perceptron · Simulated annealing · Stochastic approximation · Wang–Landau
algorithm

1 Introduction

Over the past several decades, feed-forward neural networks, otherwise known as multiple-
layer perceptrons (MLPs), have achieved increased popularity among scientists, engineers,
and other professionals as tools for knowledge representation. Given a group of connection
weights x = (α,β, γ), the MLP approximator can be written as

f̂ (zk|x) = ϕo

(
α0 +

p∑
j=1

γj zkj +
M∑
i=1

αiϕh

(
βi0 +

p∑
j=1

βij zkj

))
, (1)

Action Editor: Risto Miikkulainen.

F. Liang (�)
Department of Statistics, Texas A&M University, College Station, TX 77843-3143, USA
e-mail: fliang@stat.tamu.edu

202 Mach Learn (2007) 68: 201–233

where M is the number of hidden units, p is the number of input units, zk = (zk1, . . . , zkp)

is the kth input pattern, and αi , βij and γj are the weights on the connections from the ith
hidden unit to the output unit, from the j th input unit to the ith hidden unit, and from the
j th input unit to the output unit, respectively. The connections from input units to the output
unit are also called the shortcut connections. Note that the shortcut connections may not
exist in some MLPs. In (1), the bias unit is treated as a special input unit with a constant
input, say, 1. The functions ϕh(·) and ϕo(·) are called the activation functions of the hidden
units and the output unit, respectively. Popular choices of ϕh(·) include the sigmoid function
and the hyperbolic tangent function. The former is defined as ϕh(z) = 1/(1 + e−z) and the
latter ϕh(z) = tanh(z). The choice of ϕo(·) is problem dependent. For regression problems,
ϕo(·) is usually set to the linear function ϕo(z) = z; and for classification problems, ϕo(·)
is usually set to the sigmoid function. The problem of MLP training is to minimize the
following objective function

U(x) =
N∑

k=1

(f̂ (zk|α,β) − yk)
2 + λ

[
M∑
i=0

α2
i +

M∑
i=1

p∑
j=0

β2
ij +

p∑
j=1

γ 2
j

]
, (2)

by choosing appropriate connection weights, where yk denotes the target output correspond-
ing to the input pattern zk , the second term is the regularization term, and λ is the regular-
ization parameter. The regularization term is often chosen as the sum of squares of the con-
nection weights, which stabilizes the generalization performance of the MLP. Henceforth,
U(x) will be called the energy function of the MLP in terms of physics.

As known by many researchers, the energy landscape of the MLP is often rugged. The
gradient-based training algorithms, such as back-propagation (Rumelhart et al. 1986), con-
jugate gradient, Newton’s method, the DFP algorithm (Davidon 1959; Fletcher and Powell
1963), the Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt 1963), and the
BFGS algorithm (Broyden 1970a; Broyden 1970b; Fletcher 1970; Goldfarb 1970; Shanno
1970), tend to converge to a local energy minimum near the starting point. Consequently,
the information contained in the training data may not be learned sufficiently. To reduce the
chance of converging to local energy minima, a number of variants of these algorithms have
been proposed based on the idea of perturbation. For example, von Lehmen et al. (1988)
and Abunawass and Owen (1993) proposed to add noise to the connection weights during
the training process; Hanson (1991) proposed to replace the connection weights by random
variables drawn from a distribution centered at their current values; and Tang et al. (2003)
proposed to modify the activation function when the process was trapped in a local energy
minimum. Although these algorithms work well for some examples, they are heuristic. It
is hard, if not impossible, to establish their convergence to the global energy minima. In
practice, the effects of these perturbations are usually limited, which only delay the learning
process converging to local energy minima a reasonable number of iterations (Ingman and
Merlis 1991; Wang and Principe 1999).

To avoid the local-trap problem, simulated annealing (SA; Kirkpatrick et al. 1983)
has been employed by some authors to train neural networks. Amato et al. (1991) and
Owen and Abunawass (1993) showed that for complex learning tasks, SA has a better
chance to converge to a global energy minimum than the gradient-based algorithms. Let
T1 > T2 > · · · > Tk > · · · be a sequence of monotonically decreasing temperatures, where
T1 is reasonably large and limk→∞ Tk = 0. SA works in the following procedure.

(a) Initialize at the temperature level T1 and an arbitrary configuration x0.

Mach Learn (2007) 68: 201–233 203

(b) At each level Tk , run Nk iterations of an MCMC sampler, e.g., the Metropolis–Hastings
(MH) algorithm (Metropolis et al. 1953; Hastings 1970), with the target distribution

pTk
(x) = 1

ZTk

exp{−U(x)/Tk}, (3)

where ZTk
is the normalizing constant. Pass the last sample to the next iteration as the

starting configuration.
(c) Increase k to k + 1.

It has been shown by Geman and Geman (1984) that the global minimum of U(x) can
be reached by SA with probability 1 if temperature decreases sufficiently slowly such that
Tk > c/ log(

∑k

i=1 Ni) for some constant c. This translates to the logarithmic convergence
rate Ω(1/ log(t)) in numbers of iterations. In this paper, we use t to denote the number of
iterations. In practice, however, no one can afford to have such a slow cooling schedule.
Most frequently, people use a linearly or geometrically decreasing cooling schedule, which
can no longer guarantee the global energy minimum to be reached. Holley et al. (1989)
showed that no cooling schedule faster than the logarithmic rate can be guaranteed to find
the global energy minimum.

Other stochastic algorithms that have been used in neural network training include the
genetic algorithm (Holland 1975; Goldberg 1989) and MCMC algorithms. Although the
genetic algorithm works well for some problems (see van Rooij et al. 1996 for examples),
there is no theory to support its convergence to global minima. The MCMC algorithms are
mainly used for Bayesian neural networks (MacKay 1992a; Neal 1996; Müller and Insua
1998; de Freitas et al. 2000; Liang and Wong 2001; Liang 2003, 2005a), which are not the
focus of this paper. The key difference between MCMC and SA is on their target distribu-
tions. MCMC attempts to draw samples from the posterior distribution of the MLP, while SA
attempts to draw samples from a uniform distribution defined on the set {x : U(x) = umin},
where umin denotes the global minimum value of U(x). Since SA works by simulating from
a sequence of distributions scaled with different temperatures, some authors, e.g., Jerrum
and Sinclair (1997), also regarded it as MCMC with a varying temperature.

In this paper, we provide a new Monte Carlo optimization algorithm, the so-called an-
nealing stochastic approximation Monte Carlo (ASAMC) algorithm, for MLP training.
ASAMC can be regarded as a space annealing version of the stochastic approximation
Monte Carlo (SAMC) algorithm (Liang et al. 2007). Let E∗ = {x : U(x) < umin + Δ} de-
note a neighbor set (in the space of energy) of the global minimizers, where Δ is any pos-
itive number. Under mild conditions, we show that ASAMC can converge weakly toward
the set E∗, and the convergence can be achieved at a rate of Ω(1/

√
t). The latter is a new

contribution in this paper. ASAMC is compared with SA, SAMC, and BFGS algorithms
for training MLPs on a number of examples. Our numerical results indicate that ASAMC
outperforms the other algorithms in both training and test errors. This makes the stochastic
algorithms a viable alternative to the gradient-based algorithms for training MLPs for which
the energy landscape is rugged.

The remainder of this paper is organized as follows. In Sect. 2, we describe the ASAMC
algorithm. In Sect. 3, we illustrate ASAMC using two examples. In Sect. 4, we compare
ASAMC, SAMC, SA and BFGS on two benchmark and three real-world examples. In
Sect. 5, we discuss the paper briefly and point out some possible directions for future re-
search. In Sect. 6, we conclude the paper.

204 Mach Learn (2007) 68: 201–233

2 Annealing stochastic approximation Monte Carlo algorithm

2.1 Stochastic approximation Monte Carlo algorithm

Before describing the ASAMC algorithm, we first give a brief description of SAMC. Sup-
pose that we are working with the following Boltzmann distribution,

p(x) = 1

Z
exp{−U(x)/τ }, x ∈ X , (4)

where Z is the normalizing constant, τ is the temperature, and X is the sample space. With-
out loss of generality, we assume that X is compact. For MLPs, X can be set to the re-
gion [−BX ,BX]dim(x), where BX is chosen such that the region includes at least a global
minimum of U(x); X can also be set to the region {x : U(x) ≤ umax}, where umax is suf-
ficiently large such that the region {x : U(x) > umax} is not of interest at all. Furthermore,
we assume that the sample space can be partitioned according to the energy function into
m disjoint subregions denoted by E1 = {x : U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤ u2}, . . . ,
Em−1 = {x : um−2 < U(x) ≤ um−1}, and Em = {x : U(x) > um−1}, where u1, . . . , um−1 are
real numbers specified by the user. Let ψ(x) be a non-negative function defined on the
sample space with 0 <

∫
X ψ(x)dx < ∞, and gi = ∫

Ei
ψ(x)dx. In practice, we often set

ψ(x) = exp{−U(x)/τ }.
SAMC seeks to draw samples from each of the subregions with a pre-specified frequency.

If this goal can be achieved, then the local-trap problem can be avoided successfully. Let
x t+1 denote a sample drawn from a MH kernel Kθt (x t , ·) with the proposal distribution1

q(x t , ·) and the stationary distribution2

pθt (x) ∝
m∑

i=1

ψ(x)

eθti
I (x ∈ Ei), (5)

where θt = (θt1, . . . , θtm) is an m-vector in a space Θ . For simplicity, we assume that Θ

is compact and set Θ = [−BΘ,BΘ]m with BΘ = 1020 in this article, although as a practical
matter this is equivalent to setting Θ = R

m. Since adding to or subtracting from θt a constant
will not change pθt (x), θt can be kept in the compact set in simulations by adjusting with an
additive constant. Let the proposal distribution satisfy the minorization condition, i.e.,

ω∗ = sup
θ∈Θ

sup
x,y∈X

pθ(y)

q(x,y)
< ∞ (6)

which is a natural condition in study of MCMC theory (Mengersen and Tweedie 1996).
In practice, this kind of proposals can be easily designed. Since X is compact, a sufficient

1The proposal distribution of a Markov chain refers to a distribution which defines how a new state is gener-
ated conditioned on the current one.
2The stationary distribution, also known as the invariant distribution, of a Markov chain refers to a probability
measure p(x) such that

p(B) =
∫
X

K(x,B)p(dx), ∀B ∈ B(X),

where K(x,B) denotes the transition kernel of the Markov chain and B(X) denotes the Borel set of the
space X . Refer to Karlin and Taylor (1998) for more details.

Mach Learn (2007) 68: 201–233 205

design for the minorization condition is to set q(x,y) to a global proposal distribution.
A proposal distribution is called global if q(x,y) > 0 for all x,y ∈ X . For MLPs, q(x,y)

can be chosen as a random walk Gaussian proposal y ∼ N(x, σ 2) with σ 2 being calibrated
to have a desired acceptance rate. As discussed later, restricting the proposal distribution to
be global ensures the convergence of ASAMC to the global energy minima.

Let π = (π1, . . . , πm) be an m-vector with 0 < πi < 1 and
∑m

i=1 πi = 1, which defines
a desired sampling frequency for the subregions. Henceforth, π will be called the desired
sampling distribution. Define H(θt ,x t+1) = (et+1 − π), where et+1 = (et+1,1, . . . , et+1,m)

and et+1,i = 1 if x t+1 ∈ Ei and 0 otherwise. Let {γt } be a positive non-decreasing sequence
satisfying the conditions,

(i)
∞∑
t=0

γt = ∞, (ii)
∞∑
t=0

γ δ
t < ∞, (7)

for some δ ∈ (1,2). In this paper, we set

γt =
[

t0

max(t0, t)

]η

, t = 0,1,2, . . . (8)

for some specified values of t0 > 1 and η ∈ (1
2 ,1]. A large value of t0 will allow the sampler

to reach all subregions very quickly even for a large system. Let J (x) denote the index of
the subregion the sample x belongs to. With above notations, one iteration of SAMC can be
described as follows. Refer to Appendix 1 for the pseudocode of the algorithm.

SAMC algorithm:

(i) Generate x t+1 ∼ Kθt (x t , ·) with a single Metropolis–Hastings simulation step:
(i.1) Generate y according to the proposal distribution q(x t ,y).
(i.2) Calculate the ratio

r = e(θtJ (xt)−θtJ (y))
ψ(y)

ψ(x t)

q(y,x t)

q(x t ,y)
.

(i.3) Accept the proposal with probability min(1, r). If it is accepted, set x t+1 = y;
otherwise, set x t+1 = x t .

(ii) Set θ∗ = θt + γtH(θt ,x t+1), where γt is called the gain factor.
(iii) If θ∗ ∈ Θ , set θt+1 = θ∗; otherwise, set θt+1 = θ∗ + c∗, where c∗ = (c∗, . . . , c∗) and c∗

is chosen such that θ∗ + c∗ ∈ Θ .

Recall that we have set Θ = [−BΘ,BΘ]m with BΘ being a huge number, so it is rea-
sonable to assume that maxm

i=1 θ∗
i − minm

i=1 θ∗
i � BΘ holds at each iteration. Thus, in step

(iii), we can set c∗ = BΘ/2 − maxm
i=1 θ∗

i if maxm
i=1 θ∗

i > BΘ and c∗ = −BΘ/2 − minm
i=1 θ∗

i if
minm

i=1 θ∗
i < −BΘ .

A remarkable feature of SAMC is its self-adjusting mechanism. If a proposal is rejected,
the weight of the subregion that the current sample belongs to will be adjusted to a larger
value, and thus the proposal of jumping out from the current subregion will be less likely
rejected in the next iteration. This mechanism effectively prevents the system from getting
trapped in local minima. This is very important for the energy functions with multiple local
minima.

SAMC falls into the category of stochastic approximation algorithms (Benveniste et al.
1990; Andrieu et al. 2005). The convergence of this algorithm can be extended from a theo-
rem presented in Liang et al. (2007) under a little different conditions. Refer to Theorem 8.2

206 Mach Learn (2007) 68: 201–233

for the details. Under mild conditions, we have

θti →
{

C + log(
∫

Ei
ψ(x)dx) − log(πi + ℵ), if Ei
= ∅,

−∞. if Ei = ∅,
(9)

as t → ∞, where C is an arbitrary constant, ℵ = ∑
j∈{i:Ei=∅} πj/(m − m0), and m0 =

#{i : Ei = ∅} is the number of empty subregions. A subregion Ei is called empty if∫
Ei

ψ(x)dx = 0. In SAMC, the sample space partition can be made blindly by simply spec-

ifying some parameter values as described in the pseudocode of the algorithm. This may
lead to some empty subregions. The constant C can be determined by imposing a constraint
on θt , say,

∑m

i=1 eθti is equal to a known number.

Let π̂ti = P (x t ∈ Ei) be the probability of sampling from the subregion Ei at iteration t .
Equation (9) implies that as t → ∞, π̂ti will converge to πi + ℵ if Ei
= ∅ and 0 otherwise.
With an appropriate specification of π (refer to (12) for examples), sampling can be biased
to the low energy subregions to increase the chance of sampling from E∗. Theorem 8.4
concerns the convergence rate of SAMC. Under mild conditions, π̂ t can decrease as 1/

√
t ,

where t represents the number of iterations. In this sense, we claim that SAMC can converge
at a rate of Ω(1/

√
t).

The subject of stochastic approximation was founded by Robbins and Monro (1951).
After five decades of continual development, it has developed into an important area in
systems control and optimization. Many of the neural network training algorithms, such as
the simultaneous perturbation stochastic approximation algorithm (Spall 1992; Wouwer et
al. 1999), the Widrow–Hoff algorithm (also known as the “least mean square” algorithm)
(Haykin 1999, pp. 128–135), the Alopex algorithm (Harth and Tzanakou 1974; Sastry et
al. 2002) and self-organizing maps (Kohonen 1990; Mulier and Cherkassky 1995; Flanagan
1997), can be regarded as special instances of stochastic approximation. Refer to Bharath
and Borkar (1999) for more discussions on this issue. Recently, stochastic approximation
has been used with Markov chain Monte Carlo for solving maximum likelihood estima-
tion problems (Gu and Kong 1998; Gelfand and Banerjee 1998; Delyon et al. 1999; Gu
and Zhu 2001). The critical difference between SAMC and other stochastic approximation
algorithms is at sample space partitioning. Sample space partitioning improves the perfor-
mance of stochastic approximation in optimization. It forces each non-empty subregion to
be visited with a fixed frequency, and thus increases the chance to locate the global energy
minimizer.

A closely related algorithm to SAMC is the contour Monte Carlo (CMC) algorithm,
which is also known as the Generalized Wang–Landau algorithm (Wang and Landau 2001;
Liang 2005a, 2005b). In CMC, the simulation consists of a number of stages, and each stage
associates with a fixed gain factor. If the gain factor and the number of iterations of each
stage are chosen appropriately such that the condition (7) is satisfied, then CMC becomes
a special instance of SAMC.

At last, we would like to mention that the SAMC algorithm described above is slightly
different from the one presented in Liang et al. (2007). In the latter, the proposal distribution
q(x,y) is required to satisfy the condition: for every x ∈ X , there exist ε1 > 0 and ε2 > 0
such that

|x − y| ≤ ε1 �⇒ q(x,y) ≥ ε2. (10)

To contrast with the global proposal distribution, the proposal distribution satisfying condi-
tion (10) is called the local proposal distribution. It is easy to see that if X contains several
separated regions and a local proposal distribution is used, the MCMC simulation performed

Mach Learn (2007) 68: 201–233 207

in step (i) of the SAMC algorithm will not leave the density pθt (x) invariant. As discussed in
Sect. 2.2, the sample space of ASAMC may contain several separated regions. To ensure the
convergence of ASAMC, we restrict the proposal distribution to be global in simulations.

2.2 Annealing stochastic approximation Monte Carlo algorithm

In theory, SAMC is able to find the global energy minima if the run is long enough. However,
due to the broadness of the sample space, the process may be slow even when sampling has
been biased to low energy subregions. To accelerate the search process, we shrink the sample
space over iterations. As argued below, this modification preserves the theoretical property
of SAMC when a global proposal distribution is used.

Suppose that the subregions E1, . . . ,Em have been arranged in ascending order by en-
ergy; that is, if i < j , then U(x) < U(y) for any x ∈ Ei and y ∈ Ej . Let �(u) denote the
index of the subregion that a sample x with energy u belongs to. For example, if x ∈ Ej , then
�(U(x)) = j . Let X (t) denote the sample space at iteration t . Annealing SAMC, which will
be abbreviated as ASAMC hereafter, starts with X (1) = ⋃m

i=1 Ei , and then iteratively sets the
sample space as

X (t) =
�(U

(t)
min+Δ)⋃
i=1

Ei, (11)

where U
(t)

min is the minimum energy value obtained by iteration t , and Δ > 0 is a user speci-
fied parameter. The sample space X (t) shrinks iteration by iteration. In this sense, the modi-
fied algorithm is called annealing SAMC.

Since the proposal distribution is global, Theorems 8.2–8.4 hold for ASAMC on the
limiting space X (∞) = limt→∞ X (t), although X (∞) may contain some separated regions.
The existence of X (∞) is true due to the monotonicity of the sequence X (1) ⊇ X (2) ⊇ · · · ⊇
X (t) ⊇ · · · .

For an effective implementation of ASAMC, several issues need to be considered.

• Sample space partitioning. For training MLPs, the sample space is usually partitioned
according to the energy function. The maximum energy difference in each subregion should
be bounded by a reasonable number, say, 2τ , which ensures that the MH moves within the
same subregion have a reasonable acceptance rate. Note that within the same subregion,
sampling from (5) is reduced to sampling from ψ(x).

• Choice of Δ. The performance of ASAMC depends on the value of Δ to some extent.
If Δ is too large, ASAMC may take a long time to locate the global minimum due to the
broadness of the sample space. If Δ is too small, ASAMC may also take a long time to
locate the global minimum. In this case, the sample space may contain only a few separated
regions, and the most proposed transitions will be rejected. It is generally believed that
allowing a sampler to jump to intermediate states of higher energy will increase the success
probability of transiting between local minima. In our experience, a value of Δ between 5
and 10 works well for most MLP training problems. To compensate for the negative effect of
sample space restriction, the proposal distribution used in ASAMC should be more spread
than that used in SAMC.

• Choice of the desired sampling distribution π . Since π controls the sampling fre-
quency of each subregion, intuitively, one may choose it to bias sampling to the low energy
subregions to increase the chance of finding the global minima. Our experience shows that

208 Mach Learn (2007) 68: 201–233

a fine tuning of π is not necessary, because in ASAMC sampling has been restricted to low
energy subregions progressively. In practice, we can generally set

πi ∝ 1

iι
, i = 1, . . . ,m, (12)

for ι ≥ 0. For ASAMC, we set ι = 0 in this article. Whilst for SAMC, we tried different
values of ι for different examples.

• Choice of N , η, and t0, where N denotes the total number of iterations. In practice,
one often fixes the value of η and varies the value of t0 with problems. For example, η was
fixed to 0.6 in this paper. The more complex the problem is, the larger value of t0 one
should choose. A large value of t0 will force the sampler to reach all subregions quickly,
even in the presence of multiple local energy minima. The appropriateness of the choices
of t0, η and N can be diagnosed by examining the convergence of the run. In ASAMC, the
desired sampling distribution has been set to uniform, so the convergence of the run can be
diagnosed by examining the equality of the realized sampling frequencies on the subregions
included in the limiting sample space X (∞). As suggested by Wang and Landau (2001),
a run can be regarded as converged if the sampling frequency of each subregion is not less
than 80% of the average sampling frequency; that is,

εf = min

{
fi

f̄
: i = 1, . . . ,�(U

(∞)

min + Δ),Ei
= ∅
}

≥ 80%, (13)

where fi denotes the realized sampling frequency of the subregion Ei , f̄ is the average
sampling frequency of the subregions included in X (∞), and U

(∞)

min denotes the minimum
energy value found in the run. If a run is diagnosed as unconverged, ASAMC should be
re-run with a large value of N , a larger value of t0, or a smaller value of η. For example,
the following scheme was adopted in this paper to update their values: set N ← 2N and
t0 ← 1.5t0 and keep η unchanged.

The diagnostic is only needed for the case that the global minimum value is unknown,
e.g., training a MLP with a regularization term. For the case that the global minimum value
is known, training can stop once a global minimizer was located, and the convergence
diagnostic is not needed.

3 Two illustrative examples

3.1 The knapsack problem

To illustrate Theorem 8.2, we consider the following problem: given a = (a1, . . . , an) ∈ R
n

and b = (b0, b1, . . . , bm) ∈ R
m, estimate the numbers ni = #{x : bi−1 < a′x ≤ bi} for

i = 1, . . . ,m, where x is a (0,1)-vector, a′ denotes the transpose of a, and b0 is a num-
ber less than 0. If the vector a gives the sizes of n items to be packed into a knapsack of
capacity bi , then

∑i

j=1 nj is the total number of combinations of items that can fit into the
knapsack. As known by many researchers, the knapsack problem is an NP-hard problem;
that is, there is probably no algorithm which can solve it exactly in polynomial time.

In our example, n = 10, a = (0.6129,0.1735,0.5868,0.2163,0.3486,0.1233,0.6224,

0.8658,0.8564,0.1756), and b = (−1,0,1,2,3,4,5). The exact values of (n1, . . . , nm) are
shown in Table 1, which are obtained by an exhaustive evaluation. SAMC was applied to
this example. The sample space was partitioned into 7 subregions according to b: E1 =

Mach Learn (2007) 68: 201–233 209

Fig. 1 Computational results of ASAMC for the knapsack example. Plot (a) shows the evolution of n̂t,i in
a run; plot (b) shows the evolution of the relative sampling frequencies in a run. This figure illustrates the
estimation and convergence of ASAMC

{x : −1 < a′x ≤ 0}, . . . , E6 = {x : 4 < a′x ≤ 5}, E7 = {x : a′x > 5}. We note that E7 is
empty, because the total size of the 10 items is less than 5. In simulations, we set ψ(x) = 1,
t0 = 10, and ι = 0. Let x t = (xt,1, . . . , xt,n) denote the current solution. A new solution can
be proposed as follows.

(a) Set y ← x t , and select a number k at random from the set {1, . . . ,5}.
(b) Repeat the following two steps k times:

• Select a number j at random from the set {1, . . . , n}.
• “Flip” yj by setting y = (y1, . . . , yj−1,1 − yj , yj+1, . . . , yn).

(c) Output y as the proposed solution.

It follows from Theorem 8.2 that as t becomes large, θt → C + (logn1, . . . , logn7),

where C can be determined by imposing the constraint
∑7

i=1 exp{θt,i − C} = 210 on θt .

Given θt and C, ni can then be estimated by n̂t,i = exp{θt,i − C}. The algorithm was run 10
times independently. Each run consisted of 107 iterations. Figure 1 summarizes graphically
the results obtained in one run, where plot (a) shows the evolution of n̂t,i , and plot (b)
shows the evolution of the relative sampling frequencies, f1, . . . , f7, which correspond to the
subregions E1, . . . ,E7, respectively. The approximate equality of the frequencies f1, . . . , f6,
for which the corresponding subregions are nonempty, indicates the convergence of the run.
Figure 1 also shows the correspondence between the convergence of θt and the convergence
of fi ’s, both occurring after about 20 000 (≈ e10) iterations. Table 1 summarizes the results

210 Mach Learn (2007) 68: 201–233

Table 1 Computational results of SAMC for the knapsack example. Notations: n̂i denotes the estimate of ni ,
fi denotes the realized relative sampling frequency of the subregion Ei , and SD denotes the standard error
of the corresponding estimates. The values of n̂i and fi are obtained by averaging over 10 runs

Subregion E1 E2 E3 E4 E5 E6 E7

ni 1 66 315 431 191 20 0

n̂i 0.983 65.908 315.042 431.460 190.728 19.879 0

SD 0.006 0.055 0.118 0.102 0.070 0.034 0

fi 0.1665 0.1667 0.1667 0.1667 0.1667 0.1668 0

SD 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0

obtained in 10 runs. From the figure and table, it can be seen that as the number of iterations
becomes large, exp{θt,i −C} converges to ni , and fi converges to πi +ℵ if Ei is non-empty.
Since E7 is empty, theoretically we should have f7 ≡ 0 and eθt,7 → 0 as t → ∞. Since our
aim for this example is to estimate the cardinality function, the sample space can not be
shrinked with iterations. In this case, ASAMC is reduced to SAMC.

3.2 A multiple local minima problem

To illustrate ASAMC, we consider minimizing the following function on [−1.1,1.1]2:

U(x) = −(x1 sin(20x2) + x2 sin(20x1))
2 cosh(sin(10x1)x1)

− (x1 cos(10x2) − x2 sin(10x1))
2 cosh(cos(20x2)x2),

whose global minimum is −8.12465 attained at (x1, x2) = (−1.0445,−1.0084) and
(1.0445,−1.0084). This example is identical to Example 6.1 of Liang (2005a). Figure 2
shows that U(x) has a multitude of local minima separated by high-energy barriers.

ASAMC was first applied to this example. The sample space was partitioned into 41
subregions with an equal energy bandwidth: E1 = {x ∈ X : U(x) ≤ −8.0}, E2 = {(x) ∈ X :
−8.0 < U(x) ≤ −7.8}, . . . , and E41 = {(x) ∈ X : −0.2 < U(x) ≤ 0}. In simulations, we
set ψ(x) = exp(−U(x)/0.1), t0 = 100, Δ = 6, ι = 0, and the proposal distribution to be
N2(x,0.32I2). In this paper, Id denotes an identity matrix of size d by d . The algorithm was
run for 50 000 iterations, and 500 samples were collected at equally spaced time intervals.

For comparison, SAMC and SA were also applied to this example. SAMC was run
for 50 000 iterations with the same setting as ASAMC (the parameter Δ does not exist
in SAMC), and 500 samples were collected at equally spaced time intervals. For SA, we
tried the linear and geometric cooling schedules.

(a) Linear. The temperature decreases linearly, i.e.,

Tk = Tk−1 − �l, k = 1, . . . ,K,

where �l = (T1 − TK)/(K − 1).
(b) Geometric. The temperature decreases geometrically with a constant rate, i.e.,

Tk = �eTk−1, k = 1, . . . ,K,

where �e = exp{(logTK − logT1)/(T − 1)}.

Mach Learn (2007) 68: 201–233 211

Fig. 2 Grid (a) and contour (b) representations of the function U(x) on [−1.1,1.1]2. This figure character-
izes multiple local minima problems

In all simulations of this paper, we set the total number of temperature levels K = 500,
and set the number of iterations performed at each temperature level to Nk = N/K , where
N is the total numbers of iterations of a run. For this example, we set T1 = 10, T500 = 0.01
and N = 50 000 for both cooling schedules. The resulting values of �l and �e are 0.02 and
0.986, respectively. The proposal distribution used at level k is N(x t ,0.12TkI2). In each run,
500 samples were collected at equally spaced time intervals.

Figure 3 shows the evolving paths of the samples collected in the above runs. It is re-
markable that ASAMC is ergodic as shown by Fig. 3(a). Even though the sample space
has been restricted to four isolated regions (four corners) by the choice of Δ, successful
transitions between different regions can still be made due to the use of the global proposal
distribution. This also explains why a widely spread proposal distribution is preferred in
ASAMC. Comparing to the sample path of SAMC, we can see that in ASAMC, sampling is
more focused on the low energy regions. Hence, ASAMC is potentially more efficient than
SAMC in optimization.

Figures 3(c) and 3(d) show that at high temperatures, SA results in a random walk in
the sample space; and that at low temperatures, SA tends to get trapped in a local mini-
mum. Note that the linear cooling schedule contains more high temperature levels than the
geometric cooling schedule. The sample paths of SA are significantly different from those
of SAMC and ASAMC. The central part of the sample space (Fig. 2(b)) has a big area,
which is about half of the total area of the sample space, but it is seldom visited by ASAMC
and SAMC. However, this part is visited by SA frequently with both linear and geometric
cooling schedules. The reason is that SA tends to have a random walk in the sample space at

212 Mach Learn (2007) 68: 201–233

Fig. 3 Sample paths of the ASAMC, SAMC and SA samples. The circles in the plots show the locations
of the two global energy minima. a Sample path of ASAMC. b Sample path of SAMC. c Sample path of
SA with the linear cooling schedule. d Sample path of SA with the geometric cooling schedule. This figure
characterizes the performance of ASAMC for multiple local minima problems: it is capable of transiting
between different local minimum regions

high temperatures, whereas ASAMC (so is SAMC) tends to have a random walk in the space
of subregions, if each subregion is regarded as a single point. This implies that potentially
ASAMC can overcome any barriers on the energy landscape and locate global energy min-
ima quickly. Figure 3 shows that during the above runs SAMC and ASAMC have located
the global energy minima many times, whilst SA has only located them a few times.

To compare efficiency of ASAMC, SAMC and SA in global optimization, we conducted
the following experiment. Each algorithm was run 1000 times independently. Each run con-
sisted of 20 000 iterations. ASAMC and SAMC were run under the same setting as used
above except that the proposal distribution was changed to N2(x,0.12I2). This change would
force them to move more locally and thus to have more chances to locate the global energy
minima. The proposal distribution used in SA has already been fine enough, and was not
changed in this experiment. The numerical results are summarized in Table 2. The compar-
ison shows that both ASAMC and SAMC are superior to SA for this example. Note that in
all runs of the three algorithms, the total numbers of iterations were the same, and they cost
about the same CPU times because the CPU time cost by each iteration is dominated by the
part used for energy evaluation. This is especially true for more complicated problems, e.g.,
MLP training considered in the rest of this paper.

Mach Learn (2007) 68: 201–233 213

Table 2 Comparison of the SAMC, ASAMC, and SA algorithms for the multiple local minima example.
Notations: let zi denote the minimum energy value obtained in the ith run for i = 1, . . . ,1000, “Mean”
is the average of zi , “SD” is the standard deviation of “Mean”, “Minimum” = min1000

i=1 zi , “Maximum” =
max1000

i=1 zi , and “Proportion” = #{i : zi ≤ −8.12}. The cooling schedules used in SA-1 and SA-2 are linear
and geometric, respectively

Algorithm Mean SD(×10−3) Minimum Maximum Proportion

ASAMC −8.12320 0.047 −8.12465 −8.11278 968

SAMC −8.12308 0.059 −8.12465 −8.10191 944

SA-1 −8.10326 1.264 −8.12465 −7.77922 572

SA-2 −8.08168 3.102 −8.12466 −7.33146 609

4 Numerical examples

4.1 Two benchmark examples

There are two fundamental tasks in neural network research, namely, modeling and estima-
tion. To MLP, the former task is to find an appropriate objective function which can guide the
learning of input patterns, and the latter task is to find an algorithm which can minimize the
given objective function. This research falls into the latter category. In this section, we com-
pare the efficiency of ASAMC, SAMC and SA in training MLPs through two benchmark
examples, the n-parity and two-spiral problems. To calibrate them better, the regularization
term in the energy function (2) is dropped such that the energy function has a global mini-
mum value known as 0. The regularization term is usually included when we concern about
generalization errors. To compare with the existing results of the two examples, the shortcut
connections are not included in the MLPs, and both ϕh(z) and ϕo(z) are set to the sigmoid
function.

4.1.1 N -parity problem

The training set of the n-parity problem (Rumelhart et al. 1986) consists of 2n training
pairs, where each input pattern consists of n binary numbers (0 or 1), and the output is 1
if the input pattern consists of an odd number of 1s and 0 otherwise. This problem is very
challenging for MLPs because the target output changes whenever a single bit in the input
vector changes (Hanson 1991). Tesauro and Janssens (1988) reported that back-propagation
solved the 8-parity problem using a one-hidden layer MLP with 16 hidden units, and Tang
et al. (2003) reported the results from some gradient-based algorithms for 5, 6, and 7-parity
problems with the same MLP structure.

For the 8-parity problem, we trained a smaller MLP with 11 hidden units, which
consists of 111 connections. In ASAMC, the sample space was restricted to the region
X = [−30,30]d , and was partitioned into 320 subregions: E1 = {x ∈ X : U(x) ≤ 0.2},
E2 = {x ∈ X : 0.2 < U(x) ≤ 0.4}, . . . , and E320 = {x ∈ X : U(x) > 63.8}. Even though X
is much smaller than R

d , it still contains multiple global minima for this example as shown
by our numerical results. In simulations, we set ψ(x) = exp{−U(x)}, t0 = 2500, ι = 0,
and Δ = 5. The simulation starts with a random configuration generated from Nd(0,0.012),
and stops when a configuration with energy U(x) < 0.2 has been located or the maximum
number of iterations 2 × 106 has been reached. At each iteration, one of the following two
types of local moves is selected randomly. Let x t denote the current configuration of the

214 Mach Learn (2007) 68: 201–233

Table 3 Comparison of ASAMC, SAMC, SA and BFGS for the 8-parity problem. Notations: let zi denote
the minimum energy value obtained in the ith run for i = 1, . . . ,20, “Mean” is the average of zi , “SD” is
the standard deviation of “mean”, “minimum” = min20

i=1 zi , “maximum” = max20
i=1 zi , “proportion” = #{i :

zi ≤ 0.21}, “Iteration” is the average number of iterations performed in each run, and “Time” is the average
CPU time cost by each run. SA∗ refers to the runs of SA with the unrestricted sample space. SA-1 and SA∗-1
employ the linear cooling schedule, and SA-2 and SA∗-2 employ the geometric cooling schedule

Algorithm Mean SD Minimum Maximum Proportion Iteration(×106) Time

ASAMC 0.195 0.017 0.14 0.52 19 1.25 9.5 m

SAMC 1.150 0.247 0.20 3.44 10 1.74 13.4 m

SA-1 25.272 2.841 10.11 60.023 0 2.00 13.7 m

SA-2 17.770 2.532 2.24 46.97 0 2.00 13.7 m

SA∗-1 64.321 0.087 64.00 65.23 0 2.00 13.7 m

SA∗-2 63.668 0.387 58.39 65.17 0 2.00 13.7 m

BFGS 56.05 3.879 9.00 64.00 0 – 1 s

MLP. In type I moves, a component of x t is selected at random to undergo a modification by
a Gaussian random variable ε ∼ N(0, σ 2

t). In type II moves, a spherical proposal distribu-
tion is used: A direction is generated uniformly, and then the radius is drawn from N(0, σ 2

t),
where σt is a stepwise function,

σt =

⎧⎪⎨
⎪⎩

0.5, 0 < t ≤ 5 × 105,

1, 5 × 105 < t ≤ 106,

2, t > 106.

(14)

Here σt increases as the simulation proceeds. This will improve the ergodicity of ASAMC,
because the isolated regions included in X (t) tend to be far and far separated. Under the
above setting, ASAMC was run 20 times independently. On average, each run costs 9.5 m
CPU time on a computer of 2.8 GHz (all simulations reported in this section were done
on this machine). Table 3 summarizes the computational results produced by ASAMC and
other algorithms described below.

SAMC and SA were also applied to this example. SAMC was run 20 times under the
same setting as ASAMC except for ι = 5. Other settings of ι, say, ι = 0,1,2 and 10, were
also tried. The results are similar to or worse than those reported in Table 3. We note that
for SA the sample space is not necessarily restricted to a compact region, but the restriction
can often improve its performance, as the restriction makes the search focused on a small
region and avoids blind search in the broad sample space. For each of the linear and geomet-
ric cooling schedules, SA was run 20 times with the highest temperature T1 = 10 and the
lowest temperature T500 = 0.01. Each run consisted of N = 2 × 106 iterations. The proposal
distribution is the same as that used by ASAMC except for σk = √

Tk . For SA, we have also
tried other cooling schedules, for example, linear and geometric schedules with a higher
value of T1 and a scaled reciprocal schedule (Szu 1986). The results are similar to or worse
than those reported in Table 3.

For a thorough comparison, BFGS was also applied to this example. Like back-
propagation, BFGS is gradient-based, but it usually converges faster than back-propagation.
As commented by Hastie et al. (2001), back-propagation can be very slow, and for that rea-
son it is usually not the algorithm of choice. Because of the difficulty in evaluation of the
Hessian matrix, second-order techniques such as Newton’s method are not attractive here.

Mach Learn (2007) 68: 201–233 215

The conjugate gradient and BFGS algorithms are often recommended for MLP training, as
they avoid explicit evaluation of the Hessian matrix while still providing faster convergence.
For the derivation of BFGS, refer to Bishop (1995) or a standard text such as Polak (1971)
or Fletcher (1987). BFGS has been implemented in many software, such as S-PLUS and R,
where a MLP can be trained by BFGS by calling the command nnet (·). The software R
is publicly available at http://cran.hostingzero.com/. For this example, BFGS
was also run 20 times independently, and it usually converged within 300 iterations in each
run.

Table 3 shows that both ASAMC and SAMC have made dramatic improvements over
SA and BFGS for this example. ASAMC produced perfect solutions in 19 out of 20 runs
with an average of 1.25 × 106 iterations, whereas SA never produced a perfect solution even
with more iterations in each run. Table 3 also indicates that ASAMC is better than SAMC
in optimization. This is consistent with the results reported in Table 2.

4.1.2 Two-spiral problem

Another famous benchmark example for MLP training is the two spiral problem (Lang and
Witbrock 1989). The task requires the MLP to learn a mapping that distinguishes between
points on two intertwined spirals shown in Fig. 4. This problem can be solved using MLPs
with multiple hidden layers (with or without shortcut connections). Lang and Witbrock
(1989) solved the problem using a 2-5-5-5-1 MLP with shortcut connections (138 train-
able connection weights). Fahlman and Lebiere (1990) solved the problem using cascade-
correlation networks with 12–19 hidden units, the smallest network having 114 connections.
Wong and Liang (1997) solved the problem using a 2-14-4-1 MLP without shortcut connec-
tions. It is generally believed that this problem is very difficult to solve using the standard
one-hidden-layer MLP, because it requires the MLP to learn a highly nonlinear separation
of the input space. Baum and Lang (1991) reported that a solution could be found using
a 2-50-1 back-propagation MLP, but only the MLP has been initialized with queries.

For this problem, we trained a 2-30-1 MLP, which consists of a total of 121 connections.
In ASAMC, the sample space was restricted to the region X = [−50,50]d , and was parti-
tioned into 250 subregions: E1 = {x ∈ X : U(x) ≤ 0.2}, E2 = {x ∈ X : 0.2 < U(x) ≤ 0.4},
. . . , and E250 = {x ∈ X : U(x) > 49.8}. In simulations, we set ψ(x) = exp{−U(x)},
t0 = 10 000, ι = 0, and Δ = 5, and employed the same proposal distribution as in the 8-parity
example. ASAMC was run 20 times independently, and each run consisted of a maximum
of 107 iterations. The simulation stopped early if a solution with U(x) < 0.2 was found.
Figure 4(a) shows the classification map learned in one run, which indicates that a MLP
with 30 hidden units is able to separate the two spirals successfully. Figure 4(b) shows the
average classification map over the 20 runs by the ensemble averaging approach (Perrone
1993). Each solution in the ensemble was weighted equally. Ensemble averaging smoothes
the classification boundary and improves the generalization performance of the MLP.

For comparison, SAMC, SA and BFGS were also applied to this example. SAMC was
run 20 times under the same setting as ASAMC except for ι = 5. Other choices of ι, 0, 1, 2
and 10, have also been tried. The results are similar. BFGS was run 20 times independently,
and it converged within 1000 iterations in each run. In the runs of SA, the sample space
was restricted to X = [−50,50]d as in ASAMC, and the parameters held the same setting
as used in the 8-parity example except that the total number of iterations was increased to
N = 107.

Table 4 summarizes the results produced in the above runs. The comparison shows that
ASAMC has made a dramatic improvement over SAMC, SA and BFGS for this example.

216 Mach Learn (2007) 68: 201–233

Fig. 4 Classification maps learned by AESAMC with a MLP of 30 hidden units. The black and white points
show the training data for two different spirals. a Classification map learned in one run. b Classification
map averaged over 20 runs. This figure demonstrates the success of ASAMC in minimization of complex
functions

Table 4 Comparison of ASAMC, SAMC, SA and BFGS for the two-spiral example. The notations are the
same as in Table 3

Algorithm Mean SD Minimum Maximum Proportion Iteration(×106) Time

ASAMC 0.620 0.191 0.187 3.23 15 7.07 94 m

SAMC 2.727 0.208 1.092 4.089 0 10.0 132 m

SA-1 17.485 0.706 9.02 22.06 0 10.0 123 m

SA-2 6.433 0.450 3.03 11.02 0 10.0 123 m

BFGS 15.50 0.899 10.00 24.00 0 – 3 s

ASAMC found perfect solutions in 15 out of 20 runs with an average of 7.07×106 iterations,
while SAMC, SA and BFGS failed to find perfect solutions in all runs.

We note that the MLP structure considered above is not minimal to this problem.
ASAMC can find perfect solutions to this problem using a MLP with 27 hidden units (109
connections). Under the same setting as used above, ASAMC found perfect solutions using
this small MLP in 5 out of 20 runs. The success rate can be increases by increasing the
number of hidden units. In our simulations, ASAMC succeeded in 19 out of 20 runs when
the number of hidden units is 35, and succeeded in 20 out of 20 runs when the number of
hidden units is 40.

Mach Learn (2007) 68: 201–233 217

The n-parity and two-spiral problems represent, as explained above, different types of
learning tasks, although both are very challenging. The former is to learn a mapping which
is highly disconnected in the input space, and the latter is to learn a mapping which is
highly nonlinear in the input space. The success of ASAMC in both problems suggests its
superiority in minimization of complex functions.

4.2 Real-world examples

In this section, ASAMC was tested with three real-world examples for which all attributes
are numeric and there are no missing values. Refer to Bishop (1995) for discussions on the
treatments for missing values in the context of neural networks, whilst this is beyond the
scope of this paper. For the real-world problems, we are often concerned with the gener-
alization performance of MLP. Hence, the regularization term was included in the energy
function (2) for all the three examples. The regularization parameter was set to 0.05. In ap-
plying ASAMC and SAMC to these examples, the sample space was restricted to the region
X = [−50,50]d , and the parameters were set as follows: ψ(x) = exp{−U(x)}, t0 = 1000,
and Δ = 5. The proposal distribution employed in this section is the same as that used for
the 8-parity example except that σt was fixed to 1. Each algorithm was run 50 times inde-
pendently, and each run consisted of 2.5 × 105 iterations. In all the three examples, both
ϕh(z) and ϕo(z) were set to the sigmoid function, the input variables were normalized to
have mean 0 and variance 1, and ι was set to 0 for ASAMC and 5 for SAMC. For SAMC,
other choices of ι, e.g., 0 and 2, were also tried. The results are similar.

As implied by Theorem 8.3, both ASAMC and SAMC will converge weakly toward the
set E∗. Although it may be easy for them to reach E∗, it may not be easy for them to locate
a global energy minimum exactly. So we suggest the best solutions sampled by SAMC and
ASAMC be further subject to a post minimization procedure, say, conjugate gradient or
a few hundred steps of MH moves performed at a low temperature. For the three examples,
the MH moves were performed at temperature t = 10−4.

SA was also applied to the three examples in this section. For each example, SA was run
50 times with the highest temperature T1 = 10 and the lowest temperature T500 = 10−4. Each
run consisted of N = 2.5 × 105 iterations. The sample space was restricted to [−50,50]d as
in ASAMC and SAMC. The proposal distribution was the same as that used by ASAMC
except for σk = √

Tk . Both the geometric and linear cooling schedules were tried. Since the
results from the linear cooling schedule are inferior to those from the geometric one, only
the results from the geometric cooling schedule are reported below.

4.2.1 BUPA liver disorders

This dataset was from Richard S. Forsyth at BUPA Medical Research Ltd and can be down-
loaded from the machine learning repository at UCI (http://www.ics.uci.edu/
∼mlearn/MLRepository.html). Each sample in the dataset constitutes the record
of a single male individual. Five attributes (mean corpuscular volume, alkaline phosphatase,
alamine aminotransferase, aspartate aminotransferase, and γ -glutamyl transpeptidase) in
each record are results from blood tests which are thought to be sensitive to liver disorders
that might arise from excessive alcohol consumption. The sixth feature is the number of
drinks per day. There are a total of 345 samples in the dataset.

In our study, 200 samples were randomly chosen as the training samples and the rest
as the test samples. The data was modeled by a MLP with 2 hidden units and shortcut
connections. The total number of connections is 23. The MLP was trained by ASAMC,

218 Mach Learn (2007) 68: 201–233

Table 5 Comparison of the ASAMC, SAMC, SA and BFGS algorithms for the BUPA liver disorders ex-
ample. The training error is measured as the minimum energy value found in each run, and the test error is
measured as the misclassification rate for the test samples

Algorithms Training error Test error rate (%) Time7

mean1 min2 max3 mean4 min5 max6

ASAMC 32.838 (0.053) 32.483 33.208 33.556 (0.251) 31.724 35.862 17s

SAMC 32.994 (0.050) 32.483 34.270 34.634 (0.218) 31.034 40.000 17s

SA 33.239 (0.063) 32.483 34.533 34.483 (0.278) 29.655 40.690 14s

BFGS 33.690 (0.112) 32.696 36.200 34.828 (0.290) 29.655 40.690 1s

1Average of the training errors over 50 runs (the number in the parentheses represent the standard deviation
of the average)
2Minimum training error over 50 runs

3Maximum training error over 50 runs

4Average misclassification rate over 50 runs (the number in the parentheses represent the standard deviation
of the average)
5Minimum misclassification rate over 50 runs

6Maximum misclassification rate over 50 runs

7CPU time cost by a single run on a core Intel Xeon X5355 with speed 2.66 GHz

Table 6 Comparison of the ASAMC, SAMC, SA and BFGS algorithms for the Pima Indians diabetes ex-
ample. Refer to Table 5 for notations of the table

Algorithms Training error Test error rate (%) Time

mean min max mean min max

ASAMC 82.986 (0.035) 82.784 83.494 19.60 (0.174) 17.71 22.40 63 s

SAMC 83.356 (0.054) 82.785 83.817 21.28 (0.264) 18.23 26.04 63 s

SA 83.517 (0.066) 82.785 84.782 21.13 (0.238) 17.71 23.96 53 s

BFGS 83.841 (0.103) 82.786 87.480 21.77 (0.214) 18.75 26.04 1 s

SAMC, SA and BFGS. The numerical results are summarized in Table 5. In ASAMC and
SAMC, the sample space were partitioned into 250 subregions: E1 = {x ∈ X : U(x) ≤ 0.2},
E2 = {x ∈ X : 0.2 < U(x) ≤ 0.4}, . . . , and E250 = {x ∈ X : U(x) > 49.8}. For this example,
ASAMC outperforms the other algorithms in both training and test errors.

4.2.2 Pima Indians diabetes classification

The data were collected by the National Institute of Diabetes and Digestive and Kidney
Diseases and can be downloaded from the machine learning repository at UCI. The dataset
contains 768 records of female Pima Indians, characterized by eight physiological descrip-
tors. The task is to predict presence or absence of diabetes. An early study of this data was
carried out by Smith et al. (1988) using a MLP. In their study, the MLP was trained using
576 samples, and an accuracy rate of 76% was achieved on the rest 192 samples.

We modeled the data by a MLP with 3 hidden units (without shortcut connections) and
a total of 31 connections. The MLP was trained using ASAMC, SAMC, SA and BFGS
on the first 576 samples. The results are summarized in Table 6. In ASAMC and SAMC,

Mach Learn (2007) 68: 201–233 219

Table 7 Comparison of the ASAMC, SAMC, SA and BFGS algorithms for the email spam identification
example. Refer to Table 5 for notations of the table

Algorithms Training error Test error rate (%) Time

mean min max mean min max

ASAMC 115.833 (0.501) 111.198 123.455 6.464 (0.051) 5.534 7.357 7.3 m

SAMC 129.113 (0.665) 122.241 147.121 6.629 (0.048) 5.990 7.161 8.0 m

SA 120.406 (0.609) 112.632 129.590 6.652 (0.049) 5.859 7.487 6.9 m

BFGS 124.303 (1.056) 114.713 141.684 6.665 (0.052) 5.859 7.292 3.4 s

the sample space were partitioned into 500 subregions with an equal energy bandwidth,
E1 = {x ∈ X : U(x) ≤ 0.2}, E2 = {x ∈ X : 0.2 < U(x) ≤ 0.4}, . . . , and E500 = {x ∈ X :
U(x) > 99.8}. The comparison shows that ASAMC outperforms the other algorithms in
both training and test errors. ASAMC achieved an accuracy rate of about 81%, which is
better than 76% obtained by Smith et al. (1988).

4.2.3 Email spam identification

The data were collected by Hewlett-Packard laboratories, Palo Alto, California in a study
to screen email for “spam” and can be downloaded from the machine learning repository
at UCI. The data consists of information from 4601 email messages. For all 4601 email
messages, the true outcome (email type) email or spam is available, along with the relative
frequencies of 57 of the most commonly occurring words and punctuation marks in the
email message.

In this study, 3065 samples were randomly chosen as the training samples and the rest as
the test samples. The data was modeled by a MLP with 2 hidden units and without shortcut
connections, which consists of 119 connections. The MLP was trained by ASAMC, SAMC,
SA and BFGS. The numerical results are summarized in Table 7. In ASAMC and SAMC,
the sample space were partitioned into 1250 subregions with an equal energy bandwidth:
E1 = {x ∈ X : U(x) ≤ 0.2}, E2 = {x ∈ X : 0.2 < U(x) ≤ 0.4}, . . . , and E250 = {x ∈ X :
U(x) > 248.2}. For this example, ASAMC again outperforms the other training algorithms
in both training and test errors.

The three real-world examples represent applications of ASAMC to classification MLPs
with different sizes of training sets. If, for example, we use “samples × attributes” to mea-
sure the size of a training set (suppose that the numbers of samples and attributes have
about the same ratio in each training set), then the training set sizes of the three examples
are 1200, 4608 and 174,705, respectively. So the three examples represent problems with
a small, moderate and large size of training set, respectively. The success of ASAMC in
the three examples suggests that ASAMC can make reliable training and predictions for
problems with various sizes of training sets.

4.3 Significance of ASAMC results

ASAMC has been compared with SAMC, SA and BFGS on two benchmark examples and
three real-world examples. The significance of the ASAMC results has been assessed us-
ing the two-sample t -tests. The corresponding p-values are summarized in Table 8. The
hypotheses corresponding to the first entry of Table 8 are H0: ASAMC has the same train-
ing error as SAMC for the 8-parity example versus H1: ASAMC has a smaller training error

220 Mach Learn (2007) 68: 201–233

Table 8 The p-values of the two-sample t -tests (with unequal variances) for the training and test errors
produced by ASAMC versus those produced by SAMC, SA and BFGS. For SA, only the results generated
with the geometric cooling schedule and from the restricted sample space are considered

Example Training error Test error

SAMC SA BFGS SAMC SA BFGS

8-parity 5.2×10−4 6.4 × 10−7 5.6×10−12 – – –

2-spiral 3.1×10−9 3.1×10−12 1.6×10−13 – – –

BUPA 1.7×10−2 2.2 × 10−6 1.1 × 10−9 8.1×10−4 7.5×10−3 6.4 × 10−4

Pima 7.0×10−8 3.0×10−10 4.2×10−11 4.3×10−7 6.5×10−7 3.0×10−12

Spam 0.0 4.4 × 10−8 2.2×10−10 1.0×10−2 4.6×10−3 3.5 × 10−3

than SAMC for the 8-parity example. The hypotheses corresponding to other entries are sim-
ilar. Table 8 shows that for all MLP examples studied in this paper, ASAMC can outperform
significantly (at a level of 0.01) SAMC, SA and BFGS in both training and test errors. Like
other stochastic algorithms, ASAMC is slower than the gradient-based algorithms. How-
ever, as indicated by the running times reported above, its training speed is still acceptable
to us.

5 Discussion and future work

The strength of ASAMC comes from two aspects, its self-adjusting mechanism and its pro-
gressive shrinkage for the sample space. The self-adjusting mechanism makes ASAMC ca-
pable of overcoming the local-trap problems encountered in MLP training, and the sample
space shrinkage accelerates exploration for low energy regions. We note that for a given
problem, the significance of ASAMC should only apply to the appropriately chosen net-
works. For the networks which overfit to the data excessively, ASAMC and other training
algorithms may perform equally in both training and test errors.

In this paper, we considered only the MLPs that have a single layer of hidden units and
use the sigmoid function as activation functions. Such MLPs are rather general. Cybenko
(1989), Funahashi (1989), Hornik et al. (1989), and Barron (1993) have shown the so-called
universal approximation theorem: a MLP with a single hidden layer can approximate any
given training set uniformly by increasing the number of hidden units, assuming that the acti-
vation function of the hidden units is a nonconstant, bounded, and monotonically increasing
continuous function. If the MLP is modified, e.g., to include multiple hidden layers, multiple
output units, or to use other functions as activation functions, ASAMC should still work well
given its superiority in function optimization. It is worth noting that the tangent activation
function often gives rise to faster convergence of training algorithms than does the sigmoid
function (Bishop 1995, p. 127).

ASAMC avoids the requirement for the gradient information of the energy function, so
it can be applied to the optimization problems for which the gradient information is not
available, e.g., decision tree learning problems (Sastry et al. 2002). This is similar to SA.
Besides optimization, SAMC and ASAMC can also be applied to solve the problems of
function approximation, as illustrated by the knapsack example. A neural learning exam-
ple in this respect is evidence evaluation for Bayesian MLPs. As pointed out by MacKay
(1992b), the Bayesian evidence can provide a useful guideline of architecture selection for

Mach Learn (2007) 68: 201–233 221

MLPs. Let f (D|x) denote the likelihood function of a MLP, and let l(x) denote the prior
density imposed on x. Define the function

ψ(x, k) =
{

f (D|x)l(x), k = 1,
1/V, k = 0,

(15)

on the product space X × {0,1}, where V = |X | denotes the hypervolume of the space X .
Recall that X has been restricted to a compact set in this paper. Partition the product space as
follows: E0 = {(x, k) : k = 0,x ∈ X }, E1 = {(x, k) : k = 1,U(x) ≤ u1,x ∈ X }, . . . , Em =
{(x, k) : k = 1,U(x) > um−1,x ∈ X }. If SAMC is run with this partition, it then follows
from equation (9) that the evidence of the MLP can be estimated by

ÊV =
∑m

i=1(πi + ℵ)ĝi

(π0 + ℵ)ĝ0
g0, (16)

where ĝi = limt→∞ eθti and 0 < π0 < 1. The function ψ(x,0) does not need to be uniform, it
can be any non-negative function with g0 = ∫

E0
ψ(x,0)dx being analytically available. Re-

fer to Jerrum and Sinclair (1997) and Chawla et al. (2004) for more discussions on function
approximation.

The theory and methodology related to function optimization can be further developed
based on this work. In the present version of ASAMC, the space shrinkage parameter Δ is set
to a constant. If we associate it with iterations by letting Δt be a monotonically decreasing
function of t with the limit 0, then ASAMC will converge in distribution toward the set of
global energy minimizers. An interesting problem is to find the decreasing rate of Δt under
which ASAMC has the fastest convergence to the global energy minimizers.

Evolutionary Monte Carlo (Liang and Wong 2001; Goswami and Liu 2005; Jasra et al.
2007) has been shown to be useful for alleviating the local-trap problem, due to the use
of population information through crossover operations on pairs of candidate solutions. We
believe that the efficiency of ASAMC can be further improved by extending it to multiple
chains. Appropriate crossover operations can then be adopted to accelerate its convergence
to the set of global minimizers.

6 Conclusion

In this paper we have proposed ASAMC as a new stochastic optimization algorithm, and
shown under mild conditions that ASAMC can converge weakly at a rate of Ω(1/

√
t) to-

ward a neighboring set (in the space of energy) of the global minimizers. We have compared
ASAMC with simulated annealing, SAMC, and the BFGS algorithm for training MLPs on
two benchmark and three real-world examples. Our numerical results indicate that ASAMC
can outperform the other algorithms in both training and test errors. Like other stochastic
optimization algorithms, ASAMC requires longer training times than does the BFGS algo-
rithm. It provides, however, an efficient approach to the problems of minimization of rugged
functions.

Acknowledgements The author thanks Professor Risto Miikkulainen and two referees for their helpful
comments which have led to significant improvement of this paper. The author’s research is partially sup-
ported by grants from the National Science Foundation (DMS-0405748) and the National Cancer Institute
(CA104620).

222 Mach Learn (2007) 68: 201–233

Appendix 1

7.1 Pseudocode of ASAMC

Consider the problem of minimizing an energy function U(x) over a compact space X . Let
Ulow be a known lower bound of U(x) on X , which can be smaller than the true global
minimum value of U(x). Let m denote the number of subregions to be partitioned, let h

denote the energy bandwidth of each subregion, let J (x) be the index of the subregion that
x belongs to, i.e., x ∈ EJ(x), let U

(t)

min be the minimum energy value found by iteration t ,
and let x

(t)

min be the corresponding minimizer, i.e., U
(t)

min = U(x
(t)

min). In addition, we define
the notations: N is the total number of iterations of a run, Δ is the space annealing control
parameter, τ and t0 determine the gain factor sequence as in (8), and ι determines the desired
sampling distribution as in (12).

(a) (Initialization)
(a.1) Choose appropriate values for the parameters3: BΘ , Ulow , m, h, Δ, N , τ , t0 and ι.
(a.2) Normalize the desired sampling distribution π by setting πi = i−ι/

∑m

j=1 j−ι for
i = 1, . . . ,m.

(a.3) Initialize the working estimate θ0 = (θ01, . . . , θ0m) = (0, . . . ,0), draw a random
sample x0 from X (x0 can be an arbitrary point in X), and set U

(0)

min = U(x0) and
x

(0)

min = x0.
(b) (Iterations) For t = 0 to N − 1, do the following:

(b.1) Set X (t) ← ⋃�(U
(t)
min+Δ)

i=1 Ei .
(b.2) Draw a random sample y from the proposal distribution q(x,y).
(b.3) Calculate the ratio

r = e(θtJ (xt)−θtJ (y))
ψ(y)

ψ(x t)

q(y,x t)

q(x t ,y)
,

where q(x,y) is a global proposal distribution defined on X .
(b.4) If r > 1, set x t+1 ← y

else {
* Draw a random number u ∼ Unif[0,1].
* If u ≤ r , set x t+1 ← y; otherwise, set x t+1 ← x t .

}
(b.5) Set et+1 ← (et+1,1, . . . , et+1,m), where et+1,i = 1 if i = J (x t+1) and 0 otherwise.
(b.6) Set θ∗ ← θt + γt (et+1 − π).
(b.7) If θ∗ ∈ Θ , set θt+1 ← θ∗;

else {
* If maxm

i=1 θ∗
i > BΘ , set c∗ ← BΘ/2 − maxm

i=1 θ∗
i ;

else if minm
i=1 θ∗

i < −BΘ , set c∗ ← −BΘ/2 − minm
i=1 θ∗

i .
* Set θt+1 ← θ∗ + c∗.

}

3By choosing the values of Ulow , m and h, the sample space is partitioned implicitly into m subregions:
E1 = {x : Ulow < U(x) ≤ Ulow + h}, . . . , Em−1 = {x : Ulow + (m − 2)h < U(x) ≤ Ulow + (m − 1)h},
Em = {x : U(x) > Ulow + (m − 1)h}.

Mach Learn (2007) 68: 201–233 223

(b.8) If U(x t+1) < U
(t)

min, set U
(t+1)

min ← U(x t+1) and x
(t+1)

min ← x t+1;
else set U

(t+1)

min ← U
(t)

min and x
(t+1)

min ← x
(t)

min.
(c) (Output) Output U

(t+1)

min and x
(t+1)

min as a solution to the minimization problem under con-
sideration.

7.2 Pseudocode of SAMC

The pseudocode of SAMC can be simply obtained by making the following modifications
on the pseudocode of ASAMC:

• Set X (t) ≡ X in step (b.1).
• Set p′

θt
(x) = pθt (x) in step (b.3).

• (Option) Employ a local proposal distribution in step (b.3) provided that 0 < ψ(x) < ∞
for all x ∈ X .

Appendix 2

This appendix is organized as follows. In Sect. 8.1, we briefly review the published results
on the convergence of a general stochastic approximation algorithm. In Sect. 8.2, we proved
three theorems concerning the convergence and convergence rate of ASAMC.

8.1 Published results on the convergence of a general stochastic approximation algorithm

Suppose that we are interested in solving the following integration equation for the parame-
ter vector θ :

h(θ) =
∫
X

H(θ,x)p(dx) = 0, θ ∈ Θ.

The stochastic approximation algorithm with Markov chain Monte Carlo works iteratively
as follows. Let K(x t , ·) denote a probability transition kernel. For example, it can be the
MH kernel of the form

K(x t , dy) = s(x t , dy) + I (x t ∈ dy)

(
1 −

∫
X

s(x t ,z)dz

)
,

where s(x t , dy) = q(x t , dy)min{1, [p(y)q(y,x t)]/[p(x)q(x,y)]}, q(·, ·) is the proposal
distribution, and p(·) is the target distribution.

Let Θ ⊂ Θ̃ be a compact subset of Θ̃ . Let {γt }∞
t=0 be a monotone, non-increasing

sequence. Also define a function Φ : X × Θ̃ → X × Θ , which reinitializes the non-
homogeneous Markov chain {(x t , θt)}. The function Φ can for instance generate a random
or fixed point, or project (x t+1, θt+1) onto X × Θ . An iteration of the algorithm is given as
follows.

Stochastic approximation algorithm

(i) Generate y ∼ Kθt (x t , ·).
(ii) Set θ∗ = θt + γt+1H(θt ,y).

(iii) If θ∗ ∈ Θ , then set (x t+1, θt+1) = (y, θ∗); otherwise, set (x t+1, θt+1) = Φ(y, θ∗).

The above algorithm is a simplified version of the stochastic approximation MCMC al-
gorithm presented in Andrieu et al. (2005) and Erland (2003). To show the convergence of
the algorithm, the following conditions are assumed.

224 Mach Learn (2007) 68: 201–233

Lyapunov condition on h Let 〈x,y〉 denote the Euclidean inner product and let |x| be the
corresponding norm of x.

(A1) The function h : Θ → R
d is continuous, and there exists a continuously differentiable

function v : Θ → [0,∞) such that

(i) For any integer M > 0, the level set VM = {θ ∈ Θ,v(θ) ≤ M} ⊂ Θ is compact.
(ii) There exists M0 > 0 such that

L = {θ ∈ Θ, 〈∇v(θ), h(θ)〉 = 0} ⊂ int(VM0),

and 〈∇v(θ), h(θ)〉 < 0 for any θ ∈ Θ \ VM0 , where int(A) denotes the interior of
set A.

(iii) For all θ ∈ Θ , 〈∇v(θ), h(θ)〉 ≤ 0, and int(v(L)) = ∅.

Drift and continuity conditions on the transition kernel Kθ Assume that a transition kernel
K is ϕ-irreducible, aperiodic and has a unique stationary distribution. A set C ⊂ X is said
to be a small set if there exists a probability measure ν on X , a positive integer l, and δ > 0
such that

Kl
θ (x,A) ≥ δν(A), ∀x ∈ C, ∀A ∈ B,

where B is the Borel set. Refer to Meyn and Tweedie (1993) for more discussions on small
set. A function V : X → [1,∞) is said to be a drift function outside C if there exist constants
λ < 1 and b such that

KθV (x) ≤ λV (x) + bI (x ∈ C), ∀x ∈ X ,

where KθV (x) = ∫
X Kθ(x,y)V (y)dy. For g : X → R

d , define the norm

‖g‖V = sup
x∈X

|g(x)|
V (x)

,

and define the set LV = {g : X → R
d ,‖g‖V < ∞}.

(A2) If Kθ is irreducible and aperiodic for all θ ∈ Θ , there exist a function V : X → [1,∞)

and constants p ≥ 2 and β ∈ [0,1] such that for any compact subset Θ0 ∈ Θ ,
(i) there exist an integer l, constants 0 < λ < 1, b, κ , δ > 0 and a probability measure

ν such that

• supθ∈Θ0
Kl

θV
p(x) ≤ λV p(x) + bI (x ∈ C), ∀x ∈ X ,

• supθ∈Θ0
KθV

p(x) ≤ κV p(x), ∀x ∈ X ,
• infθ∈Θ0 Kl

θ (x,A) ≥ δν(A), ∀x ∈ C, ∀A ∈ X ;

(ii) there exists a constant c1 such that for all x ∈ X ,

• supθ∈Θ0
|H(θ,x)| ≤ c1V (x),

• sup(θ,θ ′)∈Θ0×Θ0
|H(θ,x) − H(θ ′,x)| ≤ c1V (x)|θ − θ ′|β ;

(iii) there exists a constant c2 such that for all (θ, θ ′) ∈ Θ0 × Θ0,

• ‖Kθg − Kθ ′g‖V ≤ c2‖g‖V |θ − θ ′|β, ∀g ∈ LV ,
• ‖Kθg − Kθ ′g‖V p ≤ c2‖g‖V p |θ − θ ′|β, ∀g ∈ LV p .

Mach Learn (2007) 68: 201–233 225

Conditions on the step-size

(A3) The sequence {γt }∞
t=0 is non-increasing and positive and satisfies the conditions

(i)
∑∞

t=1 γt = ∞,
(ii)

∑∞
t=1 γ

ζ
t < ∞,

(iii) at each step, |γtH(θt−1,x t)| < Cγ
η
t , t = 1,2, . . . ,

for some ζ ∈ (1,p(1 + α)/(p + α)], some η ∈ [(ζ − 1)/α, (p − ζ)/p], and a con-
stant C. Here α ∈ (0, β], β ∈ [0,1] and p ≥ 2 are defined in (A2).

A main convergence result Let Px0,θ0 denote the probability measure of the Markov chain
{(x t , θt)}, started in (x0, θ0), and implicitly defined by the sequences {γt }. Also define
D(x,A) = infy∈A |x − y|.

Theorem 8.1 (Andrieu et al. 2005) Assume the conditions (A1), (A2) and (A3) hold, and
supx∈X V (x) < ∞. Let the sequence {θn} be defined as in the stochastic approximation
algorithm. Then for all (x0, θ0) ∈ X × Θ ,

lim
t→∞D(θt ,L) = 0, almost surely.

8.2 Three theorems for the SAMC algorithm

Without loss of generality, we only show the convergence presented in (9) of the paper for
the case that all subregions are non-empty or, equivalently, ℵ = 0. Extension to the case
ℵ
= 0 is trivial, because changing step (ii) of the SAMC algorithm to (ii)′ (given below) will
not change the process of simulation.

(ii)′ Set θ ′ = θt + γt+1[H(θt ,x t+1) − ℵ].

Theorem 8.2 Let E1, . . . ,Em form a partition of a compact sample space X and ψ(x)

be a non-negative function defined on X with 0 <
∫

Ei
ψ(x)dx < ∞ for all Ei ’s. Let π =

(π1, . . . , πm) be an m-vector with 0 < πi < 1 and
∑m

i=1 πi = 1. Let Θ be a compact set
of m dimensions. Assume that there exists at least a constant C such that θ̆ ∈ Θ , where

θ̆ = (θ̆1, . . . , θ̆m) with θ̆i = C + log(
∫

Ei
ψ(x)dx)− log(πi). Let θ0 ∈ Θ be an initial estimate

of θ̆ , let θt ∈ Θ be the estimate of θ̆ at iteration t , and let {γt } be a non-increasing, positive
sequence as specified in (8). Suppose that pθt (x) is bounded away from 0 and ∞ on X , and
that the proposal distribution is global. As t → ∞, we have

P

{
lim
t→∞ θti = Const + log

(∫
Ei

ψ(x)dx

)
− log(πi)

}
= 1, i = 1, . . . ,m, (17)

where Const denotes an arbitrary constant.

Remark A similar theorem has been proved in Liang et al. (2007) for the case that a local
proposal distribution is used in the MCMC sampling step of SAMC. Below this theorem is
reproved under the condition (6), which allows the sample space to include several separated
regions. Hence, this theorem is applicable to ASAMC.

Proof To prove this theorem, it suffices to verify that the conditions (A1) to (A3) (given
in Sect. 8.2) hold for SAMC. Since the change of the proposal distribution only affects

226 Mach Learn (2007) 68: 201–233

the verification for the condition A2-(i), only the condition A2-(i) is verified below. Other
conditions can be verified as in Liang et al. (2007). For the MH kernel, we have

Kθ(x,A) =
∫

A

sθ (x,y)dy + I (x ∈ A)

(
1 −

∫
X

sθ (x,z)dz

)

≥
∫

A

q(x,y)min

{
1,

pθ (y)q(y,x)

pθ (x)q(x,y)

}
dy

=
∫

A

min

{
q(x,y),

pθ (y)q(y,x)

pθ (x)

}
dy

≥
∫

A

min

{
q(x,y),

pθ (y)

ω∗

}
dy (by the minorization condition)

=
∫

A

pθ (y)

ω∗ dy (by definition of ω∗)

≥ ψ(A)

ω∗ ∫
X ψ(x)dx

= ψ∗(A)

ω∗ ,

where ψ∗(·) denotes a normalized measure of ψ(·). Suppose the constraint∑m

i=1

∫
Ek

ψ(x)dx/eθk = 1 is imposed on θ , eθk is then bounded above by
∫
X ψ(x)dx.

Therefore, the condition

inf
θ∈Θ

Kl
θ (x,A) ≥ δν(A), ∀x ∈ X , ∀A ∈ B (18)

is satisfied by choosing δ = 1
ω∗ , l = 1, and ν(·) = ψ∗(·). Equation (18) implies that C = X is

a small set. The sample space X being a small set implies directly the following condition,

sup
θ∈Θ0

Kl
θV

p(x) ≤ λV p(x) + bI (x ∈ C), ∀x ∈ X , (19)

by choosing Θ0 = Θ , V (x) = 1, l = 1, 0 < λ < 1, b = 1 − λ, and p ∈ [2,∞). Since V (x)

has been specified as a constant function, the condition

KθV
p(x) ≤ κV p(x) (20)

holds automatically by choosing κ ≥ 1. Equations (18), (19) and (20) imply that (A2-i) is
satisfied. �

Lemma 8.1 (Scheffé 1947; Billingsley 1986, p. 218) Suppose that Fn(A) = ∫
A

fn(x)dx

and F(A) = ∫
A

f (x)dx for densities fn(x) and f (x) defined on X . If fn(x) converges to
f (x) almost surely, then Fn(A) −→ F(A) as n → ∞ uniformly for any A ∈ B(X), where
B(X) denotes the Borel set of the space X .

Theorem 8.3 Let Fθt (x) denote the cumulative distribution function (CDF) corresponding
to the density function pθt (x) given in (5), and let F(x) denote the CDF corresponding to

Mach Learn (2007) 68: 201–233 227

the density function

pθ(x) =
m∑

i=1

πiψ(x)∫
Ei

ψ(x)dx
I (x ∈ Ei).

Then we have

lim
t→∞Fθt (x) = F(x).

Proof Theorem 8.2 implies that pθt (x) → pθ(x) almost surely. Since pθt (x) and pθ(x) are
both densities, it follows from Lemma 8.1 that limt→∞ Fθt (x) = F(x). �

Lemma 8.2 Let π = (π1, . . . , πm) be an m-vector, πi > 0,
∑m

i=1 πi = 1, and there exists
a constant δ > 0 such that min1≤i≤m πi − 1

m

∑m

i=1 π2
i > δ. Let p = (p1, . . . , pm) be a random

vector such that pi > 0 and
∑m

i=1 pi = 1. Let ei = pi − πi , i = 1, . . . ,m, and suppose that
each ei is distributed symmetrically about 0. Then there exists a constant λ such that

E

{
m∑

i=1

e2
i pi −

[
m∑

i=1

eipi

]2}
≥ λE

{
m∑

i=1

e2
i

}
. (21)

Proof By Cauchy–Schwarz theorem, we have

m∑
i=1

e2
i pi −

[
m∑

i=1

eipi

]2

− λ

m∑
i=1

e2
i ≥

m∑
i=1

e2
i pi −

m∑
i=1

e2
i

m∑
i=1

p2
i − λ

m∑
i=1

e2
i

=
m∑

i=1

[
πi + ei − 1

m

m∑
j=1

(πj + ej)
2 − λ

]
e2
i

=
m∑

i=1

[
πi − 1

m

m∑
j=1

π2
j − λ

]
e2
i +

[
m∑

i=1

e3
i − 2

m

m∑
i=1

e2
i

m∑
i=1

πiei − 1

m

(
m∑

i=1

e2
i

)2]
. (22)

Taking expectation on both sides of (22), we have

E

{
m∑

i=1

e2
i pi −

[
m∑

i=1

eipi

]2

− λ

m∑
i=1

e2
i

}
≥ (δ − λ)

m∑
i=1

σ 2
i + o

(
m∑

i=1

σ 2
i

)
, (23)

where σ 2
i denotes the variance of ei . It is obvious that σ 2

i < 1 for all i. Hence, there exist
a constant 0 < λ < δ such that (21) holds. �

Remark In Lemma 8.2, the existence of δ is obvious when π is set to the uniform distrib-
ution with π1 = · · · = πm = 1/m. The following theorem concerns the convergence rate of
ASAMC. Let Ft = σ {θ0,x0; . . . ; θt ,x t } be the sigma-algebra formed by θ0,x0; . . . ; θt ,x t .
Since limt→∞ γt = 0, the condition (24) is asymptotically satisfied by ASAMC when t be-
comes large. The same condition has been assumed by Benveniste et al. (1990) (p. 244,
Theorem 22) in studying the convergence rate of conventional stochastic approximation
MCMC algorithms.

228 Mach Learn (2007) 68: 201–233

Theorem 8.4 Assume the following conditions hold:

(B1)

E
[
H(θt ,x t+1) − h(θt)|Ft

] = 0, (24)

where h(θ) = ∫
Xn H(θ,x)p(dx) for θ ∈ Θ .

(B2) The difference S
(t)
i /S(t) − πi is distributed symmetrically about 0, where S

(t)
i =∫

Ei
ψ(x)dx/eθti and S(t) = ∑m

i=1 S
(t)
i .

Let π be chosen such that there exists a constant δ satisfying the inequality min1≤i≤m πi −∑m

i=1 π2
i /m > δ > 0, and let the gain factor be chosen as in (8) with T0 > δ−1/η . De-

fine v(θt) = 1
2

∑m

k=1(S
(t)
k /S(t) − πk)

2, where S
(t)
i = ∫

Ei
ψ(x)dx/eθti and S(t) = ∑m

k=1 S
(t)
k .

Then

E[v(θt)] ≤ λ∗γ β
t ,

for all 0 < β ≤ 1 and some constant λ∗ > 0.

Proof Let ∇(θ) be the vector of the first partial derivatives of v(θ) and let A(θ) be the
matrix of the second partial derivatives of v(θ), i.e.,

∇(θ) =
(

∂v

∂θi

)∣∣∣∣
θ

, A(θ) =
(

∂2v

∂θi∂θj

)∣∣∣∣
θ

.

By Taylor’s theorem, we have

v(θt+1) = v
(
θt + γt+1H(θt ,x t+1)

)
= v(θt) + γt+1〈∇v(θt),H(θt ,x t+1)〉

+ 1

2
γ 2

t+1〈H(θt ,x t+1),A(θt + ξγt+1H(θt ,x t+1))H(θt ,x t+1)〉,

where ξ is a real number between 0 and 1. Consequently, we may take conditional expecta-
tions on both sides to obtain

E[v(θt+1)|Ft] = v(θt) + γt+1〈∇(θt), h(θt)〉

+ 1

2
γ 2

t+1E[〈H(θt ,x t+1),A(θt + ξγt+1H(θt ,x t+1))H(θt ,x t+1)〉|Ft].
(25)

Let Ξt = 1
2E[〈H(θt ,x t+1),A(θt + ξγt+1H(θt ,x t+1))H(θt ,x t+1)〉|Ft]. Below we show that

Ξt is bounded above by a constant.
Taking expectations on both sides of (25), we get

E[v(θt+1)] = E[v(θt)] + γt+1E[〈∇(θt), h(θt)〉] + 1

2
γ 2

t+1E(Ξt). (26)

Since in ASAMC the MH kernel leaves the density pθt (x) invariant, we have

∫
Xn

Hi(θt ,x)pθt (x)dx =
∫

Ei
ψ(x)dx/eθti∑m

k=1[
∫

Ek
ψ(x)dx/eθtk] −πi = S

(t)
i

S(t)
−πi, i = 1, . . . ,m, (27)

Mach Learn (2007) 68: 201–233 229

where Hi(θt ,x) denotes the ith element of the vector H(θt ,x). By (24), we have

h(θt) =
(

S
(t)

1

S(t)
− π1, . . . ,

S(t)
m

S(t)
− πm

)′
. (28)

It follows from (28) and (31) that

〈∇(θt), h(θt)〉 = −
{

m∑
i=1

(
S

(t)
i

S(t)
− πi

)2
S

(t)
i

S(t)
−

(
m∑

i=1

(
S

(t)
i

S(t)
− πi

)
S

(t)
i

S(t)

)2}
.

Following from Lemma 8.2, there exists a constant λ∗ such that

E[〈∇(θt), h(θt)〉] ≤ −λ∗E[v(θt)].

This further implies that

E[v(θt+1)] ≤ (1 − γt+1λ∗)E[v(θt)] + γ 2
t+1Ξ, (29)

where Ξ denotes the upper bound of Ξt , i.e., |Ξt | ≤ Ξ for all t .
It is easy to verify that there exist λ0 and t0 such that for λ > λ0 and t > t0 the sequence

ut = λγ
β
t satisfies

ut+1 ≥ (1 − γt+1λ∗)ut + γ 2
t+1Ξ,

provided that γt is chosen as in (8) with T0 > δ−1/τ . Choose λ∗ > λ0 and t∗ > t0 such that

E[v(θt∗)] ≤ λ∗γ β

t∗ .

It follows immediately by induction on t that the sequence ut = λ∗γ β
t satisfies E[v(θt)] ≤ ut

when t > t∗.
Now we show that Ξt is bounded above by a constant for all t . To simplify notations,

in the following we will drop the superscript t , denoting S
(t)
i by Si , denoting S(t) by S, and

denoting θt = (θt1, . . . , θtm) by θ = (θ ′
1, . . . , θ

′
m).

∂S

∂θ ′
i

= ∂Si

∂θ ′
i

= −Si,
∂Si

∂θ ′
j

= ∂Sj

∂θ ′
i

= 0,

∂(
Si

S
)

∂θ ′
i

= −Si

S

(
1 − Si

S

)
,

∂(
Si

S
)

∂θ ′
j

= ∂(
Sj

S
)

∂θ ′
i

= SiSj

S2
,

(30)

for i, j = 1, . . . ,m and i
= j , and

∂v(θ ′)
∂θ ′

i

= 1

2

m∑
k=1

∂(
Sk

S
− πk)

2

∂θ ′
i

=
∑
j
=i

(
Sj

S
− πj

)
SiSj

S2
−

(
Si

S
− πi

)
Si

S

(
1 − Si

S

)

=
m∑

j=1

(
Sj

S
− πj

)
SiSj

S2
−

(
Si

S
− πi

)
Si

S
= μη

Si

S
−

(
Si

S
− πi

)
Si

S
, (31)

230 Mach Learn (2007) 68: 201–233

for i = 1, . . . ,m, μη = ∑m

j=1(
Sj

S
− πj)

Sj

S
. Further, we have

∂μη

∂θ ′
i

=
∑
k
=i

[
2
SiS

2
k

S3
− πk

SiSk

S2

]
− 2

S2
i

S2

(
1 − Si

S

)
+ πi

Si

S

(
1 − Si

S

)

= Si

S

[
m∑

k=1

S2
k

S2
+ μη − 2

Si

S
+ πi

]
, (32)

∂2v(θ)

∂(θ ′
i)

2
= ∂[μη

Si

S
− (

Si

S
− πi)

Si

S
]

∂θ ′
i

= −μη

Si

S

(
1 − Si

S

)
+ Si

S

∂μη

∂θ ′
i

+ 2
S2

i

S2

(
1 − Si

S

)
− πi

Si

S

(
1 − Si

S

)

= S2
i

S2

[
m∑

k=1

S2
k

S2
+ 2μη − 4

Si

S
+ 2πi + 2

]
− Si

S
(μη + πi), (33)

and

∂2v(θ)

∂θ ′
i ∂θ ′

j

= ∂[μη
Si

S
− (

Si

S
− πi)

Si

S
]

∂θ ′
j

= SiSj

S2
μη + Si

S

∂μη

∂θ ′
j

−
[

2
S2

i Sj

S3
− πi

SiSj

S2

]

= SiSj

S2

[
m∑

k=1

S2
k

S2
+ 2μη − 2

Si

S
− 2

Sj

S
+ πi + πj

]
. (34)

Since 0 ≤ Si/S ≤ 1, 0 ≤ πi ≤ 1 and |μη| ≤ 1, both |∂2v(θ)/∂(θ ′
i)

2| and |∂2v(θ)/∂θ ′
i ∂θ ′

j |
are bounded above by a constant. Each element of H(θt ,x t+1) lies between −1 and 1.
Therefore, Ξt is bounded above by a constant for all t . �

References

Abunawass, A. M., & Owen, C. B. (1993). A statistical analysis of the effect of noise injection during neural
network training. SPIE Proceedings, 1966, 362–371.

Amato, S., Apolloni, B., Caporali, G., Madesani, U., & Zanaboni, A. (1991). Simulated annealing approach
in back-propagation. Neurocomputing, 3, 207–220.

Andrieu, C., Moulines, E., & Priouret, P. (2005). Stability of Stochastic Approximation Under Verifiable
Conditions. SIAM J. Control and Optimization, 44, 283–312.

Barron, A. (1993). Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans-
actions on Information Theory, 3, 930–945.

Baum, E. B., & Lang, K. J. (1991). Constructing hidden units using examples and queries. In Advances in
neural information processing systems (Vol. 3, pp. 904–910). San Mateo: Kaufmann.

Benveniste, A., Métivier, M., & Priouret, P. (1990). Adaptive algorithms and stochastic approximations. New
York: Springer.

Bharath, B., & Borkar, V. S. (1999). Stochastic approximation algorithms: overview and recent trends. Sad-
hana, 24, 425–452.

Billingsley, P. (1986). Probability and measure (2nd ed.). New York: Wiley.
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.
Broyden, C. G. (1970a). The convergence of a class of double rank minimization algorithms, part I. Journal

of the Institute of Mathematics and Applications, 6, 76–90.

Mach Learn (2007) 68: 201–233 231

Broyden, C. G. (1970b). The convergence of a class of double rank minimization algorithms, part II. Journal
of the Institute of Mathematics and Applications, 6, 222–231.

Chawla, D., Li, L., & Scott, S. (2004). On approximating weighted sums with exponentially many terms.
Journal of Computer and System Sciences, 69, 196–234.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 3, 303–314.

Davidon, W. C. (1959). Variable metric method for minimization. AEC Res. and Dev. Report ANL-5990.
de Freitas, N., Niranjan, M., Gee, A. H., & Doucet, A. (2000). Sequential Monte Carlo methods to train neural

network models. Neural Computation, 12, 955–993.
Delyon, B., Lavielle, M., & Moulines, E. (1999). Convergence of a stochastic approximation version of the

EM algorithm. Annals of Statistics, 27, 94–128.
Erland, S. (2003). Adaptive Markov chain Monte Carlo review. Technical Report, Department of Mathemat-

ical Science, Norwegian University of Science and Technology.
Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.),

Advances in neural information processing systems (Vol. 2, pp. 524–532). San Mateo: Kaufmann.
Flanagan, J. A. (1997). Analyzing a self-organizing algorithm. Neural Networks, 10, 875–883.
Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, 13, 317–322.
Fletcher, R. (1987). Practical methods of optimization (2nd ed.). New York: Wiley.
Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer

Journal, 6, 163–168.
Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural

Networks, 2, 183–192.
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of

images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
Gelfand, A. E., & Banerjee, S. (1998). Computing marginal posterior modes using stochastic approximation.

Technical report, Department of Statistics, University of Connecticut.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, & machine learning, Reading: Addison–

Wesley.
Goldfarb, D. (1970). A family of variable metric methods derived by variational means. Mathematics of

Computation, 24, 23–26.
Goswami, G. R., & Liu, J. S. (2005) On real parameter evolutionary Monte Carlo algorithm. Technical

Report, Harvard University.
Gu, M. G., & Kong, F. H. (1998). A stochastic approximation algorithm with Markov chain Monte Carlo

method for incomplete data estimation problems. Proceedings of the National Academy of Sciences
USA, 95, 7270–7274.

Gu, M. G., & Zhu, H. T. (2001). Maximum likelihood estimation for spatial models by Markov chain Monte
Carlo stochastic approximation. Journal of the Royal Statistical Society, Series B, 63, 339–355.

Hanson, S. J. (1991). Behavioral diversity, search and stochastic connectionist systems. In M. Commons,
S. Grossberg, & J. Staddon (Eds.), Neural network models of conditioning and action (pp. 295–345).
Mahwah: Erlbaum.

Harth, E., & Tzanakou, E. (1974). Alopex: a stochastic method for determining visual receptive fields. Vision
Research, 14, 1475–1482.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. New York: Springer.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Bio-

metrika, 57, 97–109.
Haykin, S. (1999). Neural networks: a comprehensive foundation (2nd ed.). New York: Prentice Hall.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.
Holley, R. A., Kusuoka, S., & Stroock, D. (1989). Asymptotic of the spectral gap with applications to the

theory of simulated annealing. Journal of Functional Analysis, 83, 333–347.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approxi-

mators. Neural Networks, 2, 359–366.
Ingman, D., & Merlis, Y. (1991). Local minimization escape using thermodynamic properties of neural net-

works. Neural Networks, 4, 395–404.
Jerrum, M., & Sinclair, A. (1997). The Markov chain Monte Carlo method: an approach to approximate

counting and integration. In D. S. Hochbaum (Ed.), Approximation algorithms for NP-hard problems
(pp. 482–520). Boston: PWS Publishing Company.

Jasra, A., Stephens, D. A., & Holmes, C. C. (2007, to appear). On population-based simulation for static
inference. Statistics and Computing.

Karlin, S., & Taylor, H. M. (1998). An introduction to stochastic modeling, (3rd ed.). Orlando: Academic
Press.

232 Mach Learn (2007) 68: 201–233

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220,
671–680.

Kohonen, T. (1990). The self-organizing map. Proceedings of the Institute of Electrical and Electronics En-
gineers, 78, 1464–1480.

Lang, K. J., & Witbrock, M. J. (1989). Learning to tell two spirals apart. In D. Touretzky, G. Hinton, &
T. Sejnowski (Eds.), Proceedings of the 1988 connectionist models (pp. 52–59). San Mateo: Kaufmann.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly
Journal of Applied Mathematics, 2, 164–168.

Liang, F. (2003). An effective Bayesian neural network classifier with a comparison study to support vector
machine. Neural Computation, 15, 1959–1989.

Liang, F. (2005a). Generalized Wang-Landau algorithm for Monte Carlo computation. Journal of the Ameri-
can Statistical Association, 100, 1311–1327.

Liang, F. (2005b). Evidence evaluation for Bayesian neural networks using contour Monte Carlo. Neural
Computation, 17, 1385–1410.

Liang, F., & Wong, W. H. (2001). Real parameter evolutionary Monte Carlo with applications in Bayesian
mixture models. Journal of the American Statistical Association, 96, 653–666.

Liang, F., Liu, C., & Carroll, R. J. (2007). Stochastic approximation in Monte Carlo computation. Journal of
the American Statistical Association, 102, 305–320.

MacKay, D. J. C. (1992a). A practical Bayesian framework for backprop networks. Neural Computation, 4,
448–472.

MacKay, D. J. C. (1992b). The evidence framework applied to classification problems. Neural Computation,
4, 720–736.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the
Society of Industrial and Applied Mathematics, 11, 431–441.

Mengersen, K. L., & Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms.
The Annals of Statistics, 24, 101–121.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state
calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1091.

Meyn, S. P., & Tweedie, R. L. (1993). Markov chains and stochastic stability. London: Springer.
Mulier, F. M., & Cherkassky, V. S. (1995). Statistical analysis of self-organization. Neural Networks, 8, 717–

727.
Müller, P., & Insua, D. R. (1998). Issues in Bayesian analysis of neural network models. Neural Computation,

10, 749–770.
Neal, R. M. (1996). Bayesian learning for neural networks. New York: Springer.
Owen, C. B., & Abunawass, A. M. (1993). Applications of simulated annealing to the back-propagation

model improves convergence. SPIE Proceedings, 1966, 269–276.
Perrone, M. P. (1993). Improving regression estimation: averaging methods for variance reduction with ex-

tension, to general convex measure optimization. PhD thesis, Brown University, Rhode Island.
Polak, E. (1971). Computational methods in optimization: a unified approach. New York: Academic Press.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22,

400–407.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back-

propagating errors. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing:
explorations in the microstructure of cognition (Vol. 1, pp. 318–362). Cambridge: MIT Press.

Sastry, P. S., Magesh, M., & Unnikrishnan, K. P. (2002). Two timescale analysis of the Alopex algorithm for
optimization. Neural Computation, 14, 2729–2750.

Scheffé, H. (1947). A useful convergence theorem for probability distributions. Annals of Mathematical Sta-
tistics, 18, 434–438.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of
Computation, 24, 647–656.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S. (1988). Using the ADAP
learning algorithm to forecast the onset of diabetes mellitus. In R. A. Greenes (Ed.), Proceedings pf the
symposium on computer applications in medical care (pp. 261–265). Los Alamitos: IEEE Computer
Society Press.

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approx-
imation. IEEE Transactions on Automatic Control, 37, 332–341.

Szu, H. (1986). Fast simulated annealing. In AIP conference proceedings: Vol. 151. Neural network for com-
puting, Snowbird, UT.

Tang, Z., Wang, X., Tamura, H., & Ishii, M. (2003). An algorithm of supervised learning for multilayer neural
networks. Neural Computation, 15, 1125–1142.

Mach Learn (2007) 68: 201–233 233

Tesauro, G., & Janssens, B. (1988). Scaling relations in back-propagation learning. Complex System, 2, 39–
44.

van Rooij, A. J. F., Jain, L. C., & Johnson, R. P. (1996). Neural network training using genetic algorithms.
Singapore: World Scientific.

von Lehmen, A., Paek, E. G., Liao, P. F., Marrakchi, A., & Patel, J. S. (1988). Factors influencing learning by
back-propagation. In Proceedings of IEEE international conference on neural networks (pp. 335–341).
New York: IEEE Press.

Wang, F., & Landau, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate the density
of states. Physical Review Letters, 86, 2050–2053.

Wang, C., & Principe, J. C. (1999). Training neural networks with additive noise in the desired signal. IEEE
Transactions on Neural Networks, 10, 1511–1517.

Wong, W. H., & Liang, F. (1997). Dynamic weighting in Monte Carlo and optimization. Proceedings of the
National Academy of Sciences USA, 94, 14220–14224.

Wouwer, A. V., Renotte, C., & Remy, M. (1999) On the use of simultaneous perturbation stochastic approx-
imation for neural network training. In Proceedings of the American control conference (pp. 388–392),
San Diego, CA.

	Annealing stochastic approximation Monte Carlo algorithm for neural network training
	Abstract
	Introduction
	Annealing stochastic approximation Monte Carlo algorithm
	Stochastic approximation Monte Carlo algorithm
	Annealing stochastic approximation Monte Carlo algorithm

	Two illustrative examples
	The knapsack problem
	A multiple local minima problem

	Numerical examples
	Two benchmark examples
	N-parity problem
	Two-spiral problem

	Real-world examples
	BUPA liver disorders
	Pima Indians diabetes classification
	Email spam identification

	Significance of ASAMC results

	Discussion and future work
	Conclusion
	Acknowledgements
	Appendix 1
	Pseudocode of ASAMC
	Pseudocode of SAMC

	Appendix 2
	Published results on the convergence of a general stochastic approximation algorithm
	Stochastic approximation algorithm
	Lyapunov condition on h
	Drift and continuity conditions on the transition kernel Ktheta
	Conditions on the step-size
	A main convergence result

	Three theorems for the SAMC algorithm

	References

