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ANNet: A Lightweight Neural Network for ECG
Anomaly Detection in IoT Edge Sensors

Gawsalyan Sivapalan

Abstract—In this paper, we propose a lightweight neural net-
work for real-time electrocardiogram (ECG) anomaly detection
and system level power reduction of wearable Internet of Things
(IoT) Edge sensors. The proposed network utilizes a novel hybrid
architecture consisting of Long Short Term Memory (LSTM) cells
and Multi-Layer Perceptrons (MLP). The LSTM block takes a
sequence of coefficients representing the morphology of ECG beats
while the MLP input layer is fed with features derived from in-
stantaneous heart rate. Simultaneous training of the blocks pushes
the overall network to learn distinct features complementing each
other for making decisions. The network was evaluated in terms
of accuracy, computational complexity, and power consumption
using data from the MIT-BIH arrhythmia database. To address
the class imbalance in the dataset, we augmented the dataset using
SMOTE algorithm for network training. The network achieved an
average classification accuracy of 97 % across several records in the
database. Further, the network was mapped to a fixed point model,
retrained in a bit accurate fixed-point environment to compensate
for the quantization error, and ported to an ARM Cortex M4
based embedded platform. In laboratory testing, the overall system
was successfully demonstrated, and a significant saving of ~50%
power was achieved by gating the wireless transmission using the
classifier. Wireless transmission was enabled only to transmit the
beats deemed anomalous by the classifier. The proposed technique
compares favourably with current methods in terms of computa-
tional complexity and has the advantage of stand-alone operation in
the edge node, without the need for always-on wireless connectivity
making it ideal for IoT wearable devices.

Index Terms—Anomaly detection, edge computing, IoT sensors,
LSTM, MLP, neural networks, power reduction.

I. INTRODUCTION

ARDIOVASCULAR diseases (CVD) such as coronary
heart disease (CHD), stroke, and other circulatory diseases
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account for roughly 30% of all global deaths in any given year.
In addition, CVD is a leading cause of premature deaths and
the primary driver of morbidity among all non-communicable
diseases (NCD) [1]. It is estimated that CVDs cost the European
Union, approximately € 169 billion annually, of which 62%
is direct costs in the healthcare system and the remainder is
productivity loss and informal care [2].

Continuous monitoring of physiological signals such as ECG
using IoT enabled wearable devices is widely considered a
solution to mitigate the costs and healthcare risks associated
with CVDs [3]. Although the concept itself is not new, contin-
uous monitoring of medical-grade electrocardiogram (ECG) is
not yet a practical reality due to the large power consumption
associated with constant wireless transmission. Analysing the
data for detecting potential anomalies at the IoT sensor itself,
can reduce the need for constant wireless transmission and thus
reduce sensor power consumption.

There are several methods [4] reported in literature, for
automatic multi-class ECG classification and simple anomaly
detection using signal processing [5] and machine learning tech-
niques [6]-[10]. However, many existing works often exhibit
several flaws that make them non-ideal for real-world implemen-
tations. Several works attempt to classify ECG beats into mul-
tiple classes i.e. (Normal:N, Ventricular:V, Supra-Ventricular:S,
Fusion:F, and Unclassified:Q). Attempting multi-class classifi-
cation on edge sensors may not be ideal and mostly redundant,
due to the computational complexity involved. In addition, from
the perspective of the user of such a device, multi-class classifi-
cation brings limited added value compared to simple anomaly
detection. Some ([6], [11]) have implemented binary beat clas-
sification (Normal vs Abnormal), however, the computational
complexity involved is still high and may result in large power
consumption. Association for the Advancement of Medical In-
strumentation (AAMI) [12]) has established protocols to test
medical instruments and yet several existing works ([13], [14])
have not taken these into account. Typical sampling rate of ECG
in real-world sensors is around 250 Hz, while all the existing
works use MIT-BIH records in its original, but rather unusual
sampling rate of 360 Hz for performance evaluation and this
results in unrealistic, but higher performance. MIT-BIH records
are highly imbalanced in terms of class distribution, and these are
not carefully handled by much existing work ([15], [16]). In real
world scenarios, this will introduce sampling bias and overfitting
issues etc to these reported works. Many works have failed to
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produce a fixed-point model, which is the common and cost-
effective environment in most IoT devices. The conversion of
the floating point algorithms is subject to quantization errors and
performance degradation, which isn’t addressed well in existing
works. All the above identified research gaps along with the issue
of deteriorating performance of the existing approaches under
unseen real-world conditions are addressed in our research.

This work aims to address the aforementioned problems by
developing a low complexity machine learning algorithm for
binary classification of the ECG signal that can be implemented
locally on an IoT sensor. Only when an ECG beat is deemed
anomalous by the classifier, wireless transmission will be en-
abled and thus sensor power consumption can be reduced. In
addition, the issue of class imbalance in the MIT-BIH Ar-
rhythmia database is addressed by augmenting the training data
using Synthetic Minority Oversampling TEchnique (SMOTE)
technique. This reduces disparities in real world performance of
the proposed technique compared to the test data.

The proposed novel architecture embodies a Long Short
Term Memory (LSTM) based recurrent block to identify the
regularity of a typical time-series like data and simple Multi-
Layer Perceptron (MLP) based block which learn the underlying
relationship between the extracted features such as activation
maps of Principal Component Analysis (PCA) coefficients of
sequence of beats and ventricular rates. Our novel approach
towards simultaneous training of all blocks will push the overall
architecture to learn different properties of the sequence and
complement each other while making a decision comparable to
ensemble learning approach [11].

For this work, we also implemented floating and fixed-point
versions of various machine learning building blocks and in-
troduced fast approximate functions and their derivatives to fa-
cilitate model development in a floating-point environment and
the subsequent mapping to a fixed-point implementation. Our
approach is distinct from the widely used TensorFlow approach
where there is usually the implementation loss (losses due to
pruning, quantization, and look-up table based approximation),
which remains in the network. The network proposed in this
paper is significantly smaller in footprint (number of parameters
and complexity) while achieving state-of-the-art performance.
The fixed point model is deployed and tested in an ARM Cortex
M4 based Nordic Semiconductor nRF52DK Bluetooth embed-
ded development kit. A significant power saving of ~ 50% is
achieved compared to sending every sample through a Bluetooth
link. The low complexity of the proposed classifier, system
level power reduction of the sensor and a reliable, real-world
performance estimation using data augmentation makes the
proposed approach a good choice for implementation in IoT
edge applications.

The rest of the paper is organized as follows. Section II,
explains the currently available solutions and algorithms for
ECG classification and anomaly detection. Section III details
the ECG dataset used in this work and any pre-processing per-
formed on the data. Section IV provides details of the proposed
neural network architecture and its fixed-point implementation.
The performance analysis and the comparison of the proposed

method with previous approaches are evaluated and presented
in Section V. The conclusions are presented in Section VI.

II. RELATED WORKS

There are many approaches proposed in the literature for
automatic detection and classification of cardiac arrhythmias
from ECG signals. Arrhythmia classification is a pattern recog-
nition task that can be done using syntactic or machine learning
methods [17]. In traditional syntactic methods, ECG signal fea-
tures are carefully extracted using signal processing and feature
extraction methods such as frequency domain analysis, wavelet
transform (WT), and morphological features after which hand-
engineered algorithms and rules are applied to the extracted
features to detect arrhythmia. Machine learning-based methods
such as Decision Tree, Random forest, K-Nearest Neighbour,
Support Vector Machine (SVM), Artificial Neural Network
(ANN), Reservoir computing with logistic regression (RC), Lin-
ear discriminants (LD), Hidden Markov Models (HMM), hyper
box classifiers, optimum-path forest, conditional random fields
and rules-based models, and Bayesian models use a combination
of signal features and morphologies as feature vectors to classify
ECG signals [18]. However, the accuracy of these methods
strongly depends on the selected learning technique and nature
of training data; and the data is often limited with large variation
in morphologies between patients.

In Veeravalli et al. [17], Fast Dynamic Time Warping (FDTW)
with a constraint window is used to formulate the cost feature
matrix between the first 30 beats in a patient’s record and
K-means clustering is used to find the max cluster to nominate
a beat as the global normal beat for that particular patient.
Thereafter, DTW distance between all the incoming beats with
respect to the selected global normal beat were computed. Fur-
ther, anomalies in the data are detected using a Hampel filter.
However, the approach fails to address the case when there are no
multiple classes (i.e. Normal and Abnormal) present at the initial
clustering phase and most occurring beats may also not always
be the clinical normal beat. In addition, K-means clustering is an
NP-hard problem and performance evaluation was done using
only 15 records selected from the MIT-BIH arrhythmia database.

Zadeh et al. [13] uses a bandpass filter to do the pre-processing
and an SVM classifier based on features from a Continuous
Wavelet Transform is used. The approach has achieved 97% of
Normal (N) vs Abnormal (S, V, F, and Q) test accuracy over
17,784 beats from a limited set of 8 selected patient records
(118, 124, 207, 208, 209, 214, 222, and 223). Similarly in Jiang
et al. [14], a block based neural network has been used with
Hermite transform features over 49,600 selected beats to achieve
95.6% accuracy inidentifying abnormal beats. However, the beat
selection criteria used in this work were not specified.

Dan Li et al. [15] has introduced a 1D Convolution Neural
Network (CNN) to classify ECG signals and achieved more than
98% test accuracy on selected 13,200 beats with a balanced
down sampling of data to have an equal probability set of AAMI
classes. Wavelet decomposition is used for pre-processing ECG
signals and a SoftMax classifier is used in the neural network.
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This approach is purely dependent on the local morphological
information and ignores the simple and rich temporal features
making it unfit for generalized tests. Kiranyaz et al. [16] have
proposed an adaptive 1D CNN which is trained with both global
and patient-specific data. The global part of the training set
contains 245 representative beats, which includes 75 from each
type: N, S, and V, and 13 from F and 7 from Q randomly sampled
from the first 20 records (100 — 124). The first 5 min of data
from each record is used for patient-specific training for that
subject. For testing all 44 records except the paced records were
considered and a 97% (N Vs A (S, V, F, and Q)) test accuracy
is achieved. However, the approach heavily depends on the
patient-specific training data and its characteristics during the
first 5 min interval.

In [11], a Recurrent Neural Network (RNN) cell-based novel
architecture is proposed to capture the temporal and spatial
patterns of ECG signals. It uses ECG WT coefficients and RR
interval properties in one RNN pipeline (Model Alpha) and PCA
components from a concatenated vector of (WT, downsampled
ECG beat and RR interval-based feature) in another RNN based
pipeline (Model Beta). Each model has been trained individually
and blended with the result of a new MLP network for better
performance. A patient-specific training procedure has been
followed along with global data collected from records 100-124
of MIT-BIH arrhythmia database. A total of 49,632 beats were
tested to achieve 98% test accuracy and an F1 score of ~ 92%.
However, this method requires two leads of ECG signal which is
difficult to acquire with a low profile wearable device [19]. Also,
it is uncommon in that different portions of the concatenated
feature vectors are presented to the RNN on each invocation
whereas normally the RNN input vector contains the same set
of features each time.

Das and Ari [20] have proposed a combined feature vector
of 4 temporal features (pre-RR, post-RR, local-avg-RR, and
global-avg-RR), 8 S-transform based features, and 20 wavelet
decomposition based statistical features acquired from a single
ECG beat. The architecture proposed uses an MLP based neural
network to classify ECG beats. A six fold cross-validation test
over 24 records from MIT-BIH arrhythmia database achieved
94.5% accuracy after patient specific training with 5 mins of data
from respective ECG records and 200 global random training
beats from the first 20 records.

Finally, in [6] a Two-Stage Neural Network (TSNN) that
achieves 97.8% and 98.6% test accuracy over 48,310 individual
beats, without and with biased training respectively is proposed.
The first stage of the network takes an input of raw ECG beats and
an MLP network classifies the beat into a Normal or Abnormal
beat. The Abnormal beats from first stage will be fed to a second
stage, where a CNN classifies these beats into AAMI classes N,
S, V,F and Q.

For performance evaluation of an ECG classifier, data from
the same subject shouldn’t be used for both training and testing.
This is to ensure that the performance of the classifier on previ-
ously unseen records are evaluated. In addition, the maximum
duration of a dataset used for training should follow the limits
imposed by the AAMI protocol. Although many works in the
literature strongly obey these tenets, only a few authors have

taken explicit precautions to follow the AAMI protocol precisely
when reporting results. This can make fair comparisons between
published works difficult.

III. DATA SET AND PRE-PROCESSING

In this study, the MIT-BIH arrhythmia database [21] con-
taining 48 ECG records excluding the paced! beat records are
used for performance evaluation. Twenty-three of the records
are intended to serve as a representative sample of routine clin-
ical recordings and the remaining 25 records contain complex
ventricular, junctional, and supraventricular arrhythmias. The
records are bandpass filtered at 0.1-100 Hz and sampled at
360 Hz. There are over 100,000 labeled beats of 15 different
heartbeat types. Each record has two ECG leads. The first
lead is modified limb lead II (ML II) and the second lead
is modified lead V1 or in some cases V2, V4, or V5. Two
or more cardiologists independently annotated each record of
30-minute duration selected from 24-hour recordings [6], [14].
The database defines 15 types of beats. For the purpose of this
work, we group the beats labeled as Supra Ventricular Ectopic
beats (SVEB - S), Ventricular Ectopic Beats (VEB - V), Fusion
Beat (F), and Unclassified Beat (Q) as ‘Abnormal’ and the
remaining beats as ‘Normal’. This categorization is consistent
with AAMI standards.

ECG s usually affected by various noises like baseline wander
(low-frequency noise in the range of 0-0.3 Hz), electrode contact
noise, motion artifacts, power line interference (PLI) etc. which
affects the efficacy of signal analysis [22]. Many real-world
ECG devices perform baseline wander and PLI removal during
acquisition and present a clean ECG signal at a typical sample
rate of 250 Hz. To emulate this we perform the following data
processing steps:

e Discrete Wavelet Transform (DWT) based denoising [18]

e PLI removal using a standard IIR notch filter at 60Hz

e Re-sampling from 360 Hz to 250 Hz.

An illustration of ECG noise removal using the above steps
is shown in Fig. 1 .

Additionally, we chose to use R-peak location annotations
from MIT-BIH database [21] directly instead of implementing
our own R-peak detector. Since there are several existing works
that achieve good accuracy for R-peak detection [23]-[25],
we narrowed the scope of this work and focus exclusively on
developing the classifier.

We have extracted a segment with samples extending from
250 ms before to 450 ms after the R-peak location. According
to [18], this segment can sufficiently capture the entire beat
(including P, T waves). At 250 Hz sampling rate, this segment
corresponds to a vector of 175 samples which is the basic
unit upon which our algorithm operates every time a R-peak
is detected.

Paced beats refer to ECG signals generated by the heart under the help of
an external or implanted artificial pacemaker for the patients whose electrical
conduction path of heart is blocked, or the native pacemaker is not functioning

properly.
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Fig. 1. ECG signal before and after denoising and notch filtering.

IV. PROPOSED ARCHITECTURE

This section provides the details of the proposed lightweight
neural network, ANNet, starting with the feature vector for-
mulation in Section IV-A, followed by the details of network
architecture in Section IV-B. A fixed-point implementation of
the proposed network is then discussed in Section IV-C.

A. Feature Vectors

Two feature vectors are derived from the original ECG data
samples, namely:

e X : Input to the LSTM_X Layer, and,

e RR: Input to the MLP_R Layer

1) X: For each beat, we then compute X;, a vector of
Principal Component Analysis (PCA) coefficients of length 6
(with respect to the principal Normal=N, RBBB=R, LBBB=L,
Ventricular=V, Supra-Ventricular=S, and Fusion=F beats re-
spectively), where ¢ is the current beat index. An illustration of
PCA feature vector construction for 2 random beats is shown
in Fig. 4. The same process should be followed with the 5 beat
window.

2) RR: The second feature vector is based on ECG RR inter-
val information, and is defined as vector, [RR;, RR; 1, RR;,
RR,spNN;» RRndex;], of length 5. The first two elements
of this vector are the RR intervals just prior and after current
ECG beat respectively. The third element is the average of 11
RR-intervals from RR;_gto RR;+1. RRyspny and RR1pdeq
are Heart Rate Variability (HRV) metrics? based on [26], which
are defined as:

e _
RRyspnn, = | 15 > Wi(RRiy; — RE:)?
j=—9
10 7=
where:W; = 0 =0 (1)

1 otherwise

2Here the acronym “wSDNN” stands for “Weighted standard deviation” of
the time between peaks. The RR 1,4, 1S a unitless ratio or index.
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B. Neural Network Architecture

The proposed network is composed of three main blocks:
LSTM_X, MLP_R, and a blending block with MLP layers as



28 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2022

() (b)

Normalised ECG beat

Raw ECG beat

©
First Principal Components of each class

[0}
ke
2
2
IS | h
© 1 {
1 ¢ 1
| L
\.} N beat ‘\X ,“ N beat
V beat v V beat
1 -1 A -1
50 100 150 50 100 150 20 40 60 80 100 120 140 160
samples samples samples
(d)
20 First PCA coefficients of each class
T T T
I N beat
15 [ V beat | |
10 - b
]
s °r 1
g
5+ B
-10 & | | | | | 1 |
N R L \ S F

Beat Class of Principal Components

Fig. 4.

Principal component analysis for the ECG records. (a) Original raw ECG signal randomly selected representing Normal and Ventricular beat. (b)

Normalised ECG beat. (c) Compute the basis vectors (Principal Components) for each class. The most significant first basis vector of each class is shown in the
plot. (d) Represent each beat as a coefficient with respect to each basis vector from every class.

seen in Fig. 2. The LSTM based recurrent block is selected to
identify the regularity property of the typical time-series signal
while all the other simple extracted features use MLP layers
to learn the underlying relationship to predict abnormal beat.
Simultaneous training of the blocks will result in complementary
learning compared to ensemble learning of models [11], i.e.
blocks will tend to learn different properties of the sequence
and complement each other while making a decision.

The LSTM_X block in Fig. 3 generates an attention map at
its output (Y') which keep track of past beats’ properties, as in
the work by Zhang et al. [27]. Fig. 3 shows the LSTM_X block
in more detail. The LSTM cell is executed 5 times for each ECG
beat, with inputs being X;_4 through X in sequence. The output
of the LSTM cell, h (of length 10) and internal state vectors are
updated for each execution. Additionally, each output vector
h is presented to the MLP_L layer which generates a vector
(Y}) of length two, as shown in Fig. 3. These two outputs are
concatenated across the 5 execution cycles, forming the vector
Y of length 10.

In parallel to the LSTM_X block, there is an MLP_R layer
(Fig. 2) that takes the feature vector, RR, as input, and produces
output, RR_1, of length 2. This output is concatenated with
the vector Y from the LSTM_X block and is passed to an
MLP network (MLP_1, MLP_2) with one hidden layer of 5
neurons and 2 outputs (C_3). These two outputs are then passed
to a SoftMax layer, which classifies the beat as Normal(N) or
Abnormal(A).

The learning rate ¢ is set to 0.001 and the /3 value in the
stochastic gradient descent algorithm is set to 0.9 for the net-
work. A mini-batch size 128 is used and the error between
the prediction and ground truth is used as the cost for back-
propagation learning. More details about the parameters and

complexity of the network are analyzed and the results are
presented in Section V.

C. Fixed Point Implementation

ANNet was initially implemented and trained in Matlab using
floating point arithmetic (denoted as “Float” in Section V). Fixed
point representation of the network reduces the complexity so
that the model can be deployed on a cost effective low-profile
embedded system. To port the algorithm to a fixed point embed-
ded platform, we first replaced the activation functions in the
model with fast approximate versions and then mapped these
to a fixed point implementation. The model was implemented
in C-language for an embedded platform. Also, a bit-accurate
and fixed point version of the model was created in Matlab.
This allowed us to take the previously trained coefficients from
ANNet’s floating point version as a starting point and to retrain
(in Matlab) the model using fixed point arithmetic. Note that
this re-training step also requires derivatives of these fixed point
activation functions for the back-propagation process; these are
not implemented in the embedded environment, as they are only
used during the retraining process. The details of the approxi-
mation functions and their mapping to fixed point arithmetic are
given in Sections IV-C1-IV-C3.

We used the notation “Qm.n" to denote our fixed point number
formatting. Here it is assumed that all quantities are 2°s comple-
ment signed numbers with “m” integer bits (including the sign)
and “n” fractional bits. Accordingly the resolution is 27" and
the range is from —2™"! to +2™"1 — 1. As we are targeting
an embedded implementation, all variables will be either 16- or
32-bit wide. The number of fractional bits to use in the fixed point
model of ANNet was experimentally determined. We performed
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Fig. 5. Global training performance metrics of the proposed network with
different level of quantization.

re-training of ANNet for various sizes of fractional bits and
observed the performance as shown in Fig. 5. Based on this
analysis, the number of fractional bits was chosen to be n = 6.

1) Sigmoid Activation Function (o): We used Sigmoid cell
activation function for tuning the weights of neurons in ANNet.
The below equations show the original sigmoid (3) and its
derivative (4) used.

_exp(x)
ol@) = exp(z) +1 ©)
—8 o(x) =o(z)(1 —o(x)) 4)
ox

Sigmoid function cannot be easily implemented in a fixed-
point environment due to the presence of exponential functions.
Therefore, it is translated to an approximate fast version of
the function: &(x): Elliott Activation Function [28] (5), (6), to
facilitate implementation on an embedded device:

0.5z

o_ . 05
Mz T ©

These can be implemented in fixed-point arithmetic with n
fractional input,® & = |2"x |, and output bits as follows:*
{ 2n-lg

2" + ||

>

275 (z) ~ (&) J 4 2nt @)

(1>

) 23n—1
2" —6(x) ~ 06(2 _— 8

o) =0sa) 2 | | ®

2) Tanh Activation Function: It is mainly used inside the
LSTM cell as the candidate gate C'; (Fig. 3) activation function.
The original (9) and its derivative (10) are provided below along
with its fast approximate fixed point implementation inspired
from the work of Anguita et al. [29] is used in this work with
modification to its coefficients considering bit level manipula-
tion for efficiency.

(exp(2z) — 1)

tanh(z) = (oxp(2n) 1)

9)

3 All rounding in this work is truncation.

“Note that multiplication by ‘2%* and ‘2~%" represents & bit shifts to left and
right respectively. Also note that right bit shifts (negative k) implicitly round
towards zero and so this rounding will not be shown explicitly. The word sizes
are chosen so as to mean that no overflows will occur when left shifting.

o(x) S —
Zo() T
08— — 50
® — — —0s() 7
= /,
g 0.6 y
EWl /
8 : 2N
/LN
0.2 s ~
0 E—— ‘ ——=
-5 0 5
Input Value (x)

Fig. 6. Illustration of the sigmoid activation function, o (z), and its approxi-
mation 6 (&) and their respective derivatives as computed for n = 12.

o
o

Output Value
o

I
o
T

Input Value (x)

Fig. 7. Floating and fixed point approximation of tanh function.

0
E tanh(z) = 1 — tanh(z)? (10)
An approximate version of the tanh function is ¢(x):
sgn(x) 1 r| > 2
Ha) = gn(x) i | |_. (an
sgn(z) (1 —0.25(|z| — 2)?) otherwise
0 0 >2
= Zi(z) = w2
Ox sgn(x) (1 — 0.5|z]) otherwise

These can be implemented in fixed-point arithmetic with n
fractional inputs and outputs as:

sgn(z) 2" |z > gn+1
2"8(2) ~ #(2) 24 sgn(#) (27 — 27 F2)(|3] — 27+1)2)
otherwise
(13)
o o) ~ oi@)2d 0 DL
Ox sgn(2)(2" — 2712]) otherwise
(14)

An illustration of the original and approximate versions for
sigmoid and tanh functions are given in Fig. 6 and Fig. 7
respectively.

3) SoftMax Function: This is primarily used in the classifi-
cation layers. It is not related to a single-neuron output rather it
computes a normalised vector, s (15), based on the vector, x, of
outputs from the last fully connected layer:

exp(z;)

i) = S o)

Vo<i<l|z| (15
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profile collection)

Fig. 8.  Test setup used for experimental verification.

0
= ——si(@) = si(z)(1 — si(2)) V0 < i < || (16)
where || is the cardinality of the vector &, which for our binary
classifier we have |x| = 2.
We used normalisation with offset ‘1’ as approximate version
of the SoftMax function, §(x):

i) = ————— VO<i<|z
(17
o2 @) = — @) - si(@) VO<i< |zl
oz, i = 1+, 4 i >
(18)

These can be implemented in fixed point arithmetic with n
fractional inputs and outputs as before:

s | e )

2"5; (&) ~ 5;(x¢) = {injl_'_zkij 19)
n 0 s (e o | B(@)(2" = 8i(2))
2 8_23182(33) ~ 08;(&) = { T T, J (20)

D. Embedded System

The nRF52DK development kit from Nordic Semiconductor
with Segger Embedded Studio is used to deploy and test ANNet
in real-time. The experimental setup is shown in Fig. 8. Nordic
nRF PPK (Power Profiler Kit) shield along with the development
kit is connected to a PC and is used to measure the power
consumption using the Nordic Power Profiler Software. An
FTDI FT4222H SPI bridge is configured to act as an ECG
sensor by transferring signals from MIT-BIH arrhythmia test
records stored in the PC for fair emulation. The ECG signal is
pre-processed offline as per Section III creating a 250 Hz sam-
pled signal and quantized to 16-bit signed fixed point numbers,
composed of 4 integer bits® followed by 12 fractional bits (Q4.12
format®) along with a flag indicating R-peak locations. This is
the input to our embedded, fixed-point ANNet classifier. The
overall flow diagram is provided in Fig. 9.

SWe avoid overflows by truncating (23 — 212), which was verified to be
sufficient to capture the entire MIT database.
%i.e. 16 bit numbers on the range [—8, +-8) with resolution 212

1) Preprocessor and Feature Extraction: The input, output,
and internal calculations within these blocks are implemented
using 16 bit, Q4.12 binary fixed-point arithmetic. A ring buffer
(length 1000) is maintained to store incoming samples and
another ring buffer (length 11) is used to record the R peak loca-
tions with the sample buffer. For each beat detected, a window
of 175 samples (62:R:112) is taken and normalized, and then
the PCA coefficients are calculated using the stored principal
components. Additionally, the RR features (Section IV-A2) are
calculated from the R peak locations. The combined feature
vector is then fed to the ANNet module for classification.

2) ANNet: The ANNet module uses 32 bit arithmetic repre-
sented in Q26.6 fixed-point format corresponding to a resolution
or 27%. The large word size is used to avoid overflows in inter-
mediate results throughout the ANN. The classification results
are then sent back to the PC for verification of the results and to
obtain performance metrics. The detailed operation of this block
was described in Section IV-B.

V. EXPERIMENTAL SETUP & RESULTS

For evaluating the proposed network, we have used MIT-BIH
arrhythmia database [30].In total, 100,661 ECG beats from the
database were used for this study. In accordance with De Chazal
et al. [31]’s recommendation, we have split the database into
two distinct sets namely DS1 and DS2 for evaluation purposes.
DSI1 consists of 22 ECG records with patient numbers 101,
106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201,
203, 205, 207, 208, 209, 215, 220, 223 and 230 while DS2
consists of the remaining 22 ECG records with patient numbers
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212,
213, 214, 219, 221, 222, 228, 231, 232, 233 and 234. DS1 and
DS2 include a blend of representative samples of routine clinical
recordings and uncommon but clinically significant arrhythmias.
This split allows both training and testing sets to have the same
approximate proportion of beat classes.

A. Augmentation of Imbalanced Dataset

The MIT-BIH dataset is severely imbalanced with more than
90% beats of the type ‘Normal’ class. This can affect the real-
world performance and therefore, it is beneficial to balance the
training data so that the underlying proportion of beat type in
the training set will not have a major impact while tuning the
network parameters.Some of the previous approaches use the
Conditional Data Grouping, Biased Training, or downsampling
method to address the imbalance and identity issue of the training
database [7]. However, it is visible that there is a significant
variation among beats, and selecting very few to balance the
classes will limit the learning of the network to a particular
subspace of available data representation. Hence, we used Syn-
thetic Minority Oversampling TEchnique (SMOTE [32], [33])
for augmenting the dataset by creating synthetic data of the
minority class [34].
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Fig. 9.

Flow diagram of the implementation of the algorithm on the embedded environment.

TABLE I
PERFORMANCE OF THE PROPOSED FLOATING POINT AND FIXED POINT NETWORKS AT EACH TRAINING PHASES

Format Train. Scope TN FN TP FP Acc Sen Spe Ppr F1 G
Float 5 min - Global - SMOTE 29,367 317 4,269 7,527 0.81 0.93 0.80 0.36 0.52 0.58
Float 5 min - Global 34,194 712 3,874 2,700 0.92 0.84 0.93 0.59 0.69 0.71
Float 5 min - Pat.Spe 35,952 496 4,090 942 0.97 0.89 0.97 0.81 0.85 0.85
Fixed Converted from 5 min Global Float 33,105 2,994 1,592 3,789 0.84 0.35 0.90 0.30 0.32 0.32
Fixed 5 min - Global 35,694 1,099 3,487 1,200 0.94 0.76 0.97 0.74 0.75 0.75
Fixed 5 min - Pat.Spe 36,088 800 3,786 806 0.96 0.83 0.98 0.82 0.83 0.83

Considering 70% of ECG beats for training and remaining 30% as test set
Fixed 70% - Global 12,917 395 1,184 417 0.95 0.75 0.97 0.74 0.74 0.74
Fixed 70% - Pat.Spe 13,123 212 1,367 211 0.97 0.87 0.98 0.87 0.87 0.87

TN: True Negative, FN: False Negative, TP: True Positive, FP: False Positive.

Acc: Accuracy, Sen: Sensitivity, Spe: Specificity, Ppr: Positive Prediction, F1: F1-Score, G: G-Score.

B. Evaluation Method

This section describes the steps which we have followed to
train and evaluate the performance of ANNet. Table I, illustrates
the performance at each step from floating point global level
training to fixed point patient specific training.

1) Global Training: We used DS1 from the MIT-BIH
database, which consists of 50,982 beats, for training our net-
work. Many prior works have used DS1 as the global training
set and hence no performance test is conducted over this subset
of data.

The SMOTE algorithm is used to address the class imbalance
in DS1 and the total number of beats have been increased to
91,729 after augmentation. After global training with this aug-
mented DS1 dataset, the network achieved ~81% of accuracy
with ~52% of F1 score over the DS2 test sets. This allows the
network to learn without getting biased due to the large presence
of the normal(N) beats. Once the network is trained without any
influence from the imbalanced data, the SMOTE synthetic data is
removed from the training set and the network is trained globally
with the original training set. This step improves the performance
of the network to ~92% of accuracy with ~69% of F1 score.

The model is converted to a fixed point version which
introduces approximation errors due to the use of our fast-
approximation functions (Section IV-C) and quantization errors.
This results in a performance drop from 92% to 84% in accuracy,

as seen in Table I. Using the model as a starting point, the
fixed-point model was re-trained in a fixed-point bit-accurate
environment to optimise performance. This step improves the
fixed-point model global performance to 94%.

2) Patient Specific Training: The patient-specific training
and testing have been performed using the DS2 dataset and
the results of individual records are presented in Table II. The
training set is created with the first 5 min data from individual
records in DS2 according to AAMI recommendations. The
network performance is evaluated among the other approaches
and presented below in Section V-C. During this training phase,
the learning rate ¢ is set to a low value so that the layer weights
will not deviate much from prior learning with augmented DS1
dataset. In comparison to the previous floating-point global
training, this step improves the accuracy to ~97% with an
Fl score of ~85%. Similarly, the fixed-point patient specific
training from the global fixed point model as starting point,
improved the overall accuracy to 96%.

A total of 41,480 beats from DS2 is used for unseen-testing
and this excludes the 5S-minute patient specific training set. The
total number of True Positive (TP), False Negative (FN), False
Positive (FP), True Negative (TN) are given in Table II. Further,
training and testing with a 70:30 split also conducted on the
proposed model and the results are provided in Table I only for
study purposes.
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TABLE II
PATIENT SPECIFIC TRAINING SUMMARY OF FLOATING POINT NETWORK FOR
THE DS2: MIT-BIH ARRHYTHMIA DATASET

Record TN FN TP FP Test Acc.
100 1,857 4 26 13 0.99
103 1,725 1 1 1 1.00
105 2,094 6 28 26 0.99
111 1,765 0 1 9 0.99
113 1,498 0 5 2 1.00
117 1,282 0 1 0 1.00
121 1,434 0 2 123 0.92
123 1,261 0 3 3 1.00
200 1,423 27 703 14 0.98
202 1,671 22 49 128 0.92
210 1,964 60 133 44 0.95
212 2,283 0 0 1 1.00
213 2,099 151 339 109 0.90
214 1,621 8 207 41 0.97
219 1,710 17 41 4 0.99
221 1,668 15 301 35 0.98
222 1,626 49 160 279 0.84
228 1,392 4 301 35 0.98
231 1,264 0 0 10 0.99
232 298 39 1,127 20 0.96
233 1,781 63 639 75 0.95
234 2,236 30 23 0 0.99

Gross 35,952 496 4,090 942 0.97

C. Performance

The proposed implementation achieved higher performance
compared to many other works while maintaining lower com-
plexity despite all the others using higher sampling rate (360 Hz)
and floating point implementations. [13], [17] and [15] has
reported performance, which is on par or marginally (~ 1%)
higher than ours, however, the training and testing do not follow
AAMI recommendations [12] and consist of less than half the
numbers of test beats for evaluation. Similarly [11], which
reports marginally higher accuracy, involves irregular use of
LSTM cells and uses two lead ECG data which is difficult to
acquire in a wearable device. [6] and [16] exclusively depends
on the local morphology of a single beat ECG segment and
uses a CNN based architecture. These approaches wouldn’t be
able to extract and make use of the RR interval information
and isn’t a recommended practice as the morphologies vary a
lot across patients and may result in poor performance under a
new unseen environment. In addition, [11], [16], [35] and [6]
consume more than a million instruction cycle to classify single
beat to achieve that marginal performance while [35]’s 1D-CNN
architecture is used irregularly over temporal and morphology
feature extraction. MIT-BIH dataset, which is used for per-
formance evaluation by most of the above approaches, is an
unbalanced dataset. Training with an unbalanced dataset is not
properly addressed in these works, which makes the prediction
by these methodologies subject to sampling bias. On the flip side,
the test accuracy also depends on the selection of test records
and their properties, therefore, achieving marginal performance
does not signify the effort and guarantees the best model. For
example, [20] architecture which requires very low (~ 2.5 K)

instruction cycles for beat classification performs a 6 fold test
and reports the average performance which makes the results
less reliable. In essence, most of the existing works achieve
comparatively lower performance than ours and show several
implementation drawbacks as discussed above.

The proposed network achieves a higher level of accuracy in
routine clinical records, while the overall performance (~97%)
in the DS2 recordings has not surpassed the level of state-of-the-
art mainly due to the presence of regular abnormal signal. It is
observed that the signals which belong to the normal category
sometimes do have different morphology, which introduces
significant changes in the PCA coefficients and thus affecting
the performance.

According to the MIT-BIH arrhythmia database [30], it is
expressed that records belonging to 200, 203, 214, and 222 are
corrupted with the occasional burst of noise and artifacts. In 214,
215, and 228, there exist few episodes of tape slippage, and 219
and 232 are with long pauses. There are occurrences of axis shifts
inrecords 203 and 223. The records 201, 212, 213, and 223 show
either abnormally high or slow cycles for the relevant beat type,
making it more complex to analyze. Records 203 and 207 are
included in the global training set, despite their classification
being onerous even for experienced cardiologists to manually
annotate. This results in accuracy of the model appearing lower
than in typical conditions.

The records 121, 202, 213, and 222 are the worst performing
among the DS2 dataset. In 222, the incorrectly classified beats
belong to PAC - Premature Atrial Contractions (Physionet-A)
which is not a dangerous arrhythmia class. In records 213,
the beats which are classified as normal belong to the Fusion
category and these Fusion PVC beats are almost identical to
normal in morphology. In addition, records 103, 105, 121, 123,
212, 222, and 234 do not have any abnormal beat sample to
represent in the first 5 min training episodes and therefore, it
became almost impossible to do the patient-specific training with
the first 5 min episode as suggested by AAMI.

D. Complexity Analysis

Referring to ANNet description in Section IV-B, we have
enumerated the input vector sizes and the number of trained
coefficients in each of the layers of our proposed ANN archi-
tecture in Table IV below. In total, we have 791 parameters
which is comparatively very low with respect to many previous
approaches in Table III.

Table III applies various assumptions in calculating the num-
ber of parameters and instructions per classification for those
algorithms which lacks detailed architectural information. The
values are calculated based on the confusion matrix provided in
the related publications and converting itto N(N, L, R, j, e) versus
A classes. The other parameters and instructions were also
calculated based on the revealed architecture for classification of
N versus A only. The input feature vector extraction and other
operations such as filtering are not considered for complexity
calculations since it is considered a separate block in most cases
and most models are not fully dependent on specific features. To
compute the complexity in terms of instruction per classification,
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TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH OTHER APPROACHES

@ z = £ ) = g
2 E E E é 5 g 55‘ % '§
= = -] = = =
= 2 = 7 £ E] =z A% 2 &
< #* é * = * #O * O
**+
X RR interval
Das and At Pyypy g WT ST/ posmin 0,945 2077 1184% 1216+ 84% 2,484*
[20] MLP-NN
Transform
Kiranyaz et Raw  ECG Adaptive ® 6] 6] s s
al 116] beat samples 1D CNN 49,557 0.97 1,809 929,650[00  929,650(01 20 1,859,320
. ] DTW / K-
Veeravalli. et DTW - Cost Mean / Ham- n/a n/a 262 76,116 76,134 18 152,268
al. [17] w.r.t N beat
pel filter
Dan Lietal.  Raw ECG p gy 13,200 0.98 66,020 198,180 198,180  20376% 416,736
[15] beat samples
Xi 4 X Raw ECG
3‘; and Aie beat samples ID-CNN 58,584 0.99 206,020  1,289,312[6] 1,289,312[6] 16+ 2,578,640%
(351 / RR interval
R ‘Wavelet
Saadatnejad Transform / WAL/ PCAT 4963 0.977 45991 448040 670,640  593468% 1,712,148
etal [11] RR RNN
interval
Wang et al. Raw MLP/CNN 48310 0978 180,208
(w/o BT) [6] ECG (Stagel)
Wang of sl oot 90,352 90,100 90,100 8 e
(o BD) [6] samples MLP / CNN 48,310 0.986 (TSRN)
This  Work PCA / RR  LSTM  / e . .
(Proposed) orval MLP.NN 22#25min 097 791 5,190 7,340 7,016 19,546

The Table applies various assumptions in calculating the value for Accuracy, No of Parameters, No of Operations (Total No of Additions and Multiplication
similar to [6], Division, and other operation such as sampling and SoftMax calculations) and No of Instructions per classification for the algorithm in the
literature which has minimum available information to do the same as described in Section V-D.

* This value is an estimate based on assumptions over the operations involved and architectures unveiled.

TABLE IV
NEURAL NETWORK PARAMETER COUNT

Layer Size No of Parameter
LSTM_X pipeline
Input 6 %5 n/a
LSTM 10 4%10* (6 4+ 104 1) = 680
MLP 2 2% (10 +1) =22
Output 2%5 n/a
MLP_R pipeline
Input 5 n/a
MLP 2 2*(5+1)=12
Output 2 n/a
Blending Block
CONCAT 10+2 n/a
MLP 5 5% (124 1) =65
MLP 2 2% (5+1)=12
Output 2 n/a

Total 791

we have reasonably assumed that for addition and multiplication,
it will cost one instruction cycle and for division, it costs 2
instruction cycles based on the Cortex M4 Technical Reference
Manual [36]. The instruction for all activation functions is con-
sidered with one division and one addition operation only, even
though different activation functions behave differently within
different regions of the input value. These assumptions are
uniformly applied across all the other methodologies despite the
fact that others are using floating point architecture and therefore

consume more clock cycles or instruction cycles, particularly in
activation and SoftMax classification functions with exponential
value calculations.

For example, in [6], a TSNN was proposed where the first
stage does binary Normal / Abnormal classification similar to
our design, but the parameter count is significantly higher and
the MLP based network used has a complexity of approximately
180 k instructions cycles per classification whereas the network
proposed in this work consumes less than 20 k instruction
cycles, a 9-fold decrease. More comprehensive comparisons are
provided in Table III.

E. Power Consumption Analysis

The current consumption of the proposed system on nRF52
DK is measured in real-time using an nRF PPK shield and
the results are shown in Fig. 10. For a baseline reference,
the average current consumption for sending all the samples
through BLE(Bluetooth Low Energy) without executing the
ANNet NO ANN’ in Fig. 10) is 112.68.A for a 30 minute
record sampled at 250 Hz; this can be seen as a flat reference
line in Fig. 10.

Operation of the ANN increases the current consumption
expended on microprocessor computations which is expected
to be dependent on the number of beats per second. However,
this is offset by the mechanism of only triggering Bluetooth
transfers when anomalous beats are detected (both true and false
positives). These two effects can be clearly seen in Fig. 10 where
itis evident that average current is correlated positively with both
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Fig. 10.  Average current consumption in pA over 30 minutes of DS2 records.
We can see that record 213 has the highest average heart beat rate (scaled to
100%). The records with the largest number of abnormal beats (e.g., 232) show
the highest current.

the average number of beats per second as expected and with the
percentage of abnormal beats.

For example, record 117 has the lowest number of beats
(1,534) and a very low abnormal beat rate consumes only
26.4p4A on average. However, record 232 has 77.6% of its
beats being classified as abnormal and consumes the highest
high average current of 103A. Another example is record
213, with 3,549 total beats with 17.2% abnormality consumes
approximately 66.51.A on average.

The test results prove the significant power efficiency, or the
order of ~ 50%, are typically achieved across many of the
records compared to the alternative of continuously wireless
transmission of the ECG signal. In real-life personal health
monitoring, the occurrence of arrhythmias is extremely sporadic
and power savings are expected to be higher than 50% ensuring
the longevity of the battery.

VI. CONCLUSION

In this study, we have proposed a lightweight neural network
to classify ECG into Normal and Abnormal beats. The network
takes an input feature vector created from the coefficients of the
PCA using 5 consecutive beats and a temporal feature vector
created from the ventricular R-R interval rate. The proposed
method is able to achieve low complexity with higher anomalous
signal detection accuracy in routine clinical recordings and
reasonable accuracy in complex records. The algorithm was
ported to an embedded platform by replacing various activation
functions with approximations and the mapping to fixed point
after retraining resulting in very little implementation loss and
a design having the lowest computationally complexity with
respect to the state of the art.

Compared to continuous data transmission, we demonstrated
that gating the wireless transmission using a binary classifier
so that only anomalous beats are transmitted, can significantly
reduce the overall system power consumption
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