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Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly
recruited to sites of in
ammation, providing the �rst line of defense against invading pathogens. Since neutrophils can also cause
tissue damage, their �ne-tuned regulation at the in
ammatory site is required for proper resolution of in
ammation. Annexin
A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate
the in
ammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by
reducing leukocyte in�ltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance
of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage
reprogramming toward a resolving phenotype, resulting in reduced production of proin
ammatory cytokines and increased release
of immunosuppressive and proresolving molecules. 	e combination of these mechanisms results in an e�ective resolution of
in
ammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat in
ammatory
diseases.

1. Introduction

In
ammation is a crucial physiological response for the
maintenance of tissue homeostasis, protecting the host
against invadingmicroorganisms, foreign substances, or host
self-disturbers, such as the molecules derived from damaged
cells [1]. Aer the host has been incited, important microcir-
culatory events occur in response to local release of proin-

ammatory mediators, such as histamine, prostaglandins,
leukotrienes, cytokines, and chemokines, leading to higher
vascular permeability and increased leukocyte recruitment
[1]. Leukocytes, such as neutrophils and macrophages, play

a key role in in
ammatory response, by releasing further
in
ammatory mediators and acting as e�ector cells and pha-
gocytes to remove the in
ammatory agent/stimuli [2].

Despite the important roles of neutrophils for e�ective
host defense, these cells can also cause tissue damage requir-
ing appropriate regulation [3, 4]. Continuous in
ammatory
stimuli can lead to aggressive and/or prolonged in
ammatory
responses, which may be detrimental to the host, leading
to chronic in
ammation [5]. 	e e�cient removal of the
inciting agent by phagocytes is the �rst signal for triggering
proper resolution, through inhibition of proin
ammatory
mediators production and activation of their catabolism,
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resulting in the ceasing of further leukocyte recruitment [6].
Aer that, proresolving pathways are activated in order to
restore tissue structure, function, and homeostasis [7, 8]. In
this context, anti-in
ammatory and proresolving molecules
such as specialized lipid mediators (lipoxin A4, resolvins,
maresins, and protectins), peptides/proteins (melanocortins,
galectins, and annexin A1), and several other substances of
di�erent natures are released at the site of in
ammation
[7, 9, 10]. 	ese endogenous mediators are known for their
ability to decrease endothelial activation, reduce leukocyte
in�ltration, and activate neutrophil apoptosis, which ensures
their secure removal by scavenger macrophages through a
process called e�erocytosis (phagocytosis of apoptotic cells)
[4].

Annexin A1 (AnxA1) is an important glucocorticoid-
(GC-) regulated protein, which contributes to the resolution
of in
ammation through various ways (Figure 1). AnxA1 lim-
its neutrophil recruitment and production of proin
amma-
torymediators.Moreover, AnxA1 acts by inducing neutrophil
apoptosis,modulatingmonocyte recruitment, and enhancing
the clearance of apoptotic cells by macrophages. Emerging
evidence suggests that AnxA1 also induces macrophage
reprogramming toward a resolving phenotype, another key
event to restore tissue homeostasis. In this review, we summa-
rize several physiological and potential therapeutic actions of
AnxA1 on in
ammation resolution. In particular, this review
highlights recent advances on the actions of this endogenous
mediator and its potential clinical utility.

2. Annexin A1: General Aspects

Endogenous mediators of in
ammation, such as AnxA1, are
potential therapeutic tools to control in
ammatory diseases.
Although whether clinical use of proresolving strategies will
be useful for treating in
ammatory maladies or will show
signi�cant undesirable e�ects remains to be elucidated, it is
believed these will be e�ective and have fewer side e�ects due
to their ability to mimic or induce natural pathways of the
resolution phase of in
ammation [8, 12].

Annexin superfamily is composed of 13 members,

grouped in view of their unique Ca2+-binding-site architec-
ture, which enables them to peripherally attach to negatively
charged membrane surfaces [13–15]. AnxA1, also known
as annexin I or lipocortin I, was originally identi�ed as
a GC-induced protein active on phospholipase- (PL-) A2
inhibition and prevention of eicosanoid synthesis [16–18]. It
was subsequently recognized as an endogenous modulator of
the in
ammatory response, through several studies, mainly
those led by Dr. Flower and Dr. Perretti [19, 20]. 	is 37 kDa
protein consists in a homologous core region of 310 amino
acid residues, representing almost 90% of the structure,
attached to a unique N-terminal region [15]. In addition to

mediating membrane binding, Ca2+ ions can also induce
a conformational change that leads to the exposure of the
bioactive N-terminal domain [15, 21, 22]. In fact, studies on
the anti-in
ammatory activity of AnxA1 revealed not only
that the di�erent functions of the protein lie within the
unique N-terminus, but also that synthetic peptides from

the N-terminal domain may mimic the pharmacological
property of the whole protein, speci�cally binding to formyl
peptide receptors (FPRs) [12].

In in
ammatory conditions intact AnxA1 (37 kDa) can
be cleaved by proteinase-3 and neutrophil elastase generating
the 33 kDa cleaved isoform, which is believed to be inactive,
and peptides derived from the AnxA1 N-terminus [23–25].
	e main cleavage sites on AnxA1 are located at A11, V22,
and V36, as identi�ed by cleavage assays coupled to mass
spectrometric analyses [25]. Investigation of the AnxA12–50
peptide revealed a novel cleavage site at position 25, probably
unmasked due to the simpler conformation of the peptide,
compared with the full-length AnxA1 [26]. In fact, the sub-
stitution of the mentioned cleavage sites allowed the gener-
ation of metabolically stable forms of AnxA1 and its pep-
tide, respectively, named SuperAnxA1 (SAnxA1) [27] and
cleavage-resistant AnxA12–50 (CR-AnxA12–50) [26]. 	e
proin
ammatory nature of AnxA1 cleavage products is sup-
ported by reports of increased levels of the 33 kDa fragment
in human and animal in
ammatory samples, including bron-
choalveolar lavage 
uids [28–30] and exudates [11, 25, 31, 32].
For instance, using a model of acute pleurisy, our research
group has shown increased levels of the 33 kDa breakdown
product of AnxA1 during the time points of high neutrophil
in�ltration into the pleural cavity followed by regain of the
intact form during the resolving phase of the pleurisy [11].
However, what the biological functions of this and other
AnxA1-generated peptides are is still unclear, and this matter
deserves further investigation.

Evidence for physiological function of AnxA1 in modu-
lating in
ammation emerged from studies involving AnxA1-
null mice and AnxA1 neutralization strategies. AnxA1-null
mice are viable and have a normal phenotype until they
are challenged with in
ammatory stimuli when they show
stronger and more prolonged in
ammatory reaction when
compared to the wild-type (WT) [33–40]. Resistance to glu-
cocorticoid treatment and aberrant in
ammation in AnxA1-
de�cient mice provided initial evidence for the physiological
relevance of the protein [33]. In the absence of AnxA1,
the in
ammatory response is exacerbated as demonstrated
by increased neutrophil extravasation following zymosan-
induced peritonitis [35] and endotoxin-induced uveitis [37].
In addition, animals lacking this protein exhibited exacer-
bated arthritis severity [34] and allergic response in oval-
bumin-induced conjunctivitis [39]. AnxA1 KO mice also
showed increased atherosclerotic lesion size with an overall
increase in lesionalmacrophages and neutrophils [40].More-
over, our research group has shown the prevention of spon-
taneous and dexamethasone-driven resolution of in
am-
mation by using an AnxA1 neutralizing strategy [11]. Aside
from the physiological role of the endogenous protein,
pharmacological treatment with both human recombinant
AnxA1 and its N-terminal peptides exerts anti-in
ammatory
and proresolving e�ects in a variety of experimental models,
highlighting their therapeutic potential for in
ammation
resolution [11, 26, 27, 41] and wound repair [42].

AnxA1 exerts many of its anti-in
ammatory and prore-
solving actions through the formyl peptide receptor type
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Figure 1: Cellular events associated with the anti-in
ammatory and proresolving e�ects of annexin A1 (AnxA1) and its mimetic N-
terminal peptides. AnxA1 modulates a wide range of cellular and molecular steps of the in
ammatory response and is deeply involved
in the endogenous mechanisms that are activated to bring about proper resolution. Pharmacological administration of AnxA1 results in
decreased neutrophil rolling (1) and adhesion (2) to endothelium, increased detachment of adherent cells (3), and inhibition of neutrophil
transmigration (4). In addition, AnxA1 is able to induce apoptosis, overriding the prosurvival signals that cause prolonged lifespan of
neutrophils at the in
ammatory site (6). Endogenous and exogenous AnxA1 also promote monocyte recruitment (5) and clearance of
apoptotic neutrophils bymacrophages (7). Phagocytosis of apoptotic neutrophils bymacrophages is coupledwith release of anti-in
ammatory
signals, including transforming growth factor-�, and lower levels of proin
ammatory cytokines (8). Besides, AnxA1 is related to macrophage
reprogramming toward a proresolving phenotype (8). Initial in vitro studies using AnxA1 knock-down leucocytes demonstrate that AnxA1
prevents proin
ammatory cytokine production aer phagocytosis of secondary necrotic cells. 	is e�ect provides an important fail-safe
mechanism counteracting in
ammatory responses when the timely clearance of apoptotic cells has failed (9).

2/lipoxin A4 receptor (FPR2/ALX). 	is receptor, along with
FPR1 and FPR3, composes a family of seven-transmembrane
domain G protein-coupled receptors which share signi�cant
sequence homology [43]. FPR2/ALX receptor is shared by a
variety of other peptide/protein and lipid ligands, mediating
diverse biological functions of relevance for host defence and
in
ammation. Interestingly, FPR2/ALX agonists are associ-
ated with both proin
ammatory (e.g., serum amyloid A and
cathelicidin) and proresolving (e.g., AnxA1 and LXA4) sig-
nalling pathways [43, 44]. However, how FPR2/ALX can pro-
mote both in
ammatory response and limit its duration and
intensity still remains to be fully elucidated. It is noteworthy
that distinct FPR2/ALX domains are required for signalling
by di�erent agonists [45]. Using FPR2/ALX transfected cells
and chimeric FPR1 and FPR2 clones, Bena and col. (2012)
identi�ed that while AnxA1-mediated signalling involves the
N-terminal region and extracellular loop II of FPR2/ALX,
SAA interacts with the extracellular loops I and II of the same
receptor [45]. Otherwise, LXA4 has been shown to activate
FPR2/ALX by interacting with extracellular loop III and the
associated transmembrane domain [46].

	e versatility of FPR2/ALX receptors also seems to rely
on the activation of receptor dimmers in a biased fashion.
AnxA1 was found to activate FPR2/ALX homodimerization
but not the proin
ammatory SAA [47]. In contrast to the
full-length AnxA1, the short AnxA1 derived peptide Ac2–
26 is able to activate all members of the human FPR
family [48] and induce FPR2/ALX-FPR1 heterodimerization
[47]. 	ese observations suggest that short AnxA1 mimetic
peptides might ful�ll other functions at variance to those
reported for the parental protein [49]. However, a good
degree of selectivity was retained by longer AnxA1 derived
anti-in
ammatory sequences such as AnxA12–50 [26].

Interestingly, the promiscuity of FPR2/ALX seems to be
linked to a network of resolution mediators as discussed
by Brancaleone and col. (2011) [50]. In fact, the authors
provide strong evidence that the engagement of FPR2/ALX
by selective agonists (such as LXA4 and anti
ammin 2) would
induce AnxA1 phosphorylation and mobilization in human
PMN [50]. In a similar vein, the proresolving mediator
Resolvin E1 (RvE1) stimulates endogenous LXA4 production
[51, 52]. Moreover, it has been shown that proresolving
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mediators such as resolvins and LXA4 induce further anti-
in
ammatory molecules in vivo, such as interleukin- (IL-) 10
[41]. Taken together, these data suggest that a proresolving
cascade may be operating during resolution with FPR2/ALX
playing a central role in this process.

3. Anti-Inflammatory and Proresolving
Actions of AnxA1

3.1. AnxA1 Regulates Neutrophil Recruitment to the In	am-
matory Site. During in
ammation neutrophils are rapidly
recruited to the infected or injured tissue. However, due to
the potential tissue-damaging e�ects of PMN, their �ne-
tuned regulation at the in
ammatory site is required [53].
Indeed, exacerbated or overshooting in
ammatory response
with high neutrophil in
ux may account for chronic in
am-
matory diseases [5]. 	us, restricting leukocyte in�ltration
to the tissue is an essential process for spontaneous or
pharmacological-induced resolution of in
ammation [4, 8].

Neutrophil tra�cking to the site of in
ammation requires
adhesion and transmigration through blood vessels, which
is orchestrated by molecules on leukocytes (e.g., �1, �2
integrins, and L-selectin) and on endothelial cells (e.g.,
vascular cell adhesion molecule-1, intercellular adhesion
molecule-1, and E-selectin). 	e leukocyte adhesion cascade
is a tightly regulated process, subjected to both positive and
negative regulators [71]. For example, anti-in
ammatory and
proresolving mediators, such as AnxA1, are well documented
to counterregulate excessive neutrophil accumulation (an
anti-in
ammatory action). Human PMN interaction with
endothelial cells during the early stage of in
ammation pro-
motes modulation of AnxA1 in several ways, such as induc-
tion of gene expression [35] andmobilization and cell surface
externalization of intracellular AnxA1 [72, 73]. In turn, the
externalized protein acts as a brake for PMN adhesion to the
microvascular wall, preventing overexuberant cell transmi-
gration to the in
ammatory site [4, 27, 72, 74]. Dalli and col.
(2008) [75] reinforced the anti-in
ammatory properties of
PMN-derived microparticles containing functionally active
AnxA1. Released upon adhesion to endothelial cells, these
microparticles inhibit neutrophil/endothelium interaction
under 
ow, in vitro, and PMN recruitment to an air pouch
in
amed with IL-1�, in vivo [75]. Moreover, microparticles
derived from WT but not from AnxA1-de�cient neutrophils
were able to inhibit IL-1�-induced leukocyte tra�cking [75].

Several studies using exogenously administrated AnxA1
have provided further evidence for the modulating role of
AnxA1 on neutrophil tra�cking. In vivo observations pro-
duced through intravital microscopy techniques indicated
that AnxA1 and Ac2–26 administration to mice during
zymosan-induced peritonitis produced detachment of adher-
ent neutrophils from the vascular wall with consequent inhi-
bition of neutrophil extravasation across mouse mesenteric
postcapillary venules (Table 1) [56]. Supporting these �rst
�ndings, in vitro studies showed that recombinantAnxA1 and
its mimetic peptides display inhibitory e�ects on neutrophil
rolling [26, 27, 54, 55] adhesion to endothelial monolayer
[26, 27, 40, 48, 54, 55] and transmigration [48].

Shedding of L-selectin appears to be one of the molecular
mechanisms that mediate the e�ects of AnxA1 and its N-
terminal peptides on neutrophil recruitment. Walther and
col. (2000) [48] have described the ability of the AnxA1
peptide Ac9–25 to cause transient calcium 
uxes and L-
selectin shedding in human neutrophils. Aer that, the same
mechanism was linked to the inhibitory e�ects of Ac2–26 on
PMN capture and rolling in a 
ow chamber assay [54]. Sim-
ilarly, promotion of L-selectin shedding was demonstrated
for human recombinant AnxA1 [57, 58], an e�ect mediated
by cell surface metalloprotease (“sheddase”) [58]. Recently,
Drechsler and col. (2015) [40] brought further insights into
the mechanisms behind the antimigratory e�ects of Ac2–
26. According to the authors, the peptide dose dependently
reduces the a�nity of activated neutrophils for vascular cell
adhesion molecule-1 (VCAM-1) and intercellular adhesion
molecule-1 (ICAM-1), a response abrogated in cells harvested
from FPR2 knockout mice. 	ey demonstrated that Ac2–26
inhibits the adhesiveness of�1 and�2 integrins by downmod-
ulating their a�nity and valency, but without changing their
cell surface expression. It was also demonstrated that Ac2–26
interferes with the chemokine-driven activation of Rap1, an
essential step in integrin activation [76, 77].

Pederzoli-Ribeil and col. (2010) [27] combined in vitro
and in vivo experimental strategies to show thatAnxA1 and its
mutant cleavage-resistant form, SAnxA1, are able to augment
rolling velocity and reduce adhesion of PMN to endothe-
lial cells through FPR2 receptors. Furthermore, Dalli and
col. (2013) [26] demonstrated the anti-in
ammatory actions
of the longer acetylated AnxA1 peptide AnxA12–50 and
its cleavage-resistant form, CR-AnxA12–50. Both displayed
antimigratory e�ects in vivo, reducing leukocyte adhesion to
in
amed cremaster venule, neutrophil migration into dermal
air pouches in response to IL-1�, and neutrophil migration
into peritoneum in response to zymosan.

In vivo anti-in
ammatory and antimigratory properties
of the short AnxA1 peptide Ac2–26 have also been exten-
sively demonstrated, as exempli�ed by its ability to inhibit
carrageenan-induced PMN adhesion to the vasculature and
extravasation into the peritoneal 
uid [74]. 	e peptide was
also able to prevent neutrophil recruitment in myotoxin-
induced peritonitis [78] and during lung in
ammation
induced by intestinal ischemia/reperfusion [79]. Moreover,
Ac2–26 showed potential bene�ts in an ocular model by
inhibiting neutrophil in
ux, protein leak, chemical mediator
release, and COX-2 expression during endotoxin-induced
uveitis [37]. 	e Ac2–26 peptide also demonstrated antimi-
gratory e�ects in a model of ovalbumin-induced allergic
conjunctivitis, signi�cantly reducing the clinical signs of
conjunctivitis through the inhibition of leukocyte in
ux
and cytokines and chemokines release, e�ects correlated
with inhibition of the ERK pathway [39]. Interestingly,
increased levels of ERKphosphorylationwere associatedwith
exacerbated allergic response observed in AnxA1-de�cient
mice in comparison to WT animals [39]. Reinforcing the
involvement of AnxA1 pathway in neutrophil recruitment,
AnxA1-null mice demonstrated a higher extent of neutrophil
extravasation in animal models of peritonitis [35, 74], allergic
conjunctivitis [39], and uveitis [37].
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Table 1: In vitro and in vivo evidence for anti-in
ammatory and proresolving properties of annexin A1 and its fragments.

Agent Experimental model Outcome/e�ect on resolution References

Inhibition of neutrophil recruitment

AnxA1

Neutrophil/endothelial interaction (in vitro) ↓ PMN capture, rolling, and adhesion
↓ PMN transmigration

[27, 48, 54, 55]

Neutrophil/endothelial interaction (in vivo) ↓ PMN rolling, adhesion, and emigration
↑ Detachment of adherent PMN

[27, 56]

Human PMN ↑ L-selectin shedding [57, 58]

IL-1� in
amed air pouch ↓ PMNmigration [26, 59]

Carrageenan-induced paw edema ↓ edema
↓ leukocyte in�ltration [27]

SAnxA1

Neutrophil/endothelial interaction (in vitro) ↓ PMN capture, rolling, and adhesion [27]

Neutrophil/endothelial interaction (in vivo) ↓ PMN rolling and adhesion [27]

fMLP induced skin edema ↓MPO activity [27]

Carrageenan-induced paw edema ↓ edema
↓ leukocyte in�ltration [27]

AnxA12–50

Neutrophil/endothelial interaction (in vitro) ↓ PMN rolling and adhesion [26]

Neutrophil/endothelial interaction (in vivo) ↓ PMN adhesion [26]

IL-1� in
amed air pouch ↓ PMN recruitment [26]

Ac2–26

Neutrophil/endothelial interaction (in vitro) ↓ PMN capture, rolling, and adhesion
↑ L-selectin shedding

[40, 54]

Human PMN activated with CCL5 ↓ � integrin activation [40]

Neutrophil/endothelial interaction (in vivo) ↓ PMN adhesion and emigration
↑ detachment of adherent PMN

[56]

Ac1–26 Neutrophil/endothelial interaction (in vitro) ↓ PMN transmigration [48]

Ac9–25 Neutrophil/endothelial interaction (in vitro) ↓ PMN adhesion and transmigration
↑ L-selectin shedding

[48]

AF-2 Neutrophil/endothelial interaction (in vitro) ↓ PMN adhesion
↓ �2 integrin expression

[60, 61]

Induction of neutrophil apoptosis

AnxA1 Human PMN ↑ apoptosis (↓ pBAD) [57]

AnxA12–50 Human neutrophils stimulated with SAA ↑ apoptosis [26]

Ac2–26

Human neutrophils stimulated with SAA ↑ apoptosis
(↑ caspase-3 cleavage; JNK dependent)

[47]

Acute pleurisy
↑ apoptosis
(↑ Bax; ↑ caspase-3 cleavage;
↓Mcl-1; ↓ NF-�B; ↓ pERK)

[11]

Skin allogra model
↑ skin allogra survival
↑ apoptosis
↓ neutrophil transmigration

[62]

Enhancement of monocyte recruitment and e
erocytosis

Ac2–7 Transmigration assay (in vitro) Stimulating human monocyte chemotaxis [63]

AnxA1

Chemotaxis assays Human monocyte chemoattractant [64]

Administration to mouse peritoneum ↑monocyte recruitment [64]

Phagocytosis of apoptotic leukocytes ↑ e�erocytosis
↑ binding of apoptotic cells to MØ

[65, 66]

Ac2–26 Phagocytosis of apoptotic neutrophils

↑ phagocytosis
Inducing actin reorganization
↑ TGF-� release
↓ IL-8 release

[67]

AnxA12–50 Zymosan-induced peritonitis ↑ e�erocytosis [26]
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Table 1: Continued.

Agent Experimental model Outcome/e�ect on resolution References

Macrophage reprogramming

AnxA1

Human MØ cell line Induced M2-like polarization [44]

Human monocytes ↑ IL-10 [47]

LPS stimulated THP-1 MØ ↓ IL-6, TNF, and IL-1� [66]

MØ from NASH livers ↓M1 polarization (↓ iNOS, IL-12p40)
↑ IL-10 [68]

Intraperitoneal injection ↑ IL-10 [47]

Phagocytosis of apoptotic neurons by microglial cells ↓ phagocytosis of healthy cells
↓ NO production

[69]

Ac2–26 Endotoxin-challenged monocytes ↓ IL-6 signalling
↓ TNF-� release [70]

AnxA1: annexin A1; fMLP: N-Formyl-Met-Leu-Phe; IL: interleukin; MPO: Myeloperoxidase; MØ, macrophage; NASH; nonalcoholic steatohepatitis; PMN:
polymorphonuclear; NO: nitric oxide; SAA: serum amyloid A; SAnxA1: SuperAnxA1 (proteinase-3 resistant); TGF-�: transforming growth factor-�; TNF-�:
tumor necrosis factor alpha.

AnxA1 may also be tightly coupled to the anti-in
am-
matory properties of other FPR2/ALX agonists such as LXA4
and anti
ammin 2 (AF-2) [50].	e nonapeptide AF-2, which
corresponds to region 246–254 of AnxA1 [80], is known to
interfere with PMN activation, chemotaxis, and adhesion to
endothelial cells [60, 61], via FPR2/ALX receptor [81]. Also,
LXA4 is a potent regulator of PMN tra�cking in exper-
imental in
ammation [9, 82]. Interestingly, recent data indi-
cated a crucial role for endogenous AnxA1 in the detachment
phenomenon promoted by both compounds [50]. For
instance, LXA4 and AF-2 lost their antimigratory e�ects in
AnxA1KOmice suggestingAnxA1 as a downstreammediator
of other proresolving and anti-in
ammatory molecules [50].

3.2. AnxA1 Induces Neutrophil Apoptosis. Neutrophils are
produced in the bonemarrow frommyeloid stem cells, which
in turn proliferate, di�erentiate into mature neutrophils, and
are delivered into circulation [83]. Although the circulatory
half-life of neutrophils is now thought to be longer than previ-
ously estimated (days instead of hours) [84], at in
ammatory
sites the constitutive apoptotic pathway is delayed by the
action of local in
ammatorymediators, resulting in increased
neutrophil half-life [85], an e�ect that can be opposed by
proresolving mediators including AnxA1 and lipoxins [86].

In addition to a�ecting the migration of leukocytes
through FPR activation, strong evidence of the involvement
of AnxA1 on neutrophil apoptosis has emerged. Proapoptotic
e�ect of AnxA1 on neutrophils was �rst described in vitro
associated with transient calcium 
uxes and dephosphory-
lation of BAD, an intracellular protein whose proapoptotic
function is lost upon phosphorylation [57]. Our group [11]
demonstrated the in vivo proapoptotic functions of endoge-
nous AnxA1 during self-resolving in
ammation. In an acute
pleurisy model, blockage of the AnxA1 pathway by using
a speci�c anti-AnxA1 antiserum prevented dexamethasone-
(dexa-) induced resolution of neutrophilic in
ammation,
abolishing morphological and biochemical apoptotic events
in the pleural cavity. AnxA1 neutralization also hampered

dexa-induced decrease of ERK1/2 and I�B-� phosphorylation
and Bax accumulation. In addition, anti-AnxA1 treatment
prevented spontaneous resolution of neutrophilic in
amma-
tion, suggesting an important role of endogenously produced
AnxA1 in the proresolutive program [11]. Furthermore, phar-
macological administration of Ac2–26 peptide promoted
active resolution and augmented the extent of neutrophil
apoptosis. 	ese e�ects were prevented by the pan-caspase
inhibitor zVAD-fmk and linked to activation of the cell
death pathways Bax and caspase-3 and inhibition of the
survival-controlling pathways Mcl-1, ERK1/2, and NF-�B [11]
(Figure 2).

In a skin allogramodel, pharmacological treatment with
Ac2–26 increased transplantation survival related to inhibi-
tion of neutrophil transmigration and induction of apoptosis,
thereby reducing the tissue damage compared with control
animals [62]. In vitro, Ac2–26 counteracted the survival
signal in SAA-treated neutrophils, an e�ect associated with
caspase-3 cleavage and prevented by the JNK inhibitor [47].
Dalli and col. (2013) also demonstrated that AnxA12–50 and
CR-AnxA12–50 peptides can override the antiapoptotic e�ect
of SAA in human neutrophils in vitro [26].	is proapoptotic
e�ect may have contributed to the in vivo anti-in
ammatory
and proresolving actions of the peptides characterized by
reduced granulocyte counts and enhanced e�erocytosis in
peptide-treated mice during peritonitis [26].

AnxA1 has also been described as a mediator of drug-
induced apoptosis, supporting its involvement in the induc-
tion of cell death. 	e proapoptotic e�ect described for the
histone deacetylase inhibitor (HDCAI) FK228, in leukemia
cells, was linked to the induction of AnxA1 expression, exter-
nalization, and cleavage. Neutralization with anti-AnxA1
antibody or gene silencing with AnxA1 siRNA inhibited
FK228-induced apoptosis, suggesting the involvement of
AnxA1 in apoptotic cell death in response to HDCAI [87].
Recently, the in vitro ability of HDACIs to promote apoptosis
was also demonstrated in bone-marrow neutrophils from
WT but not from AnxA1 knockout mice [88]. In vivo,
HDACIs signi�cantly reduced neutrophil numbers and
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Figure 2: E�ect of exogenous administration of AnxA1 derived peptide Ac2–26 on LPS-induced pleurisy. Mice were injected with LPS
(250 ng/cavity, i.pl.) and 4 h later received an injection of Ac2–26 (100�g/mouse, i.pl. or i.p.). 	e treatment with the pan-caspase inhibitor
zVAD-fmk (1mg/kg, i.p.) was performed 15min before the injection of peptide. 	e numbers of neutrophils (a) and mononuclear cells (b)
were evaluated 20 h aer drug treatment. Cells with distinctive apoptotic morphology (c and e) and Western blot for detection of cleaved
caspase-3, Bax, Mcl-1, P-ERK, and P-I�B-� (d) were evaluated 4 h aer the peptide treatment. ∗� < 0.05 or ∗∗∗� < 0.001 when compared
with PBS-injected mice and #� < 0.05 or ##� < 0.01 when compared with vehicle-treated, LPS-injected mice. (e) Representative �gures of
nonapoptotic (asterisk) and apoptotic (arrows) neutrophils and apoptotic cells inside macrophages (arrowheads). PBS and vehicle (upper
panels) and Ac2–26-treated (lower panels) animals are shown. Original data from Vago et al., 2012 [11].



8 Journal of Immunology Research

induced neutrophil apoptosis in a zymosan-induced peri-
tonitis model. Once again, the lack of AnxA1 hampered this
in vivo proapoptotic e�ect [88].

It is important to keep inmind that the proapoptotic e�ect
of AnxA1 can be underestimated in dynamic in vivo models
of in
ammation. Regarding other anti-in
ammatory drugs,
it is documented in a number of diverse experimental and
clinical settings that small changes in apoptosis rates can
promote dramatic changes in total neutrophil numbers over
time.	is observation is most likely due to rapid recognition
and phagocytosis of apoptotic cells [89–91].

3.3. AnxA1 Induces Monocyte Recruitment and Increases
E
erocytosis. Macrophage phagocytic clearance of apoptotic
neutrophils plays an important role in the resolution of
in
ammation since this process prevents excessive neutrophil
activation and the exposure of tissues to noxious neutrophil
intracellular contents [92, 93]. For this reason, appropriate
(nonphlogistic)monocyte recruitment from the bloodstream
to in
ammatory sites is a critical step in acute in
ammation,
enabling the clearance of apoptotic neutrophils and orderly
progression towards resolution.

It has long been established that extravasation of PMN to
the site of in
ammation contributes to the launch of mono-
cyte recruitment, with PMN granule proteins being impor-
tant monocyte attractors [94]. Recent research from Perretti’s
group [64] indicates apoptotic neutrophils as the principal
reservoir of AnxA1, which acts as important recruiting agent
for monocytes to orchestrate the second resolving phase of
acute in
ammation. Associating in vitro and in vivo experi-
ments, Professor Mauro Perretti’s group �lled an important
gap in our knowledge by demonstrating the central role
of the AnxA1–ALX/FPR2 pathway in modulating monocyte
recruitment [64]. 	e authors demonstrated that intraperi-
toneal administration of AnxA1 induced monocyte migra-
tion, an e�ect absent in FPR2 null mice. Supporting these
�ndings, both AnxA1 and FPR2/ALX null mice challenged
with intraperitoneal zymosan exhibited diminished recruit-
ment of monocytes as compared to WT mice, despite the
higher levels of chemoattractants [64].

Aer initial steps of apoptosis, neutrophils lose their
functional properties, such as the ability to move by chemo-
taxis, generate a respiratory burst, or degranulate [95].
Furthermore, they exhibit alterations on their intracellular
pathways and cell surface molecules while some externalized
molecules, such as phosphatidylserines (PS), facilitate the
recognition and removal of apoptotic neutrophils by macro-
phages [92, 96].

Recent studies have reported that AnxA1 from apoptotic
cells is involved in their phagocytic clearance.	e �rst obser-
vation that AnxA1 participates in the engulfment of apoptotic
cells was described by Arur and col. (2003) [97]. By using a
di�erential proteomics technology, they showed that AnxA1
is exported to the outer plasma membrane of apoptotic
lymphocytes, colocalizes with PS, and is required for e�cient
clearance of apoptotic cells, suggesting a role for AnxA1 as
bridging PS molecules on apoptotic cells to phagocytes [97].
Scannell and col. (2007) [65] subsequently demonstrated
that apoptotic neutrophils release AnxA1, which acts on

macrophages, promoting the removal of e�ete cells [65].
Noteworthily, not only the intact form of AnxA1 released by
apoptotic cells but also the cleavage fragments, under 10 kDa,
were e�ective in stimulating e�erocytosis [65].

Studies have also documented macrophages as a source
of endogenous AnxA1, which in turn facilitates phagocytic
uptake of apoptotic cells. Maderna and col. (2005) showed
that humanmacrophages release AnxA1 upon treatment with
GC and that this protein acts in autocrine or paracrine man-
ners to increase the engulfment of apoptotic neutrophils
[67]. Additional experiments with AnxA1-null mice provided
further evidence for a functional role of AnxA1 in e�erocy-
tosis, as macrophages derived from their bone marrow were
defective in clearance of apoptotic cells [67]. In fact, the
authors demonstrated, in vitro, the ability of the AnxA1
mimetic peptide Ac2–26 to promote phagocytosis of apop-
totic PMN by human macrophages, an e�ect associated with
actin rearrangement in the phagocytic cells and abrogated
in the presence of FPR antagonist [67]. Subsequently, it
was clearly demonstrated the nonredundant function of
FPR2/ALX receptor in Ac2–26 induced e�erocytosis since
the peptide failed to exert its proe�erocytic action on FPR2/
ALX de�cient macrophages [98]. Furthermore, Yona and
coworkers (2006) associated in vitro and in vivo strategies
that indicated reduced phagocytosis of zymosan particles by
AnxA1 knockout macrophages [99].

It has been proposed thatAnxA1 released bymacrophages
can opsonize apoptotic cells, probably by interacting with
surface-exposed PS, enhancing their uptake by phagocytes
[66]. Interestingly, McArthur’s group demonstrated that the
binding of microglial-derived AnxA1 to PS on the surface of
apoptotic neuronal cells is critically required for phagocytosis
[69]. Moreover, Dalli and colleagues (2012) reported that
AnxA1 expressed by resident macrophages is a critical deter-
minant for the clearance of senescent neutrophils in the bone
marrow [100]. Proe�erocytic e�ects were also observed for
AnxA12–50 and its cleavage-resistant form (CR- AnxA12–50),
which stimulated e�erocytosis in vitro by human and mice
bone-marrow derived macrophages [26]. 	is e�ect was
con�rmed in vivo in a zymosan-induced peritonitis model,
when the peptides signi�cantly reduced exudate neutrophil
counts and increased the number of macrophages containing
ingested PMN [26].

Once phagocytic removal of apoptotic cells has failed,
neutrophils undergo secondary postapoptotic necrosis, prob-
ably leading to the leakage of cytotoxic and antigenic intra-
cellular contents into the surrounding tissue [63]. Blume
and col. (2012) revealed, in two complementary studies, the
role of externalized AnxA1 as a fail-safe mechanism aer
neutrophil transition from apoptosis to secondary necrosis.
First, they describedAnxA1 externalization during secondary
necrosis, which in turn promotes the removal of dying cells
and prevents proin
ammatory cytokine production [66]. In
the second study, they demonstrated that in vitro AnxA1
proteolysis during secondary necrosis generates a monocytic
“�nd-me” signal, contributing to the recruitment of mono-
cytes and consequently preventing in
ammation [63].

	e removal of apoptotic cells has dual importance:
prevention of potentially toxic content release and induction
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ofmacrophage reprogramming toward a resolving phenotype
[101–103], another key event to restore tissue homeostasis.
Accordingly, AnxA1-induced e�erocytosis is coupled with
increased release of transforming growth factor- (TGF-) �
and lower levels of the proin
ammatory cytokine IL-6 [65,
67]. In agreement with this observation, impaired phago-
cytosis in AnxA1-de�cient macrophages is mirrored by
increased release of tumor necrosis factor- (TNF-) � and IL-6
[99]. Supporting an immunomodulatory e�ect of AnxA1 on
cytokine production, AnxA1-null mice showed increased
mortality in a model of LPS-induced endotoxic shock which
was correlated with increased activation of in
ammatory
cells [104].	e authors detected delayed andmore prolonged
increase in the levels of TNF-�, IL-1, and IL-6 in the blood
of AnxA1-null mice, as well as increased production of these
cytokines by AnxA1 KO macrophages [104]. 	is data is
consistent with the increased production of IL-6 and TNF by
stimulated AnxA1 KO peritoneal macrophages in compari-
son toWTcells [105].Moreover, in vitro studies linkedAnxA1
to brain homeostasis, demonstrating that exogenous AnxA1
can suppress microglial activation, limiting indiscriminate
phagocytosis of healthy neurones and nitric oxide (NO)
production during the phagocytic reaction [69]. Recently, the
functional role of macrophage-derived AnxA1 in modulating
hepatic in
ammation and �brogenesis during nonalcoholic
steatohepatitis (NASH) progression was documented [68].
NASH in AnxA1 KO mice was characterized by enhanced
lobular in
ammation resulting from increased macrophage
recruitment and exacerbation of the proin
ammatory M1
phenotype [68]. In line with these results, AnxA1 adminis-
tration to liver macrophages suppressed M1 activation, char-
acterized by reduced expression of iNOS and IL-12p40, and
increased IL-10 expression. Interestingly, activation of FPR2
by AnxA1 skewed M1 macrophages to anti-in
ammatory
M2-like cells, attenuating the expression of IL-6, IL-1�, and
TNF-� [44]. Furthermore, Cooray and col. (2013) revealed
an AnxA1-speci�c FPR2/ALX proresolving signal pathway
centered in p38, leading to the production of IL-10 by human
monocytes, an e�ect replicated in vivo aer intraperitoneal
AnxA1 injection [47].

Although uptake of secondary necrotic leukocytes was
shown to be AnxA1 independent, the protein has an anti-
in
ammatory action on macrophages, since phagocytosis of
AnxA1 knock-down necrotic cells induced increased release
of proin
ammatory cytokines TNF, IL-6, and IL-1� by phago-
cytic cells [66]. Pupjalis and col. (2011) added knowledge to
the immunosuppressive actions ofAnxA1 derived fromapop-
totic PMN. According to the authors, the treatment of human
monocytes with AnxA1-containing supernatant of apoptotic
granulocytes or Ac2–26 peptide results in a signi�cantly
diminished release of proin
ammatory cytokines when the
monocytes are subsequently challenged with endotoxin [70].

Taken together, these �ndings indicate that AnxA1-
induced e�erocytosis collaborates with the resolution of
in
ammation by promoting the elimination of e�ete neu-
trophils allied to an alternative macrophage activation that
downregulates the production of proin
ammatory media-
tors. Such events pave the way to the resolution of in
am-
mation.

4. Concluding Remarks

AnxA1 is a GC-regulated protein that modulates a wide range
of cellular and molecular steps of the in
ammatory response
and is deeply involved in the endogenous mechanisms that
are activated to bring about proper resolution. So, it is reason-
able to suppose that AnxA1-based pharmacologic strategies
could be as e�ective as steroids, without their metabolic
side e�ects. We have discussed here the ability of AnxA1
and its mimetic peptides to limit neutrophil accumulation
in the tissue. Besides limiting neutrophil recruitment and
increasing neutrophil apoptosis, AnxA1 promotes apoptotic
neutrophil clearance by modulating monocyte recruitment
and enhancing e�erocytosis. Indeed, AnxA1 contributes to
tissue homeostasis by inducing macrophage reprogramming
toward a resolving phenotype. 	e combination of these
mechanisms results in an e�ective resolution of in
amma-
tion, pointing to AnxA1 and its mimetic peptides as promis-
ing therapeutic agents for treating in
ammatory diseases.

	epromising �ndings on the potential therapeutic use of
AnxA1 in in
ammatory diseases have stimulated the devel-
opment of pharmaceutical formulations containing AnxA1
mimetic peptides, such as the controlled-release hydrogels
for dermal wound repair application [106] and targeted
polymeric nanoparticles [107]. 	e latter demonstrated abil-
ity to enhance resolution in zymosan-induced peritonitis
[107], promote colonic wounds healing [42], and protect
hypercholesterolemic mice against advanced atherosclerosis
[108]. 	ese pharmaceutical strategies o�er further bene�ts,
overcoming the critical pharmacokinetics of short peptides in
vivo, protecting them from proteolysis during pharmacolog-
ical treatment, and facilitating the delivery to injury sites.
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