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This paper presents a theoretical study of the annihilation of edge dislocations in the same smectic plane in
a bulk smectic-A phase. We use a time-dependent Landau-Ginzburg approach where the smectic ordering is
described by the complex order parametercsrW ,td=heif. This quantity allows both the degree of layering and
the position of the layers to be monitored. We are able to follow both precollision and postcollision regimes,
and distinguish different early and late behaviors within these regimes. The early precollision regime is driven
by changes in thefsrWd configuration. The relative velocity of the defects is approximately inversely propor-
tional to the interdefect separation distance. In the late precollision regime the symmetry changes within the
cores of defects also become influential. Following the defect collision, in the early postcollision stage, bulk
layer order is approached exponentially in time. At very late times, however, there seems to be a long-time
power-law tail in the order parameter fluctuation relaxation.
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I. INTRODUCTION

At low temperatures, almost all materials exhibit phases
with broken symmetries. The low-temperature phase is de-
scribed by an order parameter which exists on some re-
stricted manifoldD. Its local position withinD is then de-
scribable in terms of some phase functionF. The dynamical
processes whereby the symmetries are broken are extremely
complicated. Almost always the order parameter at one place
is different from that at another. The resulting order param-
eter variation is sometimes relatively strong, but not singular.
In this case the order parameter always remains arbitrarily
close toD. Defects refer to regions where the phase function
FsrWd exhibits singular behavior. They may be points, lines,
or surfaces in a bulk system, and it is now known that they
may be understood in terms of a topological classification
related to the underlying group structure of the order param-
eter manifold[1,2].

There has long been interest in the physics of defects,
long predating the more sophisticated topological studies.
Not only do the defects induce long-range forces within a
structure, but also the bulk material properties of materials
filled with defects can be overwhelmingly dominated by the
existence of those defects. For example, it is the presence of
dislocations[3] which essentially governs the yield stresses,
plastic deformations, and fracture properties in a solid. Like-
wise, liquid crystal textures[4], which dominate the visual
impact of individual liquid crystal phases, are the product of
defect structures in the order parameter configurations. The
defect structures are thus only a topologically mediated indi-
rect effect of the order parameter manifold itself, but this was
nevertheless historically sufficient to identify the nature of
the phases[5].

Given their essentially topological basis, it is perhaps not
surprising that defect structures exhibit much universality. As

a result there are often profound mathematical similarities
between apparently completely different physical systems,
ranging from condensed matter to cosmological structures
[6–8]. These similarities are nevertheless not apparent from a
naive nonmathematical point of view.

In this paper we shall be interested in dynamical proper-
ties of line defects. This class of defects is represented by
disclinations in nematic liquid crystals, in which case they
represent singularities in an orientational field, and by dislo-
cations in smectic liquid crystals and solids, which involve
singularities in a displacement field. Analogous defect struc-
tures are also found in superconductors and superfluids. Our
model line defects are edge dislocations in smectic liquid
crystals(LCs) [4].

From a practical point of view, the advantage of studying
defects in liquid crystals is that the time scale of any motions
is many orders of magnitude faster than that in solids. Now
interesting effects can be observed on reasonable time scales.

A typical smectic phase consists of a stack of layers,
within which there exists liquidlike organization of molecu-
lar mass centers[9]. The resulting quasi-two-dimensional
system gives rise to logarithmically divergent positional fluc-
tuations with respect to the characteristic sample size. Con-
sequently quasi-long-range positional ordering occurs in
finite-sized samples. For all but the mathematical physicist,
these systems are one-dimensional solids.

The different smectic phases are classified according to
the orientational order within(and between) layers. The sim-
plest phase is the smectic-A sSmAd phase. In this, the rodlike
molecules tend to be aligned along the layer normal. How-
ever, in describing the static and dynamic behavior of edge
dislocations in various smectic LC phases the layer ordering
plays the dominant role[4,9], while the other degrees of
ordering are only of secondary importance. Thus the rela-
tively simple SmA phase, to which we henceforth restrict our
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interest, is often sufficient to illuminate the basic mecha-
nisms behind these phenomena.

Edge dislocations in smectics can be induced by a tension
that tends to alter the equilibrium layer spacing[10]. These
dislocations induce far field stresses and strains, which can
be explored using standard liquid crystal elastic theories[9].
But in addition, and of more interest to us here, there is the
nature of the dislocation core. In a solid, the dislocation core
is best described by the equilibrium positions of the atoms.
In a liquid crystal, the density fluctuations underlying the
smectic layering undergo a profound rearrangement in this
neighborhood, and the relevant structure is represented by an
order parameter profile.

There have been a number of attempts to explore defect
equilibrium structures in smectics. The crucial input here is
the order parameter representing the smectic structure. de
Gennes[11] introduced a complex order parameter with a
local amplitude and a phase. He drew attention to an analogy
between superconducting systems also described by this or-
der parameter. In particular, he pointed out that there might
be a smectic analog of the Abrikosov superconducting phase
[12], which is defect dominated. Loginov and Terentjev[13]
made analytical calculations of the order parameter distribu-
tion inside screw and edge dislocations. Analogous calcula-
tions have been made by Kralj and Sluckin[14] and by Renn
and Lubensky[15], but the details of the structure have not
yet been definitively resolved.

Experimental verification is still lacking because of the
smallness of the core size. This is typically of the order of a
few smectic order parameter correlation lengths. Apart from
close to phase transitions this is comparable to a typical mo-
lecular size. Edge dislocations can also appear if a change
sudden with respect to a relevant smectic ordering relaxation
time is imposed on the system. An example is a sudden
quench into a smectic phase starting from the isotropic
phase.

There have been only a few studies on dynamics of edge
dislocations[16–19] in smectics. In these studies the motion
of edge dislocations was studied as a function of imposed
stress[16–18] and boundary conditions[19]. All these stud-
ies employ the classic displacement field description of the
smectic ordering, in which order parameter variations are
neglected. We shall henceforth refer to this description as the
classical model[9,20].

This theoretical study concerns the mutual annihilation of
edge dislocations lying in the same smectic-A phase layer.
Now order parameter spatial variations play a necessary role,
and so the classic displacement field description is insuffi-
cient. Note that in the frame of the classical model the edge
dislocations in such a configuration do not interact[21].

We shall describe a system in which two line defects are
inserted in the same smectic plane. The layer width far from
the defects is equal to the equilibrium one. The equilibrium
condition is that the layers attain their natural separations
everywhere. Obeying topological requirements this state is
obtained via annihilation of dislocations. Our problem is to
describe the evolution of the starting system, containing the
two dislocations, into the equilibrium system, in which they
have disappeared.

The study begins with the order parameter configuration
at early times. Here there are two well-defined and well-

separated dislocations. At intermediate times, however, the
proximity of the dislocations affects the order parameter pro-
files in each of them. Later still the defects collide and anni-
hilate. However, there is still a ghostlike signature of the
previous configuration. Finally all nonequilibrium compo-
nents of the order parameter decay, leaving a uniform planar
smectic bookshelf geometry.

The plan of the paper is the following. In Sec. II we
describe our model and the geometry of the problem. In Sec.
III, we focus in detail on the annihilation of a pair of edge
dislocations. We treat separately the precollision and postcol-
lision regimes. Finally in Sec. IV we summarize our results.
Some important details of the study are described in appen-
dixes.

II. MODEL

Our approach is phenomenological, in that we seek equa-
tions of motion for the order parameter. Specifically, we shall
use the de Gennes complex order parameter to describe the
smectic wave. Although this approach has been questioned in
recent years[22,23], no superior model exists at the moment.
We shall use the Landau–de Gennes free energy[11,13],
which we have ourselves used in recent years in a number of
studies of inhomogeneous smectic systems[14,24]. In this
initial study of smectic defect dynamics we use the most
naive time-dependent Ginzburg-Landau approach. This is
equivalent to approaches to nematodynamics which ignore
backflow. We believe that this will illuminate the most basic
features of the problem. In future work we shall return to the
problem and attempt to incorporate backflow properly. We
now discuss the specific features of the model in more detail.

A. Order parameter

In the Landau–de Gennes approach[11,13] the degree of
SmA layer ordering is described by a complex smectic order
parameterc=heif. This quantity corresponds to the first har-
monic term in the Fourier expansion in the spatial variation
of the molecular mass densityr. The quantitiesc andr are
connected through the relationr<r0s1+c+c*d, wherer0 is
the spatially homogeneous density. The modulush describes
the degree of layer ordering, and the phase factorf deter-
mines the position of smectic layers. In a homogeneously
ordered smectic phase one findsf=qW0·rW, where the wave
vector qW0 specifies the equilibrium layer spacingd0=2p /q0
and defines the direction of the one-dimensional layering.
When this homogeneous smectic is slightly perturbed the
phase is commonly expressed with the layer displacement
field usx,y,zd asfsx,y,zd=q0(z−usx,y,zd). The average ori-
entation of molecules within layers is described by the nem-
atic director fieldnW pointing along the mean molecular axis.
In bulk equilibrium phase the LC molecules point along the
layer normal, i.e.,nW =qW0/q0.

B. Free energy

The free energy densityf of the unconstrained SmA phase
contains two terms:fh and fe. The first term represents the
homogeneous contribution to the free energy density,
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whereas the second represents the elastic contribution. The
free energyF of the system is obtained by integratingf over
the entire volume of the sample:

F =E sfh + fedd3rW. s1d

For a second order nematicsNd to SmA phase transition the
free energy densityfh can be expressed as an expansion inc
[11]. To lowest relevant order this is

fh = aucu2 +
b

2
ucu4, s2d

wherea=a0sT−TNAd, a0, and b are positive material con-
stants,T is the temperature, andTNA the N-SmA phase tran-
sition temperature. The minimum offh determines the degree
of bulk smectic ordering:hb=Îa0sTNA−Td /b. We neglect
coupling between the smectic and nematic order parameters.
This can change the order of the smectic-nematic phase tran-
sition, but involves physics which is not central to the
present purpose.

The elastic contribution of the free energy densityfe de-
scribes the elastic response to changes in the smectic order-
ing. This consists of the nematicsfe

sndd and smecticsfe
ssdd

components. It is known that the nematic elasticity interacts
with the smectic phase to give a second gradient squared
term in the displacement in the direction parallel to the smec-
tic layers[13,21]. The resulting long-range strain field is the
solution of a quartic equation. However, in order to simplify
the problem, in this calculation we shall suppose the director
nW is homogeneously aligned along the direction in which the
layers are stacked on average. The result of this assumption
is that we can neglect the nematic elastic termfe

snd. Therefore
within our approach only the phase factor fieldf gives rise
to the long-range strain field. In Appendix A we show that
spatial variations innW give rise only to quantitative changes
in the behavior of our interest.

The smectic elastic term can be expressed as[9,13,15]

fe
ssd = C'usnW 3 ¹W dcu2 + CiusnW ·¹W − iq0dcu2. s3d

These two terms involve positive elastic constants associated
with smectic bendsC'd and compressibilitysCid. The first
term tends to align the smectic layer normal alongnW. The
smectic compressibility term enforces the layer spacingd0.
Typically the ratio of the compressibility to the bend constant
is in the region of 1–10[9]. In our calculation, for simplicity,
we shall take this ratio to be unity and setC'=Ci;C. The
changes introduced byC'ÞCi are analyzed in Appendix A.

We now identify the important characteristic lengths that
enter our study[9]. These are(a) the smectic layer separation
d0; (b) the separation distanceL between defects; and(c) the
smectic order parameter correlation lengthsji=sCi /2uaud1/2

andj'=sC' /2uaud1/2.
The quantitiesji andj' measure the response of the sys-

tem to locally induced perturbations in the smectic ordering
in the directions respectively along the smectic layersjid and
perpendicular to itsj'd. In our calculations, the equality of
the elastic coefficients implies that the correlation lengths are

also equal, and we setj'=ji;j. Furthermore, so long as
order parameter variations can be neglected, as we show in
Appendix B, the Euler-Lagrange equation for the variation of
the phase factorf alone is scale-free. As a result the varia-
tions in f adapt only to the constraints imposed by the ge-
ometry of the problem.

C. Dynamics

We adopt the time-dependent Ginzburg-Landau model, in
which

g
] c

] t
= −

df

dc* , s4d

whereg represents the effective smectic viscosity constant.
The functional derivative with respect toc implicitly also
includes derivatives with respect to derivatives ofc. This
model has been labeled by Halperin and Hohenberg as model
A [25]. Model A usually describes systems in which there is
no interaction between order parameter dynamics and classi-
cal hydrodynamics. Here it is clear that there are in fact
elastic stress tensor terms, and thus strong coupling between
hydrodynamics and order parameter relaxation. However, the
full inertial dynamical structure has not yet been clarified.
Some progress toward this goal has been made by Bruinsma
and Safinya[26] and by Brandet al. [27]. In the absence of
a full and reliable dynamical theory, we restrict the study to
order parameter relaxation. We note that in the case of nem-
atic liquid crystals, the effect of ignoring backflow(i.e., hy-
drodynamic coupling) can in some cases simply change the
effective viscosity constant. However in some specific ranges
qualitative changes can take place that are not considered in
our study[28,29]. An attempt taking into account a flow into
the model is demonstrated in Appendix A.

We may remark that this approach is equivalent to making
an ansatz for the dissipation functionD, and supposing that
the free energy gained per unit time is entirely dissipated.
Accordingly −dF/dt=D, whereD=eg d3rW. The full theory
would include inertial effects as well as a more sophisticated
formulation of the dissipation function. The simple time-
dependent Ginzburg-Landau dissipation function takes the
form

g = gU ] c

] t
U2

, s5d

whereg is an effective smectic drag viscosity.
It is now possible to make some initial observations based

on dimensional analysis. The characteristic order parameter
relaxation time is roughly given byt,g / uau and is thus
proportional to the square of the smectic order parameter
correlation length. By contrast, there is also a timetf char-
acterizing distortions in the smectic phasef. This depends
on the typical linear sizeLd of an imposed distortion. We find
that tf,gLd

2/C, whereC stands for an appropriate smectic
elastic constant. We develop this argument further in Appen-
dix B.
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D. Geometry of the problem

The geometry of the problem is depicted in Fig. 1. The
smectic layers are stacked along thez axis. The edge dislo-
cations lie along they direction. The defects are initially
separated by a distanceL0, placed symmetrically atx
= ±L0/2 andz=0. The presence of the defects gives rise to
an elastic displacement field, the value of which is set ini-
tially using a mathematical ansatz which we describe in more
detail, below. The defects subsequently approach each other
along thex axis as shown in the figure. The problem has
translational symmetry in they direction, and we shall sup-
pose that this symmetry is maintained in the solutions. Thus
we do not expect spatial variations along they axis, implying
that csrWd=csx,zd.

The problem has further reflection symmetry in thex=0
andz=0 axes. This symmetry permits us to restrict the cal-
culation to a single quadrant, and we choose the quadrant
x,0,z.0. The region over which calculations are actually
carried out is shown in Fig. 1 and is surrounded by bold
lines. Only one of the two defects remains in our calculation
domain; the behavior of the other can be inferred by reflec-
tion symmetry.

We note that the symmetry conditions at the reflection
planesx=0 and z=0 are different. Reflection in thez=0
plane leads to the conditioncsx,zd=c*sx,−zd. This is
equivalent to the conditionusx,zd=−usx,−zd, whereusx,zd
is the displacement of a smectic layer from its equilibrium
position. By contrast, reflection in thex=0 plane yields the
conditioncsx,zd=cs−x,zd; this is equivalent to the condition
usx,zd=us−x,zd.

These symmetry relations govern the boundary conditions
at the walls of the calculation domain. This domain is cuboid
with sidesLx,Ly,Lz. Because of the translational symmetry
in they direction, out of these, only the quantityLy enters the
nondimensionalization.

E. Parametrizations and equations

We use the following nondimensionalizations:(a) The
scaled smectic order parameter ish̃=h /hb; (b) the dimen-

sionless energy isF̃=F /F0, whereF0=Chb
2Ly; (c) lengths are

measured in terms of the smectic order parameter correlation

length x̃=x/j , z̃=z/j ,L̃=L /j ,q̃0=q0j, etc.; (d) time is mea-
sured in units of the smectic order parameter relaxation time
t̃= t /t.

The scaled order parameter can be expressed as

c̃ = h̃eif = h̃eifq0sz−udg = Ceiq0z

where far from the defectu represents the conventional layer
displacement field. The nonsingular part of the order param-
eter in the defect region is contained in the exponential
expiq0z. All singular contributions giving information about
defect structure are contained inC=h̃ expf−iq0usx,zdg.
However, in order to circumvent problems with the definition
of the phasef where the order parameter is small inside the
defect cores, we representC in terms of its real and imagi-
nary components:C=h̃e−iq0u=A+ iB [10,24]. In all further
calculations we drop all the tildes.

The quantityC is a normalized order parameter which
includes the degree of order and departures from perfect
smectic order. The free energy can now be rewritten in terms
C. The explicit effect of the smectic wave is lost and the
theory reduces to the well-known gradient theory with a
complex order parameter. The free energy is now

fh =
1

2
S− uCu2 +

1

2
uCu4D , s6d

fe = u ¹ Cu2. s7d

The time evolution equation(4) can now be written as

] C

] t
= 2¹2C + Cs1 − uCu2d. s8d

In terms of the parametersAsx,z,td ,Bsx,z,td, the dynami-
cal Euler-Lagrange equations can be written as

1

2

] A

] t
=

]2A

] x2 +
]2A

] z2 +
1

2
Af1 − sA2 + B2dg, s9d

1

2

] B

] t
=

]2B

] x2 +
]2B

] z2 +
1

2
Bf1 − sB2 + A2dg. s10d

F. Boundary and initial conditions

The problem is parabolic in time and ellipsoidal in space.
We need to specify initial valuesCsx,z,0d, as well as bound-
ary conditions on the surfacesz=0,x=0,z=Lz,x=−Lx. We
use the following boundary conditions.

(a) z=0. Here the symmetry relationusx,zd=−usx,
−zd⇒usx,0d=−usx,0d=0, i.e.,

] A

] z
= 0, B = 0.

(b) x=0. Here the symmetry relation isusx,zd
=us−x,zd. Now the condition is that

] A

] x
= 0,

] B

] x
= 0.

FIG. 1. The geometry of the problem. The edge dislocations are
initially separated by a distanceL0. The distancesLx andLz describe
the simulation cell volume. Bold lines indicate the region over
which calculations are carried out. Thin lines determine the smectic
layers. The two dots mark the centers of defects.
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(c) z=Lz. There is no symmetry relation, and so we
simply suppose that a stable situation has been reached suf-
ficiently far from the defects. This implies that the gradients
perpendicular to the wall are zero, or

] A

] z
= 0,

] B

] z
= 0.

(d) x=−Lx. This is analogous to the previous case:

] A

] x
= 0,

] B

] x
= 0.

We observe, however, that whereas conditions(a) and(b)
are set by symmetry, conditions(c) and (d) are set by con-
venience, and approximate the situation as the distance from
the defects approaches infinity. If other plausible conditions
are applied on the latter boundaries(e.g., we suppose that
they approximate to undisturbed smectic layers) negligible
difference in our results is observed.

We use the following initial ansatz for the amplitude and
phase of smectic complex order parameter. At the center of
the defect we seth=0. We vary the ordering linearly with the
distance from the defect center, reaching the bulk valuehb at
the distance equal to the smectic order parameter correlation
length. Elsewhere we seth=hb. For the phase shift we set
f=p−w, wherew=arctanfsz−zdd / sx−xddg and the defect is
placed atsx,zd=sxd,zd=0d. This ansatz for the phase shift
corresponds to no displacement of layers on the left of the
defect and to the half-layer displacement to the right of it.
Then the correspondingAsx,zd and Bsx,zd profiles are cal-
culated using Eqs.(9) and(10). Quasiequilibrium profiles for
relatively large separationsL of defects are obtained at a
short time relatively to the annihilation time. We also used
another initial ansatz for smectic layer displacement[21]. All
ansatz profiles have retraced into the same solution after a
time period equal to a few correlation timest.

III. RESULTS

We initially place the edge dislocation at a distanceL
=L0@j as shown in Fig. 1. The following physical processes
then occur.

(i) After a relatively short time, of the order of a few
relaxation times, the local core structure reaches the quasi-
equilibrium order parameter profile.

(ii ) From this time on we monitor the annihilation dy-
namics. In theprecollision regimewell-distinguished defects
approach each other to reduce the effective layer curvature of
the system. The defects attract because in the absence of the
defects the elastic energy is reduced. If the defects approach
each other, sufficiently far away, the two defects essentially
cancel each other out. If the defects are separated by a dis-
tanceL, the critical distance over which the defects no longer
give rise to a displacement field is of the order ofL. The
smaller the separation, the smaller the elastic energy.

(iii ) The defects thencollide. In the collision the defects
merge and it is no longer possible to distinguish two separate
entities.

(iv) In thepostcollisionregime the disturbed structure re-

sulting from the defect collision gradually decays into a bulk,
undistorted state.

We are able further to distinguish in each of the pre- and
postcollision regimes two different time regimes, resulting
from the different characteristic time scales forh andf. In
what follows we analyze in more detail the different stages in
the annihilation process.

Some characteristic stages of the annihilation dynamics
are shown in Figs. 2 and 3. In the left panel we show the
layer profiles with superimposed smectic order parameter
contour plots. The contours label the valuesh /hb=0.95(the
outermost one), h /hb=0.8, 0.6, 0.4, 0.2, andh /hb=0.05(the
innermost one). In the right panel the spatial variation of the
order parameter along thex axis is shown atz=0 (the bot-
tommost curve), z=j ,2j ,3j ,4j ,5j, and z=6j (the upper-
most curve).

In the early precollision regimecorresponding roughly to
L.10j, the defects are clearly distinguishable and can be
described as linelike objects. On a finer scale, each indi-
vidual defect exhibits a parasmectic(nearly nematic) region,
which extends over a distance of the order of 5j. This region
defines the defect core. In this regime, the defect cores are
not affected by their mutual interaction. A representative or-
der parameter profile of a dislocation is shown in Fig. 2. The
spatial profile ofh enclosing the melted(nematic) core ori-
gin exhibits locally cylindrical symmetry in thesx,zd plane.
The cylindrical symmetry is due to the equal elastic constant
approximationsj'=jid. For a real elastic anisotropy, where
ji .j', the core is extended in thez direction.

With time the defects gradually enter thelate precollision
regime, shown in Figs. 3(a). Now the defect core structure of
a defect seems to be influenced by the interaction with its
neighbor. The order parameter profiles in the cores gradually
lose their cylindrical shape and become extended in the di-
rection joining the defects. The inner contours remain cylin-
drical, but some outer contours in Figs. 3(a) are now pear

FIG. 2. The order parameter profile of an isolated dislocation
located atz=0. Left panel: smectic layer profile with contour plot of
hsx,zd superimposed. Contours correspond toh /hb=0.95 (dotted
line), 0.8 (dash-dot-dotted line), 0.6 (dash-dotted line), 0.4 (short
dashed line), 0.2 (solid line), and 0.05(solid line). Right panel:
spatial variation of the order parameter along thex axis atz=0, j
(bottom line), 2j ,3j ,4j ,5j ,6j (top line).
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shaped, and the very outermost contours even encircle both
defects. As the defects further approach, these features be-
come more pronounced, and the departures from a cylindri-
cal shape begin closer and closer to the defect centers, by
which we mean the points at which the layering order pa-
rameter disappears. Eventually the defect core structures sig-
nificantly overlap and it is no longer possible to distinguish

one from another. Detailed examination of Figs. 3(a) also
shows that the time evolution of the outer contours is de-
layed with respect to those near the defect centers. This is
probably the result of a relatively slow layer readjustment
which follows from a phase relaxation time-scaletf

,gL2/C. We discuss this point further in Appendix B.
In thecollision, shown in Figs. 3(b), the melted regions of

both defects merge. After this event the “nonsingular”early
postcollision stageis entered. This stage is characterized by
the apparent growth of the order parameter at the collision
site on a time scale given byt. This feature is shown in Figs.
3(c). Gradually the quasiequilibrium order parameter profile
is established, adiabatically adjusting to the slower layer dis-
placement dynamics. During this period the degree of layer-
ing approaches that expected in an equilibrium smectic
phase. Finally, thelate-postcollision stageis essentially char-
acterized by the layer displacement dynamics, by which the
exact thermodynamic equilibrium is asymptotically ap-
proached. During this period, the layer displacements disap-
pear.

Next we present a more detailed quantitative picture of
the annihilation. In Fig. 4(a) we show the time evolution of
the interdefect separationL. The plots for different initial
separationsL0 are superimposed. Apart from minor early-
time deviations, the curves fall more or less on the same
curve. We believe that the initial anomalousLstd dependence
is because the initial ansatz for the defect structure does not
correspond to a steady-state solution of Eq.(8), and a short
period of relaxation is required. Once the defect core has
relaxed, the past history is irrelevant, and subsequent history
depends only on present position.

We find thatLstd is rather close to a power-law depen-
denceL~ stc− tdl, where thecollision time tc is the time taken
until the defects mutually annihilate. The exponentl
<0.5±0.05. However, there are small departures from this
rule, and the best fitted exponent seems to depend monotoni-
cally on the total system size. The value forl quoted above
is an extrapolation to infinite system size. We shall return to
the departure from the exact scaling law in the next section.

The initial size-annihilation time dependence lawLstd can
be inverted to yield a law for the defect approach velocity
vsLd. The power law relationL~ stc− tdl implies an analo-
gous power law relationv~L1−1/l. Taking the extrapolated
l=0.5 suggests the relationshipv~L−1. In Fig. 4(b) we make
a log-log plot of thevsLd dependence. One observes a slight
change in the behavior whenLstd,j. This is unsurprising,
given that structural variations inh near the defects centers
become significant.

The asymmetry of the core in this regime is depicted in
Fig. 5. One sees that the core size along thez direction re-
mains approximately unaffected and gradually increases in
the x direction on approachingtc. In the mean time the size
in the z direction slightly shrinks, revealing the tendency to
conserve the amount of the melted region.

An illustrative representation of the characteristichstd
variation is shown in Fig. 6. We plot the time evolution of
the order parameter in the middle of the plane through both
defects, i.e.,hm=hsx=0,z=0d. For L.10j hm,1 holds. At
later distances(i.e., times) hmstd monotonically decreases,

FIG. 3. Order parameter profile at different stages during the
annihilation process. Left panel: smectic layer profile with contour
plot of hsx,zd superimposed. Contours correspond toh /hb=0.95,
0.8, 0.6, 0.4, 0.2, 0.05. Right panel: spatial variation of the order
parameter along thex axis is shown atz=0,j ,2j ,3j ,4j ,5j ,6j. (a)
The late precollision regime,L=5j; (b) exactly at the time of col-
lision, L=0; (c) the early postcollision regime,t=t and
hs0,0d /hb=0.23.
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indicating the merging of the cores of defects. Just before
and after the collision the linear dependencehm~ ut− tcu is
observed. This behavior also emerges from the approximate
solution Eq.(11). In it we follow the value ofh at the mirror
plate att, tc and gethm~ tc− t.

After the collisionhm asymptotically approaches its bulk
thermodynamic valuehb. In the late precollision regime the
numerical calculations indicatehb−hm~1/st− tcd. This sug-
gests adiabatic adjusting ofhb to the much slowerF time
evolution.

Note that the edge dislocations in the described geometry
do not interact within the classical approach[21]. In our
approach the interaction is enabled by the smectic bend elas-
tic term weighted with the elastic constantC' [see Eq.(3)].

IV. DISCUSSION

We first discuss theLstd,stc− td1/2 law, which as we have
seen above is equivalent to avsLd,L−1. We derive a simple
ansatz, using Eqs.(9) and (10), which gives insight into the

L~Îtc− t dependence. We concentrate on the behavior of
Asx,td at a defect site. Exactly at the defect originA=0. For
f=0,A=h ,B=0; andh=0 at the defect center, but the de-
rivatives ofA andB have finite values. Exactly at the defect
center, neglecting spatial variations in thez direction (in
scaled units), Eq. (9) reduces to]A/]t,]2A/]x2.

A possible solution to this equation is

A = cf− stc − td + x2/2g, s11d

where c is a constant. The defect position is given by the
implicit equationAsx,td=0. Combining this with Eq.(11)
yields

x = Î2stc − td, s12d

which, as shown in Fig. 4(a), describes the whole precolli-
sion regime rather well.

FIG. 4. The dynamics of the precollision regime.(a) The Lstd
dependence. Neglecting the initial anomalous dependence we

roughly obtainL~Îstc− td. Care should be taken because the ob-
servedLstd dependence onL0 is due to memory effects. The results
are obtained at a temperature wherej,d0. (b) The dependence
vsLd on a log-log plot. The lawv~1/L would result in a straight
line with slope −1.

FIG. 5. Precollision regime: the time evolution of the character-
istic core size width in the direction along the line connecting the
defects and perpendicular to it. The diametersjx andjz, character-
izing the core shape, were measured in thex and z directions, re-
spectively, between opposite points at whichh=hb/2.

FIG. 6. hsx=0,z=0d time evolution in the late precollision and
postcollision regimes.
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It is possible to estimate the experimental time scale cor-
responding to the cases we have studied. We rewrite Eq.(12)
in its dimensional form:x2=2sj2/tdstc− td;2Dstc− td, where
D plays the role of a diffusion constant. ForD
,10−12 m2 s−1 [18] andj of the order of nanometers(which
holds true well into the SmA phase), we obtaint,10−6 s.
With this in mind, the longest calculations in Fig. 4(a) extend
over a time scale of 10−4 s. However, our approach is also
applicable close to theN-SmA phase transition, where the
dynamics is considerably slower. In this regime our calcula-
tions may correspond to longer experimentally accessible
time scales.

Similar behavior is observed in annihilation of orienta-
tional line defects in the nematic and smectic-C phases
[30–38]. The role ofh and f is in this case played by the
nematic order parameter and nematic director field, respec-
tively. All these studies, with the exception of Ref.[38], con-
centrate on the precollision regime. These theoretical, experi-
mental, and simulation studies confirm the basicL~Ît− tc,
i.e., v~1/L behavior. We note that for point defects the bal-
ance of forces is different, and in general thev,L−1 law no
longer obtains.

The basic ingredient behind this law has been discussed
on numerous occasions[39], and linked to the Peach-Köhler
force on dislocations in solids. Let us repeat the argument.
The model system is described by the free energyF
=eKu¹fu2dV. HereK stands for a representative elastic con-
stant of the LC phase andf is the relevant order parameter
field (e.g., the phase factor in a smectic phase or a represen-
tative angle of the nematic director field in the nematic
phase). The kinetics of the system is governed by the dissi-
pation relaxation law −dF/dt=D, where the dissipation func-
tion is given byD=ge u]f /]tu2dV. The interacting pair of
defects are placed along thex axis, separated by a distanceL.
Then the defect structure survives over a distance of the or-
der of L in all directions, and is quenched on length scales
greater than this. Then

] f

] t
,

] f

] x
v. s13d

The dissipation function and the energy function will have
the same dependence on separationL, because they are both
gradient functions. Let this beGsLd. Then

GsLdv2 ,
d

dt
GsLd ,

dG

dL
v, s14d

yielding

v ,
d ln G

dL
s15d

between defects. IfGsLd is power law or logarithmic, we
obtainv,1/L.

Some authors[30–32,34] have derived logarithmic cor-
rections to the basicvsLd law. In general these studies have
considered an orientational order parameter, but their consid-
erations probably apply to the present study. Pargelliset al.
suggestedtc− t=CL2flnsL /Rcd−0.5g, which is equivalent to

vsLd,sL ln Ld−1. HereC is a constant andRc is proportional
to the core size of a defect. We do find a better fit to ourLstd
results in the early precollision regime with this ansatz, but it
requiresRc!j. The significance of this result is unclear.

In a related work[38], some of the present authors have
investigated the complete annihilation process of nematic
point defects. In this study, using a semimicroscopic lattice-
type model and Brownian molecular dynamics, we have
found qualitatively similar annihilation(early and late pre-
and postcollisional) stages. However, the core structure of
nematic point defects in that study was considerably more
complex and adopted a ringlike biaxial structure. Other au-
thors[34,36] have also shown that the presence of backflow
can significantly change the qualitative picture of final anni-
hilation stages. A particular feature of those studies is the
breaking of the mirror symmetry between defects of opposite
parity.

Under these circumstances a close analogy between our
results and studies of disclination annihilation might well be
expected, although naturally some differences would also oc-
cur because of the different order parameter symmetries. The
index 1/2 nematic disclination and the index 1XY disclina-
tion are each minimal from a topological point of view. In
the orientational picture the positive and negative index de-
fects are not identical, and thus a breaking of the mirror
symmetry in principle is not only possible but expected.
However, the mapping of theXY model onto a smectic in
some sense forces both positive and negative index disclina-
tions to map onto identical dislocations but with opposite
Burgers vector, thus restoring the mirror symmetry.

The dynamics of our model is governed by one effective
viscosity constantg introduced by the dissipation term in Eq.
(5). This term takes into account only dissipation related to
the time changes in the SmA order parameter. It introduces
two characteristic time scalest andtf (see Appendix B) that
are related to the translational order parameterh and the
phase factorf dynamic behavior, respectively. In order to
understand microscopic origins ofg we relate the Ginzburg-
Landau (GL) model that we use with the classical(CL)
model. For the latter model the link with experimental pa-
rameters is relatively well established. We originate from Eq.
(4), the time-dependent Ginzburg-Landau equationg ]c /]t
=−df /dc* , describing local changes of the order parameter
c=heif. To take into account flow effects we replace the
partial time derivative in Eq.(4) with the material derivative.

We getg dc /dt=gs]c /]t+vW ·¹W cd=−df /dc* , wherevW repre-
sents the velocity of the material flow. The CL form of this
equation is obtained in the “phase approximation,” where
spatial variations inh are neglected. We further introduce the
displacement field in a “classical way” asf=q0sz−ud and

neglect the nonlinear termvW ·¹W c. The equationvz−]u/]t=
−lpdf /du follows, which is commonly used to study the
dynamics of the displacement field. The quantitylp
=1/sgq0

2d is known as the permeation constant. The perme-
ation refers to the motion of fluid through the layers. Close to
the N-SmA phase transition the permeation is particularly
easy andlp~1/sTNA−Td. Deep in the SmA phase lp

,d0
2/h' holds. Hereh' describes a fluid viscosity constant

along the smectic layer normal. ForT!TNA the permeation
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flow typical length is given bylp,Îhvlp,Îhv /h'd0,
wherehv stands for a typical viscous constant. In order to
calculate the velocity field[16] the Navier-Stokes equation
(in it df /du plays the role of the restoring force) is conven-
tionally used together with the fluid incompressibility condi-
tion ¹W ·vW =0.

In our approach we neglect the velocity field. If the dif-
fusion within smectic layers, where liquidlike behavior is
expected, is an infinitely fast process, only the permeation
controls the motion of edge dislocations. But if diffusion
cannot relax immediately the vacancies created by perme-
ation the viscosity within smectic layers is also important.

We also believe that the material flow plays a weaker role
in the annihilation of smectic edge dislocations in compari-
son to the annihilation of nematic defects. In the latter case
the flow is important and is the main reason behind the
asymmetric annihilation process(i.e., the defects with a posi-
tive Frank index are faster) of defects. When the nematic
defects approach each other, the reorientation of molecules
takes place, which is relatively strongly coupled with the
fluid flow. In the absence of flow the main source of dissipa-
tion is the region surrounding the defects. If the flow is trig-
gered the dissipation is delocalized through the region in
which the flow is present. On the contrary the annihilation
process of edge dislocations does not require reorientation of
LC molecules; therefore the coupling with the flow is
weaker. In addition the flow would disrupt smectic layers,
which is relatively energetically costly, particularly deep in
the SmA phase.

It is possible that our simulation does not appropriately
recover events close to the collision of defects, where the
relative velocity of defects is very high. The important pa-
rameter measuring the credibility of our approach is the so
called Deborah number[29] De, defined asDe=rt. Here r
stands for the shear rate andt is the relevant order parameter
relaxation time. IfDe!1 then the role of hydrodynamics
effects is expected to be negligible. We proceed by estimat-
ing the critical velocityvc for which our calculations are not
reliable by requirementDe=1. We setr ,]vx/]z andt is the
translational order parameter relaxation time. The shear rate
is largest close to defects. If we set that the velocity field
drops to zero overNd layers, we get the condition
svc/Ndd0dt=1. For t,10−6 s,d0,3 nm, andNd=3 we get
vc,1 cm/s. This value of velocity is very high. Typically
edge dislocations move with the velocityv,10−2 cm/s[18].

Note also that the annihilation is expected to follow a
qualitatively different scenario if initially well separated de-
fects (in comparison toj) are not in the same plane. Let us
assume that they are displaced for a distanceDz andL in the
z andx directions, respectively, in the geometry that we use
(Fig. 1). In this case the annihilation could be accomplished
by a combination of gliding and climbing dynamics. The
dislocations are said toclimb if they move in the smectic
plane as opposed to perpendicular to it, representing aglide.
In a conventional smectic phase a climb of a dislocation is
much easier than a glide because a glide necessitates layer
breaking. Therefore a relevant characteristic time scale in a
layer plane direction and perpendicular to it are expected to
be apparently different. The classical theory[4] predicts that

the interaction force in thex direction between dislocations
can become repulsive forDzÞ0 for a sufficiently small sepa-
rationL. Therefore for the case that gliding is apparently less
probable than climbing a pair of edge dislocations is ex-
pected to get caught in a metastable state at a separationL
=LsDzd. The system will then remain in this state until a
fluctuation triggers a gliding event, enabling annihilation into
the defectless state. In order to simulate this case with our
model an anisotropic symmetry allowed dissipation term[see
Eq. (5)] including different viscosities in a layer plane and
perpendicular to it should be introduced, which is the focus
of our future work.

V. CONCLUSION

We have studied the annihilation of edge dislocations in
the bulk SmA phase using the phenomenological Landau-
Ginzburg approach. We have begun with a pair of facing
edge dislocations at a distanceL0@j. Within the classical
approach such dislocations would not interact. In our ap-
proach the interaction is enabled by the smectic bend elastic
free energy term, weighted by the elastic constantC'.

The first stage is an equilibration period taking timest
,10td, during which the cores relax to an quasiequilibrium
profile. We have then followed the dynamics of their mutual
annihilation. In the precollision regime the defects were
clearly distinguishable. For a large enough initial separation
they approached each other in a climbing manner. For suffi-
ciently large initial separationL0 we find L~ stc− tdl, where
l,0.5, or equivalently relative velocityv~1/L. With de-
creasingL0 the effective value ofl seems to decrease mono-
tonically.

We are further able to distinguish between the early and
late precollision regimes. In the former regime the defects
exhibit nearly symmetric, equilibriumlike core structures.
For this case one can treat the defects as linelike objects,
which interact via a displacement field that does not affect
their internal core structure. In the late precollision regime
the cores of defects become modified due to their proximity.
WhenL,10j the cores become extended along the direction
of the effective interaction. At the collision timet= tc the
melted centers of both cores merge and defects become in-
distinguishable. The relaxation after the collision has two
qualitatively different stages. In the early postcollision re-
gime the order parameter profile at the collision site expo-
nentially (with characteristic time,1.5t) approaches the
quasiequilibriumhsrWd profile, fingerprinting the momentary
fsrWd pattern. In the late postcollision regime the equilibrium
profile is approached ashb−h~1/st− tcd.

Most of our calculations were carried out for the isotropic
XY limit, where the dynamics of the system is described
solely by the complex order parameterc. However, we have
shown that deviations from this approach in general give rise
to relatively small quantitative changes in the behavior of our
interest.
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APPENDIX A: DEVIATIONS FROM THE ISOTROPIC XY
BEHAVIOR

In this appendix we estimate how the(i) nematic director
field variations,(ii ) smectic elastic anisotropy, and(iii ) the
flow influence the results obtained in the main part of the
article.

We first study cases(i) and(ii ). We parametrize the direc-
tor field asnW =ssinu ,0 ,cosud, whereu=usx,zd. For the sake
of simplicity we restrictnW to vary in thesx,zd plane. In the
single Frank nematic elastic constant approximation the
nematic elastic free energy contribution is given byfe

snd

=sK /2dfs]u /]xd2+s]u /]zd2g, where K is the representative
Frank nematic elastic constant. The dissipation function of
the system[see Eq.(5)] is approximately expressed asg
=gssdu]c /]tu2+gsnds]u /]td2, wheregssd and gsnd approximate
the viscosity properties in the smectic and nematic degrees of
freedom, respectively. We use the parametrization given in
Sec. II E, measure all distances in units ofj', and we get

1

2
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The dynamics exhibits only relatively small quantitative
changes if the nematic distortions or the anisotropy of smec-
tic elastic constants are allowed. This can be inferred from

FIG. 7. Influence of elastic anisotropy, nematic distortions, and
hydrodynamics on theLstd dependence. In all casesL0=60j. (a)
Ci /C'=1,kn=`, the solid line;(b) Ci /C'=5,kn=`, the dashed
line; (c) Ci /C'=1,kn=0, the dotted line;(d) Ci /C'=1,kn=`, ad-
dition of advection terms, the dash-dotted line. The ratioai /a'=4,
typical for nematogenic molecules, is taken. Note that in cases(c)
and (d) the curves nearly overlap.
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Fig. 7 where we compare theLstd dependencies for(a)
Ci /C'=1,kn=`, (b) Ci /C'=5,kn=`, and (c) Ci /C'

=1,kn=0. In the limit kn=` the nematic director field is
strictly aligned along thez coordinate. Forkn=0 the smectic
elastic constants dominate the behavior ofnW. ThereforenW is
forced to be aligned along the smectic layer normal ifh.0.
For conventional LCs one expectskn,10. Note that forkn
=1 the characteristic times for the nematic director and
smectic phase factor variations are comparable. The case(a)
is treated in the main part of the article. Comparison of cases
(a) and (c) reveals the magnitude of variations in theL
=Lstd dependence ifnW variation is allowed within the model.
Note that the time in Fig. 7 is set to zero at the start of the
simulation.

Maximal departures ofnW from thez axis take place close
to the core of a defect at a distancez,zd7j ,x=xd. The
defect is located atsx,zd=sxd,zdd. Note that exactly at de-
fects the smectic ordering is melted and consequentlynW is
there not pushed along the smectic layer normal. In the limit
kn=0, where maximal deviations of the director field take
place, we get for the maximal tilt angleumax,30°. For kn
=10 we getumax,3°.

We also find that the dynamics in the postcollision regime
is negligibly influenced for the described variations.

We have also checked the change of shape of the smectic
order parameter contour plots encircling an isolated edge dis-
location as the ratioCi /C' is varied. Circular contours in the
case of equal smectic constants are deformed into elliptical
ones for Ci /C'.1. For Ci /C'=5, the ratio between the
longest and shortest diameters of the ellipsis roughly equals
2, in line with the scaling predictionji /j'=ÎCi /C'=Î5
,2.2.

We next estimate the influence of hydrodynamic flow on
L=Lstd. For simplicity we setCi /C'=1 andnW =s0,0,1d. The
influence of hydrodynamics can be roughly estimated by in-
cluding advection terms in the dynamical equations forA and
B. For this purpose we replace partial time derivatives in
dynamical equations with total derivatives. For example in
Eq. (8) we introduce the replacement]c /]t→dc /dt

=]c /]t+svW ·¹W dc, wherevW is the mass flow velocity and¹W

stands for the gradient operator.
We consider the case that is schematically shown in Fig.

1, focusing on the defect to the left. The defect is moving to
the right, pushing forward the molecules in front of it. These
molecules initially constitute the “inserted” layer that gives
rise to the pair of defects. In the mean time the molecules
from the neighboring layer above(below) the inserted layer
move downwards(upwards) to fill the established empty
space. Therefore, when a molecule in the inserted layer just
in front of the defect moves for a distancea' to the right, the
nearby molecules in the surrounding layers move in the ver-
tical direction for a distanceai /2. Herea' and ai estimate
the width and length of a rodlike LC molecule, respectively.

If the fluid is incompressible then the velocity field at the
defect origin can be approximately expressed asvW
=vds1,0,ai /2a'd. Herevd describes the velocity of the de-
fect. We further assume that the velocity field decays toward
zero linearly with the distancer=Îsx−xdd2+sz−zdd2 from
the defect origin. The velocity is set to zero forrùj.
In order to estimate the maximal influence of the advec-

tion term we set svW ·¹W dci =vds1−r /jdfudci /dxu
+sai /2a'dudci /dzug for r,j andci stands for eitherA or B.
As shown in Fig. 7(the dash-dotted line) the influence of the
advection term is relatively small.

APPENDIX B: TYPICAL RELAXATION TIMES

We analyze typical relaxation times of a slightly distorted
smectic-A phase. We assume that the layers are stacked along
the z axis andnW =s0,0,1d. The smectic order parameter is
parametrized asc=heif.

We first consider variations inh and setf=q0z. We ex-
pandh=hb+dh about its equilibrium valuehb=Î−a /b up
to a quadratic term indh. With this in mind one gets

f , fbshbd + 2uaudh2 + Cu ¹ dhu2, sB1d

g , gS ] dh

] t
D2

. sB2d

The static Euler-Lagrange equation readsC¹2dh
=2uaudh, defining a typical relaxation distancej=ÎC/2uau.

Neglecting spatial variations the dynamic equation yields
2uaudh=−g]dh /]t, defining the relaxation timet=g /2uau
,g / uau. Note that taking into account spatial derivatives in
dh affects the dynamics only quantitatively. For example, let
us take into account in Eq.(B1) spatial variations along thex
axis. In typical cases the contributionCs]dh /]xd2

,Csdh /jd2,2uaudh2 renormalizes the second term in Eq.
(B1), leading tot,g /4uau.

In analyzing the response of the phase factorf we assume
a spatially homogeneous profilehsrWd=hb. Consequently, we
get

fe
ssd = Ch2FS ] f

] x
D2

+ S ] f

] y
D2

+ S ] f

] z
− q0D2G , sB3d

g = gh2S ] f

] t
D2

. sB4d

The static Euler-Lagrange equation is now¹2f=0, which
does not introduce any scale into the system. Therefore the
variations inf typically adjust to the constraints imposed by
boundary conditions.

Let us assume thatf evolves over the distanceLd; there-
fore fe

ssd,Ch2sf /Ldd2. The dynamic equation readsCf /Ld
2

=−g]f /]t, defining the time scaletf,gLd
2/C.
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