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Abstract
We determine the prime ideals in the complex bordism ring r,(MU) which

can be the annihilator ideals of elements in the complex bordism of finite
complexes. Such a prime ideal must be finitely generated and invariant
under all stable MU-cohomology operations. We go on to determine the
invariant prime ideals in r,(MU).

1. Introduction

LetMU denote the unitary Thorn spectrum. ThusMU is a ring spectrum,
and r,(MU) is isomorphic to the cobordism ring of manifolds whose stable
normal bundle has a complex structure. Algebraically

r,(MU) Z[Xl, x2, Xn,

where xn [M2"] has degree 2n. (See [2] or [15].)
For each based CW-complex X the complex bordism groups MU,(X)

r,(MU/ X) yield a graded left module MU,(X) @,,_>oMU,,(X) over
r,(MU). For a e MU,(X) there is the annihilator ideal

A(a) {, e r,(MU) Xc 0}.

Much of the study of the complex bordism of finite complexes carried out by
P. E. Conner and L. Smith [4], [10], [11] depends on knowledge of annihilator
ideals of spherical bordism classes.

In this paper we determine the prime ideals that can be annihilator ideals
for a finite complex. Such a prime ideal must be finitely generated and
invariant under all stable MU-cohomology operations. We go on to deter-
mine the invariant prime ideals in r,(MU). We refer to 2 for more precise
information.
We remark that for each finite complex X, MU,(X) has only a finite

number of prime annihilator ideals. However, it is not an easy matter to
decide if a given annihilator ideal A (a) is a prime ideal, for a e MU,(X).
The results are collected in 2, as well as a number of easy arguments. In

3 we show that prime annihilator ideals are invariant; the proof uses the
primary decomposition of ideals in a commutative Noetherian ring. Then
in 4 we prove an algebraic generalization of the Hattori-Stong theorem
[6, 14] which permits us to determine the invariant prime ideals in r,(MU).
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I would like to acknowledge the benefit of a preliminary version of J.
Morava’s paper [7]. ]:n particular the determination of the invariant prime
ideals in ’,(MU) is implicitly carried out in [7].

2. Statement of results

We first define a family of ideals in -,(MU), as ia [13]. All ideals and
modules that we consider are understood to be graded.

Recall the Hurewicz homomorphism

(in), ,(MU) - H,(MU)

induced by the unit of the Eilenberg-MacLane spectrum H [2, 2]. Now it
is possible to choose the polynomial generators x for r,(MU) so that p
divides (i’),(x,) if i + i is a power of a prime p. We then put

[(p, h) (p, x_, ...,
and I(p) (p, x_l ...) U I(p, h), with the convention that I(p, 1)
(p). In fact I(p) is the kernel of

,(MU) (i’), H,(MU) H,(MU; Z),

i.e. the ideal of all cobordism classes [M’] of stably complex manifolds all of
whose Chern numbers are divisible by p. We now state the main theorem.

THEOREM 2.1. If P is a prime ideal in v,(MU) and P A(a) for a

bordism class a e MU,(X), X a finite complex, then P 0 or P [(p, h)
for some prime p and integer h 1, 2, ....
We may instead place the finiteness assumption on the ideal.

COROLLARY 2.2 If P is a finitely generated prime ideal in -,(MU) and
P A(a) for a bordism class in MU,(X), X a CW-complex, then P 0 or
P I(p, h) for some prime p and integer h 1, 2, ....
For it is easy to see that there is a finite subcomplex X’ of X and

a’ MU,(X’) so that P A(a’). We remark that it would be desirable
to have an effective criterion for a CW-complexX to have the property that all
annihilator ideals of MU,(X) are finitely generated.
We now recall the pertinent facts about the stable operations and comodule

structure on MU,(X). There are the classes

bi b e MU.i(MU) (i 1, 2, ...)
of [2, 4] and then

We put
MU,(MU) r,(MU)[bl, b2, ...].

S, Z[bl b. ...]

and recall from [2, 11] that MU,(MU) can be made a Hopf algebra and then
S, is a sub Hopf algebra.
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For each "exponent sequence" E (el, e,, ...) in which ei _>- 0 and
almost all ei vanish we form the monomial bE IIb’ in S, (put b 1).
Let {sE} be the dual basis in the cobordism module MU*(MU), so that for
each CW-complex X we receive operations

s "MU,(X) -- MU,(X)which lower degrees by2 iei (see [1, p. 72]). We now define

bx MU,(X) ---+ MU,(X) (R) S,
by putting

(2.3) bx(a) sE(a) (R) bE.
In particular if X S we obtain a homomorphism

(2.4) b" ,(MU) -,(MU) (R) S, -,(MU)[b,, 52 ,...]

which can be identified with the Hurewicz homomorphism

R v,(MV) --)MU,(MU)

in view of Proposition 11.2 of [2]. Thenx is a homomorphism of left ,(MU)
modules, where r,(MU) acts onMU,(X) (R) S, via, and Cx makesMU,(X)
a comodule over the Hopf algebra S,.

Remarl. It is easy to comparex with the comodule structure map

b’x MU,(X) --, MU,(MU) (R),(v) MU,(X)

of [1, Lecture 3] which makes MU,(X) a comodule over MU,(MU). Let c
denote the canonical antiautomorphism of MU,(MU). If x(a) is given by
(2.3) then Proposition 2 on p. 72 of [1] shows that

b’x(a) c(bE) (R)

DEFINITION 2.5. An ideal I c ,(MU) is invariant if b(I) c I (R) S*.
Equivalently, sE(I) I for all exponent sequences.

The main theorem now breaks into two parts

THEOREM 2.6. If P is a prime annihilator ideal on a finite complex, then P
is also invariant.

The proof is given in 3.
THEOREM 2.7 If P is an invariant prime ideal in r,(MU), then P is one of

the ideals O, I(p, h) for h 1, 2, or I(p), where p is a prime.

From now on, by a comodule we mean a pair (M,) where M is a left,(MU) -module and M --) M (R) S, is a left ,(MU) homomorphism
making M a comodule over S, (where ,(MU) acts on M (R) S, via ). We
often drop from the notation. We call a comodule coherent if it is a coherent
,(MU)-module. If X is a CW-complex then MU,(X) is a comodule in
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this sense, and if X is a finite complex then MU,(X) is a coherent comodule
[4, 1]. If M is a coherent comodule and a eM then the annihilator ideal
A(a) r,(MU) is finitely generated [4, 5]. We use (2.3) to define opera-
tions sE on each comodule.

DEFINITION 2.8. An element a of a comodule M is primitive if b(a)
a (R) 1. Equivalently, S(a) 0 if E 0. We write Pr{M} for the primi-
tive elements in M. The utility of this concept is shown by the following
elementary results.

LEMMA 2.9. If a is a primitive element of a comodule M then A (a) is an
invariant ideal.

Proof. If k(a) a (R) 1 and ha 0, suppose that

(k) sE(k) (R) bE.
Then 0 b(},) ()b(a) s(},). (R) bE and so s(h).a 0
for all E, hence s() e A(a) for all E. Thus A(a) is invariant.

LEMMA 2.10. If M is a non-negatively graded comodule, then each element
in M of lowest degree is primitive. Thus M 0 if and only if Pr{M} O.

This is clear since for E 0, sE lowers degrees in M.
We now turn to invariant prime ideals in ,(MU). Notice that the

Hurewicz homomorphism (ill), ,(MU) H,(MU) can be identified with
the composition

,(MU) r,(MU) (R) S,
(R) 1 S,

where e r,(MU) -- Z is the augmentation. Thus an element e (MU)
lies in I(p) if and only if sE(),) e ro(MU) " Z is divisible by p whenever
E (e, e, satisfies ie n. It now follows easily that I(p) is
invariant. This implies that

Es x_ I(p, h) if E 0

and then induction shows that each I(p, h) is an invariant ideal. At the
same time we observe that ,(MU)/I(p, h) is u coherent comodule and that
in this quotient x_ is a primitive element. Then all the powers of x_
re also primitive.

PROPOSITION 2.11. The only primitive elements in ,(MU)/I(p, h) are
the integral multiples of the powers of x_ i.e.,

PrI’,(MU) /I(p, h)} Zp[Xh_l].

We defer the proof of this result to 4, but it is now an easy matter to
deduce Theorem 2.7 from Proposition 2.11. Thus let P be an invariant
prime ideal in 7,(MU). If P 0 then the fact that

(iH), .,(MU) H,(MU)
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is monic [2, 8; 15] easily implies that P n ’o(MU) (p) for some prime p,
and then

(p) c P c I(p).

So either P I(p) or for some h we have

I(p, h) P, x,h_l P.

But then P/I(p, h) ’.(MU)/I(p, h) has no primitive elements by Proposi-
tion 2.11 and the fact that P/I(p, h) is a prime ideal, hence P I(p, h) by
Lemma 2.10. This proves Theorem 2.7.

Example. We are almost in a position to determine the annihilator of the
spherical bordism class n e MU,(K(Z, n)), studied in [13]. It is shown
there that

I(p, n) A(a,), x_ A(an).

Since an is spherical it is primitive and A (an) is invariant by Lemma 2.9. If
the argument of [13] can be extended to show that no power of x._ lies in
A(an), then Proposition 2.11 implies that A(an) I(p, n).

3. Prime annihilator ideals are invariant

In this section we prove a slight generalization of Theorem 2.6. Recall
that for a finite complex M U,(X) is a coherent comodule in the sense of 2.

PROPOSITION 3.1. IfM is a coherent comodule and P is a prime annihilator
ideal of an element in M, then P is invariant.

We now develop the commutative algebra upon which the proof rests. For
each comodule M, let Ass(M) denote the prime annihilators of elements of
M, the associated prime ideals of M.

M"LEMMA 3.2. If 0 --+ M’ -- M --) -+ 0 is an exact sequence of comodules
then

Ass(M) Ass(M’) [J Ass(M").

For example see [3, 1, nl, Prop. 3].
The following result allows us to assume that M r,(MU)/I where I is

an invariant finitely generated ideal in -,(MU). This is not an essential
step, but we prefer to employ the primary decomposition for ideals rather
than modules because it is more familiar and because our main interest is in
ideals in r,(MU). Call graded modules stably isomorphic if they become
isomorphic after shifting degrees.

LEMMA. 3.3. IfM is a coherent comodule then there is a sequence

O- M M M M

of coherent comodules so that for 1 <= i <= n M/Mi-1 is stably isomorphic to
.,(MU)/I where I is an invariant finitely generated ideal.
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Proof. Since M is a finitely generated r,(MU)-module, Z (R),(Mu)M is a
finitely generated abelian group. If Mr 0 but M8 0 for s < r, then each
element of Mr is primitive by Lemma 2.10. Choose a minimal set of genera-
tors in Mr and let a be one of the generators. By Lemma 2.9, A(a) is an
invriant ideal, and it is finitely generated since M is coherent. Take M
r,(MU) .a, so that M is a coherent comodule and M is stably isomorphic to
r,(MU)/A(a). Moreover M/M is a coherent comodule and Z (R),(Mv) M/
M requires one less generator than Z (R),,(v) M, so we can continue by
induction.

It remains to show that if I is a finitely generated invariant ideal in ,(M U)
then Ass(r,(MU)/I) consists of invariant ideals. Now suppose that

I Qln nQr

is a "normal" primary decomposition of I ([8, p. 104]; the Q are primary
ideals whose radicals /Q P are distinct prime ideals, and no Q can be
deleted). We also suppose that the prime ideals P /Q are finitely
generated. In this case Theorem 19 on p. 110 of [8] asserts that

{PI, "", Pr} Ass(n’,(MU)/I).

Thus our problem is to prove the following result.

PROPOSITION 3.4. Let I be a finitely generated invariant ideal in v,(MU).
Then I has a normal primary decomposition

I Qn nQr

for which each P /Qi is an invariant and finitely generated prime ideal.

First we show that I has a normal primary decomposition with the Q and
P finitely generated, and then we modify it to a decomposition

I Q.-.Q*
with theQ andP v/Q invariant. Then the uniqueness of the associated
prime ideals (Theorem 13 on p. 105 of [8]) implies that each P is invariant
as well as finitely generated, and this will prove Proposition 3.4 and with it
also Proposition 3.1.
We establish the existence of a primary decomposition as follows. Recall

that ,(MU) Z[x, ..., x,, ...]. I is finitely generated, so for some n
the Noetherian ring Z[x, x,] contains a set of generators of I. Then
J I n A[z, x,] has a normal primary decomposition in Z[x, x].
By extending scalars from Z[x,..., x] to ,(MU) we obtain a normal
primary decomposition

I Qln.-. nQr

with the Q and P /Q all finitely generated, in view of Proposition 9 on
p. 265 of [8].
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To convert this to a primary decomposition with all ideals invariant, we
associate to each ideal A in .(MU) the ideal

A* b-l(A[bi, b., ...])

where : r,(MU) -- r,(MU)[bl,b2, -"]. Thus ,eA* if and only if
s(X) e A for all E. This construction has the following properties, all
easily verified.

(1) A* is an ideal, A* c A.
(2) A is invariant :, A A*.
(3) A* is an invariant ideal.
(4) (AnB)*- A*nB*.
(5) (v/A)*= n/(A*).
(6) P prime p* prime.
(7) Q primary Q* primary.

We return to the proof of the proposition, and notice that our construction
provides a primary decomposition

I=Qn...nQ*

with associated prime ideals P. This new decomposition must also be
normal, since otherwise we could refine it to a normal decomposition of
length <r. Hence IP," P*I =/P1, PI by the uniqueness theorem
cited above, so the P are invariant as well as finitely generated (in fact
P P). This proves both Propositions of this section, and also Theorem
2.6.

Remark. We are not claiming that each P e Ass(M) is the annihilator of
a primitive element, although this might be the case and this is how one most
easily obtains invariant ideals. The argument does contain the finiteness of
Ass(M) for each coherent comodule M.

4. Algebraic Hattori-Stong theorems

The aim of this section is to prove Proposition 2.11, which locates the
primitive elements in .(MU)/I(p, h). This is a non-trivial matter. For
example if h 1 then I(p, h) (p) and. we may take x_ [CPP-1]. So
we are claiming that the only primitive elements in .(MU)/(p) are integral
multiples of the powers of [CPP-1]. This case was proved by L. Smith; see
the proof of Proposition 1.1 of [12]. The proof depends on the Hattori-
Stong theorem, so in general we will need an algebraic replacement for the
Hattori-Stong theorem.
We recall the Hattori-Stong theorem in a convenient form. Once again we

shall use the homomorphism

6 z,(MU) - -,(MU) (R) S,.
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From the Todd genus Td -,(MU) ---+ Z we manufacture a homomorphism

"ld r,(MU) --. Z[t], deg 2,

by putting d([M2"]) (Td[M2"])t". Then we follow by d (R) 1 to
obtain a homomorphism

B ,(MU) Z[t][b, b.,

which records K-theory characteristic numbers.

HATTORI-STONG THEOREM [6, 14]. B is a split monomorphism.
lently, for each prime p, B induces a monomorphism

Equiva-

BI r,(MU)/(p) -- Z[t][bl b2 ].

For completeness we now present the argument in [12] to show that
Prlr,(MU)/(p)} Z[x,_]. Let y e r2,(MU)/(p) be a primitive element.
Then yp-i and x$_1 are both primitive of degree 2n(p 1). Then

yp-i_ Td(y,-1)X_l

has Todd genus zero, since x_ [CP-] has Todd genus one. Hence B
sends this element to zero, and then the Hattori-Stong theorem implies that

yP- Td(yp-i) X_I

in r,(MU)/(p). If y 0 then Td(y-1) 0 mod p. Since r,(MU)/(p)
is a unique factorization domain, y must be a multiple of some power of the
prime element x_l. This completes the proof.

Here is the appropriate generalization of the Hattori-Stong theorem"

PROPOSITION 4.1. For each integer h >= 1 there is a homomorphism

T r,(MU) --+Z
which vanishes on I (p, h) which tales the value 1 on the generator xh_ and which
yields a monomorphism

,(MU) ,(MU) (R)
Bh" (R) S, Z[t] (R) S,

I(p, h) I(p, h)

where " r,(MU) ---> Z[t] is given by ([M2"]) T(M"])t", deg 2.

Clearly we must first produce a homomorphism T: r,(MU) -- Z with
good properties. Then we shall show that the derived homomorphism Bh is
monic by what amounts to the algebraic part of Stong’s argument in [14]. It
is clear that Proposition 2.11 follows from Proposition 4.1 by the argument
given above in the case h 1.

In order to construct T: r,(MU) --+ Z and establish its properties we
shall use formal group laws. We refer to [2] and [5] for details and to [7]
for an exposition of an extremely suggestive point of view.
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By a group law g over a commutative ring R we mean a power series

,(x, x) R[[Xl, x]]
satisfying

(1) t(x, 0) (0, x) x
(2) (Xl, (x, x)) ((x, x), x)
(3) (x., xl) (xl, x2).

v (MU). There is aThe main example is the formal group law over r,
canonical generator xMUeMU2(CP). For a complex line bundle L -- Xclassified by a map f" X -+ CP put

cl(L) f*(xMU) MU2(X).
The there is a universal formula

which defines
MUof

c(L (R) L2) tMV(c(L), c(L)

We now have Quillen’s theorem on the universal nature

QUILLEN’S THEOREM [2, 9]. If t is a group law over R then there is a unique
MUring homomorphism g r,(MU) -- R which carried tt to #.

Next we recall some notation. If g is a group law over R and f, g e R[[x]]
are power series without constant terms, we define

(f -t-, g) (x) /x(f(x), g(x) ).

The operation f -t-. g is commutative and associative, and allows us to define
a power series

[n](x) x -4- -1- x (n times)

for each positive integer n.

THEOREM 4.2. Let p be a prime and h a positive integer.
group law t over Zv so that [p](x) xv.

Then there exists a

We refer to pp. 72-76 of [5] for the proof of this result. We are not assert-
ing that such a group law is unique, but can still use to advantage the simple
form of the power series [p],(x).

MULet T’r,(MU) -- Zv be the homomorphism carrying to , and
introduce the homomorphism r,(MU) --+ Z[t] of graded rings by putting
() T(X)t if , e r.(MU).

MULEMMA 4.3 T carries to the group law over Zv[t] defined by f(x x2)
(1/t) g( txi tX2). In particular

[p](x) tv-x.
We write ttMV(xi X2) z

ai xx2 sO that g(x, x) T(aV)xx.
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Then
(l/t) #(txl, tx2) _, (aij" Mtz)e,i+-l_.z2 _, T(aij~ My) xlx2i
e ’2(i+i-1)(MU). The last assertion now follows easily.

--] to which

MUsincea
Our next task is to locate the group law over Z[t][bl, b,
MU s carried by

B ( (R) 1)" r,(MU) -- Z[t][b b. ...].

For this we consider an arbitrary group law p over R and let

g" n’,(M U) --- RMUbe the homomorphism that carries u to u. Following [2, 7] we introduce
the power series

exp(y) i_0by+ (b0 1)

over S, and let log (x) ff’._omx+ denote the inverse series under com-
position. We now consider the homomorphism

r,(MU) b r,(MU) (R) S, g. (R).1 R (R) S,.
MUPOPOSTON 4.4. This homomorphism carries t to the group law

exp (t(log x, log x))

over R (R) S, R[b b., ...].

Proof. It suffices to prove this in the universal case clearly. Thus we take
MU

# and let g be the identity on ,(MU), and our aim is to show that

,," .,(MU) ---)-,(MU) (R) S,
MUcarries to exp (MV(1Og X, log x)). We recall from 2 that b is to be

identified with the Hurewicz homomorphism V,’r,(MU) -- MU,(MU),
und then the result follows immediutely from Corollary 6.8 of [2].
We now write out the series [p]v(x) as i>__o aix

i+1 and recall that a0 p
and that in r,(MU)/(p) the coefficients apn_l are acceptable polynomial
generators for n 1, 2, -... In fact if we apply Proposition 4.4 with g
,(MU) -- Z the augmentation thenM is crried to exp (log x - log x)
over S, and so [p],v is carried to exp (p log x). Recall that one writes
A (e, e., ...) where e t.. For convenience let q p 1. Then
it is easy to see that

Sq(aq) p(pq-- 1)

nd from this our assertion is immediate; we refer to [2, 7-8] for further
details.

It follows that the ideal I(p, h) is generated by p, a_, ..., a-_.
From now on we shall choose the generators xi of r,(MU)/I(p, h) so that
x_ a_ for n >_- h.
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We next apply Proposition 4.4 with g the homomorphism

’ , MU) Z[t]

of Lemma 4.3. It follows that the homomorphism

Bh ,(MU) -- Z[t][bl, 52,

carries [p],v(x) to the power series

exp (t’- (log x)).
For convenience we put r -1. Since Z[t][bl, b., --.] has characteristic
p we see that B carries [p],v(x) to

Ei_O bi’i+i(xp 2r- (mix2)p -- i+l.

From this we conclude by inspecting coefficients that Bh kills the ideal I(p, h),
B(a_l) r and that for n 2> 0,

B(a,+_) =-r(m,_l) mod r.
From [2, 7] we recall that the coefficientsm of log (x) may be used as poly-
nomial generators for S, in place of the b.
We now choose the generators x for r,(MU)/I(p, h) so that x_

a._ for n __> h and so that B(x) =- m modulo decomposables if i + 1 is
not a power of p. In order to show that

B r,(MU)/I(p, h) ---) Z,[t] (R) S,

is monic it is only necessary to show that the elements B(x) are algebraically
independent over Z. We do this by putting a partial ordering on monomials
in Z,[t, ml, m2, -’-] of the same total degree. If

tm el 2 ’ ’ ’ttbl m2 and m ml m2

are monomials of the same total degree, put tm: > t’m’ if e < e’ or if
e e’ and e < e. Thus the highest monomial appearing in
B(x+_l) is t’-l(mn_l) for n _-> 0 and the highest monomial appearing in
Bh(x) ism if i -t- 1 is not a power of p. From this it is clear that the image
under Bh of each monomial in the x contains a highest monomial with non-
zero coefficient, and that these highest monomials in Z[t, ml, m., are
distinct. Thus the images under B of the monomials in the x are linearly
independent over Z, which proves that

B," r,(MU)/I(p, h) Z[t] (R) S,

is a monomorphism. This completes the proof of Proposition 4.1.
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