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Abstract

We provide a microlocal necessary condition for distinction of admissible representations of real reductive groups

in the context of spherical pairs.

Let G be a complex algebraic reductive group and H ⊂ G be a spherical algebraic subgroup. Let g, h denote

the Lie algebras of G and H, and let h⊥ denote the orthogonal complement to h in g∗. A g-module is called h-

distinguished if it admits a nonzero h-invariant functional. We show that the maximal G-orbit in the annihilator

variety of any irreducible h-distinguished g-module intersects h⊥. This generalises a result of Vogan [Vog91].

We apply this to Casselman–Wallach representations of real reductive groups to obtain information on branching

problems, translation functors and Jacquet modules. Further, we prove in many cases that – as suggested by [Pra19,

Question 1] – when H is a symmetric subgroup of a real reductive group G, the existence of a tempered H-

distinguished representation of G implies the existence of a generic H-distinguished representation of G.

Many of the models studied in the theory of automorphic forms involve an additive character on the unipotent

radical of the subgroup H, and we have devised a twisted version of our theorem that yields necessary conditions

for the existence of those mixed models. Our method of proof here is inspired by the theory of modules over W-

algebras. As an application of our theorem we derive necessary conditions for the existence of Rankin–Selberg,

Bessel, Klyachko and Shalika models. Our results are compatible with the recent Gan–Gross–Prasad conjectures

for nongeneric representations [GGP20].

Finally, we provide more general results that ease the sphericity assumption on the subgroups, and apply them

to local theta correspondence in type II and to degenerate Whittaker models.

Contents

1 Introduction 2

1.1 Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries on associated and annihilator varieties 6

3 Proofs of Proposition G and theorem A 7

4 Proof of Theorem B 8

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in

any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2021.42 Published online by Cambridge University Press

doi:10.1017/fms.2021.42
https://orcid.org/0000-0001-6436-2092
https://orcid.org/0000-0002-9987-0836
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2021.42&domain=pdf
https://doi.org/10.1017/fms.2021.42


2 Dmitry Gourevitch and Eitan Sayag

5 Casselman–Wallach representations and the proof of Corollary C 10

5.1 Proof of Corollary C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 First applications 11

6.1 Symmetric pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.2 Branching problems and translation functors . . . . . . . . . . . . . . . . . . . . . . . 12

6.3 Annihilator varieties of Jacquet quotients . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Applications to mixed models 13

7.1 Preliminaries on nilpotent orbits and partitions . . . . . . . . . . . . . . . . . . . . . . 14

7.2 Rankin–Selberg models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.3 Bessel models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.4 Archimedean analogues of Bernstein–Zelevinsky derivatives . . . . . . . . . . . . . . 16

7.5 Klyachko models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7.6 Shalika models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7.7 Ginzburg–Rallis models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Nonhomogeneous spherical varieties 17

8.1 Fréchet spaces, their duals and tensor products . . . . . . . . . . . . . . . . . . . . . . 17

8.2 Schwartz functions and tempered distributions on real algebraic manifolds . . . . . . . 18

8.3 Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.4 Proof of Theorem F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Beyond spherical subgroups 20

9.1 Howe correspondence in type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.2 Degenerate Whittaker models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 Conjectures 23

Appendix A Proofs of Propositions 9.6 and 9.7 by Ido Karshon 24

A.1 Proof of Proposition 9.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.2 Proof of Proposition 9.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.3 Proof of Lemma A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Acknowledgements 28

Author Contributions 28

Conflict of Interest 28

References 28

1. Introduction

In recent years, the study of periods of automorphic forms and of distinguished representations has

received a lot of attention. We mention here the work of Jacquet connecting distinguished representations

via the relative trace formula to the image of Langlands functoriality [Jac05] and the conjectures of

Gan, Gross and Prasad [GGPW12] describing branching laws (for classical groups) in terms of Arthur

parameters.

More recently, the work of Sakellaridis and Venkatesh [SV17] regarding harmonic analysis on

spherical varieties led to a conjectural parameterisation of classes of distinguished representations,

and [Wan] pushed the conjectures of Gan, Gross and Prasad beyond classical groups to a more general

setup of certain spherical pairs. In these works, the question whether a representation has an invariant

functional is tied with the Langlands program.

In this paper we establish a simple geometric necessary condition for an irreducible representation c

of a reductive group � to admit a nonzero invariant functional with respect to a spherical subgroup �.

Our methods are Lie-theoretic and based on the relationship between representations and nilpotent

orbits in the spirit of the orbit method. This relationship is familiar in the study of * (g) modules and

extends to modules over ,-algebras, allowing us to consider certain twisted models. We believe this

brings a new aspect to the study of distinguished representations.
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To formulate our result we require some notation. Let G be a connected complex algebraic reductive

group and H ⊂ G be a spherical algebraic subgroup. Let g, h denote the Lie algebras of G and H.

Denote by Irr(g)h the collection of simple g-modules + that have a nonzero h-invariant functional. We

will call these modules h-distinguished. Equivalently, these are modules with H0(h, +) ≠ 0. Denote

by M 5 .3. (h) the category of finite-dimensional h-modules. For any f ∈ M 5 .3. (h), we denote by

Irr(g)(h,f) the collection of simple g-modules + with H0(h, + ⊗ f) ≠ 0.

For any g-module+ , denote by AnV(+) the associated variety of the annihilator of+ , which we will

call for short the annihilator variety. To shorten our formulations, we will use the following theorem:

Theorem 1.1 ([BB85, Jos85], compare [Vog91, Corollary 4.7]). For any + ∈ Irr(g), there exists a
unique coadjoint nilpotent orbit O such that AnV(+) = O.

We will then denote this orbit by O(+). Denote by h⊥ the orthogonal complement to h in g∗, and by

O(+) ∩ h⊥ the intersection of h⊥ with O(+).

Theorem A (Section 3). For all f ∈ M 5 .3. (h) and all + ∈ Irr(g)(h,f) , we have

2 dim
(
O(+) ∩ h⊥

)
= dimO(+).

In particular, the intersection is not empty.

Let us now present a twisted version of Theorem A.

Theorem B (Section 4). Let p be a parabolic subalgebra of g with Levi decomposition p = l ⊕ n. Let j
be a character of n. Let s be a spherical Lie subalgebra of l, and define h := s ⊕ n. Set f ∈ M 5 .3. (h)

such that n acts on f via j. Extend j to an element of g∗ that vanishes on s.
Then for any + ∈ Irr(g)(h,f) , we have

2 dim
(
O(+) ∩

(
j + h⊥

) )
= dimO(+).

In particular, the intersection is nonempty.

If j is a generic character of n, we will say that the triple (g, h, f) is the Whittaker induction of the

triple (l, s, f |s). This notion is different from a similar notion in [Wan, §2.6].

Let us now emphasise an application of Theorems A and B to real reductive groups. Assume that

G is defined over R, and let � be a finite cover of an open subgroup of the group of real points of

G. In Section 5 we will recall the notion of a Casselman–Wallach representation of �, as well as

some basic properties of such representations. Denote the collection of irreducible Casselman–Wallach

representations of � by Irr(�). By Theorem 1.1 and the Casselman–Wallach equivalence of categories

(see Section 5), AnV(c) is the closure of a unique coadjoint nilpotent orbit O(c) for any c ∈ Irr(�).

We deduce from Theorems A and B the following corollary:

Corollary C (Section 5). Set f ∈ M 5 .3. (h) and c ∈ Irr�. Assume that c has a nonzero continuous
h-equivariant map into f. Then 2 dimO(c) ∩ h⊥ = dimO(c).

Furthermore, assume that there exist a parabolic subalgebrap of g with Levi decompositionp = l⊕n,
and j ∈ g∗ such that h = (h ∩ l) ⊕ n, j |l = 0 and n acts on f via j |n . Then

2 dim
(
O(c) ∩

(
j + h⊥

) )
= dimO(c).

The first natural generality to apply this corollary is symmetric pairs, since for them the nilpotent

orbits intersecting h⊥ are classified in [Djo88a, Djo88b, Oht91]. In Section 6.1 we will deduce a partial

affirmative answer to [Pra19, Question 1]. Namely, we show that for many Archimedean symmetric

pairs, the existence of an �-distinguished tempered irreducible representation implies the existence of

an �-distinguished generic irreducible representation.

In Section 6.2 we will apply Corollary C to branching problems and to translation functors. Then in

Section 6.3 we will deduce from Corollary C restrictions on annihilator varieties of Jacquet modules.
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Let us now present a twisted version of the results on branching problems and Jacquet functors. Let

% = !# be a Levi decomposition of a parabolic subgroup of �. Let j be a character of n. Suppose that

there exists a reductive subgroup ( ⊂ ! that stabilises j such that Δ( ⊂ ( × ! is a spherical subgroup.

Define r := s ⊕ n ⊂ p. Set g ∈ Irr(() and consider it as an r-module via the projection r ։ s. Extend

j to a character of r vanishing on s. For a subset - ⊂ g∗, let - |r ⊂ r∗ denote the restriction of - to r.

Consider s∗ as a subset of r∗.

Corollary D. Let c ∈ Irr(�) and g ∈ Irr(() be such that Homr (c, g ⊗ j) ≠ 0. Then O(g) intersects
O(c) |r + j.

One special case of this corollary is � = GL=+: (R), ! = GL=+1 (R) × (R×):−1, ( = GL= (R), with

the character j generic. We call the models arising from this case Rankin–Selberg models. Similar

models for orthogonal or unitary groups are called Bessel models. In Sections 7.2 and 7.3, we deduce

from Corollary D a microlocal necessary condition on the existence of those models. We now give a

brief uniform formulation, and refer to Sections 7.2 and 7.3 for further details:

Theorem E (Sections 7.2 and 7.3). Let ( be from the list

GL= (R), GL= (C), U(<, =) O(<, =), SO(<, =), SO<+= (C), O<+= (C), (1)

and ! ′ be the corresponding group with = replaced by = + 1. Embed ( in the top left corner of ! ′. Let
� be the group from this list corresponding to (, with = replaced by = + : and < replaced by < + :−1,
for some : ≥ 1.

Let % = !# be the standard parabolic subgroup of � with ! = ! ′ × (R×):−1 or ! = ! ′ × (C×):−1.
Let q be a generic unitary character of # stabilised by (.

Set c ∈ Irr(�) and g ∈ Irr((), and let λ and ` be the partitions corresponding to O(c) and O(g),
respectively. Let λC and `C denote the transposed partitions.

Suppose that Hom(# (c |(# , g ⊗ q) ≠ 0. Then for any index 8 ≥ 1, we have
��λC

8
− `C

8

�� ≤ 1.

For example, the case : = 1 corresponds to branching problems for the restrictions from GL=+1(R)

to GL= (R), restrictions from SO(<, =+ 1) and SO(<, =) and analogous restrictions for complex groups

and unitary groups.

This theorem partially confirms the nontempered Gan–Gross–Prasad conjectures [GGP20] in the

Archimedean case. For the case of GL= (�) ⊂ GL=+: (�) for any ?-adic field �, the conjectures were

established in [Chan, Gur]. In the subcategory of unitary representations (which is not a full subcategory),

more restrictive conditions are proven in [Ven05, Hen]. In the language of [NV, §22.2], Corollaries C

and D state that distinction implies orbit-distinction near infinity in the dual Lie algebra.

In [JSZ10, CS15], the space Hom(# (c |(# , g ⊗ q) is shown to have dimension at most 1.

Over finite fields, the branching problem from GL=+1

(
F@

)
to GL=+1

(
F@

)
is fully analysed in [Tho71],

in terms of the partition-valued functions on the set of so-called simplexes, which classify the irreducible

representations by [Gre55, Theorem 13]. In particular, [Tho71, Satz 2] implies that for representations

c and g given by functions 5 and ℎ, Hom (c |� , g) ≠ 0 if and only if for every simplex B and every index

8 we have | 5 (B)8 − ℎ(B)8 | ≤ 1.

In [LW], the authors consider the analogous branching problems for unipotent representations of uni-

tary groups over finite fields. These representations are described in terms of partitions, and the authors

call partitions λ and ` close if they satisfy |λ8 − `8 | ≤ 1 for every 8. They show that Hom
(
cλ |� , c`

)
≠ 0

if and only if λ and ` are close and the multiset of their common parts has even multiplicities.

In Sections 7.5 and 7.6, we will also apply Corollary C to obtain necessary conditions for the existence

of Klyachko and Shalika models for irreducible representations of GL= (R) and GL= (C). By [GOSS12],

in the case of unitarisable representations our necessary condition for the existence of Klyachko models

is also sufficient.

We also provide a nonhomogeneous analogue of Corollary C. Let X be a spherical smooth G-variety

defined over R. Let us recall the definition of the moment map `X : )∗X → g∗. For every G ∈ X, the
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differential action map G → X is a linear map g → )GX. Dualising it and running over all points of X,

we obtain the moment map. Let Im(`X) denote the image of the moment map. Note that if X = G/H,

then Im(`X) = G · h⊥.

Let - be a union of connected components of the manifold X(R). Let E be an algebraic bundle over

- , and let S(-,E) denote the space of Schwartz sections of E (see Section 8.2 for the definition).

Theorem F (Section 8.4). Set c ∈ Irr(�). If H0

(
g, S(-,E) ⊗̂ c

)
≠ 0, then O(c) ⊂ Im(`X).

Finally, let us formulate a proposition that holds for any Lie subalgebra r ⊂ g, possibly nonspherical:

Proposition G (Section 3). Let r ⊂ g be any subalgebra. Then for all f ∈ M 5 .3. (r) and all + ∈

Irr(g)(r,f) , we have
2 dim AnV(+) ∩ r⊥ ≥ dim AnV(+). (2)

This proposition allows us to replace in Theorems A and B – and thus also in Corollary C – the

assumption that h is spherical by the assumption that 2 dimO ∩ h⊥ ≤ dimO for any O ⊂ AnV(+).

We will formalise this in Section 9, and apply it to theta correspondence in type II and to degenerate

Whittaker models.

1.1. Conjectures

We conjecture that the non-Archimedean analogue of Corollary C holds true. In the non-Archimedean

case, instead of the annihilator variety one uses the Zariski closure of the wave-front set of the (distribu-

tion) character of c (see Notation 10.1). In the Archimedean case, the Zariski closure of the wave-front set

of any Casselman–Wallach representation coincides with the annihilator variety by [Ros95, Theorem D].

However, the non-Archimedean analogue of Theorem 1.1 is not known in general, though it is

conjectured. Thus we have two options for a non-Archimedean analogue of Corollary C: to state that

all top orbits in the Zariski closure of the wave-front set intersect h⊥ (or h⊥ + j in the twisted case) or

that some top orbit intersects. If we opt for the stronger formulation, and apply it to the diagonal pair

Δ� ⊂ � × �, we obtain the statement that the top stable orbit is unique.

A certain partial ?-adic analogue of Theorem A is proven in [GS]. We will discuss it, as well as the

conjectures, their corollaries and some partial evidence, in Section 10.

1.2. Structure of the paper

In Section 2 we give the necessary preliminaries on associated varieties, annihilator varieties and

spherical subgroups – in particular, the theorem of Gabber and Joseph stating that the dimension of the

associated variety is at least half the dimension of the annihilator variety, and a theorem of Li stating

that for any nilpotent orbit O ⊂ g∗, the intersection O ∩ h⊥ is isotropic in O and thus has dimension at

most dimO/2.

In Section 3 we prove Theorem A in the following way. The nonvanishing of H0(h, + ⊗ f) implies

the existence of a nonzero h-invariant map ) : + → f∗. Denote by " ⊂ HomC (+, f) the submodule

generated by ) . Since+ is irreducible, " has a nondegenerate f∗-valued pairing with+ . Thus " and+

have the same annihilator variety. By Theorem 1.1 this variety is the closure of some nilpotent orbit O.

Since " is generated by an h-finite vector, its associated variety lies in O∩ h⊥. The theorems of Gabber

and Joseph and of Li now give inequalities

dimO ∩ h⊥ ≤ dimO/2 ≤ dimO ∩ h⊥,

implying dimO ∩ h⊥ = dimO/2. Applying Li’s theorem to orbits O′ ⊂ O, we obtain that O intersects

h⊥ and the intersection has dimension dimO/2.

In Section 4 we prove a generalisation of Theorem B, using the Kazhdan filtration from the theory

of ,-algebras, and Gabber’s theorem that the associated variety is a coisotropic subvariety of the

annihilator variety.
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In Section 5 we give the necessary preliminaries on Casselman–Wallach representations and deduce

Corollary C from Theorems A and B by applying them to Harish-Chandra modules.

In Section 6 we give first applications of Corollary C. First we apply it to symmetric pairs and

partially answer [Pra19, Question 1] for Archimedean pairs, using also [Djo88a, Djo88b, Oht91, PT04,

Har12, GS]. Then we apply it to branching problems. Then we give restrictions on annihilator varieties

of irreducible quotients of Jacquet modules. Finally, we treat irreducible quotients of twisted Jacquet

modules, proving Corollary D.

In Section 7 we apply Corollaries C and D to give necessary conditions on the existence of several

mixed models widely used in the theory of automorphic forms: Rankin–Selberg, Bessel, Shalika,

Klyachko and Ginzburg–Rallis models.

In Section 8 we deduce Theorem F from Corollary C in the following way. The Casselman embedding

theorem and [AGKL16, Theorem C] imply that H0

(
g, S(-,E) ⊗̂ c

)
is Hausdorff and finite-dimensional.

Then the case of transitive action of G on X follows from Corollary C by a version of Frobenius

reciprocity for small induction. The general case follows by induction on the number of G-orbits on X

using the theory of Schwartz functions and tempered distributions.

In Section 9 we formulate generalisations of the main results that replace the sphericity assumption

by a dimension assumption. We apply these generalisations to theta correspondence in type II, using a

geometric lemma which is postponed to Appendix A (by Ido Karshon). As an additional application,

we give a new proof of the result of [Mat87] that provides a necessary condition for the existence of

Whittaker models.

In Section 10 we discuss proven and conjectural analogues of Corollary C and their applications.

2. Preliminaries on associated and annihilator varieties

Let U(g) denote the universal enveloping algebra of g. While it is not commutative, it admits a natural

Poincaré–Birkhoff–Witt filtrationU8 (g) such that the associated graded algebra gr(Ug) is the symmetric

algebra ((g), and one has a ‘symbol’ map f from U(g) to ( (g). Note that ((g) is the algebra of

polynomials on g∗.

Definition 2.1. For a g-module + , let its annihilator Ann(+) ⊂ U(g) denote the two-sided ideal

consisting of elements that act by zero on + .

The annihilator variety of+ is the set of common zeros in g∗ of the set of symbols of all the elements

of Ann(+):

AnV(+) = Zeros(f((Ann(+))) ⊂ g∗

Notation 2.2. Denote by N(g∗) the set of nilpotent elements of g∗.

By [Kos59, Theorem 9.1], N(g∗) is the set of common zeros of all the homogeneous 03 (g)-invariant

elements of ((g) of positive degree. Such elements are precisely the symbols of nonconstant elements

of the centre of U(g). Thus the annihilator variety of any + ∈ Irr(g) lies in N(g∗).

Denote by M 5 (g) the category of finitely-generated g-modules.

Definition 2.3. For any + ∈ M 5 (g), define its associated variety AsV(+) in the following way. Let

( := {<1, ..., <: } be a set of generators of + , and define a filtration +8 of + by +8 := U8 (g)(. Let gr+

be the associated graded ((g)-module, and let Ann(gr+) be the annihilator ideal of gr+ in ((g). Then

AsV(+) is the set of zeros of Ann(gr+) in g∗.

It follows from the definitions that AsV(+) ⊂ AnV(+). For more information on AsV(+), and in

particular the proof that it does not depend on the choice of generators, we refer the reader to [Vog91].

Theorem 2.4 (Gabber and Joseph [KR00, Theorem 9.11]). For any + ∈ M 5 (g),

2 dim AsV(+) ≥ dim AnV(+).
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Lemma 2.5. If+ ∈ M(g) is generated by a finite-dimensional h-invariant subspace+0, then AsV(+) ⊂

h⊥.

Proof. Define a filtration on + by +8 := U8 (g)+0. Then we have

h+8 ⊂ [h,U8 (g)]+0 + U8 (g)h+0 ⊂ +8 .

Thus, the symbols of h act by zero on gr+ , and thus AsV(+) ⊂ h⊥. �

The converse also holds (if + is finitely generated). Another equivalent condition is that h act on +

locally finitely.

Definition 2.6. An algebraic subgroup H ⊂ G is called spherical if its action on the flag variety of G

has an open orbit.

The spherical subgroups have been extensively studied and eventually classified (see, e.g., [Tim11,

Chapter 5] for an exposition). In particular, a classical theorem of Brion and Vinberg says that any

spherical subgroup has finitely many orbits on the flag variety. However, the only fact on spherical

subgroups that we will use is the following theorem:

Theorem 2.7 ([Li, Theorem 3.8]). For any nilpotent coadjoint orbit O ⊂ N(g∗) and any spherical
subgroup H ⊂ G, the intersection O ∩ h⊥ is an isotropic subvariety of O with respect to the Kirillov–
Kostant–Souriau symplectic structure.

For the definition of the Kirillov–Kostant–Souriau symplectic form, see, for example, [CG97, Propo-

sition 1.1.5]. We will only need the corollary that if O ∩ h⊥ is nonempty, then its dimension is at most

half the dimension of O.

Remark 2.8.

(i) The intersection O ∩ h⊥ is frequently empty.

(ii) It is possible that O ∩ h⊥ is always Lagrangian in O. This is the case when H is a solvable

(spherical) subgroup of G [CG97, Theorem 1.5.7] and when H is a symmetric subgroup of G

[Gin89, Proposition 3.1.1].

(iii) By Theorem 2.7 and [Vog91, Corollary 5.18], the following are equivalent:

(a) O ∩ h⊥ includes a nonempty Lagrangian subvariety of O.

(b) dimO = 2 dimO ∩ h⊥.

(c) H acts on O ∩ h⊥ with an open orbit.

(d) The scheme-theoretic intersection of O with h⊥ has a reduced nonempty open subscheme.

3. Proofs of Proposition G and theorem A

Proof of Proposition G. Since + ∈ Irr(g)r,f , there exists a nonzero r-invariant map b : + → f∗.

Consider HomC(+, f
∗) as a g-module via the action on the argument, and let " ⊂ HomC (+, f

∗) be the

g-submodule generated by b. Then we have a natural f∗-valued g-invariant bilinear form + ×" → f∗.

This form has no right kernel, by the definition of " , and no left kernel, since + is a simple module.

Thus " and + have the same annihilator ideal in U(g), and thus

AnV(") = AnV(+) = O.

Since b is r-equivariant and f∗ is finite-dimensional, we get that b generates a finite-dimensional

r-submodule of " under the action of r on the argument. By Lemma 2.5, this implies AsV(") ⊂ r⊥.

Thus

AsV(") ⊂ AnV(") ∩ r⊥. (3)
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By Theorem 2.4 we have

2 dim AsV(") ≥ dim AnV("). (4)

Altogether, we get

2 dim AnV(+) ∩ r⊥ = 2 dim AnV(") ∩ r⊥ ≥ 2 dim AsV(") ≥ dim AnV(") = dim AnV(+). �

Proof of Theorem A. Denote O := O(+). Since the number of nilpotent orbits is finite, AnV(+) = O is

a finite union of nilpotent orbits: O = O ∪
⋃=

8=1 O8 . Since h ⊂ g is spherical, Theorem 2.7 implies that

for any 8, we have

2 dimO8 ∩ h⊥ ≤ dimO8 < dimO. (5)

From formula (5) and Proposition G applied to r = h, we obtain that O intersects h⊥ and

2 dimO ∩ h⊥ ≥ dimO.

By Theorem 2.7 again, we have 2 dimO ∩ h⊥ ≤ dimO and thus 2 dimO ∩ h⊥ = dimO. �

This proof was inspired by the proof of [Vog91, Theorem 8.4], which follows from Theorem A

applied to a symmetric subgroup.

Remark 3.1. Since the irreducibility of + was only used in the proof to show that the natural pairing

is nondegenerate, we can weaken the irreducibility assumption and assume only that there exists

b ∈ Homh (+, f
∗) that does not vanish on any (nontrivial) g-submodule of + . In the conclusion of this

more general theorem, one will have to replaceO(+) by some orbitO ⊂ AnV(+) of maximal dimension.

4. Proof of Theorem B

To prove Theorem B we use the same ingredients as in the proof of Theorem A. However, we will need

a different filtration on the universal enveloping algebra that will be sensitive to the character j. In

other words, we need n to lie in nonpositive filtrations and the derived algebra [n, n] to lie in negative

filtrations. We will use the following Kazhdan filtration from the theory of,-algebras [GG02].

Fix a semisimple element ℎ ∈ g such that ad(ℎ) has integer eigenvalues. Let U 9 denote the standard

filtration on U := U(g), and let U 9 =
⊕

8 U 9 (8) denote the grading on U 9 given by the adjoint action of

ℎ. Define the Kazhdan filtration on U by

�Kaz
: U =

∑

8+2 9≤:

U 9 (8). (6)

Note that : can be any integer, positive or negative, and that the filtrations �Kaz
:

U are infinite-dimensional.

We have
⋂

: �
Kaz
:

U = {0} and
⋃

: �
Kaz
:

U = U. The associated graded algebra (Kaz (g) is the symmetric

algebra of g, where the grading is given on g(8) by 8 + 2.

For any finitely generated g-module + , let AnVKaz (+) and AsVKaz(+) denote the annihilator variety

and the associated variety with respect to the Kazhdan filtration. Let us show that AnVKaz(+) coincides

with the usual annihilator variety of + .

Lemma 4.1. Let � ⊂ U be a two-sided ideal, gr(�) ⊂ ((g) denote the ideal spanned by the symbols of
� under the standard filtration and grKaz(�) ⊂ ((g) denote the ideal spanned by the symbols of � under
the Kazhdan filtration. Then gr(�) = grKaz(�).

Proof. For any B, ad(ℎ) acts semisimply on UB and preserves the subspace � ∩ UB . Thus, any element

of � ∩ UB is a sum of ad(ℎ)-homogeneous elements of � ∩ UB . Since on ad(ℎ)-homogeneous elements

the two symbol maps coincide, the images of � in ((g) under the two symbol maps span the same ideal

of ((g).
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In more detail: for any B, let fB : UB (g) → SB (g) and ^B : �Kaz
B U → SKaz

B (g) denote the symbol

maps with respect to the standard and Kazhdan filtrations, respectively.

Let us show first that gr(�) ⊂ grKaz(�). By definition, gr(�) is spanned by elements of the form

fB (0) for some 0 ∈ UB ∩ �. Since � ∩ UB is an ad(ℎ)-invariant subspace of UB , we have 0 =
∑
1 9 ,

where 1 9 ∈ UB

(
8 9
)
∩ � and 81 < · · · < 8= ∈ Z. Define : 9 := 2B + 8 9 . Then ^: 9

(
1 9

)
= fB

(
1 9

)
. Thus

fB (0) =
∑

9 ^: 9

(
1 9

)
∈ grKaz (�).

To show the opposite inclusion, set 0 ∈ �Kaz
:

(U). Let B be minimal such that 0 ∈ UB . Since

�Kaz
:

(U) ∩ UB ∩ � is an ad(ℎ)-invariant subspace of UB , we have 0 =
∑
1 9 , where

1 9 ∈ UB

(
8 9
)
∩ �Kaz

: (U) ∩ � = UB

(
8 9
)
∩ U; 9 ∩ �,

where ; 9 is the integer part of
(
: − 8 9

)
/2.

Then ^:
(
1 9

)
= f; 9

(
1 9

)
for any 9 . Thus ^: (0) =

∑
^:

(
1 9

)
=
∑
f; 9

(
1 9

)
∈ gr(�). �

Corollary 4.2. AnVKaz(+) = AnV(+).

Now we can prove Theorem B in a similar way to the proof of Theorem A. We first adapt the main

steps. By Gabber’s theorem [Gab81, Theorem I] we have the following:

Theorem 4.3 (Compare [Gab81, Theorem I]). If AsVKaz(+) is non-empty then dim AnVKaz(+) ≤

2 dim AsVKaz(+).

Now assume that all the eigenvalues of ad(ℎ) are even, and define n :=
⊕

8<0 g(8). Set j ∈ g∗(2).

Let s ⊂ g(0) be a spherical subgroup that stabilises j, and define h := s ⊕ n.

Lemma 4.4. Let + be a g-module generated by a finite-dimensional h-invariant vector subspace, on
which n acts via j. Then AsVKaz(+) is a non-empty subset of j + h⊥.

Proof. Define +: := �Kaz
:

(U), for any : ∈ Z. Then for any 8 < 0 and any - ∈ g(8), we have

(- − j(-))+: = (- − j(-))�Kaz
: (U), ⊂

[
-, �Kaz

: (U)
]
, ⊂ �Kaz

:+8 (U), = +:+8 .

Since - ∈ �Kaz
8+2

(U), and j(-) = 0 unless 8 = −2, we obtain that - − j(-) acts by zero on grKaz (+).

Similarly, for any - ∈ s we have

(- − j(-))+: = -+: = -�Kaz
: (U), ⊂

[
-, �Kaz

: (U)
]
, + �Kaz

: (U)-, ⊂ �Kaz
: (U), = +: ,

and thus again - − j(-) acts by zero on grKaz (+). Thus AsVKaz (+) ⊂ j + h⊥.

The statement that the associated variety is not empty is equivalent to gr(+) being non-zero, which in

turn will follow from the statement+−1 = 0. To show this, let n′ :=
⊕

8<−2 g(8). By the conditions of the

lemma, n′ annihilates, . It is easy to see that �
Kaz(U)

−1
⊂ Un′. Thus,+−1 = �Kaz

−1
(U), ⊂ Un′, = 0. �

Lemma 4.5. For every nilpotent orbit O ⊂ g∗, we have dim
(
O ∩ (j + h⊥)

)
≤ dimO/2.

Proof. Consider the restriction map O → h∗ and the fibres on the line through j |h ∈ h∗. The dimension

of the fibre of 0 is at most dimO/2, by Theorem 2.7. All the other fibres are isomorphic using the action

of the torus defined by ℎ. Since the dimension of a special fibre is at least the dimension of the generic

fibre, the lemma follows. �

We can now prove the following reformulation of Theorem B:

Theorem 4.6. Set f ∈ M 5 .3. (h) such that n acts on f via j. Then for any + ∈ Irr(g)(h,f) we have

2 dim
(
O(+) ∩

(
j + h⊥

) )
= dimO(+). (7)

In particular, the intersection is nonempty.
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Proof. Let b : + → f∗ be a nonzero h-equivariant linear map. Let " ⊂ HomC(+, f
∗) be the g-module

generated by b. As before, we have Ann(") = Ann(+), and thus AnV(") = O, where O := O(+). By

Corollary 4.2 and Theorem 4.3, we have

dimO ≤ 2 dim AsVKaz("). (8)

On the other hand, by Lemma 4.4 we have

AsVKaz(") ⊂ AnV(") ∩
(
j + h⊥

)
= O ∩

(
j + h⊥

)
. (9)

By Lemma 4.5, for every nilpotent orbit O′ we have

2 dim
(
O

′ ∩
(
j + h⊥

) )
≤ dimO

′. (10)

From formulas (8)–(10), we obtain equation (7). �

Remark 4.7. A natural question to ask is whether O∩ (j + h⊥) is a Lagrangian subvariety of O = O(+).

While we do not know the answer to this question, [Gab81, Theorem I] implies that at least one

irreducible component of O ∩ (j + h⊥) of maximal dimension is a Lagrangian subvariety of O.

5. Casselman–Wallach representations and the proof of Corollary C

Fix a real reductive group� and a maximal compact subgroup ⊂ �. For the definition of real reductive

group, see, for example, [Wall92, §2.1]. Let g and k denote the complexified Lie algebras of � and  .

Definition 5.1. A (g,  )-module is a g-module + with a locally finite action of  such that the two

induced actions of k coincide and

c(�3 (:) (-)) = c(:)c(-)c
(
:−1

)
for any : ∈  and - ∈ g.

A finitely generated (g,  )-module is called admissible if any representation of  appears in it with

finite (or zero) multiplicity. In this case we also call it a Harish-Chandra module.

Notation 5.2. Denote by M∞ (�) the category of smooth admissible Fréchet representations of �

of moderate growth (see [Wall92, §11.5] or [Cas89]), where admissible means that the space of  -

finite vectors is an admissible (g,  )-module. Denote by M�� (�) the category of admissible (g,  )-

modules. Note that both M∞ (�) and M�� (�) are naturally subcategories of M(g). We denote by

�� : M∞ (�) → M�� (�) the functor of  -finite vectors. Denote the collection of irreducible objects

in M(�) by Irr(�).

It is well known that for any c ∈ M∞ (�), the (g,  )-submodule �� (c) is dense in c.

Theorem 5.3 (Casselman and Wallach; see [Wall92, §11.6.8] or [Cas89]). The functor �� :

M∞ (�) → M�� (�) is an equivalence of categories.

For " ∈ M(g) and 6 ∈ �, denote by "6 ∈ M(g) the module that coincides with " as a vector

space, but the action of g on it is twisted by the adjoint action of 6 on g.

Lemma 5.4. For any irreducible Harish-Chandra module + , there exist an irreducible g-submodule
" ⊂ + and a finite set ( ⊂  such that + is a quotient of

⊕
:∈( "

: as a g-module and AnV(+) =

AnV(") = O(").

Proof. In the proof we will use the functor of admissible duals – that is, the space of  -finite vectors in

the dual space. For every Harish-Chandra module + , the natural map + →
˜̃
+ is an isomorphism.

Let +̃ be the admissible dual of + . Since it is irreducible as a (g,  )-module, it is finitely generated,

and thus Noetherian, as a g-module. Thus, as a g-module, it has an irreducible quotient . . Let ( be a
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set of representatives of the connected components of  . Then we have a natural map +̃ →
⊕

:∈( .
: .

The kernel of this map is a proper (g,  )-submodule of +̃ and thus is zero. Define " := .̃ . Then " is a

g-submodule of + , and the embedding +̃ →
⊕

:∈( .
: defines an epimorphism

⊕
:∈( "

:
։ + .

Since annihilator varieties are invariant with respect to the adjoint action, we also have AnV
(
":

)
=

AnV(") for any : , and thus AnV(") = AnV(+). �

Corollary 5.5. For any c ∈ Irr(�), there exists a (unique) nilpotent orbit O such that AnV(c) = O. We
will denote O(c) := O.

Proof. Let+ be the Harish-Chandra module of c. Then+ is irreducible and thus AnV(+) = O for some

(unique) O. Since + is dense in c, AnV(+) = AnV(c). �

5.1. Proof of Corollary C

Set c ∈ Irr(�) and let b : c → f be a nonzero continuous h-equivariant linear map. By Theorem 5.3, the

Harish-Chandra module + := �� (c) is also irreducible. Since + is dense in c, the restriction b |+ does

not vanish. Let " ⊂ + be as in Lemma 5.4. Then b |" : ≠ 0 for some : ∈  , and thus ": ∈ Irr(g)(h,f∗) .

Finally, we have O(c) = O(+) = O
(
":

)
. Thus Corollary C follows from Theorems A and B. �

6. First applications

6.1. Symmetric pairs

One can apply Corollary C to symmetric pairs � ⊂ �, since for them N(g∗) ∩ h⊥ is classified

[Oht91, Djo88a, Djo88b]. The motivation for this classification is the Cartan classification – that is,

a correspondence between conjugacy classes of involutions of G and isomorphism classes of real

structures on G ([Se02, Theorem 6 of Chapter III, §4] or [AdC09, Theorem 3.2]). The correspondence

is defined in the following way.

Let \ be an involution of G defined over R. Then the real reductive group �� corresponding to \

is the group of fixed points in the complex group G of the antiholomorphic involution f obtained by

composing \ with complex conjugation. Denote by H = G\ the group of fixed points of \. Then H∩��

is the maximal compact subgroup of �� .

Now let g� ⊂ g denote the real Lie algebra of �� . Let O ⊂ N(g∗) be a nilpotent orbit. Then there

exists the Kostant–Sekiguchi correspondence [Sek87] between H-orbits in O ∩ h⊥ and �� -orbits in

O ∩ (g� )∗. In particular, O intersects h⊥ if and only if O intersects the space of ‘real points’ (g� )∗.

Thus, from Corollary C we obtain the following statement:

Corollary 6.1. For any f ∈ M 5 .3. (h) and any c ∈ Irr(�)h,f , the orbit O(c) intersects (g� )∗.

This statement was inspired by [Pra19], which shows that over non-Archimedean fields, there exists

an [�, �]-distinguished generic irreducible representation if and only if �� is quasisplit. For real

reductive groups this statement is [GS, Corollary F].

Prasad also asks whether, when � is quasisplit, � is split and Irr(�)� includes a tempered represen-

tation, Irr(�)� necessarily includes a generic representation [Pra19, Question 1].1 Using Corollary 6.1,

we can answer this question in the affirmative in several cases in the following way.

By [Har12], if c is tempered then its wave-front set WF(c) consists of closures of R-distinguished

�-orbits in the real points of the nilpotent cone of g∗. The R-distinguished orbits are orbits for which

the reductive Levi factor of the centraliser of any element is a compact Lie algebra. They are classified

in [PT04, Theorems 8-14] under the name ‘compact orbits’. By [Ros95, Theorem D], the maximal �-

orbits in WF(c) lie in O(c), and thus we obtain that for tempered c, O(c) includes an R-distinguished

real orbit. For exceptional pairs, Corollary 6.1 implies that the pairs corresponding to the real forms

1[Pra19, Question 1] asks further whether for any � -distinguished tempered representation there exists an � -distinguished
generic representation in the same !-packet. We can say nothing about that.
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�4(−20) , �6(−26) and �7(−25) have no distinguished tempered representations. This answers the question

affirmatively for � = �4, leaving only the exceptional pairs corresponding to the real forms �6(−14) ,

�7(−25) and �8(−24) .

For classical symmetric pairs, we obtain an affirmative answer to Prasad’s question for all cases

except when � is a unitary group or when the symmetric pair (�, �) corresponds to one of the real

reductive groups $∗(2=), Sp(=, =) or $ (<, =) with |< − =| > 1.

To summarise, Corollary 6.1 and the references mentioned in the foregoing discussion imply the

following proposition:

Proposition 6.2. Suppose that� is quasisplit and that Irr(�)(h,f) includes a tempered representation for
some finite-dimensional representation f of h. Then every simple component (� ′, � ′) of the symmetric
pair (�, �) satisfies at least one of the following:

(a) The real reductive group � ′
� ′ is quasisplit.

(b) The real reductive group � ′
� ′ is one of the following:

$∗(2=), Sp(=, =), $ (<, =) with |< − =| > 1, �6(−14) , �7(−25) , �8(−24) . (11)

(c) � ′
� (* (?, ?) or � ′

� (* (?, ? + 1) for some ?.

6.2. Branching problems and translation functors

Let � ⊂ � be a reductive subgroup such that Δ� ⊂ � ×� is a spherical subgroup. Set c ∈ Irr(�) and

g ∈ Irr(�). We are interested in the nonvanishing of the multiplicity space Hom� (c |� , g). We have

Hom� (c |� , g) �
( (
c ⊗̂ g̃

)∗)Δ�

,

where g̃ denotes the contragredient representation and ⊗̂ denotes the completed projective tensor

product. Let ?h : g∗ ։ h∗ denote the natural projection. Since O(g) = O (g̃), Corollary C applied to

the pair Δ� ⊂ � × � implies the following statement:

Corollary 6.3. Set c ∈ Irr(�), g ∈ Irr(�) and f ∈ M 5 .3. (�). Consider the diagonal action of � on
g ⊗C f. If Hom� (c |� , g ⊗C f) ≠ 0, then O(g) ⊂ ?h (O(c)).

Such pairs (under the additional assumption that � is a symmetric subgroup of �) are classified

in [KM14]. They include the multiplicity 1 pairs corresponding to the case : = 1 of Theorem E. One

can deduce this case of the theorem from Corollary 6.3, but instead we will treat the general case in

Section 7.

Setting � = � in Corollary 6.3, we obtain the following corollary on annihilator varieties of

translation functors [Vog81, Definition 4.5.7]:

Corollary 6.4. Set g ∈ Irr(�) and let kλ′

λ
(g) be a translation of g. Then for any irreducible submodule

c ⊂ kλ′

λ
(g), we have O(c) = O(g).

Dualising, we obtain the same equality for any irreducible quotient of kλ′

λ
(g).

Remark 6.5. Corollary 6.3 complies with the philosophy of the Kirillov–Kostant orbit method. Indeed,

an analogous statement for nilpotent groups was proven in [CG88]. For holomorphic discrete series

representations of reductive groups, an analogous statement is proven in [Par15].

6.3. Annihilator varieties of Jacquet quotients

Let % ⊂ � be a parabolic subgroup and # be its unipotent radical, and define ! := %/# . Set c ∈ Irr(�)

and let A# (c) ∈ M∞ (!) be its Jacquet reduction. Corollary C gives a restriction on quotients of A# (c)
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by considering the subgroup

� := {(?#, ?) ∈ ! × � : ? ∈ %} ⊂ ! × �. (12)

In this case, we have h⊥ =
{(
−` |p, `

)
| ` ∈ n⊥

}
and ?p (n

⊥) � l∗, where ?p : g∗ ։ p∗ is the restriction

to p. In addition, for any g ∈ Irr(!) we have

( (
g̃ ⊗̂ c

)∗)�
�

( (
g̃ ⊗̂ A# (c)

)∗)Δ (!)

= Hom! (A# (c), g).

Thus, Corollary C implies the following corollary:

Corollary 6.6. For any c ∈ Irr(�) and any irreducible quotient g of A% (c), we have

O(g) ⊂ ?p
(
O(c) ∩ n⊥

)
.

We remark that the computation of the set ?p (O(c) ∩ n⊥) is an interesting new geometric question.

One can reformulate it in a dual way by identifying g � g∗, n⊥
� p and l � l∗ using the Killing form,

and embedding l into p. Then the question becomes: given a nilpotent orbit O ⊂ l, what nilpotent orbits

in g can we hit by adding elements of n? The maximal among these orbits is the induced orbit, and the

minimal is the saturation of O, but already in the case of g = gl= we will see from Lemma 7.2 that not

every orbit in between is possible.

Using this reformulation and the Frobenius reciprocity, we obtain the following corollary:

Corollary 6.7. Set g ∈ Irr(!). Then for any irreducible subrepresentation c ⊂ Ind�% (g), the orbit O(c)

intersects O(g) + n. In particular, for any subrepresentation c′ ⊂ Ind�% (g), we have O(g) ⊂ AnV(c′).

Passing to an admissible dual, we get the same statement about quotients of parabolic inductions. This

corollary is compatible with Ginzburg’s conjectures on orbits corresponding to residues of Eisenstein

series [Gin06].

In the case where g = gl= and p ⊂ gl= is a maximal parabolic subgroup, the saturation of O + n is

computed in [Zha] as follows. In this case l � gl: × gl=−: , and thus every orbit O ⊂ l is given by two

partitions: ` of : and a of = − : . Let λ be a partition of = and O′
λ
⊂ gl= be the corresponding orbit.

By [Zha], O′
λ

intersects O+n if and only if the Littlewood–Richardson coefficient 2λ`,a does not vanish.

Let us now prove Corollary D, which is a twisted version of Corollary 6.6. In this corollary we

fix a Levi decomposition % = !# , a reductive subgroup ( ⊂ ! such that Δ( ⊂ ( × ! is a spherical

subgroup and a character j of r = s ⊕ n that is trivial on s. We fix g ∈ Irr(() and c ∈ Irr(�) such that

Homr (c, g ⊗ j) ≠ 0, and have to show that O(g) intersects O(c) |r + j.

Proof of Corollary D. Define ' := (# and

. := {(?#, ?) ∈ ( × '} ⊂ ( × �,

and let y be the Lie algebra of . . The restriction to r defines a map n⊥
։ r∗. We have

y⊥ =
{
(−` |r , `) | ` ∈ n⊥

}
.

We also have

Homr (c, g ⊗ j) � Homy

(
g̃ ⊗̂ c, j

)
.

Thus, the statement follows from Corollary C. �

7. Applications to mixed models

In this section we fix � to denote either R or C.
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7.1. Preliminaries on nilpotent orbits and partitions

By [CM92, §5.1], if � is a classical real reductive group then any nilpotent orbit O ⊂ g∗ is given by a

partition λ(O). For orthogonal groups, the restriction on λ is that even parts have even multiplicities.

To very even partitions – that is, partitions consisting of even parts only – there correspond two orbits

of ($= (C), but their union is a single orbit of $= (C).

For a partition λ we denote by λC the transposed partition. We denote by λC
8

the 8th part of λC if 8 ≤ λ1

(which is the length of λC ) and set λC
8

to 0 for 8 > λ1.

For � = * (<, =), the real nilpotent orbits are described in [CM92, §9.3]. From this description

we see that the number of odd parts in the partition of the corresponding complex nilpotent orbit is

|<− =| +2; for some : ≥ 0 ∈ Z. This is relevant since for any c ∈ Irr(�), O(c) includes a real nilpotent

orbit for � by [Ros95, Theorem D].

If � is a complex reductive group, regarded as a real group, then the real Lie algebra g0 of � is

already a complex Lie algebra, and we have g � g0 × g0, and g0 is diagonally embedded into g. The Lie

algebra k is also isomorphic to g0 and is embedded into g by - ↦→ (-, \ (-)), where \ is the Cartan

involution of � – that is, the involution such that  = � \ . For a nilpotent orbit O ⊂ N(g) we have

O = O1 ×O2, where O8 ⊂ N(g0). However, if O intersects k⊥ ⊂ g∗, then O1 = O2, and thus O is defined

by a single nilpotent orbit in g0. By [Vog91, Theorem 8.4], O(+) intersects k⊥ for any + ∈ M�� (�),

and thus we will be interested in only such orbits. Therefore, if� is a classical complex reductive group,

then any nilpotent orbit O ⊂ g∗ is still described by a single partition.

Thus, if� is a real or complex classical group and c ∈ Irr(�), then to the orbitO(c) there corresponds

a single partition, which we will denote by λ(c).

7.2. Rankin–Selberg models

Define ( := GL= (�) and � := GL=+: (�) for some : ≥ 1, and consider the embedding of ( into the

upper left corner of �. Let % ⊂ � be the standard block upper-triangular parabolic subgroup with

blocks =+1, 1, . . . , 1. We identify g with g∗ using the trace form pairing. Let q : # → � be the unitary

character with differential j = 3q given by the matrix � =
∑=+:−1

8==+1 �8+1,8 , where �8 9 denote elementary

matrices. If : = 1 we take � = 0. Define ' := (# and extend q to a character of ' trivial on (.

The standard Levi subgroup of % is ! = GL=+1 (�) × (�×):−1, and Δ( is a spherical subgroup of

!× ( by [KM14]. Thus this case of Theorem E follows from Corollary D and the following proposition:

Proposition 7.1. Set ) ∈ N(gl=) and - ∈ � + ) + r⊥ ∈ N(gl=+: ), and let λ()) and λ(-) be the
corresponding partitions. Then for any index 8 we have

��λ())C8 − λ(-)C8
�� ≤ 1. (13)

For the proof we will need the following lemma:

Lemma 7.2 (Alisa Qui). Let + be a vector space and . be a nilpotent operator on + . Set E ∈ + and
define +1 := Span

{
. 8E

}
8≥0

. Define also + ′ := +/+1 and let . ′ be the operator on + ′ given by . . Let a
and a′ be the partitions corresponding to . and . ′. Then for any 8 ≥ 1, we have

aC8 ∈
{
(a′)C8 , (a

′)C8 + 1
}
.

Proof. Let ? be the monic polynomial of minimal degree such that ?(. )E = 0. Then ? divides the

minimal polynomial of . , and thus ? is a monomial. Thus all the nonzero vectors in the set
{
. 8E

}
8≥0

are linear independent.

For every 8 ≥ 0, let 08 denote the minimal index 9 such that . 9E ∈ Im. 8 . Then we have

rk(. ′)8 = rk. 8 − dim+1 + 08 and 08 ≥ 08+1 ≥ 08 + 1. (14)

https://doi.org/10.1017/fms.2021.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.42


Forum of Mathematics, Sigma 15

We also have

aC8 = rk. 8−1 − rk. 8 and (a′)C8 = rk(. ′)8−1 − rk(. ′)8 . (15)

From these equations we obtain

aC8 − (a′)C8 = rk. 8−1 − rk(. ′)8−1 −
(
rk. 8 − rk(. ′)8

)
= 08−1 − 08 ∈ {0, 1}. (16)

�

Proof of Proposition 7.1. It is easy to see that ) is conjugate to a matrix of the form � = - + �+ � +�,

where � =
∑=+:−1

8==+1 �8+1,8 as before; �8 9 = 0 unless 8 = = + 1, and 9 ≤ =; and �8 9 = 0 unless 9 = = + : .

From Tr(-) = Tr()) = 0 we have �=+:,=+: = 0. For any 8 ≤ = + : , let 48 denote the 8th vector in

the standard basis. Let + be the span of 41, . . . , 4=, let E ∈ + be the vector given by E8 = �8,=+:

and define +1 := Span
{
- 8E | 8 = 1 . . . =

}
. Define also , := Span{41, . . . , 4=+: } and F := 4=+1. Then

,1 = Span
{
�8F

}
= +1 ⊕ Span{4=+1, . . . , 4=+: }. Let � ′ and - ′ denote the operators given by � and -

on, ′ := ,/,1 and + ′ := +/+1. Then - ′ = � ′ under the natural isomorphism, ′
� + ′. Let a′ denote

the partition corresponding to - ′. Then by Lemma 7.2 applied to + and to , , for any index 8 we have

λC
8
()), λC

8
(-) ∈ {(a′)C , (a′)C + 1}. Thus

��λ())C
8
− λ(-)C

8

�� ≤ 1. �

For representations of Arthur type, [GGP20, Conjecture 5.1] formulates conjectural natural and

sufficient conditions for the existence of Rankin–Selberg models, in terms of the Arthur parameters of

c and g.

Remark 7.3. In the same way, one proves the analogous theorem for SL=+: (�).

7.3. Bessel models

Let + be a nondegenerate quadratic or Hermitian vector space over � and let � be the group of

symmetries of + (i.e., � = O(+), � = SO(+), � = U(+) or � = SU(+)). Let , ⊂ + be an isotropic

subspace and define : := dim, + 1. Choose a full flag �1 ⊂ · · · ⊂ �:−1 = , in , , and let % ⊂ �

be its stabiliser and # be the unipotent radical of %. Let * ⊂ ,⊥ ⊂ + be a maximal nondegenerate

subspace and ! be the group of symmetries of+ . Then ! is a Levi subgroup of %. Choose an anisotropic

line - ⊂ * and let ( be the stabiliser of - in !. To define a character q of # , define �: := , ⊕ - ,

project # on ×:−1
8=1

Hom(�8+1/�8 , �8/�8−1) and let q be a product of nontrivial unitary characters of the

coordinates. Note that for : = 1, # is the trivial group. Define ' := (# and extend j to the character

of ' that is trivial on (.

Since Δ( is a spherical subgroup of !×( by [KM14], the orthogonal and unitary cases of Theorem E

follow from Corollary D and the following proposition, which is proven similarly to Proposition 7.1:

Proposition 7.4. Set) ∈ N(s∗) and - ∈ j+)+r⊥ ⊂ N(g∗), and let λ()) and λ(-) be the corresponding
partitions. Then for any index 8 we have

��λ())C8 − λ(-)C8
�� ≤ 1. (17)

Remark 7.5. The group O(+) is not Zariski connected, and thus Corollary C is not directly applicable

to its representations. However, the restriction of any such representation c to SO(+) is composed of at

most two irreducible components, intertwined by the component group Z/2Z. Thus the two components

either have the same annihilator variety or have annihilator varieties corresponding to two nilpotent

orbits described by the same partition. Also, the invariant functional has nonzero restriction to at least

one of the two components. Thus, the special orthogonal case of Theorem E implies the orthogonal case.
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7.4. Archimedean analogues of Bernstein–Zelevinsky derivatives

In [AGS15], two Archimedean analogues of the Bernstein–Zelevinsky derivatives [BZ77] are defined.

One functor, �: , is a more naive analogue, and preserves admissibility. Another one, � : , does not in

general preserve admissibility but is exact. We refer the reader to [AGS15] for the precise definitions.

Corollary D, Lemma 7.2 and Theorem E give the following description of orbits associated to irreducible

quotients of derivatives:

Proposition 7.6. Set c ∈ Irr(GL=+: (�)) and let g ∈ Irr(GL= (�)) be an irreducible quotient of �: (c)

and d ∈ Irr(GL= (�)) be an irreducible quotient of � : (c). Then for any index 8 we have

0 ≤ λC8 (c) − λC8 (g) ≤ 1 and − 1 ≤ λC8 (c) − λC8 (d) ≤ 1.

7.5. Klyachko models

Define � := GL2=+: (�) with : ≥ 0. For : = 0 we define � := Sp2= ⊂ � and let q be the trivial

character of �. In this case, the nilpotent matrices in sp⊥
2=

have very even partitions. This follows

from [Oht91], and can also be checked by direct computation.

Assume now that : > 0. We let % = !# ⊂ � be the standard block upper-triangular parabolic

subgroups with blocks 2= + 1, 1, . . . , 1. Let ( be the group of matrices of the form

(
6 ℎ

0 1

)
with 6 ∈

Sp2= (�), embedded in the first block of !. As in Section 7.2, we identify g with g∗ using the trace

form pairing and let q be the unitary character of # with differential j = 3q given by the matrix

� =
∑2=+:−1

8=2=+1 �8+1,8 . Then we have

j + h⊥ = � +

{(
� �

0 �

)
∈ gl2=+: | �⊥sp2= and � is upper triangular

}
.

Let - =

(
� �

0 �

)
∈ j + h⊥ be nilpotent. Then � is a regular nilpotent : × : matrix, and λ(�)C is very

even. By Lemma 7.2, this implies that λ(-)C has exactly : odd parts.

Summarising, we obtain that for any : ≥ 0, Corollary C implies the following:

Corollary 7.7. Set c ∈ Irr(�) with Hom� (c |� , q) ≠ 0. Then λ(c)C has exactly : odd parts.

For unitarisable c, this corollary and the converse statement follow from [AOS12, GOSS12].

7.6. Shalika models

Define � := GL2= (�) and let % ⊂ � be the standard block upper-triangular parabolic subgroups with

blocks of size =. Define ( := GL= (�), embedded diagonally in ! = GL= (�)×GL= (�) ⊂ %. We identify

the nilpotent radical n of p with gl= (�) (sitting in the upper right corner of g) and set q : # → � such

that j = 3q is given by trace. Let � = (# and extend q to a character of �. Then we have

j + h⊥ =

{(
� �

Id −�

)
∈ gl2=

}
.

Thus any - ∈ j + h⊥ is conjugate to . =

(
0 �

Id 0

)
, and is nilpotent if and only if � is nilpotent. Further,

for any 8 > 0 we have rk-28+1− rk-28+2 = rk�8 − rk�8+1 = rk-28 − rk-28+1. Thus λ(-)C
28+1

= λ(-)C
28+2

=

λ(�)C
8+1

. That is, λC has even multiplicities, or equivalently λ is very even. Thus Corollary C implies the

following:

Corollary 7.8. Set c ∈ Irr(�) with Hom� (c |� , q) ≠ 0. Then λC (c) has even multiplicities.
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Curiously, this condition is dual to the condition on c to be distinguished under the symplectic

subgroup, which requires λC (c) to be very even.

7.7. Ginzburg–Rallis models

Define� := GL6 (�) and let ! � GL2 (�) ×GL2(�) ×GL2(�) be a standard Levi subgroup. Let (�, j)

be a Whittaker induction of the spherical pair Δ GL2(�) ⊂ !. Then Corollary C implies that for any

c ∈ Irr(�)h,j, λC (c) ∈
{
16, 214, 23

}
.

8. Nonhomogeneous spherical varieties

Let X be a spherical smooth G-variety defined over R and let `X : )∗X → g∗ denote the moment map

defined in the introduction. Let - be a union of connected components of the manifold of real points

of X. Let E be an algebraic bundle over - and let S(-,E) denote the space Schwartz sections of E (see

Section 8.2 for the definition).

Theorem 8.1. If c ∈ Irr(�) is a quotient of S(-,E), then O(c) ⊂ Im(`X).

We prove this theorem by induction on the number of G-orbits on X. The base case of a single

orbit follows from Corollary C by Frobenius reciprocity for Schwartz induction (Theorem 8.12). The

induction step will follow from the theory of Schwartz functions on algebraic manifolds. We will now

give the necessary preliminaries on nuclear Fréchet spaces and Schwartz functions on real algebraic

manifolds, and then prove the theorem in Section 8.3.

In Section 8.4 we derive Theorem F from Theorem 8.1, the Casselman embedding theorem and

[AGKL16, Theorem C].

Remark 8.2. In the homogeneous case X = G/H, Corollary C and Remark 2.8(iii) imply a stronger

statement. Namely, under the conditions of Theorem 8.1 or Theorem F, G acts on the preimage

`−1
X
(O(c)) with an open orbit. We do not know whether this holds for general X.

8.1. Fréchet spaces, their duals and tensor products

All the topological vector spaces considered in this paper are either nuclear Fréchet or dual nuclear

Fréchet. For a nuclear Fréchet space + , +∗ will denote the strong dual, and for a Fréchet or dual Fréchet

space, ,+ ⊗̂, will denote the completed projective tensor product and !1 (+,,) will denote the space

of bounded linear operators from+ to, [Tre67, §32]. The projective topology on+ ⊗̂, is generated by

seminorms which are the largest cross-norms corresponding to pairs of generating seminorms on + and

, [Tre67, §43]. In particular, if + and , are nuclear Fréchet spaces, then so is + ⊗̂, . The projective

tensor product of nuclear spaces is naturally isomorphic to the injective one [Tre67, Theorem 50.1]. We

will need the next proposition, which follows from [Tre67, Proposition 50.5 and (50.19)]:

Proposition 8.3. Let + and, be nuclear Fréchet spaces. Then we have natural isomorphisms

(
+ ⊗̂,

)∗
� +∗ ⊗̂,∗

� !1 (+,,
∗).

We will also use the following lemma:

Lemma 8.4 ([CHM00, Lemma A.3]). Let, be a nuclear Fréchet space and let

0 → +1 → +2 → +3 → 0
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be a short exact sequence of nuclear Fréchet spaces. Then the sequence

0 → +1 ⊗̂, → +2 ⊗̂, → +3 ⊗̂, → 0

is also a short exact sequence.

Proposition 8.5 ([CHM00, Lemma A.4]). Let + = lim
→
+8 be a Hausdorff inductive limit of a sequence

of dual nuclear Fréchet spaces and , be a dual nuclear Fréchet space. Then we have a natural
isomorphism

+ ⊗̂, � lim
→

(
+8 ⊗̂,

)
.

8.2. Schwartz functions and tempered distributions on real algebraic manifolds

Let X be an algebraic manifold (i.e., smooth algebraic variety) defined over R and define - := X(R). If

X is affine, then the Fréchet space S(-) of Schwartz functions on - consists of smooth complex-valued

functions that decay, together with all their derivatives, faster than any polynomial. This is a nuclear

Fréchet space, with the topology given by the system of seminorms |q|3 := maxG∈- |35 |, where 3 runs

through all differential operators on - with polynomial coefficients.

For a Zariski open affine subset U ⊂ X, the extension by zero of a Schwartz function on * = U(R)

is a Schwartz function on - . This enables us to define the Schwartz space on any algebraic manifold X

as the sum of the Schwartz spaces of the open affine pieces, extended by zero to functions on - . For the

precise definition of this notion, see, for example, [AG08]. Elements of the dual space S∗(-) are called

tempered distributions. The spaces S∗(*) for all Zariski open U ⊂ X form a sheaf.

In a similar way one can define the space S(-,+) of +-valued Schwartz functions for any Fréchet

space + . Namely, for an affine - we demand that @(3q(G)) be bounded for any differential operator 3

on - and any seminorm @ on + . It is easy to see that S(-,+) � S(-) ⊗̂+ ([Tre67, Theorem 51.6]).

We define the tempered distributions S∗(-,+) to be the continuous linear dual space. Note that by

Proposition 8.3 we have

S
∗(-,+) � S

∗(-) ⊗̂+∗
� !1 (S(-), +

∗). (18)

If a group� acts on - and on+ , then we consider the diagonal action on S(-,+) and the dual action

on S∗(-,+). We denote the space of invariants in S∗(-,+) by S∗(-,+)� . We call the elements of this

space equivariant distributions.
For an algebraic bundle E over - , Schwartz sections are defined as finite sums of extensions by zero

from open sets on which the bundle trivialises (see [AG08, §5] for more details). For a nuclear Fréchet

space + we denote S(-,E, +) := S(-,E) ⊗̂+ and S∗(-,E, +) := S(-,E, +)∗.

We will use the following version of the Schwartz kernel theorem:

Proposition 8.6 ([AG10, Corollary 2.6.3]). For any real algebraic manifold . and algebraic bundles
E over - and E′ over . , we have

S(- × .,E ⊠ E′) � S(-,E) ⊗̂ S(.,E′).

Let U ⊂ X be a Zariski open subset, write* := U ∩ - and let / denote the complement to* in - .

Theorem 8.7 ([AG08, Theorem 5.4.3]). We have

S(*,E) � {q ∈ S(-, �) | q is 0 on / with all derivatives}.

In particular, extension by zero defines a closed embedding S(*,E) ↩→ S(-,E).

Corollary 8.8. The restriction map S∗(-,E) → S∗(*,E) is onto.
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Denote the kernel of this map by S∗
/
(-,E) and the kernel of the corresponding map S∗(-,E, +) ։

S∗(*,E, +) by S∗
/
(-,E, +).

Notation 8.9. Denote by �= (-, /,E) the space of Schwartz functions on - that vanish on / with the

first = derivatives. Denote by �=
/
(-,E) the orthogonal complement to �= (-, /,E) in S∗

/
(-,E). If / is

smooth, denote by #-
/

the normal bundle to / in - and by Sym=
(
#-
/

)
the =th symmetric power of this

bundle.

Theorem 8.10 ([AG08, Corollary 5.5.4]).

(i) For every =, there is a natural isomorphism

�=
/ (-,E)/�

=−1
/ (-,E) � S

∗
(
/,E ⊗ Sym=

(
�#-

/

))
.

(ii) S∗
/
(-,E) =

⋃
=≥0

(
�=
/
(-,E)

)
.

Using Proposition 8.5 we obtain the following corollary:

Corollary 8.11. S∗
/
(-,E, +) =

⋃
=≥0 �

=
/
(-,E) ⊗̂+∗.

Theorem 8.12 ([GGS21, Lemma 2.8]). Suppose that the action of � on - is transitive, fix G ∈ - and
let �G be its stabiliser in �. Let Δ�G

denote the modular function of �G . Then for any c ∈ M∞ (�) we
have H0

(
�, S(-,E) ⊗̂ c

)
� H0(�G ,EG ⊗ c ⊗ Δ�G

).

8.3. Proof of Theorem 8.1

The proof is by induction on the number : of G-orbits in X. The base case is : = 1, and in this case

- is a disconnected union of finitely many orbits of �. Thus the base follows from Theorem 8.12 and

Corollary C.

For the induction step, let Z be a closed G-orbit in X and define / := Z ∩ - ,* := - \ / and g := c̃.

If we have a map S(-,E) ։ c, then S∗(-,E, g)� ≠ 0. Consider the exact sequence

0 → S
∗
/ (-,E, g)

� → S
∗(-,E, g)� → S

∗(*,E, g)� .

If S∗(*,E, g)� ≠ 0, then the theorem follows from the induction hypothesis. Otherwise, we have

S∗
/
(-,E, g)� ≠ 0. By Theorem 8.10 and Corollary 8.11, S∗

/
(-,E, g) has an exhaustive �-invariant

filtration �=
/
(-,E) ⊗̂ g with successive quotients isomorphic to S∗

(
/,E ⊗ Sym=

(
�#-

/

)
, g
)
. Thus

S
∗
(
/,E ⊗ Sym=

(
�#-

/

)
, g
)�

≠ 0

for some = ≥ 0. The theorem follows now from the base of the induction. �

8.4. Proof of Theorem F

For the proof we will need the following theorem:

Theorem 8.13. The space H0

(
g, S(-,E) ⊗̂ c

)
is Hausdorff and finite-dimensional.

Proof. By the Casselman embedding theorem ([CM82, Theorem 8.21]), c is a quotient of the nuclear

Fréchet space H0(p, S(�,E
′) ⊗ j), where p is the Lie algebra of a minimal parabolic subgroup, P ⊂ G

is a minimal defined over R, j is a character of p that is trivial on its nilpotent radical and E′ is an

algebraic bundle on �. By Proposition 8.6 we have a natural isomorphism

�0

(
g, S(-,E) ⊗̂ H0(p, S(�,E

′) ⊗ j)
)
� H0(g × p, S(- × �,E ⊠ E′) ⊗ j),
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where � acts on itself by left multiplications and on - × � diagonally, and % acts on � by right

multiplications, thus commuting with the action of�. Since X is spherical, P has finitely many orbits on

X, and thus G × P has finitely many orbits on X × G. Thus [AGKL16, Theorem C] implies that H0(g ×

p, S(- ×�,E × E′) ⊗ j) is Hausdorff and finite-dimensional. Therefore, so is H0

(
g, S(-,E) ⊗̂ c

)
. �

Proof of Theorem F. Define f := H0

(
g, S(-,E) ⊗̂ c

)
. It is a representation of �, on which the con-

nected component of the unit element acts trivially. By Theorem 8.13, f is Hausdorff and finite-

dimensional. The projection map S(-,E) ⊗̂ c ։ f defines a nonzero map b : S(-,E) ⊗f∗ → c∗. Since

S(-,E) ⊗f is a smooth representation and c is irreducible, the image of b is the contragredient represen-

tation c̃. SinceS(-,E)⊗f � S(-,E⊗f), andO(c) = O(c̃), the theorem follows from Theorem 8.1. �

9. Beyond spherical subgroups

In this section we let r ⊂ g be any (not necessary spherical) subalgebra.

We start with the following generalisation of Theorem A:

Theorem 9.1. Set f ∈ M 5 .3. (r) and+ ∈ Irr(g)r,f . Suppose that for any G-orbitO ⊂ AnV(+), we have

2 dimO ∩ r⊥ ≤ dimO. (19)

Then

2 dimO(+) ∩ r⊥ = dimO(+). (20)

The proof of Theorem A adapts verbatim to Theorem 9.1 as follows:

Proof of Theorem 9.1. By Proposition G we have 2 dimO(+) ∩ r⊥ ≥ dimO(+). By formula (19) we

have

2 dimO(+) ∩ r⊥ ≤ dimO(+) and 2 dim
(
O(+) \ O(+)

)
∩ r⊥ < dimO(+).

Thus 2 dimO(+) ∩ r⊥ = dimO(+). �

As in Remark 3.1, one can ease the assumption that + is irreducible and require only that there exist

an r-equivariant map b : + → f that does not vanish on any nonzero g-submodule of + .

Similarly, one obtains a generalisation of Theorem B. To formulate it we will need some notation. Let

ℎ ∈ g be a semisimple element such that its adjoint action ad(ℎ) has integer eigenvalues and preserves

r. Set j ∈ g∗ such that ad∗(ℎ) (j) = 2j. For any 8 ∈ Z, let r(8) denote the 8th eigenspace of 03 (ℎ) on r,

and define n :=
⊕

8<0 r(8). Suppose also that for every 8 < −2 we have r(8) = g(8).

Theorem 9.2. Set f ∈ M 5 .3. (r) and suppose that f(-) = j(-)Id for any - ∈ n. Let + be a g-
module. Suppose that there exists an r-equivariant map b : + → f that does not vanish on any nonzero
g-submodule of + . Suppose also that for any G-orbit O ⊂ AnV(+), we have

2 dimO ∩
(
r⊥ + j

)
≤ dimO. (21)

Then for some orbit Omax ⊂ AnV(+) of dimension dim AnV(+), we have

2 dimOmax ∩
(
r⊥ + j

)
= dimOmax. (22)

For the proof we will need the following generalisation of Lemma 4.4:

Lemma 9.3. Let + be a g-module generated by a finite-dimensional vector subspace, on which n acts
via j |n . Then AsVKaz(+) is a non-empty subset of j + r⊥.
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Proof. Define +: := �Kaz
:

(U), for any : ∈ Z. Since ad(ℎ) preserves r, we have r =
⊕

8 r(8). For any

- ∈ r(8) with 8 < 0, we have

(- − j(-))+: = (- − j(-))�Kaz
: (U), ⊂

[
-, �Kaz

: (U)
]
, ⊂ �Kaz

:+8 (U), = +:+8 .

For any - ∈ h(8) with 8 ≥ 0, we have

(- − j(-))+: = -+: = -�Kaz
: (U), ⊂

[
-, �Kaz

: (U)
]
, + �Kaz

: (U), ⊂ �Kaz
:+8 (U), = +:+8 .

Since - ∈ �Kaz
8+2

(U), and j(-) = 0 unless 8 = −2, we obtain that - − j(-) acts by zero on grKaz (+).

Thus AsVKaz(+) ⊂ j + r⊥. The statement that the associated variety is not empty is proven in the same

way as in Lemma 4.4. �

Proof of Theorem 9.2. Let " ⊂ HomC(+, f
∗) be the g-module generated by b. Then we have

Ann(") = Ann(+). Indeed, the inclusion Ann(+) ⊂ Ann(") is obvious, and for the other direc-

tion we note that Ann(")+ ⊂ + is a submodule on which b vanishes, and thus Ann(")+ = 0 by our

condition on b. Thus AnV(") = AnV(+). By Corollary 4.2 and Theorem 4.3, we have

dim AnV(") ≤ 2 dim AsVKaz("). (23)

On the other hand, by Lemma 9.3 we have

AsVKaz(") ⊂ AnV(") ∩
(
j + r⊥

)
= AnV(+) ∩

(
j + r⊥

)
. (24)

By the condition of the theorem, for every nilpotent orbit O ⊂ AnV(+) we have

2 dim
(
O ∩

(
j + r⊥

) )
≤ dimO. (25)

From formulas (23)–(25) we obtain equation (22). �

From Theorems 9.1 and 9.2 we obtain the following generalisation of Corollary C:

Corollary 9.4. Set f ∈ M 5 .3. (r) and c ∈ Irr(�). Assume that there exists a continuous nonzero
r-equivariant linear map c → f. Then the following are true:

(i) If for any G-orbit O ⊂ AnV(c) we have

2 dimO ∩ r⊥ ≤ dimO, (26)

then 2 dimO(c) ∩ r⊥ = dimO(c).
(ii) Assume further that there exist a semisimple element ℎ ∈ g such that ad(ℎ) preserves r and has

integer eigenvalues, and a functional j ∈ g∗(2) such that n :=
⊕

8<0 r(8) acts on f via j |n . If for
any G-orbit O ⊂ AnV(c) we have

2 dimO ∩
(
j + r⊥

)
≤ dimO, (27)

then

2 dim
(
O(c) ∩

(
j + r⊥

) )
= dimO(c).

The deduction of this corollary follows the proof of Corollary C verbatim.

In the following two subsections, we apply parts (i) and (ii) of this corollary, respectively.
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9.1. Howe correspondence in type II

Let + and , be real vector spaces, and denote * := HomR (+,,). The natural actions of GL(+) and

GL(,) on* and*∗ provide an embedding

] : GL(+) × GL(,) ↩→ Sp(* ⊕ *∗).

Let (̃?(+,,) denote the metaplectic double cover of Sp(* ⊕ *∗). Since GL(+) × GL(,) preserves

the Lagrangian subspace * ⊂ * ⊕ *∗, this double cover splits over the image of ] and thus we have a

natural embedding of GL(+) ×GL(,) into (̃?(+,,), which we will also denote ] by abuse of notation.

Let s denote the Weil representation of (̃?(+,,).

Let ` denote the moment map ` : )∗* � * ⊕ *∗ → gl(+)∗ × gl(,)∗ corresponding to the action

of GL(+) × GL(,) on *. To obtain an explicit formula for `, one can identify gl(+) � gl(+)∗ and

gl(,) � gl(,)∗ using the trace form, and further*∗
� HomR(,,+). Then we have

`(-,. ) := (.-, -. ). (28)

We will now derive the following theory from Corollary 9.4:

Theorem 9.5. Set c ∈ Irr(GL(+)) and g ∈ Irr(GL(,)) such that c ⊠ g is an irreducible quotient of
s |GL(+ )×GL(, ) . Then O(c) × O(g) lies in the image of the moment map `.

In order to apply Corollary 9.4, define� := GL(+) ×GL(,) × (̃?(+,,) and let ' = Graph(]) ⊂ �.

Note that O(s) is the minimal nilpotent orbit Omin, and dimOmin = 2 dim+ · dim, .

Proposition 9.6 (I. Karshon [Appendix A ]). Let O1 ⊂ gl(+) and O2 ⊂ gl(,) be nilpotent orbits.
Then the following are true:

(i) O1 × O2 ⊂ Im ` if and only if O1 × O2 × Omin intersects r⊥.
(ii) If O1 × O2 × Omin intersects r⊥, then

2 dim(O1 × O2 × Omin) ∩ r⊥ = dimO1 × O2 × Omin. (29)

Theorem 9.5 follows now from Corollary 9.4 and Proposition 9.6. Related results were obtained in

[Prz93, LM15, GZ14, Prz18].

We will say that O1 and O2 match if O1 × O2 ⊂ Im `. This condition can be made explicit in terms

of partitions in the following way.

Proposition 9.7 (Appendix A ). Orbits O1 and O2 match if and only if the corresponding partitions
λ(O1) and λ(O2) satisfy |λ(O1)8 − λ(O2)8 | ≤ 1 for any index 8.

Here we set λ(O) 9 = 0 if 9 > ;4=6Cℎ(λ(O)). This proposition implies that if dim, ≥ dim+ , then

the maximal among all orbits that match O1 is given by

λ(O2)8 =

{
λ(O1)8 + 1, 1 ≤ 8 ≤ dim, − dim+,

λ(O1)8 , 8 > dim, − dim+.
(30)

Furthermore, if dim, ≥ 2 dim+ or if the matrix rank on O1 is at least 2 dim+ − dim, , then

equation (30) defines the only matching orbit with matrix rank equal to dim+ . If rk(O1) < 2 dim+ −

dim, , then Proposition 9.7 implies that O1 has no matching orbit of rank dim+ .

Remark 9.8. Similar results, with the same proof, hold if + and, are complex vector spaces.
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9.2. Degenerate Whittaker models

In this subsection we deduce from Corollary 9.4(ii) the main result of [Mat87]. Let ℎ ∈ g be a semisimple

element. Suppose that ad(ℎ) has integer eigenvalues, and define r :=
⊕

8≤−2 g(8). Set j ∈ g∗(2). Note

that it defines a character of r, which we will also denote j by abuse of notation.

Theorem 9.9 ([Mat87, Theorem 2]). Let + be a g-module that has a nonzero (r, j)-equivariant
functional. Then j ∈ AnV(+).

For the proof we will need the following lemma:

Lemma 9.10. Any nilpotent orbit O that intersects j + r⊥ includes j in its closure O.

Proof. Choose G ∈ O ∩ (j + r⊥). For any C ∈ C, define GC := C−2 exp(Cℎ)G. Since O is conic and

G-invariant, we have GC ∈ O. Since j ∈ g∗(2) and r⊥ =
⊕

8<2 g
∗(8), we have limC→0 GC = j. Thus

j ∈ O. �

Proof of Theorem 9.9. Let b ≠ 0 be a nonzero (r, j)-equivariant functional on+ and+ ′ be the quotient

of + by the maximal submodule on which b vanishes.

Assume by way of contradiction that j ∉ AnV(+ ′). By Lemma 9.10, this implies that for any orbit

O′ ⊂ AnV(+ ′), the intersection O′ ∩ (j + r⊥) is empty. Thus Theorem 9.2 implies that some orbit O ⊂

AnV(+ ′) intersects j + r⊥. Applying Lemma 9.10 again we obtain j ∈ O ⊂ AnV(+ ′) ⊂ AnV(+). �

10. Conjectures

In this section let � be a non-Archimedean local field. Let G be an algebraic reductive group defined

over � and � be the group of its �-points. Then � is a locally compact totally disconnected group,

and we denote by Irr(�) the collection of smooth irreducible representations of � in complex vector

spaces. Smooth here means that every vector has an open stabiliser.

For any c ∈ Irr(�), Harish-Chandra defined a complete invariant: the character jc of c. It is a

generalised function on �. We denote by WF(c) the closure of the wave-front set of jc at the unit of

�. This is a subset of g∗(�). We refer the reader to [Hör90, §8] and [CHLR18, §2.8.6] for the definition

of the wave-front set of a generalised function. Let us now give an equivalent description for ?-adic �.

If � has characteristic 0, then jc defines a generalised function Zc on a neighbourhood of 0 in the Lie

algebra g(�) of�, by restriction to a neighbourhood of 1 ∈ � and applying logarithm. By [How74] and

[HC77, p. 180], Zc is a linear combination of Fourier transforms of �-measures of nilpotent coadjoint

orbits. The measures extend to g∗(�) by [RR72]. Then WF(c) is the union of closures of nilpotent

orbits O such that the Fourier transform of the invariant measure on O enters the decomposition of Zc
with a nonzero coefficient.

Notation 10.1. Define the wave-front set WFmax(c) to be the union of all nilpotent�-orbitsO ⊂ WF(c)

such that for any nilpotent orbit O′ with O ⊂ O′ ⊂ WF(c), we have O = O′. We consider WFmax(c) as

a subset of g∗ by embedding g∗(�) into g∗.

Let H ⊂ G be a spherical subgroup defined over �, and let � denote its group of �-points. Denote

by Irr(�)� the collection of all irreducible representations of � possessing nonzero �-invariant linear

functionals. For a character q of � we will use the analogous notation Irr(�)(�,q) . Let G ·h⊥ denote the

image of the coadjoint action map G × h⊥ → g∗. Note that it coincides with the image of the moment

map )∗ (G/H) → g∗.

Conjecture 10.2. For any c ∈ Irr(�)� , we have WFmax(c) ⊂ G · h⊥.

To generalise this conjecture, let q be a character of �. Assume that there exists a decomposition

� = ( ⋉ # such that # is a parabolic nilradical. Let s and n denote the Lie algebras of ( and # . Set

j ∈ g∗ such that j |s = 0 and j |n determines q|# .
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Conjecture 10.3. Under the foregoing assumptions, for every c ∈ Irr(�)(�,q) we have

WFmax(c) ⊂ G ·
(
j + h⊥

)
.

Moreover, for every coadjoint G-orbit O that intersects WFmax(c), we have

dimO ∩
(
j + h⊥

)
= dimO/2.

This conjecture would allow us to extend to the non-Archimedean case the results described in

Sections 6 and 7. In particular, the non-Archimedean analogue of Corollary 6.3 applied to the case

� = � (which corresponds to the diagonal pair Δ� ⊂ � × �) implies the following conjecture:

Conjecture 10.4 ([MW87]). For any c ∈ Irr(�), WFmax(c) lies in a single G-orbit.

The following version of Conjecture 10.2 is proven in [GS]:

Theorem 10.5 ([GS, Corollary C]). Suppose that � has characteristic 0. Let q be a character of �
that is trivial on its unipotent radical, and set c ∈ Irr(�)(�,q) . Then

WF(c) ⊂ � · h⊥ (�).

Here h⊥ (�) denotes the rational �-points of h⊥ and� · h⊥ (�) denotes the closure in the (Hausdorff)

local topology on g∗(�).

Remark 10.6. [GS, Corollary C] does not require � to be spherical. It also works in the generality of

nonhomogeneous �-spaces.

This theorem together with Corollary C is our main general evidence for Conjectures 10.2 and 10.3.

In addition, several special cases are known to hold true for G = GLn and ?-adic �.

First of all, Conjecture 10.4 is proven for GL= (�) in [MW87, §II.2], which also expresses the

corresponding partition, which we will denote λ(c), through the Zelevinsky classification [Zel80]. The

Arthur type can also be expressed through the Zelevinsky classification (see, e.g., [OS09]).

Thus, the conditions on Arthur parameters in [GGP20, Conjecture 5.1] imply that
��λC

8
(c) − λC

8
(g)

�� ≤
1, as in Theorem E. The non-Archimedean case of this conjecture is proven in [Chan] (a partial result

was obtained in [Gur]).

Remark 10.7. In fact, the conditions in [GGP20, Conjecture 5.1] further imply that for any 8 with

λ(c)C
8
= λ(g)C

8
, we also have λ(c)C

8
= λ(g)C

8
= 1. However, this additional property does not always hold

for general smooth representations. Indeed, define = := 4, : := 1, c := 13 ×12 the Bernstein–Zelevinsky

product of trivial representations of GL3(�) and GL2 (�) and g := |det|
1/2

2
× 12 ∈ Irr(GL4 (�)). Then

Hom� (c |� , g) ≠ 0, but λC (c) = (3, 2) and λC (g) = (2, 2). This does not contradict [Chan], since g is

not of Arthur type.

The ?-adic analogue of Corollary 7.7 is proven in [OS19].

The results of [GZ14], which provide a certain analogue of Theorem 9.5 for type I dual pairs,

are proven uniformly for all local fields of characteristic 0. Finally, the non-Archimedean analogue of

Theorem 9.9 is proven in a much stronger form in [MW87].

Appendix A. Proofs of Propositions 9.6 and 9.7 by Ido Karshon

A.1. Proof of Proposition 9.6

Identify* ⊕ *∗ with Hom(+,,) ⊕ Hom(,,+), with the symplectic form given by

l((-,. ), (- ′, . ′)) = Tr(.- ′) − CA (-. ′).
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Then the differential 3] : gl(+) × gl(,) → sp(* ⊕ *∗) of ] at (Id, Id) is given by (�, �) ↦→ ('� +

!�,−'� − !�), where '� and '� denote the operators of right multiplication by � and �, respectively,

and !� and !� denote the operators of left multiplication by � and �, respectively. Recall that r is the

graph of 3].

Proof of Proposition 9.6(i). Any ) ∈ sp(* ⊕ *∗) of rank 1 has the form G ⊗ G∗ for G ∈ * ⊕ *∗

and G∗ ∈ (* ⊕ *∗)∗ given by symplectic pairing with G. Thus Omin consists of elements of the form

(-,. ) ⊗ (−., -). The pairing of such an element with ('� + !�,−'� − !�) is

CA ((-,. ) ⊗ (−., -) ◦ ('� + !�,−'� − !�)) = (−., -) (('� + !�,−'� − !�) (-,. ))

= (−., -) (-� + �-,−.� − �. ) = −CA (.-�) − CA (�-. ) − CA (.-�) − CA (�-. )

= −2(CA (.-�) + CA (-.�)).

Thus (", #, (-,. )⊗(−., -)) ∈ r⊥ if and only if" = 2.- , # = 2-. – that is, (", #) = `(2-,. ). �

This argument also allows us to reformulate Proposition 9.6(ii) as the following lemma:

Lemma A.1. Let O1 ⊂ gl (+) ,O2 ⊂ gl (,) be nilpotent orbits. Define

( := {(-,. ) ∈ Hom (+,,) ⊕ Hom (,,+) : .- ∈ O1, -. ∈ O2} .

If ( is nonempty, then

dim ( =
1

2
dim(O1 × O2 × Omin).

To prove this lemma we will need the following key lemma:

Lemma A.2. Let *, ! be vector spaces. Suppose O is a nilpotent orbit in gl (*) and fix  ∈ O. Let O′

be a nilpotent orbit in gl (* ⊕ !) and let ) be the collection of all linear maps � : ! → * satisfying(
 �

$ $

)
∈ O′. Let λ = (λ1, λ2, ...), λ

′ = (λ′
1
, λ′

2
, ...) be the partitions corresponding to O,O′. Then the

following are true:

(i) The variety ) is nonempty if and only if λ8 ≤ λ′8 ≤ λ8 + 1 for all 8.

(ii) In that case, we have dim) = dimO
′−dimO

2
.

We postpone the proof of this lemma to Appendix A.3. Through transposition of the matrix, this

lemma implies the analogous statement for block lower-triangular matrices.

Proof of Lemma A.1. Denote < = dim+, = = dim, . For any : ≤ min (<, =), define

(: := {(-,. ) ∈ ( : rk (-) = :} .

There is an action of �!< × �!= on (: which is transitive on the - coordinate. Thus, the subspace of

(: consisting of pairs with - =

(
�: $

$ $

)
has codimension

dim {- ∈ Hom (+,,) : rk- = :} = : (< + = − :) .

For (-,. ) in this subspace, write . =

(
 :×: �:×(=−:)

� (<−:)×: �(<−:)×(=−:)

)
. The condition for (-,. ) ∈ (: is

equivalent to

(
 $

� $

)
∈ O1,

(
 �

$ $

)
∈ O2. This condition is independent of �, which lies in a space of

dimension (< − :) (= − :). Let

/ =

{(
 $

� $

)
∈ O1,

(
 �

$ $

)
∈ O2

}
.
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Since  must be nilpotent, we may stratify / with respect to the nilpotent orbit O of  . After applying

Lemma A.2 once to O and O1 and once to O and O2, the dimension of each nonempty stratum is

(dimO1 − dimO)/2 + (dimO2 − dimO)/2 + dimO = (dimO1 + dimO2)/2.

Thus, whenever (: is nonempty, we have

dim (: = : (< + = − :) + (< − :) (= − :) +
dimO1 + dimO2

2
=

<= +
dimO1 + dimO2

2
=

dimO1 × O2 × Omin

2
.

Since ( =
⋃=

:=0 (: and all nonempty strata (: have the required dimension, the lemma follows. �

A.2. Proof of Proposition 9.7

We identify a nilpotent orbit in gl= with the partition whose values are the sizes of blocks of the Jordan

form of the orbit. Define < := dim+ and = := dim, .

Proof of Proposition 9.7. From the considerations in the previous subsection, we see that O1 and O2

match if and only if there exist : ≤ <, =, a nilpotent orbit O ⊂ gl: and matrices  ∈ O, �, � so that(
 $

� $

)
∈ O1,

(
 �

$ $

)
∈ O2. By Lemma A.2, this is equivalent to the existence of a partition ^ so that

^8 ≤ λ(O1)8 , λ(O2)8 ≤ ^8 + 1 for all 8. This condition is equivalent to |λ(O1)8 − λ(O2)8 | ≤ 1 for all 8. �

A.3. Proof of Lemma A.2

Let : = dim*, = = dim !. Denote  ′ =

(
 �

0 0

)
.

Proof of part (i).

Suppose first that λ8 ≤ λ′8 ≤ λ8 + 1 for all 8. Let 81, . . . , 8= be all the indices for which λ′8 9 = λ8 9 + 1 (it

is possible that λ8 = 0). Introduce a basis for * in which  is in Jordan canonical form. Fix a basis

;1, . . . , ;= for ! and define � : ! → * in this basis by letting �; 9 be the first vector in 8 9 th Jordan chain

(of size λ8 9 ). If λ8 9 = 0 we define �; 9 := 0. Then the partition of  ′ will be given by the λ′8 – that is,

� ∈ ) and thus ) is nonempty.

To the other direction, assume that ) is nonempty. Let us compare the Jordan chains of  ′ to the

Jordan chains of  . Since the image of  ′ lies in*, its maximal Jordan chain either has the same length

as the longest chain of  =  ′ |* or is longer than it by one vector. Equivalently, λ1 ≤ λ′
1
≤ λ1 + 1.

If λ1 = λ′
1
, then any maximal Jordan chain for  is also a maximal chain for  ′. Pick one such chain

and let *1 ≤ * be the space it spans. We get nilpotent operators  ′,  on */*1 ⊕ ! and */*1 that

satisfy the assumptions of the theorem and correspond to the partitions (λ2, λ3, ...) ,
(
λ′

2
, λ′

3
, ...

)
. The

claim that λ8 ≤ λ′8 ≤ λ8 + 1 for all 8 follows now by induction on dim*.

In the other case – that is, λ′
1
= λ1 + 1 – there exists a maximal chain for  ′ consisting of a vector

E ∈ ! followed by a maximal chain of  (which may be empty). Now the same argument works, if

in addition to replacing * by */*1 we replace ! by !/Span (E). This induction proves that if ) is

nonempty, then λ8 ≤ λ′8 ≤ λ8 + 1.

Proof of part (ii).

In this part we assume that λ8 ≤ λ′8 ≤ λ8 + 1 and compute the dimension of ) . We will use the following

lemma:
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Lemma A.3 ([CM92, Corollary 6.1.4]). Let , be a vector space and O ⊂ gl(,) be a nilpotent
orbit corresponding to a partition λ = (λ1, λ2, ...). Let λC be the transpose partition of λ, defined by
λC
8
=
��{ 9 : λ 9 ≥ 8

}�� or by reflecting the Young diagram of λ along the diagonal. Then

dimO = (dim,)2 −
∑

8

(
λC8
)2
. (A.1)

We now compute the dimension of ) by an inductive argument similar to the one used in the proof

of part (i). We consider two cases: either λ′
1
= λ1 or λ′

1
= λ1 + 1.

Suppose first that λ′
1
= λ1 + 1; this is the difficult case. Fix a decomposition * = *1 ⊕ *2 where

*1 corresponds to one maximal Jordan block of  and *2 corresponds to the rest of the blocks. Fix a

nonzero vector E ∈ ! and denote !1 := Span (E).

Lemma A.4. The condition �!1 *  * +*2 defines an open dense subset ( ⊂ ) .

Proof. The condition �!1 *  * +*2 is open and nonempty on ) , and the fact that it is dense can be

seen via composing � with linear automorphisms of* and ! that are close to the identities. �

Let )2 denote the set defined analogously to ) , but with* replaced by*2,  replaced by  2 :=  |*2
,

! replaced by a hyperplane in ! and the partitions λ, _′ replaced by the partitions ` = (λ2, λ3, ...) , `
′ =(

λ′
2
, λ′

3
, ...

)
. Let P∗(!) denote the space of hyperplanes in !.

Lemma A.5. There exists a dominant map a : ( → * × P∗ (!) × )2, with every fibre isomorphic to the
space of matrices Mat=−1,_1−1(C).

Proof. Given � ∈ (, define !2 ⊂ ! to be the preimage !2 = �−1 ( * +*2). Since �!1 *  * +*2

by the definition of (, ! = !1 ⊕ !2, and in particular !2 is a hyperplane. Let �1 : !2 →  *1 ⊕ *2

be the restriction �1 := �|!2
. Denote the coordinates of �1 by � : !2 →  *1 and �2 : !2 → *2. We

define the map a by a(�) := (�E, !2, �2). Let us show that �2 indeed lies in )2 and that any fibre is

isomorphic to the space of linear maps HomC (!2,  *1).

Note that � is uniquely defined by the quadruple (�E, !2, �, �2). This quadruple has to satisfy some

condition for  ′ =

(
 �

$ $

)
to be in O′, and the condition may only depend on �, �2.

However, the condition does not depend on �. Indeed, pick �E, !2, �, �2 and a collection of Jordan

chains of  ′. Consider one chain that starts with E2 + F, for E2 ∈ !2, F ∈ !1 ⊕ *. If � were changed

to �̃, there would be a D ∈ *1 such that �̃E2 − �E2 =  D, and then replacing the first vector E2 + F by

E2 +F − D would preserve the rest of the chain. Doing this to all chains at once shows that the choice of

� does not affect the nilpotent orbit  ′ is in.

Taking � = 0 for convenience, we see that �2 ∈ )2. Conversely, it is not difficult to see that for

any nonzero vector F ∈ *, any !2 ∈ P∗ (!) with F ∉ !2, and any �2 ∈ )2, the map � defined by the

quadruple (F, !2, 0, �2) lies in (. Thus a is dominant, and any fibre is isomorphic to HomC (!2,  *1).

Finally, we note that dim !2 = = − 1 and dim *1 = _1 − 1. �

This lemma implies that

dim) = : + (= − 1) + (= − 1) (λ1 − 1) + dim)2. (A.2)

Now note that `C
8
= max

(
λC
8
− 1, 0

)
. For any partition ^, denote by O^ the corresponding nilpotent orbit.

By the induction hypothesis and Lemma A.3 we see that

dim)2 =
dimO`′ − dimO`

2
=

(dim !2 + dim*2)
2 −

∑
8

(
`′C
8

)2
− (dim*2)

2 +
∑

8

(
`C
8

)2

2

=

(= − 1 + : − λ1)
2 − (: − λ1)

2 −
∑

8

( (
`′C
8

)2
−
(
`C
8

)2)

2
. (A.3)
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Further, we have

∑

8

( (
`′C8

)2
−
(
`C8
)2)

=
∑

8:λ′C
8
≥1

(
λ′C8 − 1

)2
−

∑

8:λC
8
≥1

(
λC8 − 1

)2
=
∑

8

(
λ′C8

)2
− 2 (= + :) −

∑ (
λC8
)2

+ 2: + 1,

(A.4)

where we use
∑

λ′8 = = + : and
∑

λ8 = : , and the last +1 term appears because there is exactly one 8 for

which λC
8
= 0, λ′C

8
≥ 1. Combining equations (A.2)–(A.4), we obtain by a straightforward computation

dim) =
(= + :)2 −

∑
8

(
λ′C
8

)2
− :2 +

∑
8

(
λC
8

)2

2
=

dimO′ − dimO

2
, (A.5)

as required.

Let us now consider the second case, λ′
1
= λ1. This case follows from a simpler version of the

same argument, so we only sketch the proof. Fix a decomposition * = *1 ⊕ *2 where *1 corresponds

to one maximal Jordan block of  and *2 to all other blocks. Since the elements of ! cannot generate

longer chains than the maximal chains of  , any � ∈ ) satisfies �! ⊂  *1 ⊕ *2. Similar to the

argument before, the map ! →  *1 can be any map, while the map ! → *2 should solve the smaller

problem with spaces *2, ! and partitions ` = (λ2, λ3, ...) , `
′ =

(
λ′

2
, λ′

3
, ...

)
. If )1 is the space of

solutions to the smaller problem, we get

dim) = dim HomC (!,  *1) + dim)1 = = (λ1 − 1) + dim)1. (A.6)

Using the induction hypothesis for )1, an analogous (but simpler) computation shows that dim) =
dimO

′−dimO

2
, as required. �
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